
This item is the archived peer-reviewed author-version of:

Plasma activation of methane for hydrogen production in a  rotating gliding arc warm plasma : a chemical
kinetics study

Reference:
Zhang Hao, Wang Weizong, Li Xiaodong, Han Long, Yan Mi, Zhong Yingjie, Tu Xin.- Plasma activation of methane for hydrogen production in a  rotating gliding arc
w arm plasma : a chemical kinetics study
Chemical engineering journal - ISSN 1385-8947 - 345(2018), p. 67-78 
Full text (Publisher's DOI): https://doi.org/10.1016/J.CEJ.2018.03.123 
To cite this reference: https://hdl.handle.net/10067/1514500151162165141

Institutional repository IRUA

N2

N2

http://anet.uantwerpen.be/irua


Accepted Manuscript

Plasma activation of methane for hydrogen production in a N2 rotating gliding
arc warm plasma: a chemical kinetics study

Hao Zhang, Weizong Wang, Xiaodong Li, Long Han, Mi Yan, Yingjie Zhong,
Xin Tu

PII: S1385-8947(18)30481-9
DOI: https://doi.org/10.1016/j.cej.2018.03.123
Reference: CEJ 18730

To appear in: Chemical Engineering Journal

Received Date: 4 September 2017
Revised Date: 21 March 2018
Accepted Date: 22 March 2018

Please cite this article as: H. Zhang, W. Wang, X. Li, L. Han, M. Yan, Y. Zhong, X. Tu, Plasma activation of methane
for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study, Chemical Engineering
Journal (2018), doi: https://doi.org/10.1016/j.cej.2018.03.123

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cej.2018.03.123
https://doi.org/10.1016/j.cej.2018.03.123


  

1 

Plasma activation of methane for hydrogen production in a N2 rotating 

gliding arc warm plasma: a chemical kinetics study 

Hao Zhang
a,1,*

, Weizong Wang
b,1

, Xiaodong Li
a
, Long Han

c
, Mi Yan

c
, Yingjie Zhong

c
, Xin Tu

d,*
 

a 
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 

b 
Research group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium 

c
 Institute of

 
Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China 

d 
Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK 


 

Abstract  

In this work, a chemical kinetics study on methane activation for hydrogen production in a warm 

plasma, i.e., N2 rotating gliding arc (RGA), was performed for the first time to get new insights into 

the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was 

developed, which showed a good agreement with the experimental results in terms of the conversion 

of CH4 and product selectivities, allowing us to get a better understanding of the relative significance 

of various important species and their related reactions to the formation and loss of CH4, H2, and 

C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma 

chemistry. The results reveal that the electrons and excited nitrogen species (mainly N2(A)) play a 

dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4 + H → 

CH3 + H2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the 

major contributor to both the conversion of CH4 and H2 production, with its relative contributions 

of >90% and >85%, respectively, when only considering the forward reactions. The coexistence and 

interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm 

plasma significantly enhance the process performance. The formation of C2 hydrocarbons follows a 

nearly one-way path of C2H6 → C2H4 → C2H2, explaining why the selectivities of C2 products 

decreased in the order of C2H2 > C2H4 > C2H6. 

 

Keywords: Rotating gliding arc; Warm plasma; Methane decomposition; Chemical kinetics model; 
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1. Introduction 

The increasing pressure of diminishing fossil fuel reserves coupled with the issue of global 

warming, has motivated the development of affordable energy carriers that are renewable and 

environment-friendly. Hydrogen is one of the most promising alternative energy sources that may 

play a key role in various specialized areas such as fuel cells, combustion engines, and gas turbines 

[1-5]. Currently the catalytic methane steam reforming process is the most well-developed technique 

for hydrogen production [6]. However, the relatively low specific productivity, large equipment size, 

and high temperature requirement (600-1000 K), as well as the rapid deactivation of catalysts in the 

reforming process, still limit its industrial applications, particularly in small-scale distributed and 

mobile systems where rapid ignition/response is essential [7-9]. 

In this respect, plasma technology, and more specifically atmospheric pressure non-thermal 

plasma, is gaining increasing attention for hydrogen production from methane activation [4, 7, 

10-13]. Non-thermal plasma offers numerous highly reactive species (e.g., energetic electrons, 

radicals, and excited species) that are responsible for the initiation and propagation of chemical 

reactions whereby expensive and impurity vulnerable catalyst can be eliminated, while maintaining a 

limited energy cost due to the relatively low gas temperature and good chemical selectivity [14-18]. 

High reaction rate, fast attainment of steady state, and high specific productivity ensure rapid start-up 

and shutdown of the plasma process, providing flexible integration into small-scale hydrogen 

production systems [15, 19-21]. In addition, these merits allow non-thermal plasma systems to utilize 

electricity from intermittent renewable sources, e.g., solar and wind, offering a solution to the 

imbalance between energy production and consumption by renewable sources [22]. Various 

atmospheric pressure non-thermal plasmas have been investigated for methane conversion, such as 

dielectric barrier discharge (DBD) [19, 23], corona discharge [24], and glow discharge [25], however, 

the relatively low energy density in these plasmas makes it difficult to achieve a high conversion at 

higher feed flow rates [10].  

Warm plasma, a transitional discharge that exhibits a relatively higher gas temperature (e.g., 

1000-4000 K) and a higher power (e.g., 30-500W), such as gliding arc discharge, spark discharge, 

and microwave discharge that are generated with the stabilization by power or current constraints, 

show significantly higher energy efficiency for various fuel reforming processes in comparison to 

other non-thermal plasmas, especially at high feed flow rates. As proposed by Gangoli, Gutsol, and 

Fridman et al., transitional warm plasma systems are probably optimal for large-scale fuel reforming 
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[26-28]. In our previous study [29], a novel rotating gliding arc (RGA) warm plasma was developed 

for hydrogen production from methane activation in N2, exhibiting significant advantages in terms of 

CH4 conversion (maximum, 91.8%), hydrogen selectivity (maximum, 80.7%), and hydrogen energy 

yield (maximum, 22.6 g/kWh) with a feed flow rate of several orders of magnitude higher than that 

of typical non-thermal plasmas (e.g., DBD). 

However, most of the current research in this field is based on experiments and assumptions 

without an in-depth understanding of the ongoing plasma chemical reactions [26, 27, 30-32]. The 

underlying mechanisms of this energy-efficient process in warm plasmas are still far from 

understood, which is severely limiting the scale-up and application of this promising technology. To 

the best of our knowledge, no chemical modeling investigation on fuel reforming processes in warm 

plasmas has been reported. 

In this work the methane activation reaction in the N2 RGA warm plasma was selected for 

chemical kinetics study, in order to provide new insights into the underlying mechanisms of fuel 

reforming processes in warm plasmas. A zero-dimensional (0-D) chemical kinetics model was 

developed to describe the plasma chemistry. The calculated CH4 conversion and product selectivities 

at various CH4/N2 molar ratios were compared with the experimental results for the validation of the 

model. It is worth mentioning that a more extensive experimental study is beyond the scope of our 

current work and the reader can refer to our previous publication [29] for details. Based on this 

model, the plasma chemistry of various species was elucidated with main attention devoted to the 

conversion of CH4 and production of two major products, H2 and C2H2. The relative contributions of 

competing formation and loss paths for these species were investigated as a function of CH4/N2 

molar ratio. To provide a realistic picture of the plasma chemistry, the overall reaction mechanisms 

of the plasma process were schematically illustrated. 

 

2. Description of the model 

2.1 Chemical kinetics model 

The procedure for the 0-D chemical kinetics modeling is schematically shown in Fig. 1. Both 

electron-impact reactions and heavy particle (i.e., atoms, molecules, radicals, ions, and excited 

species) reactions that are considered to be competing in the plasma chemistry were included in the 

model. It was calculated by means of an Boltzmann solver, i.e. BOLSIG+ [33], based on the collision 

cross sections (σ) as well as the reduced electric field and gas temperature, which were obtained 
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experimentally by means of oscilloscope and optical emission spectroscopy (OES), respectively (as 

reported in our previous study [29]). Note that the reduced electric field was obtained from the 

average value of the voltage. The gas temperatures of plasma under the studied conditions are given 

in Table 1. The Arrhenius rate coefficient of heavy particle reactions depends on gas temperature, and 

the parameters were adopted from literature and NIST Chemical Kinetics Database (see the 

Supplementary Material) [34]. 

Table 1 The gas temperatures of plasma at different CH4/N2 molar ratios 

CH4/N2 molar ratio 0.05 0.10 0.20 0.04 0.60 0.80 1.00 1.20 

Gas temperature (K) 1528 1359 1328 1298 1256 1230 1206 1200 

 

 

Fig. 1 Procedure for the chemical kinetics modeling 

 

By providing a set of gas reactions and the experimental conditions (e.g., reactor dimension, 

pressure, discharge power, feed gas composition and flow rate), the model was then implemented in 

the Plasma PSR (perfectly stirred reactor) module of Chemkin software [35], which is a 

well-developed and commonly used proprietary software tool for basic kinetics simulations. After a 

comparison of the simulations with the experimental results, an optimization of the model was 

conducted using a better choice of the cross section or rate coefficient obtained from different literature 

sources. Known from the high-speed frames of the discharge, the plasma was around 10 mm in 

thickness, yielding a reactor volume of around 3.6 ml. The discharge power input was obtained based 

on the electrical parameters measured by oscilloscope. Under the studied conditions, the discharge 

power is in the range of 315 - 397 W and the corresponding specific energy input (ratio of discharge 

power to feed flow rate) is 3.15 - 3.97 kJ/l. All plasma properties and species densities were assumed 

to be uniform throughout the entire reactor volume and the plasma process was determined primarily 
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by chemical kinetics rather than by species transport in the reactor. The 0-D model described herein 

focused mainly on the details of the plasma physics and plasma chemistry but neglected the 

sophisticated dimensional effects and surface kinetics in plasma. 

A total of 32 species have been included in this model, as shown in Table 2. These species react 

with each other through 120 electron-impact reactions and 166 heavy particle reactions. Note that 

excited species (e.g., N2 (
3

gB  ) and N2 (
3

uC  ), see Table S1) are only included in the model to 

describe the energy loss processes, and thus not treated as separate species here. Additionally, we 

have omitted ions such as CH2
+
 and C

+
 from the model and the reactions which result in the 

formation of these ions have also not been taken into account in the particle balance equations. 

However, these reactions have been included in the cross-section database in order to calculate the 

electron energy distribution function (EEDF) correctly. Similar method has been used in the literature 

[36]. The full list of all the reactions can be found in the Supplementary Material (Table S1 and S2). 

A more detailed description of the 0-D model is available in the literature [37, 38] and in the 

Supplementary Material. 

 

Table 2 Overview of the species included in the model 

Molecules Radicals Excited species Charged species 

CH4, C2H6, C2H4, 

C2H2, C3H4, C3H6, 

C3H8  

CH3, CH2, CH, C2H5, 

C2H3, C2H, C2, C, 

C3H7, C3H5, C3H2 

 

e  

H2 H   

N2 N N2 ( 3 +

uA Σ ), N2 ( '1

u

-a Σ ) 

N(
4
S), N(

2
D) 

 

HCN CN   

NH3 NH, NH2  
 

 

The average electron density was assumed to be constant in the simulation of each case and the 

similar method has been used by Kozák et al. in the modeling of CO2 conversion by a microwave 

discharge system [36]. Previous studies [39, 40] showed that a RGA plasma has an electron density 

of 10
12 

~ 10
14

 cm
-3

, and our previous experimental study [29] gives an electron density of around 10
13

 

cm
-3

. Therefore, we assumed the average electron density is 10
13

 cm
-3

 at a CH4/N2 molar ratio of 1.0 
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in the model. The used values of electron density for other CH4/N2 molar ratios were slightly 

adjusted based on the calculation of Snoeckx et al. [41]. 

 

2.2 Electron-impact reactions 

Electron-impact reactions are considered as the initial step of plasma chemistry, contributing to 

both the direct decomposition of methane, and production of various chemically reactive excited 

species (e.g., N2(A), N(
4
S)), which play a significant role in the propagation of plasma chemical 

reactions. The presence of a variety of collision processes and numerous species in the plasma 

chemical process remains a significant challenge for modeling. It is difficult to include all the 

collisions in the model, and a simplification by considerably reducing the negligible reactions is 

necessary. In this model, the dominant electron-impact reactions such as momentum transfer, 

electronic excitation, vibrational excitation, rotational excitation, dissociation, and ionization 

processes of the main species, i.e., N2, CH4, H2, C2H6, C2H5, C2H4, C2H3, C2H2, C2H, CH3, CH2, and 

CH were taken into account. According to previous study [37], the electron attachment processes for 

the production of negative ions were neglected. Table S1 lists the electron-impact reactions included 

in the model with the sources of the cross sections. 

 

2.3 Heavy particle reactions 

The existing atoms, molecules, radicals, ions, and excited species can react with each other, 

contributing significantly to the generation of products (e.g., H2, C2H2, and C2H4). According to the 

experimental results and previous studies, 31 types of heavy particle species including excited 

nitrogen species, H2, H, CmHn (1 ≤ m ≤ 3, 0 ≤ n ≤ 2m+2), and neutral nitrogen species were taken 

into account in this model, yielding 166 heavy particle reactions. The rate coefficients together with 

the corresponding references are also listed in the Supplementary Material (see Table S2). 

Considering the limited number density of ions occurring in the discharge plasma due to the 

relatively low electron energy in the RGA plasma (a mean electron temperature of around 1 eV), the 

ion involved heavy particle reactions were not included in the simulation, which is in consistent with 

other works [38, 42, 43]. In addition, the three-body collisions are considered to be negligible and 

were not taken into account [10, 38, 44]. Different types of heavy particle reactions are introduced in 

detail as follow. 
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Excited nitrogen species 

In plasma bulk, the electron-impact reactions of background gas N2 can produce a variety of 

excited nitrogen species, such as N2 (
3

uC  ) (N2(C)), N2 (
3

gB  ) (N2(B)), N2 (
3 +

uA Σ ) (N2(A)), N2 

( '1

u

-a Σ ) (N2(a')), N2
+ 

( 2 +

uB Σ ) (N2
+
(B)), N(

4
S), N(

2
D), and N(

2
P) etc. [41, 42, 45-50]. A reasonable 

elimination of reactions that are of little importance is normally required based on the density and 

lifetime of the excited species, as well as the rate coefficients of the related reactions.  

Our previous study [29] showed that, the spectrum of the N2 RGA was dominated by the radiative 

species such as N2(C), N2(B), and N2
+
(B). Nevertheless, the radiative lifetimes of these species are 

very short in atmospheric pressure plasmas [50, 51], thus significantly limiting their contribution to 

the chemical reactivity of the N2 plasma. Therefore, these species were not considered in this model, 

which is commonly seen in other modeling studies of CH4/N2 plasmas [41, 46, 50]. The metastable 

N2(A) is produced from the electron-impact excitation of N2 and also radiatively from N2(B). The 

threshold energy of N2(A) at zero vibrational level (v = 0) is 6.17 eV [41], which is sufficient to 

break CH4 bond (the dissociation energy of C-H is 4.5 eV). In addition, the radiative lifetime of N2(A) 

is up to around 2s [52]. Therefore, N2(A) is probably of great importance for the methane 

decomposition process. In an experimental study by Golde et al. [53], the formation of H2 was 

clearly observed in consequence of the collisions of CH4 with N2(A) (v = 0-6). 

The metastable N2(a'), which has a high energy level of 8.52 eV, together with a relatively long 

lifetime of 13-500 s, is also considered as an important intermediate species. In a microwave 

discharge used for methane decomposition in N2 by Pintassilgo et al. [45], the N2(a') induced reaction 

CH4 + N2(a') → N2 + C + H2 + H2 (R130 in Table S2) exhibited a small contribution to methane 

conversion at a pressure of 2670 Pa. Snoeckx et al. performed a modeling study on a DBD based 

methane conversion into H2 in N2, showing that with increasing N2 concentration to 30%, N2(a') 

played an increasing role in the production of H2 via reaction R130 [41]. 

In addition, the metastable excited N(
4
S) and N(

2
D) atoms in the plasma present a relatively high 

rate coefficient for the reactions with CH4, CH3 etc. [41, 45-47, 50, 54, 55], and thus cannot be 

ignored as well. The excited N(
2
P) atom was proven to be substantially less reactive with methane 

than N(
2
D) (around 60 times less) [49], and was consequently not considered in the simulation. 

Based on the above analysis, the excited N2(A) and N2(a') molecules, together with the excited 

atoms N(
4
S) and N(

2
D) were included in the model. Note that the N2(A) in Table S2 represents the 
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N2(A) species with vibrational levels of v = 0-9. 

 

H2, H, and CmHn (1 ≤ m ≤ 3, 0 ≤ n ≤ 2m+2) 

A significant number of reactions among H2, H, and hydrocarbons or radicals including CH4, CH3, 

CH2, CH, C2H6, C2H5, C2H4, C2H3, C2H2, C2H, C2, C, C3H8, C3H7, C3H6, C3H5, C3H4 and C3H2 were 

taken into account in the model. The C4 or higher hydrocarbons involved reactions were assumed to 

be negligible, considering their low yields. As known from our previous OES study [29], the RGA 

CH4/N2 warm plasma exhibits a gas temperature of over 1200 K, which is higher than the thermal 

decomposition temperature of CH4 molecules (around 930 K). Consequently, the thermal 

decomposition reactions, which were normally ignored in typical non-thermal systems [41, 47, 48, 

50], were considered in the warm plasma chemistry. 

 

Neutral nitrogen species 

Our previous results showed that CN and HCN were experimentally detected as an important 

intermediate and gas product, respectively [29]. In addition, trace NH3 was also found in other 

experimental work [41]. Therefore, the neutral nitrogen-containing species N, CN, HCN, NH, NH2, 

and NH3 have also been included in the model. 

 

3. Experimental section 

 

Fig. 2 Schematic diagram of the experimental setup 
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The experiments were carried out at atmospheric pressure using a homemade RGA reactor [29], 

as shown in Fig. 2. The reactor consisted of a con-shaped inner electrode and a circular outer 

electrode, both of which were made of stainless steel. The inner electrode was connected to a 

high-voltage source (positive bias) while the outer electrode was grounded, providing a narrowest 

discharge gap of 2 mm for the initial ignition of the arc. The reactor was powered by a customized 10 

kV DC power supply and a 40-kΩ resistance was connected in series in the circuit to limit and 

stabilize the current. A magnet was placed outside of the ground electrode, generating an upward 

magnetic field inside the reactor for the stabilization and acceleration of the arc. Three tangential 

inlets were designed at the bottom of the reactor for the injection of reactants (CH4/N2), ensuring the 

formation of a swirling flow inside the reactor. The arc was initiated at the narrowest gap, then 

moved upward and finally rotated rapidly around the inner electrode as a result of the combined 

effect of Lorentz force and swirling flow, thus generating a stable plasma volume for chemical 

reactions. Each experiment was repeated three times with similar results and the averaged values are 

given. 

The gaseous products were analyzed using a gas chromatography (GC, Fuli Analytical Instrument 

GC9790A) equipped with a thermal conductivity detector (TCD) for the detection of H2 and N2, as 

well as a flame ionization detector (FID) for the measurement of hydrocarbons. A 5A molecular sieve 

packed column (2 m × 3 mm, helium carrier gas) was used for the TCD detector, while a GDX-104 

packed column (2 m × 3 mm, helium carrier gas) was chosen for the FID detector. The column 

temperature was set at 300 K for the gas analysis. The GC was calibrated for a wide range of 

concentrations for each gaseous component using reference gas mixtures (Shanghai Weichuang 

Standard Gas Analytical Technology Co., Ltd.) and other calibrated gas mixtures. The CH4 

conversion and product selectivity (H2 and CmHn) are defined as follows: 

4
4

4

mol of CH  converted
CH  conversion (%) = 100%

mol of CH  introduced
   (1) 

2
2

4

(mol of H  produced) 2
H  selectivity (%) = 100%

(mol of CH  converted) 4





 (2) 

m n
m n

4

(mol of C H  produced) m
C H  selectivity (%) = 100%

mol of CH  converted


  (3) 

 

A set of experimental results [29] at an applied voltage of 10 kV, a flow rate of 6 l/min, and an 
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external resistance of 40 kΩ were selected to be compared with our calculated results by the plasma 

kinetics model. 

 

4. Results and Discussion 

4.1 Validation of the model 

A comparison of the simulated and experimental CH4 conversion is plotted as a function of 

CH4/N2 molar ratio in Fig. 3, showing a good agreement with a relative error below 10.1%. The 

agreement between the simulation and experimental results is reached in a more extensive range of 

operating parameters (for example at different gas flow rates, see Fig. S1 in the Supplementary 

Material). For the sake of clarity, in the following section, we only presented the results at various 

CH4/N2 molar ratios to provide a realistic picture of the plasma chemistry. 

 

Fig. 3 Simulated and experimental CH4 conversion, together with the corresponding relative error as 

a function of CH4/N2 molar ratio 

 

Further validation of the model is performed through a comparison between the simulated and 

experimental selectivity of gas products, as shown in Fig. 4. In addition, typical measured and 

calculated outlet gas compositions are listed in Table 3. All the simulated results show a fairly good 

agreement with the experimental ones. H2 is the main gas product with a concentration of around one 

order of magnitude higher than that of C2H2. The predicted concentration of C2H6 was 0.01-0.02%, 

whereas no C2H6 was detected in the experiment, which could be due to the high detection limit of 

the GC. Similar trends of H2, C2H2, and C2H6 selectivity between the simulated and experimental 
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data upon increasing the CH4/N2 molar ratio can be seen in Fig. 4, except for the C2H2 selectivity in 

the region of CH4/N2 = 0.05-0.20. 

 

Fig. 4 Simulated and experimental selectivity of gas products as a function of CH4/N2 molar ratio 

 

Table 3 Comparison of simulated and experimental outlet gas compositions under typical conditions 

Component 

CH4/N2 = 0.20 CH4/N2 = 0.40 

Exp. (vol. %) 
Sim. 

(vol. %) 
Exp. (vol. %) 

Sim. 

(vol. %) 

CH4 2.73 3.48 5.38 6.36 

N2 75.48 77.87 69.75 64.39 

H2 13.89 13.99 16.48 21.92 

C2H2 1.80 1.33 2.78 1.91 

C2H4 0.06 0.07 0.09 0.17 

C2H6 0.00 0.01 0.00 0.02 

 

The discrepancy between the modeling and experimental results could be attributed to the 

following effects. Firstly, carbon formation in the methane conversion was assumed to be in the gas 

phase to simplify the 0-D model. However, carbon deposition was observed on the walls of the RGA 

reactor, thus carbon balance was not 100%. Secondly, some of the available reaction rate coefficients 

included in this model are prone to some deviations. Furthermore, an uncertainty exists in the 

experiment resulted from the complexity of plasma chemical process, as stated by some authors [56]. 



  

12 

Overall, the calculated and experimental results are in rather good agreement, certainly in view of 

the complexity of the plasma chemistry, indicating that the model can provide a more or less realistic 

picture of the plasma chemistry, and therefore can be used to elucidate the underlying reaction 

mechanisms and pathways in the plasma activation of methane. 

 

4.2 Conversion of CH4 

Fig. 5 shows the dominant reactions with a relative contribution of higher than 0.1% together with 

the reaction rates for the conversion and formation of CH4 (CH4/N2 = 0.10). Furthermore, the relative 

contributions of the key pathways with a relative contribution of higher than 1% are plotted in Fig. 6 

as a function of CH4/N2 molar ratio. Clearly, the H atom induced reaction R166 is the dominant 

reaction for the overall conversion of CH4 with a relative contribution of over 90% under all of the 

tested conditions. Interestingly, the importance of reaction R166 in the conversion of CH4 was also 

reported by Legrand et al. using a microwave N2 plasma [57]. 

CH4 + H → CH3 + H2  R166 

The reaction of C2H3 with CH4 (R164) is also responsible for the conversion of CH4 to some 

extent (2.4-4.8%).  

CH4 + C2H3 → C2H4 + CH3  R164 

 

 

Fig. 5 Dominant reaction pathways and corresponding reaction rates for the formation and loss of 

CH4 (CH4/N2 = 0.10) (For the figures hereinafter, the formation and loss reaction rates of 
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corresponding species are positive and negative, respectively; the reaction numbers are taken from 

Tables S1 and S2.) 

 

 

 

Fig. 6 Relative contributions of the most important paths for the loss (a) and formation (b) of CH4 as 

a function of CH4/N2 molar ratio. 

 

The highly energetic electrons and metastable N2(A) play predominant roles in the initial 

dissociation of CH4 via the electron impact reaction R37 and N2(A) induced reaction R121, 

respectively. 

e + CH4 → e + CH3 + H  R37 
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CH4 + N2(A) → N2 + CH3 + H  R121 

 

The relative contribution of the above two pathways to the overall CH4 conversion is 0.8-2.6% 

and 1.6-0.2%, respectively. At a CH4/N2 molar ratio below 0.10, N2(A) is more important for the 

initial dissociation of CH4. However, with the increase of CH4/N2 molar ratio, the role of N2(A) in 

the dissociation of CH4 declines in contrast to that of electron due to the drop in N2(A) density and 

increase in electron density [41]. In the experiment [29], we found that decreasing N2 concentration 

(and N2(A)) reduced the conversion of CH4. The following combined effects are associated with 

these phenomena: (a) the decreasing electron density with increasing N2 content (also see [41]) 

lowers the contribution of the electron impact reactions to both the CH4 loss and H2 production 

(R37); and (b) with the increase of N2 content, the role of N2 metastable states becomes more 

important and Penning dissociation reactions with CH4 become important for CH4 loss and H2 

formation (R121). Note that the combined effects may enhance the net loss reaction rate of CH4 with 

increasing CH4/N2 molar ratio (as seen from Fig. 7). However, a decreased CH4 conversion can still 

be obtained because the increasing feed CH4 amount cannot be compensated by the increasing loss 

reaction rate. Similar results were also reported in methane conversion using a N2 DBD plasma [41]. 

Note that N2(A) has been widely reported as a key specie in the processing of hydrocarbons in 

nitrogen plasmas. Legrand et al. [49] reported that N2(A) was more important for the dissociation of 

methane in comparison to electrons and excited N atoms in a N2 microwave plasma. Pintassilgo et al. 

[45, 46] found that in the post-discharge of a microwave N2 plasma, the decomposition of CH4 was 

primarily attributed to the reaction with N2(A) to produce CH3 and CH2 (CH4 concentration <1%). 

Aerts et al. developed a kinetics model to understand the reaction mechanisms in the destruction of 

C2H4 in a N2 DBD plasma [58]. They found that N2(A) made a significant contribution (31%) to the 

direct destruction of C2H4 with a concentration of 100 ppm at a specific energy density of 600 

mJ/cm
3
.  

As shown in Fig. 6(b), CH4 can be formed through the reactions of CH3 radicals with H2 (R177), 

C2H4 (R174), and C3H7 (R225) with R177 being the dominant pathway having a relative contribution 

of up to 97.3-98.8%.  

CH3 + C2H4 → C2H3 + CH4  R174 

CH3 + H2 → CH4 + H  R177 

CH3 + C3H7 → C3H6 + CH4  R225 
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Fig. 7 Net reactions rates of various CH4 conversion processes as a function of CH4/N2 molar ratio. 

 

Although the collision between CH4 and H (R166) is the dominant reaction for CH4 conversion 

(Fig. 6(a)), it is worth noting that the reaction R166 (and its reverse reaction) has an overall negative 

net contribution to the conversion of CH4 (Fig. 7) if considering its reverse reaction R177 that has a 

much higher reaction rate. This finding indicates that there is more CH4 formed from CH3 than vice 

versa. In contrast, the rate of reaction R164 is much higher than that of its reverse reaction R174, and 

thus, reaction R164 has a largest net contribution to the conversion of CH4 under the tested 

conditions in this work, as clearly indicated in Fig. 7. 

 

4.3 Production of H2 

Fig. 8 shows the important formation and loss reactions of H2 (relative contribution >0.1%) at a 

CH4/N2 molar ratio of 0.10. The relative contributions of the key reaction pathways (relative 

contribution >1%) are plotted in Fig. 9. Clearly, R166 is also the dominant reaction for the formation 

of H2 with a relative contribution of over 85.9%. Interestingly, Indarto et al. reported similar findings 

in the decomposition of methane using a traditional gliding arc reactor [44]. Moreover, the H atom 

induced reactions with C2H4, C3H8, and C2H6 etc. can also contribute to the formation of H2 via the 

following reactions, of which reaction R212 shows a relatively high contribution of 3.4-5.7%. 

C2H6 + H → C2H5 + H2  R202 

C2H4 + H → C2H3 + H2  R212 

C3H8 + H → C3H7 + H2  R247 
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Fig. 8 Dominant pathways and corresponding reaction rates for the formation and loss of H2 (CH4/N2 

= 0.10) 

 

However, it is worth mentioning that the reaction R166 (and its reverse reaction) has an overall 

negative net contribution to the formation of H2 as a result of a larger reaction rate of its reverse 

reaction R177 (see Fig. 10). In contrast, the dominant net contributions to the formation of H2 come 

from the collisions of C2H4, C3H8, and C2H6 species with H atoms when the CH4/N2 molar ratio is 

higher than 0.40. 
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Fig. 9 Relative contributions of the most important paths for the formation (a) and loss (b) of H2 as a 

function of CH4/N2 molar ratio 

 

 

Fig. 10 Net reactions rates of various H2 production processes as a function of CH4/N2 molar ratio.  

 

Moreover, the dissociation of CH4 and C2H4 stimulated by electrons and N2 (A), respectively, has 

a minor contribution to the production of H2 via reactions R38 and R127 (0.1-0.5% and 0.4-4.4%, 

respectively) as indicated in Fig. 9(a) if only the forward reaction rates are included. Increasing 

CH4/N2 molar ratio reduced the contribution of R127 but increased that of R38 for H2 production. 

When the reverse reaction rates are included, our calculations clearly indicate that the collision of 

C2H4 upon N2 (A) is the most important net process for H2 formation when the CH4/N2 molar ratio is 
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lower than 0.20 (see Fig. 10). 

e + CH4 → e + CH2 + H2   R38 

C2H4 + N2(A) → N2 + C2H2 + H2   R127 

 

In this study, if only the forward reactions are included, the role of H atom is of primary 

importance both for the overall conversion of CH4 and for the production of H2 due to the reaction 

R166: CH4 + H →  CH3 + H2. When the reverse reactions are taken into account, the net 

contributions of the reactions involving neutral species collisions to the overall conversion of CH4 

and production of H2 are still more important than that of the electrons and excited nitrogen species. 

Although the electrons and excited nitrogen species (mainly N2(A)) are dominant for the initial 

dissociation of CH4, their contributions to the overall CH4 conversion and H2 production are fairly 

low. Whereas, Snoeckx et al. [41] reported that in a DBD plasma, the N2(A) involved reaction R121: 

CH4 + N2(A) → N2 + CH3 + H was the most important pathway for the overall CH4 conversion with 

a relative contribution of up to 25-45% and the electron-impact reaction R37: e + CH4 → e + CH3 + 

H also provided a significant contribution of 5-25% for CH4 dissociation. For the production of H2 in 

their study, the N2(a') involved CH4 dissociation reaction R130: CH4 + N2(a') → N2 + C + H2 + H2 

was shown to be the most important with a relative contribution of 40-65%. Yang et al. [37] 

performed a modeling study for the decomposition of pure CH4 in a DBD plasma, and results 

showed that the electron-impact CH4 dissociation R37: e + CH4 → e + CH3 + H was the primary 

pathway for the overall CH4 conversion. 

It is clear that the electron and excited nitrogen species (e.g., N2(A) and N2(a')) generated by DBD 

plasmas play a more important role in the dissociation of CH4 compared to the RGA warm plasma. 

This is logical, because the RGA plasma has a mean electron energy of around 1 eV, which is 

significantly lower than that reported in DBD plasmas (2-3 eV) [41], limiting both electron-impact 

dissociation of CH4 and electron-impact excitation of nitrogen molecules. More importantly, the 

DBD plasma had a relatively low gas temperature and, for example, the rate coefficient of reaction 

R166: CH4 + H → CH3 + H2 was set as a constant of k = 8.43×10
-19

 cm
3
·s

-1
 at 300K in their model, 

resulting in a limited reaction rate of reaction R166. Whereas, in our model, the rate coefficient of 

R166 was 6.62 × 10
-21 

T
3.2 

exp (-36.6/RT) (R = 8.314 ×10
-3

 kJ mol
-1

 K
-1

) which is 
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temperature-dependent. Due to the high gas temperature of the RGA plasma (over 1200 K), reaction 

R166 has a considerably high reaction rate, and thus plays a dominant role in the dissociation of CH4 

in the RGA plasma. It is also interesting to note that, the experimentally obtained CH4 conversion in 

the RGA plasma (maximum, 91.8%) is remarkably higher than that in the DBD plasma (maximum, 

≈12.0%) [41] whilst maintaining a total flow rate of one order of magnitude higher.  

The comparison of experimental and calculated results between the RGA warm plasma and other 

non-thermal plasmas enables us to make a plausible conclusion that an efficient conversion of 

methane in plasma is difficult to be achieved solely by electrons and/or excited species induced 

methane dissociation. A relatively high gas temperature makes a significant contribution to achieving 

a desired methane conversion due to the enhanced rate coefficients of reactions driven by heavy 

particles as a result of thermal effect. This is potentially why warm plasma, a transitional discharge 

that exhibits a relatively higher gas temperature (e.g., 1000-4000K), such as RGA, microwave 

discharge, and spark that are generated with the stabilization by power or current constraints, show 

significantly higher energy efficiency for fuel reforming processes in comparison to traditional 

non-thermal plasmas such as DBD [20, 21, 27, 30-32, 59, 60]. For instance, in a heat-insulated 

gliding arc warm plasma used for oxidative pyrolysis reforming of methanol, an energy cost of 1-2 

orders of magnitude lower than that of typical non-thermal plasmas (e.g., corona) can be achieved 

with a considerably high energy efficiency of 74% [31]. 

Warm plasmas typically operate at significantly higher power (e.g., 30-500W) and higher gas 

temperature (e.g., 1000-4000K) in comparison to other non-thermal plasmas, while maintaining 

better chemical selectivity and lower energy consumption than that of thermal plasmas [26, 29, 61]. 

The above results show that the coexistence and interaction of thermochemical and plasma chemical 

processes in the warm plasma significantly enhance the process performance [60].  

 

4.4 Production of C2H2 

Figs. 11 and 12 show the competing formation and loss reactions (relative contribution >0.1%) of 

another main product C2H2 (CH4/N2 = 0.10), as well as the relative contributions of the predominant 

reactions (relative contribution >1%) as a function of CH4/N2 molar ratio. The production of C2H2 is 

mainly attributed to the following pathways, of which the N2(A) induced dissociation of C2H4 

(reaction R127) is dominant. 

C2H4 + N2(A) → N2 + C2H2 + H2 R127 
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C2H5 + C2H3 → C2H6 + C2H2 R204 

C2H3 + H → C2H2 + H2 R216  

C2H + H2 → C2H2 + H R221 

C2H3 + C3H5 → C2H2 + C3H6 R234  

 

 

Fig. 11 Dominant pathways and corresponding reaction rates for the formation and loss of C2H2 

(CH4/N2 = 0.10) 
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Fig. 12 Relative contributions of the most important paths for the formation (a) and loss (b) of C2H2 

as a function of CH4/N2 molar ratio 

 

Increasing CH4/N2 molar ratio from 0.05 to 1.2 leads to a continuous drop of the relative 

contribution of reaction R127 from 67.1% to 33.5%, as shown in Fig. 12(a). The electron-impact 

dissociation of C2H4 (R102: e + C2H4 → C2H2 + H2) also made a minor contribution to the 

formation of C2H2 (0.4% to 5.5%). 

The loss of C2H2 was principally driven by hydrogenation reaction (R218), with a relative 

contribution of 74.6-76.1%. 

C2H2 + H → C2H3  R218 

 

4.5 Overall reaction mechanisms 

The detailed formation and loss reaction mechanisms of trace products, such as C2H4, C2H6, and 

HCN, are not presented in this paper. To gain better insights into the underlying reaction mechanisms 

in this reforming process, an overall reaction scheme of the plasma chemistry is schematically 

depicted in Fig. 13. 

The starting step of the plasma chemistry is from the electron-impact reactions of CH4 and N2, 

resulting in the initial dissociation of CH4 and the production of excited nitrogen species, such as 

N2(A), N2(a'), and N(
4
S) (especially N2(A)), which will subsequently contribute to the dissociation of 

CH4. The heavy particle reactions of CH4 with H atoms that have significantly high reaction rates 
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due to the high gas temperature in the RGA plasma, can contribute significantly to the efficient 

conversion of CH4, if only the forward reactions are included. 

 

 

Fig. 13 Reaction scheme to illustrate the dominant pathways of the plasma chemistry in RGA plasma 

assisted CH4 decomposition process in N2. The percentages on the arrowed lines represent the 

relative contributions of different paths for the depletion of corresponding species at CH4/N2 = 0.40. 

 

 

Fig. 14 Dominant reaction paths for the formation of C2 hydrocarbons. The dashed lines represents 

the paths with minor contributions. 

 

A mechanism schematic focusing on the reaction paths of C2 hydrocarbons is presented in Fig. 14. 

As shown in Figs. 13 and 14, CH3 radicals produced from CH4 conversion play a predominant role in 
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the subsequent formation of C2H2, C2H4, and C2H6 etc. Fig. 14 indicates that the formation of C2 

hydrocarbons follows a nearly one-way path of C2H6 → C2H4 → C2H2 with negligible backward 

reactions. This is why the selectivity of C2 hydrocarbons in the experiment decreased in the 

following order: C2H2 > C2H4 > C2H6. Similar formation paths of C2 hydrocarbons have been 

reported in the decomposition of pure CH4 using DBD plasmas [62, 63]. 

The electron-impact dissociation of N2 produces N atoms which contributed to the formation of 

major N-containing product HCN. 

 

5. Conclusions 

In this study, a zero-dimensional chemical kinetic model was developed to obtain a better insight 

into the underlying mechanisms of methane activation for hydrogen production in a N2 rotating 

gliding arc (RGA) warm plasma. Both competing electron-impact and heavy particle (i.e., atoms, 

molecules, radicals, ions, and excited species) reactions were considered in the model and a 

reasonable agreement between the calculated and experimental CH4 conversion and product 

selectivities was achieved. The relative contributions of various important species and their related 

reactions for the conversion of CH4 and production of main products H2 and C2H2 were investigated 

as a function of CH4/N2 ratio. 

Results revealed that, although the electrons and metastable N2(A) were the dominant species in 

the initial dissociation of CH4, their contributions to the overall CH4 conversion were minor, which 

were only 0.8-2.6% and 1.6-0.2%, respectively. Increasing CH4/N2 ratio resulted in an increase in the 

role of electron but a drop in that of N2(A) for CH4 conversion. 

The H atom involved reaction CH4 + H → CH3 + H2, which had a significantly high reaction rate 

due to the high gas temperature of the RGA warm plasma (over 1200 K), played a dominant role for 

both the conversion of CH4 and the production of H2 with relative contributions of >90% and >85%, 

respectively. However, it is worth mentioning this reaction has an overall negative net contribution to 

the CH4 conversion, if its reverse reaction with much higher reaction rate is considered. In contrast, 

the collision of CH4 upon C2H3 has a dominant net contribution to the overall CH4 conversion if both 

the forward and reverse reaction rates are taken into account. Additionally, the collisions of C2H4, 

C3H8, and C2H6 species with H atoms lead to a largest net contribution to H2 production when the 

CH4/N2 ratio is higher than 0.40, and the collision of C2H4 upon excited N2 (A) gives the dominant 



  

24 

contribution to H2 production when the CH4/N2 ratio is lower than 0.20. Warm plasmas are probably 

optimal for large-scale fuel reforming in consequence of the coexistence and interaction of 

thermochemical and plasma chemical processes, which allows for a high efficiency of the process 

even at higher flow rate. 

Another main product C2H2 was formed primarily from C2H4 via the N2(A) involved reaction 

C2H4 + N2(A) → N2 + C2H2 + H2. The overall reaction mechanisms indicated that the formation of 

C2 hydrocarbons followed a nearly one-way path of C2H6 → C2H4 → C2H2, explaining why the 

experimentally obtained selectivities of C2 hydrocarbons decreased in the following order: C2H2 > 

C2H4 > C2H6. 
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Highlights 

 

 Modeling study on methane activation in warm plasma is conducted for the first time 

 Electrons and N2(A) are the dominant species in the initial dissociation of CH4. 

 H atoms play the dominant role for the conversion of CH4 and the production of H2. 

 Thermochemistry and plasma chemistry coexist in warm plasma. 

 The C2 hydrocarbons form following a nearly one-way path of C2H6 → C2H4 → C2H2. 

 


