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Condensation and interaction range in harmonic boson traps: A variational approach
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For a gas ofN bosons interacting through a two-body Morse potential a variational bound of the free energy
of a confined system is obtained. The calculation method is based on the Feynman-Kac functional projected on
the symmetric representation. Within the harmonic approximation a variational estimate of the effect of the
interaction range on the existence of many-particle bound states, and on theN-T phase diagram is obtained.

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

In this paper, we continue the investigation proposed
@1# and started in@2#, on the influence of realistic interaction
on the expression for the free energy of the interacting B
system. The method we propose is distinct from other tre
ments in two main aspects. First, it allows for the treatm
of finite-range interatomic potentials whereas nearly all t
oretical studies relying on a mean-field description have
cused on a two-body contact potential. Second, the e
quantum statistics, both of the condensate and of the non
densate atoms, is treated analytically at arbitrary temp
ture.

The experimental realization of Bose-Einstein conden
tion ~BEC! in systems of trapped, interacting bosonic ato
@3–5# has led to renewed theoretical efforts@1,2,6–14# to
understand the properties of Bose gases. The need to g
yond the contact potential~also discussed in@15–17#! ap-
pears because the ground-state energy of a contact pote
with negative scattering length~relevant for the7Li) is not
bounded from below. The present study of finite-range
tentials, based on a variational principle resulting from
Jensen-Feynman inequality, avoids this artifact. This va
tional principle ~originally formulated by Feynman@18# to
treat the problem of an electron in a polarizable medium! is
extended in Sec. II to treat many-body systems with fin
range interactions, thereby incorporating the quantum sta
tics of the particles analytically. To investigate interacti
potentials different from the contact potential, theT-matrix
formulation used in@7,8,16# can also be applied. In this for
mulation, the limit of the contact potential is given by th
long-wavelength limit. In a sense, the present method is
‘‘real space’’ complement of the ‘‘momentum space
T-matrix calculation: the knowledge of the pair correlati
function g(r ) of the model system in the present approa
allows for effective study of the effects of the spatial depe
dence of the interaction potential.

The system that we analyze in the present paper con
of a fixed number of bosonic atoms in a parabolic confi
ment. The interatomic interaction studied in detail in th
paper is a Morse potential where the parameters are d
mined by the scattering length and the neutral atomic rad
Although in the most recent experiments@19# mixtures of
gases with different spin states are examined, we cons
only the spin-polarized Bose gas in the present analysis.
1050-2947/2000/61~4!/043605~12!/$15.00 61 0436
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results of the path integral variational method elaborated
Sec. II, applied to the spin-polarized gas of bosons inter
ing through a Morse potential, are reported in Sec. III, a
the specific case of lithium is investigated using the exp
mentally derived interatomic potential~from spectroscopy
measurements of Abrahamet al. @20–22#!. The discussion of
the results and a comparison with other methods are
sented in Sec. IV.

II. STUDY OF THE MORSE POTENTIAL

The essential property of realistic interatomic interactio
is that atoms repel at short distances and attract when
are some distance apart. In this section, we study the e
of the Morse potentialv2(r ), which has these two main cha
acteristics, on a collection of bosonic atoms

v2~r !

U
5~12e2(r 2r 0)/L!221, ~1!

where the vectorr ~with length r ) is the difference in posi-
tion vectors of the two atoms, andr 0 is a parameter tha
determines the range of the potential.U is a parameter tha
determines the strength of the potential, andL is a parameter
that determines the ‘‘stiffness’’ of the potential near its min
mum. These parameters are related to experimentally obs
able quantities. For the Morse potential the number of bou
levelsNlev and the scattering lengthascat are given by@23#

Nlev5F1

2
~12A8UL !G , ~2!

ascat5UL3
er 0 /L216

4e2r 0 /L
, ~3!

where the square brackets denote the largest positive int
smaller than the expression between the brackets. The
maining parameters of Eq.~1! are determined by a leas
squares method using the shape of an experimentally d
mined potential@20–22#.

A. The Feynman-Kac variational method

The Feynman-Kac functional is defined as an aver
over a Brownian motion$R(t);t>0% with a variance that is
©2000 The American Physical Society05-1
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proportional to that of standard Brownian motion by a fac
A\/m, see, e.g.,@24#. The Brownian motion provides th
sample paths in a 3N-dimensional configuration spac
~whose elements$r1 ,r2 ,..,rN% are denoted byr ). The initial
and final points of these paths are incorporated in the a
aging symbolEr by the index and by an indicator functio
I „R(t)2r 8…. Using these concepts, a propagator written a

K~r ,t;r 8!5ErF I „R~ t !2r 8…expH 2
1

\E0

t

V„R~s!…dsJ G
~4!

satisfies the Bloch equation for distinguishable particles

]

]t
K~r ,t;r 8!5

\

2m
¹2K~r ,t;r 8!2

1

\
V~r !K~r ,t;r 8!, ~5!

with

lim
t↓0

K~r ,t;r 8!5d~r 2r 8!. ~6!

Using the projection techniques borrowed from@25# and
applied to confined systems in@1,26#, it is easy to see that th
partition function forN identical particles at an inverse tem
peratureb51/(kBT) is given by

Z~N,b!5
1

N! E dr ErF(
P

jPI „R~b!2P~r !…

3expH 2
1

\E0

b

V„R~s!…dsJ G , ~7!

whereP denotes permutations of the particle coordinates
summation over all elements of the permutation group
taken. Every permutation contributes a factorjP, which is
21 for odd permutations of fermions and 1 in all oth
cases. If the partition functionZ0(N,b) and some static cor
relation functions of a model system, with potential ener
V0, can be calculated analytically,

Z0~N,b!5
1

N! E dr ErF(
P

jPI „R~b!2P~r !…

3expH 2
1

\E0

b

V0„R~s!…dsJ G , ~8!

then this knowledge can be used to derive an upper bo
for the free energyF52 ln@Z(N,b)#/b, relying on the Jensen
Feynman inequality
04360
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Z~N,b!5
1

N! E dr ErF(
P

jPI „R~b!2P@r #…

3expH 2
1

\E0

b

V0„R~s!…dsJ
3expH 2

1

\E0

b

@V„R~s!…2V0„R~s!…#dsJ G
5Z0~N,b!K expF2

1

\E0

b

@V„R~s!…

2V0„R~s!…#dsG L
>Z0~N,b!expF2

1

\E0

b

^V„R~s!…2V0„R~s!…&dsG .
~9!

In this expression, the angular brackets denote the quan
statistical expectation value

^A„R~t!…&5
1

Z0~N,b!
E dr ErF(

P
jPI „R~b!2P@r #…

3expH 2
1

\E0

b

V0„R~s!…dsJ A„R~t!…G .
~10!

We consider a spin polarized-gas of bosons interac
through a two-body potentialv2 such as Eq.~1! and confined
by an anisotropic parabolic potential. The potential energy
this system is given by

V5
m

2 (
j 51

N

@Vx
2xj

21Vy
2yj

21Vz
2zj

2#1(
j 51

N

(
l 5 j 11

N

v2„r j2r l…,

~11!

with m the mass of the particles, andr j5$xj ,yj ,zj% the po-
sition of the j th boson. The partition function, the densit
and the pair correlation function for a model system w
potential energyV0 given by

V05(
j 51

N
m

2
@Vx8

2xj
21Vy8

2yj
21Vz8

2zj
2#1(

j 51

N

(
l 5 j 11

N
k

2
~r j2r l !

2

~12!

were derived analytically in Refs.@1,26# for the isotropic
case. Substituting the real potential energy for the sp
polarized gas of interacting bosons~11!, and the potential
energy of the trial system~12! in the inequality~9!, one finds
5-2
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F<F01(
j 51

N
m

2
@~Vx

22wx
2!^xj

2&1~Vy
22wy

2!^yj
2&

1~Vz
22wz

2!^zj
2&#2

Nk

2
N^R2&

1
1

2 K (
j 51

N

(
lÞ j 51

N

v2~r j2r l !L , ~13!

whereF052 ln@Z0(N,b)#/b is the free energy of the mode
system with partition functionZ0(N,b), wx,y,z

2 5(Vx,y,z8 )2

1Nk/m, andR5(1/N)( j 51
N r j is the center-of-mass coord

nate. Using the pair correlation function

g~r !5
1

N~N21!
E d3k

~2p!3
e2 ikr K (

j 51

N

(
lÞ j 51

N

eik(r j 2r l )L ,

~14!

the expectation value of the two-body potentialv2 can be
rewritten

K (
j 51

N

(
l 5 j 11

N

v2~r j2r l !L 5
N~N21!

2 E dr v2~r !g~r !,

~15!
is
ith
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and hence the variational free energy can be written as

F<F01
m

2 (
j 51

N

@~Vx
22wx

2!^xj
2&1~Vy

22wy
2!^yj

2&

1~Vz
22wz

2!^zj
2&#2

Nk

2
N^R2&

1
N~N21!

2 E dr v2~r !g~r !. ~16!

This is the central variational formula that we will use to fin
the thermodynamical properties of the spin-polarized, pa
bolically confined, interacting bosons. The essential role
the pair correlation function in the evaluation of the expe
tation value of the interaction potential is clear from E
~16!.

The required building blocks for the variational free e
ergy ~the expectation values and the pair correlation funct
for the bosonic case!, obtained previously@1,26# for the iso-
tropic case, have to be extended to the case of an anisotr
confinement potential. This anisotropic generalization
documented in the Appendix. The resulting expression
the variational free energy is
F<2
1

b
ln„Z0~N,b!…1 (

i 5x,y,z
H 1

b
lnS sinh~b\V i8/2!

sinh~b\wi /2!
D 1

\@V i
22~V i8!2#coth~b\V i8/2!

4V i8
J

1 (
i 5x,y,z

\@V i
22wi

2#

4wi F S (
l 51

N
Z0~N2 l ,b!coth~b\wil /2!

Z0~N,b!F )
j 5x,y,z

2 sinh~b\wj l /2!G D 2coth~b\wi /2!G1
N~N21!

2 E dr v2~r !g~r !.

~17!
n-

ir
e

In this expression,Z0(N,b) is the partition function of the
model containing N bosons at inverse temperatureb
51/(kBT). In the isotropic case,Vx85Vy85Vz85V8, and the
parametersV8 and w are the variational parameters. Th
gives a substantial simplification, since the variation w
respect toV8 can be done analytically in the case of isotro
with V85V as the result, i.e., the variational isotropic co
finement frequency equals the isotropic confinement
quency of the examined system. However, for the an
tropic case, expression~17! has to be minimized with respec
to all four parametersVx8 , Vy8 , Vz8 , andk to find the upper
bound for the free energy.

B. Variational free energy and condensation temperature
for a Morse potential

The variational free energy associated with the Morse
tential is found using Eq.~17!. The Morse potential appear
-
-

-

from the interparticle interaction as the integral of the pote
tial times the pair correlation function

N~N21!

2 E v2~r !g~r !dr

Ä
N~N21!

2
UE ~e22(r 2r 0)/L22e2(r 2r 0)/L!g~r !dr .

~18!

Denoting Pl j 5(12bj )(12bl 2 j )/(12bl), b5exp$2b\w%,

andaw5A\/mw, and using the Fourier transform of the pa
correlation function, given in the Appendix, we find for th
pair correlation function in the isotropic case
5-3
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N~N21!g~r !5(
l 52

N
Z0~N2 l ,b!b3l /2

Z0~N,b!~12bl !3 (
j 51

l 21

@2paw
2 Pl j ~b!#23/2

3FexpS 2
r 2

2aw
2

1

Pl j ~b! D 1expS 2
r 2

2aw
2 Pl j ~b! D G , ~19!

whereZ0(N,b) is again the partition function of the model system. Details on the anisotropic pair correlation functio
given in the Appendix. In this section, we assume isotropy in order not to complicate the formulas unnecessarily. Ex
~18! reduces to

N~N21!

2 E v2~r !g~r !dr5
U

2A2p
(
l 52

N
Z0~N2 l ,b!b3l /2

Z0~N,b!~12bl !3 (
j 51

l 21 H e2r 0 /L f S 2Pl j
1/2aw

L D22er 0 /L f S Pl j
1/2aw

L D
1Pl j

23Fe2r 0 /L f S 2Pl j
21/2aw

L D22er 0 /L f S Pl j
21/2aw

L D G J , ~20!

wheref is the following function of a dimensionless argument:

f ~x!5Ap

2
@12erf~x/A2!#~x211!ex2/22x. ~21!

The expression for the variational free energy of this system is then given by substituting~20! in ~17!. In the isotropic case, one
finds

FMorse<2
ln@Z0~N,b!#

b
1H 3

b
lnS sinh~\bV/2!

sinh~\bw/2! D J 1
3\@V22w2#

4w F S (
l 51

N
Z0~N2 l ,b!coth~b\wl/2!

Z0~N,b!@2 sinh~b\wl/2!#3D 2coth~b\w/2!G
1

N~N21!

2

U

A2p
(
l 52

N
Z0~N2 l ,b!b3l /2

Z0~N,b!~12bl !3 (
j 51

l 21 H e2r 0 /L f S 2Pl j
1/2aw

L D22er 0 /L f S Pl j
1/2aw

L D
1Pl j

23Fe2r 0 /L f S 2Pl j
21/2aw

L D22er 0 /L f S Pl j
21/2aw

L D GJ , ~22!
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whereV equals the experimental confinement frequency
w is the remaining variational parameter and againaw

5A\/mw. Details for the anisotropic model can be found
the Appendix. In this inequality, the expression obtained
@1# for ^( j 51

N r j
2& has been used.

III. RESULTS

The variational free energy as a function ofw for a system
with positive scattering length differs substantially from t
case of negative scattering length. Therefore these case
discussed separately.

A. Morse potentials with positive scattering length

For Morse potentials with positive scattering leng
FMorse(w) has only one minimum. This minimum is locate
in 0,w,V and the minimum value of the free energy
low temperatures is of the order of ground-state energy of
harmonic confinement potential. The variational free ene
can be used to derive the condensation temperature o
Bose gas. For this purpose, the specific heat is calcul
from the free energy (c52T]2F/]T2). For Morse poten-
04360
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tials with a positive scattering length, a peak appears in
specific heat as a function of temperature, indicating the
set of Bose-Einstein condensation. We define the conde
tion temperature as the temperature at which the specific
reaches its maximum. In the presence of interactions,
condensation temperatureTc will differ from the condensa-
tion temperatureTc

0 of the noninteracting Bose gas in th
same confinement potential. This is illustrated in Fig.
showing the specific heat as a function of temperature
several values of the scattering length. The relative shif
the condensation temperature induced by the interactio
denoted bydT5(Tc2Tc

0)/Tc
0 .

Figure 2 shows the interaction-induced shiftdT as a func-
tion of the scattering length of the Morse potential. Typic
parameter values for the Morse potentials used in Fig. 2
U533.363109\V, r 051.32831024aHO , L54.794
31025aHO with aHO5(\/mV)1/2. Adapting the ranger 0 of
this Morse potential allows us to change the scattering len
and set it to the value one wishes to study. Examples
scattering lengths appearing in experiments@27,28# are given
in Table I. A set of Morse potentials with different scatterin
lengthsascat was constructed, and for each of these Mo
potentials, the interaction-induced shiftdT in the condensa-
5-4



n
en

t
g
u
m
th
-
a

ng

in
ce
p

ia

l

th,
ar-

ear
-

f
e
the

u-

s
c

tio
s

re
is

m-
gth

-
-

ed
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tion temperature was calculated. The results are show
Fig. 2 as the full circles. It should be noted that the cond
sation temperature of an ideal, trapped Bose gas and
condensation temperature of a Bose gas interacting throu
Morse potential with zero scattering length coincide. The f
line in Fig. 2 shows the predicted shift in condensation te
perature for a contact potential, as obtained from solving
Gross-Pitaevski equation@9#. The results for the contact po
tential and the Morse potential approach each other for sm
scattering length. One could also adapt the scattering le
of the Morse potential by adapting the parameterU. Choos-
ing U instead ofr 0 as the parameter to adjust the scatter
length had no noticeable effect on the interaction-indu
shift in the condensation temperature. In the inset, the o
mal value of the variational parameterw is shown as a func-
tion of temperature. For a repulsive Morse potent
(ascat/aHO.0, full line! we find that the size of the atom

FIG. 1. The specific heat of a parabolically trapped Bose ga
2000 atoms is shown as a function of temperature for several s
tering lengths. In the inset the relative shift in the condensa
temperature induced by the interparticle interaction is shown a
function of the scattering length. The condensation temperatu
determined from the maximum of the specific heat. The full line
derived using Gross-Pitaevskii theory@9#, the filled circles are ob-
tained using the approach presented here.
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cloud is expanded sincew,V. An attractive Morse potentia
(ascat,0, discussed below, dashed line in the inset!, on the
other hand, will contract the gas.

B. Morse potentials with negative scattering length

For Morse potentials with negative scattering leng
FMorse(w) has two minima separated by a free energy b
rier. There is again a minimum forw of the order ofV, but
a second minimum is found at a much higher frequency n
w'V(aHO /r 0)2@V, wherer 0 reflects the range of the at
tractive part of the interaction andaHO5A\/mV. This sec-
ond minimum has a free energy value of the order o
2NU, whereU reflects the depth of the attractive part of th
interatomic potential. The average distance between
bosons is of the order of (\/mw)21/2 and is thus comparable
to the range of the interatomic potential. Hence, it is pla

of
at-
n
a
is

FIG. 2. The interaction-induced shift of the condensation te
perature is shown as a function of the interaction stren
ascat/aHO for Morse potentials~filled circles, calculated in the
present approach! and contact potentials~full line, calculated from
the Gross-Pitaevskii equation@9#!. In the inset, the variational opti
mal value for the parameterw/V is shown as a function of tem
perature, for a repulsive~full line! and an attractive~dashed line!
Morse potential and for the noninteracting, parabolically trapp
Bose gas~dotted line!.
set of
c

is
TABLE I. Typical values for system parameters in experiments on ultracold Bose gases. For a
chosen alkali atoms we list the scattering lengthsascat ~taken from@27#!, the frequencies of the paraboli
confinement potential~taken from@28#!, typical number of atoms for which Bose-Einstein condensation
observed~where applicable!, the effective interaction strength given byascat/aHO , and the critical number
Nc ~found by the present method! at zero temperature~only applicable for negative scattering lengths!. n.a.
stands for not applicable.

Atom ascat N Ṽ5A3VxVyVz
ascat/aHO Nc

7Li 21.4460.04 nm 1300 144 Hz 24.6431024 1443
23Na, u1,21& 4.961.4 nm 500 000 416 Hz 0.0048 n.a.
87Rb 4.661.1 nm 4500 187 Hz 0.0058 n.a.
85Rb 250 nm,ascat,23 nm n.a. ˜1 Hz 20.0050 134
133Cs 213 nm n.a. 34 Hz 20.008 7 77
5-5
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sible that the second minimum in the free energy, wh
appears for Bose gases with negative scattering length,
responds to a many-particle bound state. We will refer to
state as the ‘‘clustered’’ state, and to the state correspon
to the minimum withw of the order ofV as the ‘‘gaseous’’
state. Since the free energy in the clustered state is lo
than the free energy in the gaseous state, the latter is m
stable with respect to a transition to the clustered state. W
the scattering length is not negative, the minimum in the f
energy at a large~‘‘cluster’’ ! value ofw is not present. This
property of the free energy has been checked numerically
a Morse potential and has been obtained analytically for
two-step square well potential with a non-negative scatte
length.

For the negative scattering lengths, only the specific h
associated with the gaseous state shows a peak as a fun
of temperature, and thus we find a condensation tempera
only in the gaseous state, as expected. The interac
induced shift in the condensation temperature is opposit
the shift for potentials with positive scattering length,
shown in Fig. 2.

1. Phase diagram for a Bose gas with negative scattering leng

As discussed above for the Morse potentials with nega
scattering length, there are in general two minima in the f
energy. However, when the number of particles is increa
at fixed temperature, we find that the minimum in the var
tional free energy associated with the gaseous state d
pears above a critical numberNc of particles. The analytic
expression for this critical number at temperature zero can
found using thatZ0(N2 l ,b)b3l /2/Z0(N,b)→1 andPl j →0
for T→0, such that

FMorse~T→0!5
3

2
\w~N21!1

3

2
\V

1
3\~V22w2!

4w
~N21!

1
N~N21!

A2p
Uer 0 /L@er 0 /L f ~2aw /L !

22 f ~aw /L !#. ~23!

Then Nc(T→0) can be found by treating the variation
equation]F/]w50 as an equation inw and N and finding
the maximalN possible as a function ofw. In the gaseous
stateaw /r 0@1 and the asymptotic form off can be used,
yielding

Nc~T→0!5
A8p

55/4

aHO

L

\2/~mL2!

U
e2r 0 /LS 1

4
2

4

er 0 /LD ,

~24!

with againaHO5A\/mV. The relation of the Morse poten
tial parameters to the scattering lengthascat of the potential
allows us to rewrite Eq. ~24! as Nc(T→0)5
2(A8p/55/4)aHO /ascat'20.67aHO /ascat. This theoretical
value forNc in the limiting case ofT→0 was also obtained
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eby Salasnic@29# using a Gaussian variational wave functio
and the Rayleigh-Ritz variational principle. The advantage
the present method, however, is that unlike a variational
proach based on a trial wave function, the current techni
allows us to calculateNc at any temperature. The temper
ture dependence of the critical numberNc(T) is shown in
Fig. 3. Figure 3 represents a phase diagram in theN,T plane
for the case of negative scattering lengthascat/aHO526.7
31023, a value typical for the experiments on ultraco
trapped atoms~see also Table I!. This specific choice for
ascat/aHO corresponds toNc5100 at zero temperature. Sev
eral regions can be distinguished in this phase diagram
region where the metastable gaseous state exists and i
Bose condensed, a region where the metastable gaseous
exists as Bose condensate, and finally a region where
the clustered state was found by the present approach.

Keeping the temperatureT fixed, we find a number of
particlesNb(T) such that Bose-Einstein condensation sets
for Nb(T),N. We also find the critical number of particle
Nc(T) above which Bose-Einstein condensation is no lon
possible. As long asNb(T),Nc(T), Bose-Einstein conden
sation can be realized at the given temperatureT for Nb(T)
,N,Nc(T). As the temperature is increased,Nb(T)
→Nc(T) until at the tricritical temperatureTtc ~indicated in
Fig. 2! one hasNb(Ttc)5Nc(Ttc). For temperatures abov
this tricritical temperature, Bose-Einstein condensation is
longer possible, regardless of the number of particles in
gas.

Keeping the number of particlesN fixed, we find a con-
densation temperatureTc(N) but also a temperatureTcl(N)

FIG. 3. A (N,T) phase diagram is shown for a gas of boso
interacting through a Morse potential with negative scatter
length ascat/aHO520.0067 withaHO5A\/mV, such thatNc(T
50)5100. The dashed line shows the condensation temperaturTc

as a function of the number of bosons. The full line shows
critical number of bosonsNc beyond which the gaseous state n
longer exists, as a function of temperature, and the dotted
shows this critical number for distinguishable particles under
same conditions. The tricritical temperatureTtc , above which BEC
is not possible regardless of the number of bosons, is indica
Ttc59.43\V/kB , Nc(Ttc)51363.
5-6
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CONDENSATION AND INTERACTION RANGE IN . . . PHYSICAL REVIEW A61 043605
such that for temperatures lower thanTcl(N) only the clus-
tered state is found by the present approach. Thus, B
Einstein condensation for a giventotal number of particlesN
~both condensate and noncondensate! can only occur in a
temperature rangeTcl(N),T,Tc(N). This means that
given a fixed total number of particles, the gas can only
cooled to a temperatureTcl(N), and not toT50. Since the
gas has to be cooled all the way down toT50 in order to
have a condensate fraction of 100%, and since it can onl
cooled toTcl(N), the maximal condensate fraction of a Bo
gas with negative scattering length will be less than 10
for N such thatTcl(N).0.

In our approach the maximum total number of boso
Nc(T) in the trap at a given temperature is obtained. T
number can be used to estimate the fraction of the atom
the condensate using 12$T/Tc@Nc(T)#%3, whereTc(N) de-
notes the condensation temperature forN bosons. The con-
densate fraction can then be studied as a function of
temperature for the scattering length used in the precee
calculation,ascat/aHO526.731023. The temperature de
pendence of this condensate fraction is shown in Fig. 4
the inset, the number of atoms in the condensate, calcul
in Ref. @7# within the T-matrix approach but for a differen
scattering lengthascat/aHO524.6431024, is shown for
comparison. Note that the decrease in the condensate fra
is much less pronounced in the case of Houbiers and S
@7#. This may be due to the fact that in the present appro
the thermodynamical properties are calculated as a func
of the total number of atoms in the trapped gas, both c
densed and noncondensed. Houbiers and Stoof, on the
hand, calculated the number of condensed atoms in the g
canonical ensemble, given a nonconserved density as a
ervoir.

FIG. 4. Nc is the maximum number of atoms in the trap that c
undergo Bose-Einstein condensation. Using this number, and
associated condensation temperatureTc(Nc) the maximal fraction
of atoms in the condensate is shown as a function of temperatur
a gas with scattering lengthascat/aHO526.731023. In the inset,
the maximum occupation of the condensate calculated in@7# with a
T-matrix approach and for a scattering lengthascat/aHO524.6
31024 is shown.
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As a final remark, we wish to point out that the variation
method presented in Sec. II can also be applied to a ga
distinguishable particles~without Bose statistics!. In this
manner, the effects of statistics on, for example, the clus
ing, can be studied. For distinguishable particles, no su
over permutations must be taken, and the expression for
variational free energy~in isotropic confinement! simplifies
to

FMorse
dist. <2

1

b
lnS @2 sinh~b\V/2!#23

@2 sinh~b\w/2!#3(N21)D
1

3\~V0
22w2!~N21!

4

coth~\bw/2!

w

1
3\~V0

22V2!

4

coth~b\V/2!

V
1

UN~N21!

~2p!1/2

3@22 f ~aT /L !er 0 /L1 f ~2aT /L !e2r 0 /L#, ~25!

where aT5awAcoth(\bw/2), and V0 is the experimental
confinement frequency. The variational free energy of
system of distinguishable particles no longer gives rise t
peak in the specific heat as a function of temperature, in
cating that there is no phase transition to an ordered state~the
condensate!. As it should be, no condensation temperatu
Tc.0 is found. But for Morse potentials with negative sca
tering length, the variational free energy will again allow f
a clustered state with respect to which the gaseous sta
metastable. One may wonder whether the critical numbe
particles above which the present approach only finds
clustered state depends on the Bose statistics: is it the s
for distinguishable particles as for bosons? The answer
given by the present calculation, is no: the critical number
particlesNc

d(T) for the distinguishable particles, shown a
the dotted line in Fig. 3, differs from the critical number
particlesNc(T) for the bosons except atT50. At a given
temperature, the critical number above which only the cl
tered state persists is lower for bosons than for distingu
able particles under the same conditions. For temperat
approaching zero, the critical number for bosons approac
that for distinguishable particles.

2. Case study: The lithium condensate

In contrast to a standard variational approach using a
wave function, there is no simple criterion to estimate h
close the variational upper bound for the free energy lies
the real value of the free energy of the system. In order
check the robustness of the variational estimate for the
energy, we focus on a case study for lithium. Instead of us
the Morse potential, as in the previous subsections, we
the real interaction potential, experimentally derived fro
spectroscopy measurements@20–22#, and compare the re
sults for this potential with the analytical results found f
the Morse potential.

he

for
5-7
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TABLE II. Results of the variation for the free energy at temperature zero, in unitsmLi5\5V51. The
first column shows the number of particles in the parabolic confinement. The next columns show the o
variational value for the parameterw and the variational free energy for~i! the gaseous state~identical results
were found for the Morse potential and the real potential!, ~ii ! the Morse potential, and~iii ! the experimen-
tally derived triplet potential@20–22#. Comments are added in the last column.

Gaseous Clustered ~Morse! Clustered ~exact! Comment
N w1 F1 /N w2,Morse F2,Morse/N w2,Li F2,Li /N

2 1.00037 1.49981 no minimum no minimum only
5 1.00091 1.49926 no minimum no minimum gaseous
10 1.00184 1.49833 no minimum no minimum state
20 1.00373 1.49647 no minimum no minimum
21 1.00392 1.49628 53389.8 4714.57 57555.7 4268.57 cluster
22 1.00411 1.49610 60304.0 3005.24 63920.3 2406.39 state
23 1.00430 1.49591 65178.6 1100.04 68640.5 357.693 metasta
24 1.00449 1.49572 69042.2 –948.329 72454.2 –1831.68 gaseo
100 1.01925 1.48140 111411 22.214423105 115733 22.341333105 state is
1000 1.31950 1.27743 120331 23.016293106 124993 23.174663106 metastable
1443 2.16973 1.11880 120623 24.393863106 125297 24.623993106

1444 no minimum 120624 24.396973106 125298 24.627263106 only clustered
1500 no minimum 120648 24.571113106 125323 24.810483106 state
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This implies that we have to first describe how we us
the real interaction potential in the calculation and seco
how we obtained the parameters of the Morse potential
these atoms. For distances less than 0.15 nm, the core re
the real interaction potential is not determined experim
tally. We introduced a constant potentialVcore that is ad-
justed to the known scattering length@20–22#. Anticipating
on the results, it should be noted that the introduction o
constant potential does not strongly influence the resu
One of the reasons may be that the region of the core is s
compared to the region covered by a substantial value of
pair correlation. The remaining experimental parameters
the trap, such as the confinement frequency, were chose
agreement with the experimental setup of@30#.

The Morse potential~1! for the lithium triplet interaction
is obtained as described before. The scattering length is fi
to its experimental value (227.6 nm! and the number of
bound levels~11, @31#! is introduced. The remaining param
eters are determined by a least-squares fit to the meas
triplet potential, leading to U533.0023109\V, r 0
51.253131024aHO , L54.523631025aHO .

The results at zero temperature are summarized in T
II. For the variational free energy in the gaseous state,
differences were found in the results for the Morse poten
and for the experimental potential. The variational free
ergy in the gaseous state, and the value ofw associated with
it, are listed in columns 2 and 3 of Table II. In the next tw
columns, the free energy and the associatedw are shown for
the clustered state for the Morse potential. Columns 5 an
show the free energy andw for the clustered state for th
experimental potential. Note that at the lowest particle nu
bers, the free energy of the clustered state is increased
even becomes larger than the free energy of the gas
state. This result deserves further attention, but in our o
ion it is a typical few-body problem where the molecul
04360
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potentials have to be taken into account to higher orders t
we did here. Therefore we expect that the model system i
longer adequate for such a small number of particles.

The agreement between the clustered state for the M
potential and for the experimental potential is good, and
creases in accuracy as the number of particles increases.
the critical numberNc remains the same. The result for th
critical number of particles for the experimental setup
@30#, with scattering length and trapping parameters such
ascat/aHO54.6431024, is Nc51443 in the present ap
proach. This numberNc represents the maximum number
atoms in the trap that still can undergo Bose-Einstein c
densation. Thus it is an upper bound to the average num
of atoms that is reported in@30# to lie between 60021300.

IV. DISCUSSION AND CONCLUSION

The method proposed in this paper allows us to incor
rate any two-body interactionv2 in the description of the
thermodynamics of an interacting Bose gas. From this po
of view, its application is more general than the Gros
Pitaevskii model, which takes into account a two-body co
tact potential vd(r )54pd(r )\2ascat/m with scattering
lengthascat, and which hence neglects the range and sh
of the interatomic potential. From the expression of the
pectation value of the two-body interaction in the Jens
Feynman inequality, it is clear that this approximation w
be valid as long as the range of the interatomic potential~of
the order ofr 0 for the Morse potential used above; see Ta
III ! is much shorter than the typical length scalej over
which the pair correlation function varies. Indeed, in th
case, the expectation value of the interatomic potential es
tially depends on the value of the pair correlation function
the origin and on the scattering length:
5-8
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CONDENSATION AND INTERACTION RANGE IN . . . PHYSICAL REVIEW A61 043605
^v2&5
N~N21!

2 E dr g~r !v2~r !→^v2& r 0!j

'
N~N21!

2
g~0!E dr v2~r !

5
2p\2ascat

m
N~N21!g~0!. ~26!

However, even for short-range interactions, the typi
length scale of the pair correlation function can become co
parable to the range of the interatomic interactions. This h
pens for interatomic potentials that allow for a clustered s
~a bound state involving many particles!. In that case, the
details of the interaction potential become important a
models based on the Gross-Pitaevskii equation using a
tact potential lead to an unphysical result: the free energ
these models is not bound from below. This artifact
avoided in the present treatment by taking into account
range of the interatomic potential.

Bose-Einstein condensation in a gas with negative sca
ing length has been achieved experimentally: for a parab
cally confined gas of lithium atoms a Bose-Einstein cond
sate of at most 60021300 bosons@30# was observed,
comparable to the critical number for this experiment, p
dicted from the theory presented here. It should be noted
the present analysis does not describe the dynamics
cooling Bose gas nor does it describe the dynamics of
formation of the clustered state. The critical number
bosons beyond which Bose-Einstein condensation is
longer possible may be different in the experiment due to
dynamical effects.

In the theoretical approach presented here, as well a
the two-fluid models@9–13# for the condensate and even
the Monte Carlo simulations@32,33#, it is tacitly assumed
that the system is in thermal equilibrium. It is also clear th
the measurements are done on systems that are not in
librium at all; even obtaining a steady state seems at pre
out of experimental reach@34,35#. This means that in dis
cussing the theoretical results we rely on our intuition of h
the calculated equilibrium situation is reached without co
flicting with the known experimental facts for the nonequ
librium situation. For our approach, this means that we h
to argue how it is possible that a metastable state wit
much higher energy than the ground state can be stu
experimentally, while the ground state itself does not ev

TABLE III. A description of the different length scales used
the paper is given.

Symbol Description

ascat scattering length
aHO A\/(mV)
aw A\/(mw)
aT awAcoth@\w/(2kBT)#
r 0 distance at which the Morse potential

reaches its minimum
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show up circumstantially. For distinguishable particles it
generally accepted that the lifetime of a metastable stat
proportional to the energy barrier between the two states
inversely proportional to their energy difference. There a
different scenarios possible. The first one implicates grav
as soon as a cluster of a few atoms is formed it leaves
trap due to the gravitational force, thereby reducing the nu
ber of atoms available for condensation and increasing
average energy present in the trap, because the low-en
states can escape now. In this scenario one is allowed to
with a number of atoms larger than the calculatedNc . After
some time of operation, clustering will reduce the number
atoms in the trap. Once the number of atoms is lower,
metastable state becomes available as the first excited
of the system. If the collision rate in this state does not dif
fundamentally from the collision rate of the previous situ
tion, the clustering will go on, and eventually all particle
will have left the trap. If there is a change in collision rate,
if the state is almost collision free, the metastable state
get the necessary lifetime to be available for experimen
tion. For 87Rb this change in collision rate was found@36# to
be due to the influence of the condensate on the loss ra
three-body recombinations. This characteristic was predic
by Kaganet al. @37# who also suggest its use as the signat
of the presence of the condensate. The physical origin of
change in collision rate is due to a change in distributio
While in the high-temperature phase the distribution
Gaussian~at least to a good approximation! it would remain
Gaussian~with different parameters! if the particles were dis-
tinguishable. Projecting it on the symmetric irreducible re
resentation of the permutation group as required for indis
guishable particles, the distribution takes the equilibrium
the condensate and its excitations into account.

In this paper, we presented a path-integral variatio
method which~1! exactly treats the quantum statistics at a
temperature and~2! allows the incorporation of finite-rang
two-body interactions in the description of the thermod
namics of the Bose gas. After presenting this technique,
focused on a gas of parabolically trapped bosonic atoms
teracting through a Morse potential. The effect of this int
action on the condensation temperature was studied.
Morse potentials with a negative scattering length, a ph
diagram was derived showing the influence of the interact
on the region inN,T parameter space favorable to Bos
Einstein condensation. Apart from the interaction-induc
shift in condensation temperature, the region inN,T param-
eter space available for Bose-Einstein condensation is
duced by the presence of a clustered phase. The effect o
interaction and the Bose statistics on the critical number
particles above which the gaseous state was no longer fo
in the present treatment was calculated. We identified a t
perature above which Bose-Einstein condensation is
longer possible regardless of the number of particles.
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APPENDIX

The expectation values of one-body and two-body pot
tial energies appearing in the Jensen-Feynman inequality
be expressed as a function of the density

(
j 51

N

v1~r j !5E dr v1~r !n~r ! with

n~r !5E dk

~2p!3
e2 ik•rK (

j 51

N

eik•r jL , ~A1!

and of the pair correlation function:

1

2 (
j 51

N

(
l 51

N

v2~r j2r l !Q~ lÞ j !5
N~N21!

2 E dr v2~r !g~r !

~A2!

with

g~r !5
1

N~N21!
E dk

~2p!3

3e2 ik•rK (
j 51

N

(
l 51

N

eik•(r j 2r l )Q~ lÞ j !L . ~A3!

The symbolQ(expr)51 if the logical expressionexpr is
true, and zero otherwise. These quantities have been
cussed in detail in@1# . In this appendix, the generalization o
the results of@1# to the case of anisotropic confinement w
be given. For a spin-polarized gas of bosons in an anisotr
parabolic confinement potential with frequenciesVx ,Vy ,Vz
and a two-body potential energy (k/4)( j ,l(r j2r l)

2, the
propagator is given by

K~r1 ,..,rN ;bur1 ,..,rN ;0!

5
1

N!
C~R!(

P
)
j 51

N

Kwx ,wy ,wz
~P@r j #;bur j ;0!,

~A4!

C~R!5
KVx ,Vy ,Vz

~ANR;buANR;0!

Kwx ,wy ,wz
~ANR;buANR;0!

, ~A5!
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where the first sum runs over all particle permutationsP;
wi5(V i

22Nk)1/2 are the renormalized frequencies;R
5(1/N)( j r j is the center-of-mass coordinate; andKvx ,vy ,vz

is the single-particle path-integral propagator for an ani
tropic harmonic oscillator with frequenciesvx ,vy ,vz . Hence

Z0~N,b!5(
j 51

N E dr1•••drNC~R!
1

N!

3(
P

F )
v51

N

Kwx ,wy ,wz
~P@r v#;bur v ;0!G ,

~A6!

K (
j 51

N

eik•r jL 5
1

Z0~N,b! (
j 51

N E dr1•••drN

3C~R!
1

N! (
P

F )
v51

N

3Kwx ,wy ,wz
~P@r v#;bur v ;0!eik•r jG ,

~A7!

K (
j 51

N

(
l 51

N

eik(r j 2r l )Q~ lÞ j !L
5

1

Z0~N,b! (
j 51

N

(
l 51

N

Q~ lÞ j !E dr1•••drNC~R!
1

N!

3(
P

F )
v51

N

Kwx ,wy ,wz
~P@r v#;bur v ;0!eik(r j 2r l )G ,

~A8!

whereZ0(N,b) indicates the partition function in the ana
lytical model system. Each permutation can be written a
cyclic decomposition withM1 cycles of length 1,M2 cycles
of length 2, . . . . The sumover permutations can be tran
formed into a sum over cyclic decompositions, as in Fe
man’s treatment of the ideal homogeneous Bose gas@25#:

(
P

→ (
$M1 ,M2 , . . . %

N!)
l

1

Ml ! l
M l

QS (
l

lM l5ND .

~A9!

The constraint in the cyclic sum appears in order to guar
tee that the total number of elements in all cycles of
cyclic decomposition equals the total number of bosons
the gas. For example, the partition sum becomes

Z0~N,b!5(
j 51

N E dr1•••drNC~R!

3 (
$M1 ,M2 , . . . %

F)
l

1

Ml ! l
M l

Kl
MlG

3QS (
l

lM l5ND , ~A10!
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Kl5Kwx ,wy ,wz
~r1 ;bur l ;0!•••Kwx ,wy ,wz

~r3 ;bur2 ;0!

3Kwx ,wy ,wz
~r2 ;bur1 ;0!. ~A11!

The restriction( l lM l5N is prohibitive for performing the
summation directly. To lift this restriction, and perform th
summation, the generating functions are introduced:

J~u!5 (
N50

`

Z0~N,b!uN, ~A12!

G1~k,u!5 (
N50

`

Z0~N,b!K (
j 51

N

eik•r jL uN, ~A13!

G2~k,u!5 (
N50

`

Z0~N,b!K (
j 51

N

(
l 51

N

eik(r j 2r l )Q~ lÞ j !L uN.

~A14!

For these generating functions, the summations and inte
tions can be performed analytically as for the isotropic c
@1,26#. Using the notationsbi5exp$2b\wi% for i 5x,y,z and
b51/kBT, the generating functions are given by

J~u!5expH (
l 51

N
ul~bxbybz!

l /2

~12bx
l !~12by

l !~12bz
l !
J , ~A15!

G1~k,u!5J~u!(
l 51

N
ul~bxbybz!

l /2

~12bx
l !~12by

l !~12bz
l !

3expH 2 (
i 5x,y,z

\ki
2

4mwi

11bi
l

12bi
lJ , ~A16!

G2~k,u!5J~u!(
l 52

N
ul~bxbybz!

l /2

~12bx
l !~12by

l !~12bz
l !

3(
j 51

l 21 FexpS 2 (
i 5x,y,z

\ki
2

2mwi
Pl , j~bi ! D

1 )
i 5x,y,z

Pl , j
21~bi !expS 2

\ki
2

2mwi

1

Pl , j~bi !
D G ,

~A17!

with Pl , j (b)5(12bj )(12bl 2 j )/(12bl). Two schemes
have been used to retrieve the expectation values from
generating function. The contour-integration scheme@38#
was applied in@39#, and yields

Z0~N,b!5
1

N!

dNJ~u!

duN U
u50

5
1

2pE0

2pJ~ueiu!

uN
e2 iNudu,

~A18!
04360
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K (
j 51

N

eik•r jL 5
1

Z0~N,b!

1

N!

dNG1~u!

duN U
u50

5
J~u!/uN

Z0~N,b!

1

2pE0

2pG1~ueiu!

J~u!
e2 iNudu, ~A19!

K (
j 51

N

(
l 51

N

eik(r j 2r l )Q~ lÞ j !L
5

1

Z0~N,b!

1

N!

dNG2~u!

duN U
u50

5
J~u!/uN

Z0~N,b!

1

2pE0

2pG2~ueiu!

J~u!
e2 iNudu.

~A20!

In principle, any value can be chosen foru. Fastest numerica
convergence, however, is achieved for the steepest des
solution, when u is chosen such that N5
2b22]@ ln J(u)#/](ln u). It would be incorrect to put the ex
pectation value equal to the generating function itself,
which the steepest descent valueu5ebm for the parameteru
in the free energy generating function, is substituted.

The second method is to collect the coefficient ofuN. This
results in recursion relations between the expectation va
for N particles and the expectation values for smaller num
of particles:

Z0~N,b!5(
l 51

N
~bxbybz!

l /2

~12bx
l !~12by

l !~12bz
l !

3Z0~N2 l ,b! with Z0~0,b!51,

~A21!

K (
j 51

N

eik•r jL 5(
l 51

N
Z0~N2 l ,b!~bxbybz!

l /2

Z0~N,b!~12bx
l !~12by

l !~12bz
l !

3expH 2 (
i 5x,y,z

\ki
2

4mwi

11bi
l

12bi
lJ , ~A22!

K (
j 51

N

(
l 51

N

eik(r j 2r l )Q~ lÞ j !L
5(

l 52

N
Z0~N2 l ,b!~bxbybz!

l /2

Z0~N,b!~12bx
l !~12by

l !~12bz
l !

3(
j 51

l 21 FexpS 2 (
i 5x,y,z

\ki
2

2mwi
Pl , j~bi ! D

1 )
i 5x,y,z

Pl , j
21~bi !expS 2

\ki
2

2mwi

1

Pl , j~bi !
D G .

~A23!
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The numerical implementation of the recursion relatio
gives high accuracy at the cost of computing time. In pr
tice, they become too time consuming for more than a f
thousand particles, and expressions~A18!–~A20! have then
to be computed. In summary, the expectation values in
path-integral formalism were calculated by introducing t
v.

es

an

n,
tt.

et

tt

tt

v.
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ch

ll,

d

.

G

a-
,

04360
s
-

w

e

generating functions~A12!–~A14! for these expectation val
ues. By constructing the generating functions, one can a
lytically perform the sum over all permutations, necessary
incorporate the quantum statistics. The expectation value
then be extracted from the generating function using the
version formulas~A18!–~A20! or ~A21!–~A23!.
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