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Condensation and interaction range in harmonic boson traps: A variational approach
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For a gas ol bosons interacting through a two-body Morse potential a variational bound of the free energy
of a confined system is obtained. The calculation method is based on the Feynman-Kac functional projected on
the symmetric representation. Within the harmonic approximation a variational estimate of the effect of the
interaction range on the existence of many-particle bound states, and bRTthghase diagram is obtained.

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION results of the path integral variational method elaborated in
Sec. I, applied to the spin-polarized gas of bosons interact-
In this paper, we continue the investigation proposed iring through a Morse potential, are reported in Sec. Ill, and
[1] and started if2], on the influence of realistic interactions the specific case of lithium is investigated using the experi-
on the expression for the free energy of the interacting Boséentally derived interatomic potentigfrom spectroscopy
system. The method we propose is distinct from other treatmeasurements of Abrahaet al.[20—-23). The discussion of
ments in two main aspects. First, it allows for the treatmenthe results and a comparison with other methods are pre-
of finite-range interatomic potentials whereas nearly all thesented in Sec. IV.
oretical studies relying on a mean-field description have fo-
cused on a two-body contact potential. Second, the exact Il. STUDY OF THE MORSE POTENTIAL
guantum statistics, both of the condensate and of the noncon-

densate atoms, is treated analytically at arbitrary tempera- The essential property of re_allst|c interatomic interactions
ture. Is that atoms repel at short distances and attract when they

The experimental realization of Bose-Einstein condensa'® SOMe distance 'apart. In this section, we study.the effect
tion (BEC) in systems of trapped, interacting bosonic atomsf the_ Morse potentlalzz(r), which ha_s these two main char-
[3-5] has led to renewed theoretical effofts2,6—14 to acteristics, on a collection of bosonic atoms

understand the properties of Bose gases. The need to go be- v(1)
yond the contact potentidhlso discussed ifi15—-17) ap- 2
pears because the ground-state energy of a contact potential U
with negative scattering lengtfnelevant for the’Li) is not . . . . .
bounded from below. The present study of finite-range poyvhere the vector (with lengthr) is the difference in posi-

tentials, based on a variational principle resulting from thego? ve.ctorstkc])f the two fa:thoms, ta"SJHI'TQ’ a parame'E[er :Ea:
Jensen-Feynman inequality, avoids this artifact. This varia®®€'mines the range of the potentialis a parameter na

tional principle (originally formulated by Feynmafig] to determines the strength of the potential, &nd a parameter

treat the problem of an electron in a polarizable mediisn that determines the “stiffness” of the potentlgl near its mini-
mum. These parameters are related to experimentally observ-

extended in Sec. Il to treat many-body systems with finite- bl ties. For the M il th ber of bound
range interactions, thereby incorporating the quantum statis= € quantities. For the orse potential the number ot boun
evelsN,¢, and the scattering leng., are given by[23]

tics of the particles analytically. To investigate interaction
potentials different from the contact potential, thenatrix 1
formulation used ir7,8,16 can also be applied. In this for- Nlev:[i(l_ @L)}, 2
mulation, the limit of the contact potential is given by the

long-wavelength limit. In a sense, the present method is the

“real space” complement of the “momentum space” 3e'O’L—16
T-matrix calculation: the knowledge of the pair correlation Ascar= UL ge-TolL
function g(r) of the model system in the present approach

allows for effective study of the effects of the spatial depenyyhere the square brackets denote the largest positive integer
dence of the interaction potential. _smaller than the expression between the brackets. The re-
The system that we analyze in the present paper CONSIS{Raining parameters of Eql) are determined by a least-

of a fixed number of bosonic atoms in a parabolic confinexqares method using the shape of an experimentally deter-
ment. The interatomic interaction studied in detail in thisyieq potentia[20—22.

paper is a Morse potential where the parameters are deter-
mined by the scattering length and the neutral atomic radius.
Although in the most recent experimerjtsd] mixtures of
gases with different spin states are examined, we consider The Feynman-Kac functional is defined as an average
only the spin-polarized Bose gas in the present analysis. Thever a Brownian motiodR(t);t=0} with a variance that is

=(1-e ("roi)2_1 (N

()

A. The Feynman-Kac variational method
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proportional to that of standard Brownian motion by a factor 1

JiIm, see, e.g.[24]. The Brownian motion provides the Z(Nﬁ):mf dr Er[; EPIR(B)—PLr])
sample paths in a R-dimensional configuration space '

(whose elementérq,r,,..,ry} are denoted by). The initial 1(8

and final points of these paths are incorporated in the aver- Xexp{ hJ Vo(R(S))dS]
aging symbolE, by the index and by an indicator function

[(R(t)—r"). Using these concepts, a propagator written as

1(B
xexp[ = [V(R(S))—VO(R(S))]dS]
0

1t
K(r,t;r')= E{I(R(t)—r’)exp{ — %f V(R(s))ds]
0

1(8
:ZO(N,,B)< exp[ - %Jo [V(R(s))

|

1(8
>Zo(N,B)exr{— gJ (V(R(s))—Vo(R(9)))ds|.
0

(4)

satisfies the Bloch equation for distinguishable particles —Vo(R(s))]ds

&K t"—ﬁV2K t;r’ 1v K(r,t;r'), (5
with In this expression, the angular brackets denote the quantum
statistical expectation value

lim K(r,t;r’")=46(r—r"). (6)
t|0

1
(A(R(T)))=mj dr Er[; EIR(B)—PIr])

Using the projection techniques borrowed fr¢gb] and
applied to confined systemsi|ifh,26], it is easy to see that the X exp{ — EJBV (R(s))ds] A(R(7))
partition function forN identical particles at an inverse tem- hlo ° '
peratureB=1/(kgT) is given by

(10

1 We consider a spin polarized-gas of bosons interacting
Z(N,B)= Wf dr Er[ Z EPL(R(B)—P(r)) through a two-body potential, such as Eq(1) and confined
: P by an anisotropic parabolic potential. The potential energy of
18
Xexp{ — %f V(R(s))ds] ,
0

this system is given by
m N N N
V=— 2+ Q570+ va(rj—r
whereP denotes permutations of the particle coordinates. A 2 2 QY7+ 9:7]] 121 |:,E+1 21

summation over all elements of the permutation group is (11
taken. Every permutation contributes a facésr which is

—1 for odd permutatlons of fermions and 1 in all other W|th mthe mass of the part|c|es amg:{xl ,yJ ,Z]} the po_
cases. If the partition functiofy(N, ) and some static cor- sijtion of the jth boson. The partition function, the density,
relation functions of a model system, with potential energyand the pair correlation function for a model system with

(@)

Vy, can be calculated analytically, potential energy, given by
Z<NB>=ifdrE > EIRPB)-P(N) %T X2 0220+ % % (=)
0 1 NI r = - 2 z ] ~ :J 2 r|)
118
exp[ — gJo Vo(R(s))dst |, (8) (12

were derived analytically in Refd1,26] for the isotropic
then this knowledge can be used to derive an upper bounchse. Substituting the real potential energy for the spin-
for the free energ¥ = —In[Z(N,B)1/3, relying on the Jensen- polarized gas of interacting bosol$1), and the potential
Feynman inequality energy of the trial systertl2) in the inequality(9), one finds
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Nom and hence the variational free energy can be written as
F<Fo+ 2 ST(Q- WO+ (@)= w)(y})

N

N m
HOZ-WE(Z) ]~ 5 N(R?) F<Fot 5 2 [QL-w) )+ (Q5-wh)(yp)
N N N &
<z S ol —r,)> (13 +(QF-w))(Z)]— 5 N(R?)
=1 1l#j=
whereFy=—In[Zy(N,B)]/B is the free energy of the model + N(N_l)f dr v,(r)g(r) (16)
system with partition funct|orZO(N B), Wey,=(Qyy)? 2 2 '

+Nk/m, andR= (1/N)E 1 is the center-of-mass coordi-

nate. Using the pair correlauon function This is the central variational formula that we will use to find

the thermodynamical properties of the spin-polarized, para-

d3k NN bolically confined, interacting bosons. The essential role of

g(r)= N(N— 1)J se k(=) the pair correlation function in the evaluation of the expec-
(2) tation value of the interaction potential is clear from Eq.

=1147=1

14 (19,
the expectation value of the two-body potential can be The required building blocks for the variational free en-
rewritten ergy (the expectation values and the pair correlation function

for the bosonic caseobtained previously1,26] for the iso-
NN tropic case, have to be extended to the case of an anisotropic
<2 2 vz(r~—r.)> _ N(N_l)f dr v,(r)g(r) confinement potential. This anisotropic generalization is
=115 ' documented in the Appendix. The resulting expression for
(15  the variational free energy is

smf(,BhQ-’/Z)) . h[QiZ—(Qi’)z]cotr(,BhQi’/Z)]

1 1
F<— EIn(ZO(N ,3))+I > {,E S Ghw.) w0
Zo(N—1,B)coth Bhw;1/2)

Zo(N, 3) H 2 sink( Bhw;|/2)

i=xy.z

2 N
+2ﬁ[0 —w?] s

i=x,y,z =1

N(N—1)
} —coth Bhw;/2) +TJ dr vo(r)g(r).

(17)

In this expressionZy(N, B) is the partition function of the from the interparticle interaction as the integral of the poten-
model containing N bosons at inverse temperaturg@  tial times the pair correlation function
=1/(kgT). In the isotropic cas&),=Q,=Q,=Q’, and the
parameterd)’ and w are the variational parameters. This
gives a substantial simplification, since the variation with

, . . . N(N 1)

respect td)’ can be done analytically in the case of isotropy f vo(r)g(r)dr
with ' =) as the result, i.e., the variational isotropic con-
finement frequency equals the isotropic confinement fre-
guency of the examined system. However, for the aniso- f(e—Z(r ro/l —2e~(T=T0)/Lyg(r)dr
tropic case, expressiqii7) has to be minimized with respect
to all four parameter§);, 1y, Q;, and« to find the upper (18)
bound for the free energy.

N(N 1)

B. Variational free energy and condensation temperature Denoting Pjj=(1— b)(1—b'")/(1-b"), b=exp{—BAw},
for a Morse potential anda,,= V&/mw, and using the Fourier transform of the pair

The variational free energy associated with the Morse pocorrelation function, given in the Appendix, we find for the
tential is found using Eq(17). The Morse potential appears pair correlation function in the isotropic case
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N

Zo(N—1,8)b32
N(N=1)g(1)= 3, oN=LA)

2o BIbI) 2 L2 (0]
0

r* ! + rsz
ex ZTI\?VW ex Ta\%’”(),

whereZy(N,B) is again the partition function of the model system. Details on the anisotropic pair correlation function are
given in the Appendix. In this section, we assume isotropy in order not to complicate the formulas unnecessarily. Expression
(18) reduces to

X (19

N I-

N(N—1 Zo(N—1,8)b%"2
( )j vy r)g(r)dr— E O( B) [ 2r0/Lf(2P1/2 W) 2er0/Lf<P1/2 W)

2\2m =2 Zo(N,B)(1—D0")3 ]

P_~3 2I’0/L.|: pr1/2ﬂ -2 rO/Lf Pfl/Zﬂ 20

+Pj°le T e T , (20)
wheref is the following function of a dimensionless argument:

a
= \/;[1—erf(x/\/§)](x2+ 1)e2—x. (21)

The expression for the variational free energy of this system is then given by substifi@ting (17). In the isotropic case, one
finds

IN[Zo(N,B)] +(3 (sinf’(h,BQ/Z))]+ 3Kn[0%—w [(% Zo(N—1,B)coth Bhwl/2)

) coth( Bhw/Z)}

FMorseg_ SNl =
B B\ sinh(A Bw/2) 4w Zo(N,B)[2 sinH Bhw!/2)]3
a a
2rg /L 129W| 5 rgilg| pL29w
N(N-1) U Zo(N—1,8)b372 '} € f(zp'l L) 2e f<P'J L

2,

: (22

2 2w F2 Z(N,B)(1-b)? 1= _ZerolLf(Pl_u@
J

L

3 leO/Lf( ZPHlIZ%

+Pj

where() equals the experimental confinement frequency andials with a positive scattering length, a peak appears in the
w is the remaining variational parameter and agaip  specific heat as a function of temperature, indicating the on-
=h/mw. Details for the anisotropic model can be found in set of Bose-Einstein condensation. We define the condensa-
the Appendix In this inequality, the expression obtained intion temperature as the temperature at which the specific heat
[1] for (E 1rJ) has been used. reaches its maximum. In the presence of interactions, the
condensation temperatuiie will differ from the condensa-
tion temperatureTg of the noninteracting Bose gas in the
same confinement potential. This is illustrated in Fig. 1,
The variational free energy as a functiorvofor a system  showing the specific heat as a function of temperature for
with positive scattering length differs substantially from the several values of the scattering length. The relative shift in
case of negative scattering length. Therefore these cases 4R&¢ condensation temperature induced by the interaction is
discussed separately. denoted bysr=(T.—T)/T?.
Figure 2 shows the mteraction—induced sldiftas a func-
tion of the scattering length of the Morse potential. Typical
parameter values for the Morse potentials used in Fig. 2 are
For Morse potentials with positive scattering length,U=33.36x10°%2(Q, r,=1.328<10 ‘a,o, L=4.794
Fumorse(W) has only one minimum. This minimum is located X 10 °ayq with ay o= (#/mQ) Y2 Adapting the range, of
in 0<w<Q and the minimum value of the free energy at this Morse potential allows us to change the scattering length
low temperatures is of the order of ground-state energy of thand set it to the value one wishes to study. Examples of
harmonic confinement potential. The variational free energycattering lengths appearing in experimd2{,28 are given
can be used to derive the condensation temperature of thie Table I. A set of Morse potentials with different scattering
Bose gas. For this purpose, the specific heat is calculatdéngthsag.,; was constructed, and for each of these Morse
from the free energyd=—Td?F/JT?). For Morse poten- potentials, the interaction-induced shéft in the condensa-

Ill. RESULTS

A. Morse potentials with positive scattering length
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. ) FIG. 2. The interaction-induced shift of the condensation tem-

FIG. 1. The specific heat of a parabolically trapped Bose gas Operature is shown as a function of the interaction strength

2000 atoms is shown as a function of temperature for several scay /5. . for Morse potentials(filed circles, calculated in the
tering Iength_s. In the inset t_he relatl_ve s_hlft in _the _condensatlorbresent approaghand contact potentialull line, calculated from

temperature induced by the interparticle interaction is shown as fhe Gross-Pitaevskii equati¢f)). In the inset, the variational opti-

function of the scattering length. The condensation temperature ig,a| value for the parametar/Q is shown as a function of tem-
determined from the maximum of the specific heat. The full line isperature, for a repulsivéull line) and an attractivédashed ling

derived using Gross-Pitaevskii thed9], the filled circles are ob-  \1qrse potential and for the noninteracting, parabolically trapped
tained using the approach presented here. Bose gagdotted ling.

tion temperature was calculated. The results are shown igjoq js expanded since< (). An attractive Morse potential
Fig. 2 as the full circles. It should be noted that the conden-(a <0, discussed below, dashed line in the insen the
sation temperature of an ideal, trapped Bose gas and th&iar hand. will contract the gas.

condensation temperature of a Bose gas interacting through a
Morse potential with zero scattering length coincide. The full
line in Fig. 2 shows the predicted shift in condensation tem-
perature for a contact potential, as obtained from solving the For Morse potentials with negative scattering length,
Gross-Pitaevski equatidi®]. The results for the contact po- Fuorse(W) has two minima separated by a free energy bar-
tential and the Morse potential approach each other for smatier. There is again a minimum fav of the order of(2, but
scattering length. One could also adapt the scattering length second minimum is found at a much higher frequency near
of the Morse potential by adapting the paraméfetChoos- w=~Q(ayo/ro)?>Q, wherer, reflects the range of the at-
ing U instead ofr, as the parameter to adjust the scatteringtractive part of the interaction aral,o= VA/m(Q. This sec-
length had no noticeable effect on the interaction-inducesdond minimum has a free energy value of the order of
shift in the condensation temperature. In the inset, the opti— NU, whereU reflects the depth of the attractive part of the
mal value of the variational parametsris shown as a func- interatomic potential. The average distance between the
tion of temperature. For a repulsive Morse potentialbosons is of the order ofi{mw) ~*2 and is thus comparable
(ascat/ano>0, full line) we find that the size of the atom to the range of the interatomic potential. Hence, it is plau-

B. Morse potentials with negative scattering length

TABLE I. Typical values for system parameters in experiments on ultracold Bose gases. For a set of
chosen alkali atoms we list the scattering lengihs,; (taken from[27]), the frequencies of the parabolic
confinement potentiaftaken from[28]), typical number of atoms for which Bose-Einstein condensation is
observedwhere applicablg the effective interaction strength given hy.,/ayo, and the critical number
N, (found by the present methpdt zero temperatur@nly applicable for negative scattering lengths.a.
stands for not applicable.

Atom Ascat N ﬁ = ﬁQnyQz ascat/aHO Nc
Li —1.44+0.04 nm 1300 144 Hz —4.64x10°*% 1443
BNa, |1,-1) 4.9+1.4 nm 500 000 416 Hz 0.0048 n.a.
8Rb 4.651.1 nm 4500 187 Hz 0.0058 n.a.
85Rb =50 NM<ag,<—3 nm n.a. ~1 Hz —0.0050 134
B3cs —13 nm n.a. 34 Hz —0.0087 77
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sible that the second minimum in the free energy, which
appears for Bose gases with negative scattering length, col Phase diagram of interacting bosons (variational)
responds to a many-particle bound state. We will refer to this 19 | Z’r ifﬂggﬁsie““a' withisgaliaring/length
state as the “clustered” state, and to the state corresponding e Ho

]

to the minimum withw of the order of() as the “gaseous” & 3;’;2‘212?&?:25%?{5"!‘3——’ {N(T). Teh
state. Since the free energy in the clustered state is lowe=

than the free energy in the gaseous state, the latter is metes

stable with respect to a transition to the clustered state. Whelg

the scattering length is not negative, the minimum in the freeg 5t " _border between metastable

energy at a largé‘cluster”) value ofw is not present. This & y ol bl

property of the free energy has been checked numerically fols /

a Morse potential and has been obtained analytically for any'_ y
two-step square well potential with a non-negative scattering i
length. ;
For the negative scattering lengths, only the specific hea 0
associated with the gaseous state shows a peak as a functi
of temperature, and thus we find a condensation temperature
only in the gaseous state, as expected. The interaction- fiG. 3. A (N,T) phase diagram is shown for a gas of bosons
induced shift in the condensation temperature is opposite tpteracting through a Morse potential with negative scattering
the shift for potentials with positive scattering length, asiength ag.,/ao=—0.0067 witha,o=A/mQ, such thatN (T
shown in Fig. 2. =0)=100. The dashed line shows the condensation temper&ture
as a function of the number of bosons. The full line shows the
1. Phase diagram for a Bose gas with negative scattering length critical number of boson$l, beyond which the gaseous state no

As discussed above for the Morse potentials with negativéonger exists, as a function of temperature, and the dotted line
scattering length, there are in general two minima in the freéhows this critical number for distinguishable particles under the
energy Howeve; when the number of particles is increases?™e conditions. The tricritical temperatdrg , above which BEC
at fixed tem eratL,Jre we find that the minimum in the varia-'s not possible regardless of the number of bosons, is indicated:
: P » WE \ - —9.4%0/ks, Ny(T,)=1363.
tional free energy associated with the gaseous state disap-
pears above a critical numbel, of particles. The analytic . ) ) o )
expression for this critical number at temperature zero can b8y Salasmc[zg] using a Gaussian variational wave function
found using thaZo(N—1,8)b3"%Z,(N,8)—1 and Py —0 and the Rayleigh-Ritz variational principle. The advantage of
for T—0, such that the present method, however, is that unlike a variational ap-

proach based on a trial wave function, the current technique

order between metastable gaseous state
and region where only clustered state occurs,
for the case of distinguishable particles

0 \N(T=0) 500 1000 1500
Number of atoms

3 3 allows us to calculat®&\. at any temperature. The tempera-
Fumorsd T—0)= EﬁW(N_lH iﬁQ ture dependence of the critical numkgg(T) is shown in
Fig. 3. Figure 3 represents a phase diagram inNhe plane
N 3H(0°—w?) N_1 for the case of negative scattering length./ayo=—6.7
4w (N=1) X103, a value typical for the experiments on ultracold
trapped atomgsee also Table)l This specific choice for
N(N—1) Ascat/ @no corresponds tdl,= 100 at zero temperature. Sev-
+WUer0“—[er0“-f(2aW/L) eral regions can be distinguished in this phase diagram: a
region where the metastable gaseous state exists and is not
—2f(a,/L)]. (23)  Bose condensed, a region where the metastable gaseous state

exists as Bose condensate, and finally a region where only
Then N(T—0) can be found by treating the variational the clustered state was found by the present approach.
equationdF/dw=0 as an equation iw andN and finding Keeping the temperatur& fixed, we find a number of
the maximalN possible as a function of. In the gaseous particlesN,(T) such that Bose-Einstein condensation sets in
statea,,/ro>1 and the asymptotic form df can be used, for N,(T)<N. We also find the critical number of particles

yielding N.(T) above which Bose-Einstein condensation is no longer
possible. As long adl,(T)<N.(T), Bose-Einstein conden-
NL(T—0)= V87 ayo #2(mL?) — 1 4 sation can be realized at the given temperafufer N,(T)
¢ 554 L U 4 grolL]’ <N<N(T). As the temperature is increaset,(T)

(24) —N¢(T) until at the tricritical temperatur&,. (indicated in
Fig. 2) one hasNy(T;.)=N(T,.). For temperatures above
with againayo= VA/m{). The relation of the Morse poten- this tricritical temperature, Bose-Einstein condensation is no
tial parameters to the scattering length ., of the potential  |longer possible, regardless of the number of particles in the

allows us to rewrite Eg. (24 as N(T—0)= gas.
— (V875 ay o /ascar= — 0.67ay0/ascar- This theoretical Keeping the number of particles fixed, we find a con-

value forN in the limiting case off —0 was also obtained densation temperatufg;(N) but also a temperaturg.(N)
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As a final remark, we wish to point out that the variational

1.0 e, T T . .
‘. 20§ o ] method presented in Sec. Il can also be applied to a gas of
. o oS distinguishable particlegwithout Bose statistios In this
F o8 .. % 1200 - ‘. 1 manner, the effects of statistics on, for example, the cluster-
3 K % oot 6107 ing, can be studied. For distinguishable particles, no sums
. = scaf Buo=—4- . .
z O over permutations must be taken, and the expression for the
g 067 0 1 20 30 40 7 variational free energyin isotropic confinementsimplifies
§ * . Temperature [k, T/(hQ)] g p p
5 . to
% .
€ 04r .
3 At k,T,=9.43 hQ the
1] Scattering length: . condensate fraction
; -3
= 8,0,/80=—0.0067 , . reaches 0% pdist 1 In [2 sinh( B €)/2)]
E 02 NJ(T=0)=100 1 Morse™~ " 5 - _
% . \ e B\ [2 sinh( Bhw/2) BN
= .
o | o\ 3h(Q3—w?)(N—1) coth(A Bw/2)
0 5 10 4 W

Temperature [k, T/(hQ)]

2_02 —
FIG. 4. N, is the maximum number of atoms in the trap that can + 3(Qp— Q%) coth(paQ/2) UN(N-—1)

undergo Bose-Einstein condensation. Using this number, and the 4 Q (277)1/2
associated condensation temperafligeN.) the maximal fraction
of atoms in the condensate is shown as a function of temperature for X[ —2f(ar/L)eo/"+f(2ar/L)e*0't], (25

a gas with scattering leng#.,/ayo= —6.7X10"3. In the inset,
the maximum occupation of the condensate calculaté@]iwith a
T-matzi>_< approach and for a scattering lengtfy.//aqo=—4.6  \yhere ar=a, /coth@ﬁWIZ), and Q, is the experimental
x107" is shown. confinement frequency. The variational free energy of the
system of distinguishable particles no longer gives rise to a
such that for temperatures lower th@g(N) only the clus-  peak in the specific heat as a function of temperature, indi-
tered state is found by the present approach. Thus, Boseating that there is no phase transition to an ordered &tate
Einstein condensation for a givéotal number of particle®l  condensate As it should be, no condensation temperature
(both condensate and noncondensa@n only occur in a T_>0 is found. But for Morse potentials with negative scat-
temperature rangel(N)<T<T.(N). This means that, tering length, the variational free energy will again allow for
given a fixed total number of particles, the gas can only be clustered state with respect to which the gaseous state is
cooled to a temperaturg;(N), and not toT=0. Since the metastable. One may wonder whether the critical number of
gas has to be cooled all the way downTe 0 in order to  particles above which the present approach only finds the
have a condensate fraction of 100%, and since it can only bglustered state depends on the Bose statistics: is it the same
cooled toT(N), the maximal condensate fraction of a Bosefor distinguishable particles as for bosons? The answer, as
gas with negative scattering length will be less than 100%iven by the present calculation, is no: the critical number of
for N such thatT(N)>0. particlesNJ(T) for the distinguishable particles, shown as
In our approach the maximum total number of bosonshe dotted line in Fig. 3, differs from the critical number of
N(T) in the trap at a given temperature is obtained. ThisparticlesN.(T) for the bosons except a&=0. At a given
number can be used to estimate the fraction of the atoms ifémperature, the critical number above which 0n|y the clus-
the condensate using{T/Tc[Nc(T)]}°, whereT,(N) de-  tered state persists is lower for bosons than for distinguish-
notes the condensation temperature Nbbosons. The con- aple particles under the same conditions. For temperatures
densate fraction can then be studied as a function of thapproaching zero, the critical number for bosons approaches
temperature for the scattering length used in the preceedingat for distinguishable particles.
calculation, ag.,/ayo=—6.7X 10" 3. The temperature de-
pendence of this condensate fraction is shown in Fig. 4. In
the inset, the number of atoms in the condensate, calculated
in Ref. [7] within the T-matrix approach but for a different In contrast to a standard variational approach using a trial
scattering lengthage./ayo=—4.64<1074, is shown for wave function, there is no simple criterion to estimate how
comparison. Note that the decrease in the condensate fractiaifose the variational upper bound for the free energy lies to
is much less pronounced in the case of Houbiers and Stodhe real value of the free energy of the system. In order to
[7]. This may be due to the fact that in the present approachheck the robustness of the variational estimate for the free
the thermodynamical properties are calculated as a functioanergy, we focus on a case study for lithium. Instead of using
of the total number of atoms in the trapped gas, both conthe Morse potential, as in the previous subsections, we use
densed and noncondensed. Houbiers and Stoof, on the othitie real interaction potential, experimentally derived from
hand, calculated the number of condensed atoms in the grarspectroscopy measuremenZ0—22, and compare the re-
canonical ensemble, given a nonconserved density as a resdlts for this potential with the analytical results found for
ervoir. the Morse potential.

2. Case study: The lithium condensate
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TABLE II. Results of the variation for the free energy at temperature zero, in mjts2=Q=1. The
first column shows the number of particles in the parabolic confinement. The next columns show the optimal
variational value for the parametarand the variational free energy fGj the gaseous statalentical results
were found for the Morse potential and the real potehtidl) the Morse potential, andii) the experimen-
tally derived triplet potentia]20—22. Comments are added in the last column.

Gaseous Clustered (Morse Clustered (exac) Comment
N Wy F1/N W2 Morse Famorse/N W3 i Fa /N
2 1.00037  1.49981 no minimum no minimum only
5 1.00091 1.49926 no minimum no minimum gaseous
10 1.00184  1.49833 no minimum no minimum state
20 1.00373  1.49647 no minimum no minimum
21 1.00392 1.49628 53389.8 4714.57 57555.7 4268.57 clustered
22 1.00411 1.49610 60304.0 3005.24 63920.3 2406.39 state is
23 1.00430 1.49591 65178.6 1100.04 68640.5 357.693 metastable
24 1.00449 1.49572  69042.2 —948.329 72454.2 —1831.68 gaseous

100 1.01925 1.48140 111411 —2.2144%10° 115733 —2.3413%10° state is
1000 1.31950 1.27743 120331 —3.0162% 10° 124993 —3.17466<10° metastable
1443  2.16973 1.11880 120623 —4.39386<10° 125297 —4.6239%K 10°

1444 no minimum 120624 —4.39697% 1¢° 125298 —4.62726<10° only clustered
1500 no minimum 120648 —4.57111x10° 125323 —4.8104% 1P state

This implies that we have to first describe how we usedpotentials have to be taken into account to higher orders than
the real interaction potential in the calculation and secondve did here. Therefore we expect that the model system is no
how we obtained the parameters of the Morse potential fofonger adequate for such a small number of particles.
these atoms. For distances less than 0.15 nm, the core region, The agreement between the clustered state for the Morse
the real interaction potential is not determined experimenpotential and for the experimental potential is good, and in-
tally. We introduced a constant potentM},. that is ad-  creases in accuracy as the number of particles increases. Also
justed to the known scattering lendt®0—22. Anticipating  the critical numbeiN, remains the same. The result for the
on the results, it should be noted that the introduction of &ritical number of particles for the experimental setup of
constant potential does not strongly influence the result§30], with scattering length and trapping parameters such that
One of the reasons may be that the region of the core is smadl_ _./a,,o=4.64x10"%, is N,=1443 in the present ap-
compared to the region covered by a substantial value of thgroach. This numbel,, represents the maximum number of
pair correlation. The remaining experimental parameters oitoms in the trap that still can undergo Bose-Einstein con-
the trap, such as the confinement frequency, were chosen fensation. Thus it is an upper bound to the average number

agreement with the experimental setup{80]. ~ of atoms that is reported if80] to lie between 606 1300.
The Morse potentia(l) for the lithium triplet interaction

is obtained as described before. The scattering length is fixed
to its experimental value<{27.6 nn) and the number of
bound levelg11,[31]) is introduced. The remaining param-
eters are determined by a least-squares fit to the measured The method proposed in this paper allows us to incorpo-
triplet potential, leading to U=33.002X10°40, r, rate any two-body interaction, in the description of the
=1.2531x 10" *ayo, L=4.5236<10 ayqg. thermodynamics of an interacting Bose gas. From this point
The results at zero temperature are summarized in Tablef view, its application is more general than the Gross-
Il. For the variational free energy in the gaseous state, n®itaevskii model, which takes into account a two-body con-
differences were found in the results for the Morse potentiatact potential v 5(r) =4m8(r)%h%ag /M Wwith scattering
and for the experimental potential. The variational free enlengthas.,;, and which hence neglects the range and shape
ergy in the gaseous state, and the valuavafssociated with  of the interatomic potential. From the expression of the ex-
it, are listed in columns 2 and 3 of Table Il. In the next two pectation value of the two-body interaction in the Jensen-
columns, the free energy and the associatete shown for Feynman inequality, it is clear that this approximation will
the clustered state for the Morse potential. Columns 5 and Be valid as long as the range of the interatomic potel
show the free energy and for the clustered state for the the order ofr, for the Morse potential used above; see Table
experimental potential. Note that at the lowest particle numill) is much shorter than the typical length sca&leover
bers, the free energy of the clustered state is increased, amhich the pair correlation function varies. Indeed, in that
even becomes larger than the free energy of the gaseogsse, the expectation value of the interatomic potential essen-
state. This result deserves further attention, but in our opintially depends on the value of the pair correlation function in
ion it is a typical few-body problem where the molecular the origin and on the scattering length:

IV. DISCUSSION AND CONCLUSION
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TABLE lIl. A description of the different length scales used in show up circumstantially. For distinguishable particles it is

the paper is given. generally accepted that the lifetime of a metastable state is
proportional to the energy barrier between the two states and
Symbol Description inversely proportional to their energy difference. There are
Accnr scattering length different scenarios possible. The first one implica_\tes gravity:
a JRI(m) as soon as a cluste_r qf a few atoms is formed_|t leaves the
aHO JRI(mw) trap due to the gravitational force, thereby reducing the num-
w ber of atoms available for condensation and increasing the
ar _ Ay VOt Aw/(2kgT) _ average energy present in the trap, because the low-energy
Fo distance at which the Morse potential  gtates can escape now. In this scenario one is allowed to start
reaches its minimum with a number of atoms larger than the calculaked After

some time of operation, clustering will reduce the number of
atoms in the trap. Once the number of atoms is lower, the
N(N—1) metastable state becomes available as the first excited state
(v2)=— f drg(nva(r)—{v2)r < of the system. If the collision rate in this state does not differ
fundamentally from the collision rate of the previous situa-

_ N(N—-1) 0 [ dr vs(r) tion, the clustering will go on, and eventually all particles
2 9 v2 will have left the trap. If there is a change in collision rate, or
, if the state is almost collision free, the metastable state can

_ 2mh ascatN(N—l)g(O). (26) get the necessary lifetime to be available for experimenta-

tion. For 8Rb this change in collision rate was fouf&B] to
be due to the influence of the condensate on the loss rate of
However, even for short-range interactions, the typicafhrée-body recombinations. This characteristic was predicted

length scale of the pair correlation function can become comPY Kaganet al.[37] who also suggest its use as the signature
parable to the range of the interatomic interactions. This hapef the presence of the condensate. The physical origin of the
pens for interatomic potentials that allow for a clustered statéhange in collision rate is due to a change in distribution.
(a bound state involving many particlesn that case, the While in the high-temperature phase _the dlstrlbuthn is
details of the interaction potential become important and3aussiariat least to a good approximatipit would remain
models based on the Gross-Pitaevskii equation using a cofgaussianwith different parameteysf the particles were dis-
tact potential lead to an unphysical result: the free energy iinguishable. Projecting it on the symmetric irreducible rep-
these models is not bound from below. This artifact isf€Sentation of the permutation group as required for indistin-
avoided in the present treatment by taking into account th@uishable particles, the dis’gribytion.takes the equilibrium of
range of the interatomic potential. the conqlensate and its excitations into a<_:count. o
Bose-Einstein condensation in a gas with negative scatter- N this paper, we presented a path-integral variational
ing length has been achieved experimentally: for a paraboliMethod which(1) exactly treats the quantum statistics at any
cally confined gas of lithium atoms a Bose-Einstein conden{€mperature and@) allows the incorporation of finite-range
sate of at most 6001300 bosons[30] was observed, two-pody interactions in the descrlpnpn of.the the.rmody—
comparable to the critical number for this experiment, pre"amics of the Bose gas. After presenting this technique, we
dicted from the theory presented here. It should be noted thd@cused on a gas of parabolically trapped bosonic atoms in-
the present analysis does not describe the dynamics of t§racting through a Morse potential. The effect of this inter-
cooling Bose gas nor does it describe the dynamics of th@ction on the condensation temperature was studied. For
formation of the clustered state. The critical number ofMorse potentials with a negative scattering length, a phase
bosons beyond which Bose-Einstein condensation is ngiagram was derived showing the influence of the interaction
longer possible may be different in the experiment due to th&n the region inN,T parameter space favorable to Bose-
dynamical effects. Emstgm condensatlon. Apart from the |n.teraltct|on—|nduced
In the theoretical approach presented here, as well as #hift in condensation temperature, the regioNifT param-
the two-fluid model§9—13 for the condensate and even in eter space available for Bose-Einstein condensation is re-
the Monte Carlo simulation§32,33, it is tacitly assumed QUced py the presence of acl_us_tered phase..'ll'he effect of the
that the system is in thermal equilibrium. It is also clear thaghteraction and the Bose statistics on the critical number of
the measurements are done on systems that are not in quartlcles above which the gaseous state was no quger found
librium at all; even obtaining a steady state seems at presefit the present treatment was calculated. We identified a tem-
out of experimental reacf84,35. This means that in dis- perature ak_Jove which Bose-Einstein condensgmon is no
cussing the theoretical results we rely on our intuition of howlonger possible regardless of the number of particles.
the calculated equilibrium situation is reached without con-
flicting with the known experimental facts for the nonequi-
librium situation. For our approach, this means that we have
to argue how it is possible that a metastable state with a Discussions with S. Stringari, Y. Kagan, S. Giorgini, and
much higher energy than the ground state can be studied Salasnic are gratefully acknowledged. We thank H. Stoof
experimentally, while the ground state itself does not everor discussions and for making the results on fhé poten-
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11 KWX,Wy,W;P[rU]:BlrU;0>},

v=

=

(A6)
APPENDIX

. ik-r; 1
The expectation values of one-body and two-body poten- > e J> = Zo(N,B) > f dry---dry
tial energies appearing in the Jensen-Feynman inequality can
be expressed as a function of the density 1

N

XCRIy 2 {H

N - P juv=1
> ul(rj)zf dr vo(r)n(r) with

N
n(r):f dk e ik r<2 ik- rj>, (A1) (A7)

(277)3

N N
and of the pair correlation function: <J§=:l Zl k= (| ¢J)>
N N N N
1 .. N(N-1) 1
32 ;vz(r;—r|)®(l¢1)=TJ dr v,(r)g(r) ZO(N,B DIPILICE) fdrl--.oerc:(R)m

(A2)

with X2,

I K., wyw(P[fv];,BIrv;O)eik(rjfl)},
7 oy

(A8)

N(N— 1)j (277)3 where Zo(N, 8) indicates the partition function in the ana-
lytical model system. Each permutation can be written as a

N . e -
ik r< D E ek (-1 @] ij)> . (A3) cyclic decomposition wittM ; cycles of length 1M, cycles
j=11=1

r)—

of length 2 ... . The sumover permutations can be trans-
formed into a sum over cyclic decompositions, as in Feyn-

The symbol®(expr)=1 if the logical expressiomxpr is man’s treatment of the ideal homogeneous Bose[ g5k
true, and zero otherwise. These quantities have been dis-

cussed in detail ifid] . In this appendix, the generalization of > D> @( > IM,= N) ]
the results of 1] to the case of anisotropic confinement will P MMy} [
be given. For a spin-polarized gas of bosons in an anisotropic (A9)

parabolic confinement potential with frequenciegs, Qy Q,
and a two-body potential energyxM)=; (r;— r)?, the
propagator is given by

The constraint in the cyclic sum appears in order to guaran-
tee that the total number of elements in all cycles of the
cyclic decomposition equals the total number of bosons in

the gas. For example, the partition sum becomes
K(rll"er;Blrll"er;o) g p p

! . Zo(N )—% fdr ...dryC(R)
ZWC(R); 11;[1 KWX,Wy,WZ(P[rj];ﬂ“j;O)! olN.5 & 1 N

(A4) M

X K
{Mlszz,-..}{H MM

Ka,.0,.0,( VNR; | VNR;0)
Ko, w, w,(VNR: | VNR; 0) °

C(R)= (A5)

0 2| IM,=N), (A10)
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Eelkr

=1

K|:KWX,Wy,WZ(r1;B|r| ;0)- - wa,wy,wz(rS;B|r2;o) <

> 1 1 dVG,(u)
X Ky w,(r2:B[r1;0). (A11)

Zo(N,B) NI gy

E(u/uN 1 (272G, (ue?)
The restrictionZ,IM ;=N is prohibitive for performing the TZINB 270 2
summation directly. To lift this restriction, and perform the olN.B) 2mJo  E(W)
summation, the generating functions are introduced:

u=0

e Ndg, (A19)

N N
<E > e“‘(’ifl)®(l¢j)>

E(U)ZE Zo(N,ﬁ)uN, (AlZ) j:1|:l
N=0 B 1 idNGz(u)
. N ©Zo(N,B) NI N -
Gk Z, | 3, ohi)ot o TRy ST,
Zo(N,B) 27 )¢ = (u) .

o0 N N
_ A20
Gok,u)= > zo<N,ﬁ><2 > e'k<wf'>®<|¢j>>uN. A20
N=0 j=11=1
: (A14)  Inprinciple, any value can be chosen forFastest numerical
convergence, however, is achieved for the steepest descent

For these generating functions, the summations and integr&OIUtlon when u is chosen such that N=

2

tions can be performed analytically as for the isotropic case d[In Z(WJé(In u). It would be incorrect to put the ex-

[1,26]. Using the notationb, = exp{— 8w} for i =x,y,z and pectation value equal to the generating function itself, in

,8’—1/k T, the generating flunctions arelgiven by’ ' which the steepest descent value ef* for the parameten
=1/kgT,

in the free energy generating function, is substituted.
The second method is to collect the coefficienudf This

B EN: u'(by byb )" results in recursion relations between the expectation value
=)= =1 (1-b! )(1- bhy(1—bhy |’ (A15) for N particles and the expectation values for smaller number
y z of particles:
N I 112
_ u'(bybyb,) N 12
Gl(k,u)=:(u)2 | — |Z [ o(N,B)= 2 |(bbebz|) |
=1 (1-b,)(1-by)(1-b,) =1 (1-bj)(1-b})(1-b})
hk? 1+b) XZo(N—1, ith Zo(0,8)=1,
X expl — i : (AlG) 0( ,3) wi O( B)
i=xy.z 4MW 1—p (A21)
N 12
Suk =5, — Dbk |3 o) %, b
=S (1-b))(1-bl)(1-b) = =1 Zo(N,B)(1—by) (1—b})(1=by)
-1 2 2
hk: fk; 1+bi
Xexp — — 1, A22
xZ, exp< 2 oma P|,(b)) pr 2 amw o C
ak? 1
T pited - g )] N
S P OV T G B o) S S ke i4))
j=110=1
(A17) : )
| | _y __ ZoNZLA)bbyby)"2
with P|Y]-(b)=(1—b])(:_|.—b|7])/(1—b|). . Two schemes _ =2 Zo(N,B)(1— b b(1- by)(l bz)
have been used to retrieve the expectation values from their
generating function. The contour-integration schef€| -1 ﬁkz
was applied in39], and yields ngl exp — ;yz 5m PI i(bi)
’ 2
1 dVE(u) 1 (27Eue’) ., -1 p( hki . )
- - + P, (b, - .
Zo(N.B)= 7 NI guN 27 uN e o, i=xy.z ] (biex 2mw; P (b))
R (A18) (A23)
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The numerical implementation of the recursion relationsgenerating function§A12)—(A14) for these expectation val-
gives high accuracy at the cost of computing time. In pracues. By constructing the generating functions, one can ana-
tice, they become too time consuming for more than a fewytically perform the sum over all permutations, necessary to
thousand particles, and expressidAd8)—(A20) have then incorporate the quantum statistics. The expectation value can
to be computed. In summary, the expectation values in théhen be extracted from the generating function using the in-
path-integral formalism were calculated by introducing theversion formulagA18)—(A20) or (A21)—(A23).
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