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ABSTRACT

Animals communicate through a variety of sensory channels and signals. Studies on
acoustic and visual communication systems suggest that differences in the physical
environment contribute to the variety of signalling behaviour, with species investing
in those signals that are transmitted best under the local conditions. Whether or not
environmental tuning also occurs in chemical communication systems has received
much less attention. Here, we examine the effect of several aspects of the physical
environment on the chemical communication system of lacertid lizards (family
Lacertidae). The numbers of femoral pores are used as a proxy reflecting how much
a particular species invests in and relies upon chemical signalling. Femoral pores are
specialised epidermal structures that function as a secretion channel for the waxy
substance produced by glands. In some lacertid species, the secretion carries
infochemicals that play an important role in social communication. The number of
femoral pores varies considerably among species. We have compiled data on
femoral pore numbers for 162 species and tested for the effects of climate and
substrate use. After correcting for body size and taking the phylogenetic
relationships among the species into account, we found no effect of climate
conditions or latitude on species pore numbers. Substrate use did affect pore
numbers: shrub-climbing species tended to have fewer femoral pores than species

inhabiting other substrates.

Key-words: communication - comparative methods - climate conditions - lacertid -
latitude - olfaction - physical environment — secretion - semiochemical - substrate

use.
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INTRODUCTION
Animals communicate with conspecifics and other species through a wide variety of
signals and displays. Which selection pressures and developmental constraints have
driven the evolution of the diversity in sending and receiving systems is the subject
of continued research (Bradbury & Vehrencamp, 1998; Espmark, Amundsen &
Rosengvist, 2000; Greenfield, 2002; Rogers & Kaplan, 2002; Smith & Harper, 2003;
Searcy & Nowicki, 2005). The effects of the physical environment on the evolution of
particular sensory channels and signals within sensory channels have been studied
extensively for acoustic and visual communication systems (Morton, 1975;
Kroodsma & Miller, 1982; Endler, 1990; Gerhardt & Huber, 2002; Barnard, 2004;
Kekaldinen et al., 2010). Far less is known on how the physical environment affects
the evolution of chemical communication, despite the fact that 'infochemicals'
(Dicke & Sabelis, 1988) are used by a vast number of species in a variety of aquatic
and terrestrial habitats (Mdller-Schwarze & Silverstein, 1980; Muller-Schwarze,
2006; Starnberger et al., 2013). Theoretical work suggests that the efficacy of
particular chemical signals will depend strongly on environmental conditions (i.e.
temperature, humidity, barometric pressure, air currents; Bossert & Wilson, 1963;
Moore & Crimaldi, 2004) and therefore it can be expected that varying selection
along an environmental gradient (Darwin, 1859), acting to maximize transmission
efficiency, will contribute to chemical signalling diversity (Alberts, 1992). Surprisingly
few studies have sought empirical support for this idea (except e.g. Escobar et al.,
2003; Pincheira-Donoso, Hodgson & Tregenza, 2008).

Squamate reptiles (lizards and snakes) utilize a variety of sensory systems

including visual, acoustic, tactile and gustatory systems (Vitt & Caldwell, 2014). They
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also rely strongly on their ability to perceive chemicals from the environment for a
variety of daily activities including prey detection (e.g. Amo, Lépez & Martin, 2004),
predator avoidance (e.g. Van Damme et al., 1995; Aragon, Lopez & Martin, 2008),
mate recognition (e.g. Cooper & Perez-Mellado, 2002; Moreira, Lopez & Martin,
2006) and overall social behaviour (reviewed by Mason & Parker, 2010). Squamates
are equipped with a variety of glands (Quay, 1972) with which they produce and
send out diverse chemical messages (Martin & Lopez, 2011). The femoral glands
situated in the epidermis of the inner thighs of many lizards are probably the best
studied (e.g. Alberts, 1990; Weldon et al., 1990; Aragon, Lépez & Martin, 2001; Louw
et al., 2007; Lopez & Martin, 2009). Those glands produce a holocrine secretion that
finds its way to the external world through epidermal structures: the 'femoral pores'
(Figure 1) (Mason, 1992). Pores are often larger in males than in females (Arnold &
Ovenden, 2004) and the amount of pores present on each thigh, and the general
scale morphology of the pores, varies among species (Mason, 1992; Van Wyk,
Mouton & le, 1992). Consequently, femoral pores have been used extensively in the
past in identification keys and taxonomic descriptions in lizard species.

The lizard family Lacertidae constitutes an excellent model to study the
effects of the physical environment on the evolution of chemical communication,
with more than 300 species inhabiting a wide variety of habitats distributed over
much of the Old World (Branch, 1998; Arnold & Ovenden, 2004; Spawls, Howell &
Drewes, 2006; Das, 2010). Although most lacertid lizards share the same general
morphology and also many aspects of their ecology (i.e. most are diurnal,
heliothermic species that actively forage for invertebrate prey: Castilla, Van Damme

& Bauwens, 1999; Van Damme, 1999; Vitt & Pianka, 2007), they have successfully
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radiated into a wide array of habitats and climate regions, from subarctic tundra
over temperate heath lands and forests, alpine meadows and Mediterranean
maquis, steppe and gravel semi-deserts, monsoonal rainforest to sandy dune
systems in the desert (Arnold, 1989; Harris, Arnold & Thomas, 1998; Harris et al.,
2002). Within these habitats, they utilize a great diversity of microhabitats and
substrates, ranging from herby vegetation over stony undergrounds to shifting sands
(vitt & Caldwell, 2014). Other species climb extensively in shrubs or trees
(Vanhooydonck & Van Damme, 1999; Vanhooydonck et al., 2009). Additionally, our
preliminary inquiries suggested considerable among species variation in femoral
pore number. Here, we explore whether variation in pore number co-varies with
environmental traits. In addition, acquired results will allow us to make predictions
about potentially evolutionary processes imposed by the respective physical
environments.

We investigated the among-species diversity of a component of the chemical
communication apparatus, i.e. the number of femoral pores. We test the hypothesis
that the number of pores varies among species living on different substrates and in
dissimilar climatic conditions. The durability of an infochemical is an important
aspect in chemical communication. If the signals do not last long enough in their
environment, lizards may need to increase their effectiveness to maintain their
functionality (Iraeta et al., 2011). Enhancing the overall production of infochemicals
by increasing the number (or size) of femoral pores is, besides adjusting the
composition of the secretion per se, a way to cope with environmental challenges
that decrease the chemical signal durability (Escobar, Labra & Niemeyer, 2001;

Escobar et al., 2003; Iraeta et al., 2011). We therefore assume that femoral pore
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number reflects investment in and use of chemical communication (Escobar et al.,
2001; Pincheira-Donoso et al., 2008). The idea to compensate for signalling
inefficiency (due to external factors) by increasing the investment in other
communication signals or signalling apparatus within the same sensory channel, will
be referred to in this study as the ‘within-channel compensation hypothesis’.
Chemical signalling is likely more challenging for species living in complex, dynamic,
ephemeral habitats (e.g. flimsy, moist vegetation and shrubs), on adsorptive
substrates (vegetation and sand vs. rock), or in warm and humid climate conditions,
due to the lower detectability and/or signal persistence (Alberts, 1992; Escobar et
al., 2003; Pincheira-Donoso et al., 2008). We therefore predict — in line with the
‘within-channel compensation hypothesis’ — that species living in such environments
will tend to have more femoral pores, enhancing the overall production of secretion.
The latter will consequently increase the longevity of the infochemical and thus

ensuring the functionality of the signal.

Material and methods

Morphological analyses

We extracted data on body size and the number of femoral pores of 162 species of
the family Lacertidae (Squamata: Sauria) from the literature (Table S1). We recorded
the mean number of femoral pores of the right thigh, as this is most often reported
in the literature. Our data set covers all of the genera and approximately 52% of all
the lacertid species. The largest snout-vent length (SVL) recorded per species was

noted, as well as the mean SVL for adult males.
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Climate regions, latitude and substrate use

Based on information available in field guides and the primary literature (Table S1),
each species was assigned to one of six substrate use classes: (1) sandy = species of
loose sandy substrate with no or scarce vegetation; (2) rocky = species living
primarily on rocky substrate; (3) low-vegetation = ground-dwelling species living on
low, grassy vegetation; (4) high-vegetation = shrub-climbing species; (5) arboreal =
species living mainly on tree trunks and in tree canopies, moving from tree-to-tree
by gliding; or (6) generalist = species occurring on a variety of substrates.

Data on the species’ geographical distribution was taken from herpetological
field guides (Schleich, Kastle & Kabisch, 1996; Branch, 1998; Disi, Neyas & Rifai,
2001; Arnold & Ovenden 2004; Spawls et al., 2006; Das 2010), and from the website
of the Arbeitsgemeinschaft Lacertiden of the German Society of Herpetology and
Herpetoculture (DGHT, http://lacerta.de). Each species was assigned to one climate
region by comparing its geographical distribution to an updated digital version of the
Képpen-Geiger World Climates Map (Kottek et al., 2006). The Képpen-Geiger system
(Koppen, 1900) first classifies regions according to their native vegetation into (A)
the equatorial zone, (B) the arid zone, (C) the warm temperate zone and (D) the
snow zone (Table 1). Within these four primary zones, regions are defined according
to precipitation levels (e.g. "Cf" for warm temperate and fully humid), and air
temperature (e.g. "Cfa" for warm temperate, fully humid and hot summer) (Table 2).
Species were assigned to the K6ppen-Geiger climate region that contains the greater

part of their distribution range.
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The mean latitude of the distribution area of each lacertid species was
estimated by taking the midpoint between the most northern and the most southern
distribution point. By overlapping their distribution area with a world map (using the
program  Google Earth © 2013 Google Inc.,, version 7.1.1.1888;
http://earth.google.com) we obtained a rough estimate of the latitude of the centre
of their geographical North-South distribution. We distinguish between 'latitude’ and
'absolute latitude'. Latitude varies from -90 to +90 degrees, whereas absolute
latitude varies from 0 to 90 degrees. The former variable describes a north-south

gradient, the latter describes seasonal day length.

Phylogenetic analyses
We used sequences obtained from Genbank (http://ncbi.nlm.nih.gov) to estimate
phylogenetic relationships among the species in our femoral pore dataset. We
focused on five gene regions that were effective in elucidating among-species
relationships in previous analyses (e.g. Pyron, Burbrink & Wiens, 2013; Edwards et
al., 2012, 2013): three mitochondrial regions (12S, 16S, cytochrome b) and two
nuclear gene regions (RAG-1 and C-MOS). Species were retained in the analysis if at
least two of these five regions had been sequenced. We then constructed a tree with
a total of 162 tip species, representing all the genera sampled. See Table S2 for
details of the species used in the phylogenetic analyses and the associated Genbank
accession numbers for each gene region.

Bayesian inference (Bl) was performed with uniform priors for all parameters
(MrBayes v.3.1.2; Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) at

the CIPRES Science Gateway (www.phylo.org/sub_sections/portal/). Each gene
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region was partitioned separately, and the evolutionary model chosen for all gene
regions was GTR+I+G (jModelTest; Guindon & Gascuel, 2003; Darriba et al., 2012).
Two parallel runs for 20x10° generations each were performed for the Markov chain
Monte Carlo (MCMC) runs, with trees sampled every 1000 generations. The number
of generations to discard as burn-in (4.0x10° generations) was determined by
examining the number of generations (1) at which the standard deviation of split
frequencies stabilized (at less than 0.001), (2) at which the log-likelihood tree scores
reached stationary, and (3) the effective sample sizes (ESS) of all parameters were
>100 (Tracer v.1.5; Rambaut & Drummond, 2007). A 50% majority rule tree was
constructed with the burn-in excluded using the ‘sumt’ command in MrBayes, and

nodes with 20.95 posterior probability were considered supported.

Statistical analyses
A strong phylogenetic signal was detected in most of the variables considered here
and therefore analysing the data in an explicit phylogenetic context seems
indispensable (Harvey & Pagel, 1991; Schwenk, 1993; Nunn 2011). We used both
traditional and phylogenetic analyses to examine how the number of femoral pores
varies with snout vent length and environmental conditions, although we only
present the result of the phylogenetic tests. All statistical analyses were conducted
in the program R Studio v.0.97.248 (R Core Team, 2012; R Studio, 2012) and p-values
smaller than 0.05 were considered as significant.

We estimated the phylogenetic signal in our data by calculating Pagel’s
lambda for discrete variables and Blomberg’s K for continuous variables. Pagel’s

lambda was estimated by maximum likelihood optimization using the ‘fitdiscrete’
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function in the R-package ‘Geiger’ (Harmon et al., 2008). A lambda close to zero
indicates no phylogenetic structure in the trait, whereas a lambda close to one
corresponds with the original, untransformed branch lengths (Pagel, 1999).
Estimates of the K-statistic were obtained with the ‘Kcalc” command in the R-
package ‘picante’ (Kembel et al., 2010). A K<1 implies that relatives resemble each
other less than expected under Brownian motion evolution along the hypothesized
tree. A K>1 implies that close relatives are more similar than expected under
Brownian motion evolution (stronger signal, Blomberg, Garland & Ives, 2003).
Absolute femoral pore number was significantly correlated with mean SVL
(r=0.32, df=160, t=4.34, p<0.005). Therefore, in all further analyses we used the
residuals extracted from the regression of pore number on mean SVL, and will be
referred to hereon as ‘residual pore number’. Mean SVL was used as a measure of
body size because this was the variable most often reported in the literature. We
also have information on the maximal SVL reported per species, another size
variable commonly used in comparative studies. However, because maximal SVL is
probably more sensitive to sample size (Stamps & Andrews, 1992; Meiri, 2007) and
because our dependent variable is also an average number, we chose to use mean
SVL. The two body size measures are highly correlated in our dataset (r=0.87,
df=160, P<0.005). We used phyl.resid() function in R to achieve phylogenetic size
correction of femoral pore numbers (Revell, 2009). We fitted the model assuming
two different error structures. The first (BM) assumed simple Brownian motion
evolution along the hypothesised tree; the second (A) used a 'lambda' error

structure, as suggested by Pagel (1999). Because the respective residuals were highly
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correlated (r=0.99, p<0.005), we only report the results of the analyses using the
phylogenetic residuals obtained with the BM error structure.

Phylogenetic analyses of variances were used to test the differences in
residual pore number among species inhabiting different substrate and Kdppen-
Geiger climate classes using the function phylANOVA() in the R-package phytools
(Revell, 2012). The function creates virtual data vectors by simulating evolution
along the hypothesized tree and performs ANOVAs on each of the data sets. The
resulting F-values are used to construct an empirical F-distribution, against which the
real F-value can be compared (Garland et al., 1993). Post-hoc pair-wise differences
were evaluated by comparing empirical t-values to t-values obtained for each
simulated data vector. We used sequential-Bonferroni tests to correct for multiple
testing (p.adj="holm", Revell, 2012).

The relationship between residual pore numbers and latitude was evaluated
using phylogenetic generalised least-squares regression analyses (PGLS), using a
covariance matrix based on a Brownian and an Ornstein-Uhlenbeck motion model of

evolution (R-package ‘nlme’, functions: ‘gls’, ‘corBrownian and ‘corMartin’).

Results

Phylogenetic relationships

We found strong branch support for the subfamilies Gallotiinae and Lacertinae
(Figure 2), as reported in previous studies (Mayer & Pavlicev, 2007; Kapli et al., 2011;
Pyron et al., 2013). The monophyly of most genera within the tribes Lacertini and

Eremiadini was also well supported, but the relationship between genera within the

11
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Lacertini remained unresolved (as in previous studies: Fu, 2000; Arnold, Arribas &
Carranza, 2007; Mayer & Pavlicev, 2007; Pavlicev & Mayer, 2009; Kapli et al., 2011;
Pyron et al., 2013). That we were able to resolve the among-genera relationships in
greater detail in the Eremiadini than in the Lacertini, is most likely due to the fact
that nuclear gene sequences are available for Eremiadini species (Engleder et al.,
2012; Edwards et al., 2012, 2013). We expect that additional information on nuclear
genes in Lacertini species will allow better resolution of the relationships among
genera in that clade.

Overall, our tree of the lacertid family corroborates many previously reported
inter- and intrageneric relationships (Pyron et al., 2013), but a few details are
noteworthy. The tribe Eremiadini consists of Atlantolacerta andreanskyi and two
derived clades that are geographically disparate: the almost strictly Ethiopian (i.e.,
African south of the Saharan desert) genera and the predominantly Saharo-Eurasian
genera (Mayer & Pavlicev, 2007). In contrast with earlier studies the genus Nucras is
now monophyletic, probably as a result of improved sampling (in contrast to Pyron
et al., 2013). Vhembelacerta is recovered again as a monotypic genus, rendering
Australolacerta as monotypic, and Meroles squamulosus, previously in Ichnotropis, is
also nested in Meroles (as in Engleder et al., 2012 and Edwards et al., 2013).
Acanthodactylus consists of three well-supported lineages, and further sampling

within this genus will likely elucidate the taxonomic level status of the lineages.

Climate regions, latitude and substrate use
See table 3 for the descriptive statistics for climate regions and substrate use

of lacertid pore number.
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Estimates of the amount of phylogenetic signal in the variables under study
here are presented in table 5. The signal is very strong for all environmental
variables and morphological traits, pore number and SVL.

When accounting for phylogenetic relationships among species in our
dataset, we found no effect of the first main climate region (phylANOVA, F=1.39,
df=3, p=0.76), precipitation (phylANOVA, F=5.93, df=4, p=0.42) or temperature
category (phylANOVA, F=1.23, df=4, p=0.74) on mean residual pore number.
However, the overall effect of substrate class is significant (phylANOVA, F=16.25,
df=5, p=0.012, Table 4). Species from 'high-vegetation' microhabitats on average had
lower residual pore numbers than 'arboreal species (post-hoc, difference=4.32,
p=0.039), species living on 'rocky' substrates (difference=7.80, p=0.015), species
from 'sandy' areas (difference=6.60, p=0.048) and 'generalist' species (difference
=6.59, p=0.028). Phylogenetic tests do not suggest a difference between high- and
low- vegetation substrates (difference=3.62, p=0.330). No significant correlation was
found between residual pore numbers and latitude (PGLS, r=-0.26, df=160, t=0.15,
p=0.88) and absolute latitude (PGLS, r=-0.34, df=160, t=-0.50, p=0.62), based on
Brownian motion model of evolution. Likewise, no noteworthy significant correlation

based on Ornstein-Uhlenbeck motion model of evolution.

DISCUSSION
In many lizards femoral pores function as an independent component of the lizards'
chemical signalling system (Imparato, 2007). Our analysis of the literature revealed

substantial among-species variation in the number of femoral pores in the family
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Lacertidae. In this study we aimed to investigate the hypothesis that selection
underlying interspecific variation in pore numbers emerge from environmental
factors affecting chemical signalling. Subsequently, our findings allow us to make
inferences regarding the environmental factors that act as selective force driving this
among-species variation in pore number. Differential investment in particular
signalling systems can arise for two reasons. First, the relevance of sending out the
message may vary among species. For instance, we expect territorial species to
invest more in scent marking than non-territorial species (e.g. Becker, Petruno &
Marler, 2012). Second, local environmental circumstances may hamper the
transmission of certain signals, forcing some species to switch to a different

communication channel (e.g. Endler, 1993; Hews & Bernard, 2001; Stevens, 2013).

We find little support for the hypothesis that climate conditions co-vary with the
diversification of femoral pore number across lacertid lizards. However, differences
in substrate use may explain part of the variation in femoral pore numbers in
lacertids.

Generally, climate conditions could affect species’ investment in chemical
communication (or in this specific case; femoral pore number) in different directions.
First and in line with the ‘within-channel compensation hypothesis’; warm, windy
and humid conditions (which are thought to reduce signal transmittance,
pervasiveness and persistence) may select for stronger signalling devices and more
copious excretion. This would allow the lizards to bring across their message despite
the difficult conditions. In accordance with this idea, Escobar et al. (2001) found that

Liolaemus species living in warm, windy and low pressure habitats tend to have

14
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more precloacal pores than species that live in less harsh habitats. However this
paper ignored the effects of shared ancestry. A subsequent paper by Pincheira-
Donoso et al. (2008) on the same genus, but with additional phylogenetic input,
failed to find any effect of environmental conditions on pore number. Pincheira-
Donose et al. (2008) explain the assessed variation in pore numbers in Liolaemus
rather as a result of shared ancestry than a result of phylogenetic independent
adaptive events. These findings emphasize the major importance of the
incorporation of phylogenetic information in interspecific comparative studies.
Second, if environmental conditions become too hostile, or the costs of producing
chemicals too costly, lizards may trade in chemical communication for other
communication channels (the 'between-channel compensation hypothesis'). This
would result in an increase of investment in alternative signalling channels together
with (1) equal or (2) decreasing investment in pore number, what would either (1)
invalidate or (2) reverse the relationship between environmental conditions and
femoral pore number. An example of a possible case of ‘between-channel
compensation’ can be found in Atlantic mollies (Poecilia mexicana). In cave-dwelling
populations of Atlantic mollies male size cannot easily be determined visually, so
females have evolved the ability to recognize large males on the basis of chemical
cues (Plath et al., 2004). Also the star-nosed mole (Condylura cristata) and the blind
mole rat (Spalax ehrenbergi), both species living underground, have reduced
thalmocortical visual system and an expanded somatosensory representation
(Cooper et al., 1993; Catania, 2005). Environmentally induced switches between
communication channels may also occur on different time scales. For instance,

individual male newts Mesotriton alpestris will use comparatively more olfactory

15
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than visual cues when courting in the dark than when courting in daytime (Denoél &
Doellen, 2010). Guppies (Poecila reticulata) exhibit developmental sensory plasticity:
individuals reared in the dark forage more efficiently when chemical cues are
available, while individuals reared in full light find food faster on visual stimuli
(Chapman et al., 2010).

Contrary to our predictions, phylogenetic analyses failed to find a significant
relationship between temperature, humidity, latitude and femoral pore number in
lacertids. Similar as reported by Picheira-Donoso et al. (2008), each record of co-
variation between climatologic factors and pore number vanishes when accounting
for shared ancestry. Based on the strong phylogenetic signal of the climatic variables
used in this particular study, variation in pore number could be most parsimoniously
explained by phylogenetic relatedness rather than the results of adaption to climatic
conditions. Therefore, solely based on pore number diversity, we cannot argue that
climatic conditions induce 'within-channel compensation' or ‘'between-channel
compensation' in this lizard family. An alternative possibility is that other features of
the chemical signalling system do differ among closely related species, but that this
occurs without significant differentiation in the morphological expression of the
femoral gland system; e.g. pore number (Picheira-Donoso et al., 2008). Numerous
studies have shown that the chemical composition of femoral secretion can differ
significantly between lizards of different age, sex, population and species (Cole,
1966; Martins et al., 2006; Martin & Ldépez, 2006; Lopez & Martin, 2009; Gabirot et
al., 2010; Gabirot, Lépez & Martin, 2011; Martin et al., 2013). Information on the

chemical structure of secreted compounds could potentially unravel differences
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between lacertids living in regions with dissimilar climate conditions, what could

strengthen the ‘within-channel compensation’ hypothesis.

Our results suggest that substrate may be an environmental factor affecting the
evolution of the chemosensory system of lacertids. Femoral pore numbers differed
among species inhabiting different substrate classes, even after controlling for
phylogenetic relationships. Several other studies have shown that characteristics of
the substrate may affect the efficiency of signal transmission. For instance, the
seismic signals produced by male jumping spiders (Habronattus dossenus) to attract
females are far less effective on sandy or rocky substrates than on leaf litter (Elias,
Mason & Hoy, 2004). Similar results have been found in a wolf spider (Schizocosa
ocreata), but here males that find themselves on substrates that attenuated seismic
signals used more visual signals (Gordon & Uetz, 2011) - a possible case of 'between-
channel compensation'.

Substrate type may also affect the efficiency of chemical signals themselves,
especially that of marks that are deposited directly on the surface and must
communicate the identity of characteristics of a territory holder for as long as
possible (Alberts, 1992). Regnier & Goodwin (1977) have demonstrated
experimentally that the fade-out time of a chemical signal depends on its affinity for
the substrate. For example, in their experiments, secretions applied to clay surfaces
evaporated more slowly than those applied to wood surfaces. The fade out-times of
chemical signals on sand, stones or vegetation (applied in our study) have not been
compared yet, but it seems plausible that differences in affinity will prevail because

of their distinctive physical nature. Additionally, the dynamics of the substrate could
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affect the volatility and fade-out time of the secretion as well. A highly dynamic
substrate, such as sand dunes or shrubby vegetation, has a higher level of
disturbance and a complex airflow character, what both influences signal fade-out
time (Mdller-Schwarze, 2006). Scent marks deposited in dunes may be covered
easily with sand, and infochemicals deposited on shrubby vegetation are subjected
to a high level of disturbance because of their 3D complexity, which act to decrease

signal life.

Our results suggest that shrub-climbing lacertid species invest less in femoral pores
than species living on any other substrate type. Studies have indicated that
vegetation affects airflow patterns and may adsorb and re-emit molecules (Perry &
Wall, 1984), and thus the scale (density, height and species-dependent
characteristics) of vegetation will affect communication patterns (Miller-Schwarze,
2006). Accordingly, when depositing chemical secretions onto a substrate at some
height above the ground (e.g. shrubby vegetation), the active space of the
infochemical increases by the addition of the vertical dimension (Alberts, 1992).
Because of the developed three-dimensional spherical shape of the active space of
the chemical signal, the longevity of the infochemical will decrease. Subsequently, an
individual could respond to such environmental conditions by downsizing its
investment in chemical communication and investing in more suitable
communication systems. Natural selection could therefore act in favour of species
with a low number of femoral pores, supporting the 'between communication
channel' hypothesis. Data on investments in alternative signalling channels would

enable us to draw more accurate conclusions.
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Alternatively, a trade-off might exist between proficiency in chemical
advertising (number of femoral pores) and climbing capacity (Iraeta et al., 2011). In
species that climb extensively in vegetation, the need for shorter limbs would tip
that balance towards shorter limbs, less space for glands, and fewer femoral pores.
Biomechanical considerations suggest that climbing species should benefit from
having shorter upper limbs because this would bring their centre of body mass closer
to the substrate (Clemente et al., 2013), which would prevent them from 'toppling
over'. In accordance, comparative studies have reported smaller limb lengths in
climbing taxa (Sinervo & Losos, 1991; Vanhooydonck & Van Damme, 1999; Herrel,
Meyers & Vanhooydonck, 2002; Herrel et al., 2008). With less space available on the
inner thighs, selection for shorter hind limbs would result in fewer femoral pores as
a by-product. We had no information on limb length for many of the species in our
dataset, so we cannot assess this alternative hypothesis here. However, Iraeta et al.
(2011) found no significant correlation between pore number and hind limb length
in Psammodromus algirus lizards. Interestingly though, male hind limb length did
correlate with mean pore size (another potentially important variable for which we
currently have no information). An argument against the idea that variation in pore
numbers is a by-product of differential selection on hind limb length, is that rock
climbing species tend to have relatively large numbers of pores, while biomechanics
and comparative studies would predict them to have short limbs for the same

reasons as vegetation climbers.

Sexual selection as a driving force?
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There is strong evidence that the holocrine excretions of the femoral glands of
lacertids function primarily in territory demarcation and/or in mate choice (Martin &
Lopez, 2000; Lépez, Aragon & Martin, 2003; Lopez, Amo & Martin, 2006; Aragon et
al., 2006; Font et al., 2012) and therefore it seems likely that their production is
under sexual selection. This is further supported by the fact that males tend to have
larger and more femoral glands than females and that their secretional activity
increases during the breeding season in response to rising levels of circulating
androgens (Diaz, Alonso-Gémez & Delgado, 1994; Iraeta et al., 2011). Changes in the
chemical composition of the secretion during the mating season have also been
observed (Alberts et al., 1992). We therefore hypothesize that differences in femoral
pore number among species could reflect variation in the intensity of sexual
selection. Alas, for most species in our dataset, detailed information on territoriality,
male-male combat and female choice is simply lacking. For this reason, we are
reluctant to discard sexual selection as a factor influencing the evolution of femoral

pore numbers.

Synthesis and future prospects

In summary, we find large among-species variation in femoral pore numbers in
Lacertidae. Using phylogenetic comparative methods, this study succeeds in finding
a co-variation between the number of pores and species’ substrate usage, whereas
shrub-climbing species tend to have fewer femoral pores than species inhabiting
other substrates. In contrast, no effect of climatic conditions (temperature and

precipitation) or latitude on species’ pore numbers was found. These results allow us
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to speculate about the potential role of the physical environment on the evolution of
the chemical communication system, in lacertid lizards.

We feel that the vast among-species variation in pore numbers invites further
investigation. To address these shortcomings, more research needs to be
undertaken to acquire comparative data on the size of femoral pores and their
distribution on the limb, their rate of secretion, the physical characteristics of the
chemicals produced, the chemical composition of the secretions and their biological
meaning. Studies on variation at the receptor side of the chemical communication
channel (e.g. characteristics of the lingual delivery system, Jacobson's organ,

receptive areas in the brain) should also be encouraged.
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FIGURES

Figure 1: A row of femoral pores on the ventral surface of an adult male Acanthodactylus schreiberi.
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The species' branch colour refers to the substrate usage of that species: sandy (yellow); rocky (marine blue); low-

vegetation (turquoise); high-vegetation (dark green); arboreal (pink); generalist (red).
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TABLES
Table 1: Key to climate categories, adapted from the Képpen and Geiger Climate System
(Kottek et al., 2006). Description of the first two letters of the classification system (i.e. main

climate category and precipitation levels).

Type Description Criterion

A Equatorial climates Tmin2 +18°C

Af Equatorial rainforest, fully humid Pmin= 60 mm

Am Equatorial monsoon Pann 2 25 (100~ Ppyin)

Aw Equatorial savannah with dry winter Pmin< 60 mm in winter

B Arid climates Pann < 10 Py,

BS Steppe climate Pann>5 Py

BW Desert climate Pann <5 Py

Cc Warm temperate climates -3°C<Tmin<+18°C

Cs Warm temperate climate with dry summer Psmin < Pwmin; Pwmax > 3 Psmin @and Psmin< 40 mm
Cw Warm temperate climate with dry winter Puwmin < Psmin @Nd Pgmay > 10 Pymin

cf Warm temperate, fully humid neither Cs nor Cw

D Snow climates Tmin<-3°C

Ds Snow climate with dry summer Psmin < Pwmin; Pwmax > 3 Psmin @and Psmin < 40 mm
Dw Snow climate with dry winter Pwmin < Psmin@nd Psmay > 10 Pymin

Df Snow climate, fully humid neither Ds nor Dw

Key to Criterion abbreviations: T,,, = annual mean near-surface (2m) temperature; T,.= monthly mean
temperatures of the warmest month; T, = monthly mean temperatures of the coldest month; P,,, =
accumulated annual precipitation; P, = precipitation of the driest month; P, = lowest monthly precipitation

for the summer; P, highest monthly precipitation for the summer; Pymin = lowest monthly precipitation for the
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838 winter; Pymax = highest monthly precipitation for the winter. All temperatures are given in °C, monthly

839 precipitations in mm/month and P,,, in mm/year.
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863 Table 2: Key to third letter of the climate categories, adapted from the Koppen and Geiger

864  climate system (Kottek et al., 2006). Key to criterion abbreviations as in Table 1.

Type Description Criterion
h Hot steppe / desert Ton=+18°C
k Cold steppe / desert Tann<+ 18 °C
a Hot summer Tmax= + 22 °C
b Warm summer not (a) and at least 4 T,,on2 + 10 °C
c Cool summer and cold winter not (b) and T,,n>-38 °C
d Extremely continental like (c) but Tpin £-38°C
865
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880  Table 3: Descriptive statistics (means, standard errors, sample sizes, minima and maxima)

881 for substrate class and climate class of lacertid absolute mean femoral pore numbers.

Factor X SE n  Min. Max.
Substrate class
Arboreal 21.25 125 2 20.0 225
Generalist 20.06 1.00 25 135 210
High vegetation 7.27 190 13 1.0 20.0
Low vegetation 13.00 091 15 6.0 18.5
Rocky 1798 0.48 55 10.5 25.0
Sandy 16.36 0.72 52 0.0 32.0
Main climate class
Equatorial (A) 13.78 2.09 9 1.5 22.5
Arid (B) 16.77 0.70 56 0.0 32.0
Warm temperate (C) 16.76 0.62 89 1.0 31.0
Snow (D) 14.81 198 8 3.0 19.0
Precipitation
Fully humid (f) 13.27 1.09 35 1.0 24.0
Summerdry(s) 18.81 0.60 53 8.0 27.5
Steppe (S) 16.70 1.09 13 105 21.0
Winterdry (w) 1555 1.26 22 3.0 31.0
Desert (W) 16.73 0.90 39 0.0 32.0
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882
883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

Temperature

Hot summer (a)

Warm summer (b)

Cool summer (c)

Hot arid (h)

Cold arid (k)

17.38

15.21

17.08

16.74

16.82

0.79

1.00

1.46

0.93

1.08

87

34

34

22

1.0

1.0

10.0

0.0

10.0

31.0

27.5

19.5

27.5

32.0

Key to abbreviations: X = mean;

SE = standard error; n = sample size.
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902  Table 4: Results of phylogenetic analyses showing the mean difference in residual pore
903 numbers between classes of species' substrate usage. Bold values indicate significant p-

904  values (P <0.05).

Substrate class Generalist High vegetation  Low vegetation Rocky Sandy

Arboreal 1.40 4.32 2.54 1.22 1.71

Generalist - 6.59 2.70 -0.63 0.85

High vegetation - - -3.62 -7.80 -6.60

Low vegetation - - - -3.55 -2.30

Rocky - - - - 1.85
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920 Table 5: The degree to which the environmental factor variables (climate, temperature,
921 precipitation and substrate usage) and continuous variables (latitude, mean male SVL and
922 mean pore number) exhibits phylogenetic signals, indicated by significant Pagel's A value (for

923 factor variables) and Blomberg's K values (for continuous variables).

A K
Climate 0.976 _
Temperature 0.928 _
Precipitation 0.990 _
Substrate usage 0.940 _
Latitude _ 3.64
SVL _ 0.64
Mean pore number _ 0.67
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