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SUMMARY 

Bone loss and vascular calcification coincide in patients with end stage renal disease, similar as 

to what is observed in the general population. In the present bone biopsy study, we provide 

further evidence that (micro-) inflammation may represent a common soil for both diseases.  

 

ABSTRACT 

 

Purpose: Vascular calcification is a common complication of end-stage renal disease (ESRD) and 

is predictive of subsequent cardiovascular disease and mortality. Mounting evidence linking bone 

disorders with vascular calcification has contributed to the development of the concept of the 

bone-vascular axis. Inflammation is involved in the pathogenesis of both disorders. The aim of the 

present study was to evaluate the relationship between aortic calcification, inflammation, and 

bone histomorphometry in patients with ESRD. Methods: Parameters of inflammation and 

mineral metabolism were assessed in 81 ESRD patients (55 ± 13 year, 68 % male) referred for 

renal transplantation.  Static bone histomorphometry parameters were determined on transiliac 

bone biopsies performed during the transplant procedure. Aortic calcification was quantified on 

lateral lumbar X-rays using the Kauppila method. Results: Aortic calcification, low bone turnover 

and low bone area were observed in 53, 37, and 21% of patients respectively. Inflammatory 

markers were found to be independently associated with aortic calcification (hsIL-6) and low 

bone area (TNF-α). Low bone area associated with aortic calcification, independent of age, 

diabetes, and inflammation. Conclusions: Low bone area and inflammation associates with aortic 

calcification, independent of each other and traditional risk factors. Our data emphasize the role 

of (micro-)inflammation in the bone-vascular axis in CKD. 

 

 

 

 

 

 

Key words: bone histomorphometry, aortic calcification, end-stage renal disease 



 3 

INTRODUCTION 

 

Chronic kidney disease (CKD) predisposes to osteoporosis [1] and vascular calcification [2], 

conditions that are both related to poor outcomes, including fractures [3] and cardiovascular 

disease [4]. The close relationship between bone metabolism and vasculature, also referred to 

as the bone-vascular axis [5,6], raises the possibility of a common underlying 

pathophysiological mechanism driving bone loss, vascular disease, and/or vascular 

calcification. Of note, the association between osteoporosis and vascular calcification is not 

specific to CKD [4,7-9] and remained significant after adjustment for age, which suggests an 

age-independent relationship [4,7-13]. Arterial tissue is calcified in an organized, regulated 

process by mechanisms similar to those involved in the mineralization of bone [14]. Several 

lines of evidence suggest that inflammation promotes both calcification [15,16] and 

osteoporosis [17] and as such may play a central role in the bone-vascular axis.  

 

Clinical studies evaluating the relationship between bone status and vascular health in CKD 

patients so far yielded inconsistent results, with some researchers reporting a relationship 

between vascular calcification and low bone volume [11,18] and others reporting a relationship 

between vascular calcification and low bone turnover [10,19,20]. Power issues, case-mix and 

differences between arterial territories analysed (conduit arteries versus resistance arteries) may 

explain this (apparent) inconsistency.  

 

The present study aimed to investigate to which extent inflammation and bone status either 

independent or in concert with each other are associated with aortic calcification in patients 

with end-stage renal disease (ESRD).  
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METHODS 

 

Patient population  

The present study refers to the baseline data of an ongoing longitudinal observational trial 

evaluating the impact of renal transplantation on bone histomorphometry (NCT01886950). All 

patients were listed for renal transplantation, 18 years of age or older, able to provide consent 

and had not received bisphosphonates or denosumab during the preceding 6 months. The study 

was performed according to the Declaration of Helsinki and approved by the Ethics Committee 

of the University Hospital Leuven. Informed consent was obtained from all patients. Relevant 

demographic, smoking habit and clinical data were extracted from electronic patient files at the 

time of transplantation. Hyperlipidaemia was defined as total cholesterol >200 mg/dl and/or 

LDL-cholesterol > 100 mg/dl or statin intake. Cardiovascular history was defined as history of 

myocardial infarction, percutaneous coronary artery intervention, cardiac surgery, peripheral 

artery disease or cerebrovascular disease. Hypertension was defined as a systolic blood pressure 

above 140mmHg or diastolic blood pressure above 90 mmHg and/or treatment of hypertension. 

Tobacco use was defined as ‘none’, ‘past’ or ‘current’. 

 

Biochemical measurements 

Random, non-fasting blood samples were collected immediately before transplantation. After 

centrifugation, serum was aliquoted and stored at -80°C until further analysis. Creatinine, 

hematocrit, calcium, phosphorus, total alkaline phosphatase (AP), C-reactive protein (CRP) and 

cholesterol were all measured using standard laboratory techniques. Serum 1,25(OH)2D 

(calcitriol) and 25(OH)D (calcidiol) levels were measured using a radioimmunoassay. Serum 

full-length PTH levels were determined by an immunoradiometric assay (IRMA), as described 

elsewhere [21]. TNF-α (R&D Systems) and hsIL-6 (eBioscience) were measured by ELISA. 
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Bone histomorphometry 

Bone biopsies were taken under general anaesthesia at the end of the renal transplant procedure 

using a needle with an internal diameter of 4.5 mm (Osteobell, Biopsybell), at a site 2 cm 

posterior and 2 cm inferior to the anterior iliac spine. Since the timing of deceased donor kidney 

transplantation is unpredictable, bone biopsies were performed without double tetracycline 

labeling. The specimens were transferred into 70% ethanol and prepared for quantitative 

histomorphometry as previously described [22]. Five-micrometer thick sections of non-

decalcified bone were stained by the modified Goldner technique for light-microscopic 

examination. All measurements of length, width, and area were done using a digitizer interfaced 

with a microcomputer, and the results represent two-dimensional variables. Bone 

histomorphometric data were reported using standardized nomenclature and definitions [23]. 

Osteoblast-covered perimeter (ObPm) and osteoclast-covered perimeter (OcPm) were all 

expressed as a percentage of the total bone perimeter (BPm). The absence of tetracyclin labeling 

precluded the assessment of dynamic histomorphometric parameters (bone formation rate, 

mineralization lag time, etc.). We used the bone area to total tissue area (BAr/Tar), osteoid area 

to bone area (OAr/BAr) and the ratio of osteoblast-covered perimeter to total bone perimeter 

(ObPm/BPm) as surrogate markers for bone volume, mineralization and turnover, respectively 

(Table 1). The latter parameter, as opposed to osteoclast-covered perimeter to total bone 

perimeter (OcPm/BPm), showed good correlation with bone formation rate as determined by 

dynamic bone histomorphometry in a separate cohort of dialysis patients (n = 27, r = 0.64, P = 

0.0004, unpublished data).  

 

Vascular calcification 
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Aortic calcification was graded using the Kauppila method in which both the location and the 

severity of mineral deposits at each lumbar vertebral segment (L1–L4) were evaluated [24]. 

The composite score (i.e. the summation of scores of individual aortic segments both for the 

anterior and posterior wall) had a maximum of 24. One reader (SH) analysed all lateral lumbar 

radiographs, blinded for clinical data. 

 

Statistical analysis 

Continuous variables are expressed as mean (standard deviation, SD) for normally distributed 

variables or median (inter quartile range (IQR), otherwise. Differences between groups were 

analysed using parametric or non-parametric one-way ANOVA, with post-hoc correction for 

multiple comparisons, as appropriate. Correlations were examined using Spearman rank. 

Univariate and multivariate linear and logistic regressions with backward selection were used 

to model determinants of bone parameters and vascular calcification. The SAS version 9.3 (SAS 

Institute, Cary, NC) software program was used for the statistical analysis. Two-sided p<0.05 

was considered statistically significant.  
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RESULTS 

 

Demographics 

Between September 2010 and September 2012, 261 patients underwent renal transplantation 

and were found eligible to be enrolled in the study. 110 patients consented to procedure and 

bone biopsies of sufficient quality to allow determination of static bone histomorphometric 

parameters were obtained in 81 renal transplant recipients (Figure 1). These patients did not 

significantly differ from non-participating patients transplanted in the same time period 

(supplementary table 1). Relevant demographics, clinical and biochemical parameters, and 

mineral metabolism therapy of the study population are summarized in table 2. Seventy-five % 

were men, 25% were diabetic. Three women were on oral contraceptive therapy. Mean age was 

55±14 years. Primary renal disease was diabetes in 16.4%, glomerulonephritis/vasculitis in 

20.9%, interstitial nephritis in 15.5%, cystic/hereditary/congenital in 17.3%, vascular in 6.4 %, 

miscellaneous in 5.5% and unknown or missing in 18.2% of patients. Fifty-six patients (69%) 

were treated with intermittent hemodialysis (1 nocturnal hemodialysis), 21 (26%) patients were 

on peritoneal dialysis. Four (5%) patients were transplanted pre-emptive.  

Aortic calcification  

Aortic calcification was present in 53% of the patients. Median [range] aortic calcification score 

was 2.5 [0-23]. Table 2 compares clinical parameters and biochemistry between patients with 

and without aortic calcification. Patients with aortic calcification were characterized by older 

age, higher prevalence of hypertension, diabetes mellitus and history of cardiovascular disease. 

Biochemical mineral metabolism parameters did not differ between patients with and without 

aortic calcification. HsIL-6 levels were significantly higher, whereas TNF-α tended to be higher 

in patients with aortic calcification. In univariate logistic regression, older age, diabetic state, 
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cardiovascular history, lower 1,25(OH)2D levels and higher hsIL-6 levels were associated with 

the presence of aortic calcification (supplementary table 2). In multivariate analysis, older age 

(OR 1.2 per year increase, P <0.0001), diabetes (OR 8.1, P = 0.04), hypertension (OR 6.7; P = 

0.04) and higher hsIL-6 (OR 4.6 per pg/ml, P = 0.03) were independently associated with the 

presence of aortic calcification. 

 

Bone histomorphometry 

The ObPm/BPm ratio, a surrogate marker of bone turnover, was low, normal, and high in 

respectively 37.0, 27.0, and 36.0 % of the patients. Bone volume, as assessed by the ratio of the 

bone area to total tissue area (BAr/TAr), was low, normal, and high in respectively 21.0, 39.5, 

and 39.5 % of the patient population. The OAr/BAr, a surrogate marker of bone mineralization, 

was low in only 1 patient. The ObPm/BPm and to a lesser extent OcPm/BPm positively 

associated with serum PTH and total AP levels (Table 3). Gender, diabetic state and dialysis 

modality did not correlate with histomorphometric parameters of bone 

turnover/mineralization/volume (Table 3 and 4). Patients with low BAr/TAr were 

characterized by older age, higher TNF-α levels and a tendency towards higher hsIL-6 levels 

(Table 3 and 4). In multivariate analysis, both age (β = -0.007; P = 0.01) and TNF-α (β = -0.14; 

P =0.03) were identified as independent determinants of BAr/TAr, explaining 16 % of its 

variation (P = 0.002). 

 

Relationship between aortic calcification and bone histomorphometry 

BAr/TAr was significantly lower (P <0.001), while the ObPm/BPm ratio (P=0.13) and the 

OcPm/BPm ratio (P=0.07) at best tended to be lower in patients with aortic calcification 

(Figure 2).  In logistic regression, BAr/TAr was identified as a significant determinant of aortic 

calcification, independent of age, diabetic state and inflammatory markers (OR per % increase 
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0.01; P = 0.03). Of interest, the mineralized area (Md.Ar) showed congruent results compared 

to BAR/TAr, with significant higher mineralized area in patients without aortic calcification as 

compared to patients free of aortic calcification (0.24±0.06 vs 0.19±0.06; p<0.0001). 

 

DISCUSSION 

 

The present study demonstrates that a low BAr/TAr, a marker of bone volume, is an 

independent determinant of aortic calcification in patients with ESRD and confirms the 

important role of inflammation in the bone-vascular axis.  

 

CKD is an independent cardiovascular (CV) risk factor and the risk of death increases 

exponentially with the progressive decline of renal function. Traditional and non-traditional CV 

risk factors, including disorders of mineral and bone metabolism, are suggested to account for 

the extreme CV morbidity and mortality rates in CKD patients. In 2006, the term CKD-mineral 

and bone disorder (CKD-MBD) was coined to describe a syndrome that is manifested by 

abnormalities in mineral and bone metabolism and/or extra-skeletal calcifications [25]. Intense 

cross talk exists between the bone and the vasculature, which is commonly referred to as the 

bone–vascular axis, and the pathological hallmarks of parallel diseased bone and arterial vessels 

are vascular calcification and renal osteodystrophy, respectively. 

 

The prevalence of vascular calcification increases with worsening renal function and ranges 

from 40% in patients with CKD stage 3, to 80-90% in patients with end-stage renal disease[2]. 

Reported prevalence rates show important variation, which may be explained, at least partly by 

case-mix, differences in arterial territories analysed and in the sensitivity of imaging techniques 

used. Traditional risk factors, including old age, diabetes, arterial hypertension, and history of 
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cardiovascular disease, account to a large extent for the high prevalence of aortic calcifications 

in CKD patients [26]. Of note, patients enrolled in the present study were all renal transplant 

candidates and as such represented a younger patient group with less comorbidity than the 

overall dialysis population. These population characteristics presumably explain the relatively 

low prevalence of aortic calcification observed in the present cohort (53%). A similar 

prevalence was recently reported in a comparable cohort [27].   

 

Bone disorders occur early in the course of CKD and become very prevalent in advanced CKD 

[28]. The gold standard to evaluate bone disorders in CKD is quantitative histomorphometric 

bone biopsy analysis. An international committee sponsored by Kidney Disease: Improving 

Global Outcomes concurred that the most important parameters to describe renal 

osteodystrophy are turnover, mineralization, and volume (TMV classification)[25]. Using 

ObPm/BPm as surrogate parameter of bone turnover, low bone turnover was observed in 37% 

of patients with ESRD enrolled in the present study. This prevalence of low bone turnover is 

lower as compared to a recent large survey covering bone biopsies in dialysis patients between 

2003 and 2008 [29]. Case-mix may account at least partly for this discrepancy. While age and 

prevalence of diabetes were comparable, dialysis vintage was significantly shorter in our 

cohort. It should be emphasized that eligibility for renal transplantation was the only selection 

criterion in the present study, and that, different from previous surveys, patients were not 

selected on clinical symptoms, biochemical criteria or suspicion of aluminum toxicity. A low 

trabecular bone volume, as defined by a trabecular BAr/TAr below 16.8%, was seen in 21% of 

patients. Only few bone biopsy studies so far dealt with the prevalence rate of “osteoporosis” 

in CKD and values reported varied between 16 and 54%. This wide variation is due to case-

mix and lack of a uniform histomorphometric definition of osteoporosis within the setting of 

CKD [11,17,29].  
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Interestingly, low trabecular bone volume, but not low bone turnover associated with aortic 

calcification. Previous studies evaluating the association between vascular calcification and 

bone histomorphometry in CKD patients have yielded inconsistent findings. Some investigators 

found an association between systemic arterial calcification (aorta and the main peripheral 

arteries) [10,20] or coronary artery calcification [19] and indices of low bone turnover, but not 

(trabecular) bone area/volume. Others, conversely, found an association between coronary 

artery calcifications and low (trabecular) bone area/volume, but like we, failed to find a 

correlation with histomorphometric indices of bone turnover [11,13]. Again, case-mix, 

heterogeneity of the arterial tree and power issues may account for the inconsistency.  

Our data confirm and extend data from cross-sectional and longitudinal studies in both the 

general population [4,7,30] and CKD [31-33] patients showing a direct relationship between 

vascular calcification and low bone mass as determined by DEXA (reflecting the composite of 

bone area and mineralization). Some have suggested that low bone mass is an even stronger 

predictor of cardiovascular disease than other well known risk factors, such as serum 

cholesterol and smoking in postmenopausal women [30].  

 

The mechanisms underlying the bone-vascular axis remain poorly understood [6]. Mounting 

evidence points to inflammation as a potential common culprit [34,35]. It is well recognized 

that CKD is a micro-inflammatory state[36,37]. In the present study, TNF-α and hsIL-6 were 

substantially increased, being above the upper normal range in respectively 43% and 51% of 

patients. These prevalence rates of micro-inflammation are however substantially lower than 

previously reported in ESRD populations, which, once again may be due to case-mix [38].  
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In the present study, hsIL-6 was identified as a significant determinant of aortic calcification, 

independent of age, diabetes and hypertension, confirming the previously described 

relationship between vascular calcification and markers of inflammation in CKD patients 

[15,16] as well as in the general population [39] and in diabetics [40]. Underlying 

pathophysiological mechanisms are complex and multiple. Inflammatory cytokines can 

promote vascular smooth muscle cell calcification [41], in part through the activation of Msx2-

Wnt/β-catenin signalling [42]. Moreover, inflammatory cytokines may promote the process of 

endothelial to mesenchymal transition, leading to osteogenic gene expression and cytokine 

production by endothelial cells [34]. Finally, inflammation may repress the important 

calcification inhibitor fetuin-A [43]. 

Of interest, even in this cohort with relatively mild micro-inflammation, TNF-α and hsIL-6 

levels negatively correlated with bone area [17]. This observation is consistent with evidence 

showing that the local production of inflammatory cytokines, such as TNF-α and IL-1β, leads 

to increased bone resorption and decreased bone formation [44,45]. These effects are mediated, 

in part, via cytokine-induced increases in RANKL, a key stimulator of bone resorption, by 

osteoblasts and T cells [46]. TNF-α is also an inhibitor of bone formation [47], tilting the 

balance towards bone resorption with subsequent bone loss [34]. IL-6 is produced by osteoblast 

cells and possesses bone-resorbing activity, probably by increasing the formation of mature 

osteoclasts from hematopoietic progenitors [48]. Our data corroborate with a recent study 

linking elevated circulating TNF-α levels with decreased bone mineral density and incident 

fractures in CKD-5D [49]. Our results and those of others, conversely, conflict with data 

reported by Barreto et al., showing a positive correlation between TNF-α levels and bone area 

[17]. These authors speculate that elevated TNF-α expression may represent a homeostatic 

feedback mechanism to counteract excessive bone mass gain. This hypothesis, however, 
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although to some extent sound, conflicts with a bench of experimental and clinical evidence 

[44,45].  

Inflammation thus represents a common soil for bone loss and vascular calcification and might 

indeed explain the coincidence of these diseases in the present ESRD cohort[35,50]. 

Interestingly, the association between low bone area and aortic calcification remained 

significant after adjustment for age, diabetes and inflammatory markers. This suggests that 

additional factors may be involved and calls for additional research [6].  

 

The strength of our study is the relatively large sample size. By combining bone 

histomorphometry and vascular imaging in 81 patients, this study is among the largest of its 

kind.  It should however be acknowledged that this sample size still confers a substantial risk 

for a type II statistical error. Furthermore, the only selection criterion for study entry was 

eligibility for renal transplantation. This precludes any selection on suspected bone pathology, 

often being present in previous bone biopsy-based histomorphometric studies. Our study also 

has limitations. First, bone turnover was based on static bone parameters solely. As patients 

were enrolled at the time of deceased kidney transplantation, which is unpredictable, double 

tetracyclin labeling was not possible. The observation of a good correlation between static and 

dynamic bone turnover parameters in a preceding study is reassuring. Nonetheless, we 

acknowledge that lack of power may explain why we, as opposed to others, failed to find a 

relationship between surrogate marker of bone turnover and vascular calcification. Second, we 

cannot exclude misclassification bias, related to the use of a single laboratory value rather than 

time averaged concentrations. Moreover, blood sampling time was not standardized due to the 

unpredictability of the deceased donor transplant procedure. That we nonetheless found 

significant associations, underlines its robustness. 
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In summary, our data support the hypothesis that (micro-)inflammation is the common soil of 

low bone volume and aortic calcification in CKD. Besides CKD, other common diseases, 

including diabetes mellitus, and aging are increasingly acknowledged to be associated with a 

low-grade chronic inflammatory status. We envisage that our findings will fuel additional 

studies investigating the bone and vascular effects of dietary [51] and pharmacological [52] 

interventions targeting (micro-)inflammation in these populations.  
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Figure legends: 

Figure  1:  Patient disposition 

Figure  2:  The association between aortic calcification and bone histomorphometric 

parameters
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Table 1 - TMV classification of bone biopsies based on static parameters 

  Parameter 

Turnover Low ObPm/BPm < 1% 
 Normal 1% < ObPm/BPm < 3.2% 
 High ObPm/BPm >3.2% 
Mineralization Normal OAr/BAr <12% 
 Abnormal OAr/BAr  >12% 
Volume Low BAr/TAr <16.8% 
 Normal 16.8% < BAr/TAr < 22.9% 
 High BAr/TAr >22.9% 

 
ObPm/BPm, osteoblast-covered perimeter to total bone perimeter used as a surrogate marker of bone turnover 
OAr/BAr, osteoid area to bone areaused as a surrogate marker of bone mineralization  
BAr/TAr, bone area to total tissue area used as a marker of bone volume  
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Table 2- Demographics and biochemistry in the whole study population and according to the 
presence or absence of aortic calcification  

 
 all Calcification 

(n=43) 
No Calcification 

(n=38) 
P-value 

 Demographics 
Age (y) 55±14 61±9 44±12 <0.0001 
Men (%) 75 33.3 36.8 0.8 
Duration previous RRT (months) 36 (21-48) 3.0 (3.0-32.3) 3.0 (3.0-27.2) 0.4 
Diabetes (%) 25.0 36.8 5.3 0.0004 
Vascular history (%) 25.0 43.9 13.2 0.002 
BMI (kg/m²) 25.6±4.2 26±4 25±4 0.2 
Hyperlipidaemia (%) 75.9 80.7 63.1 0.06 
Hypertension (%) 78.4 84.2 65.8 0.04 
Smoking current/none/past (%) 13/58/29 11.1/51.9/37 15.8/60.5/23.7 0.4 

 Biochemical parameters 
Serum creatinine (mg/dL) 7.7±2.7 7.5±2.6 8.3±3.0 0.2 
Hct (%) 38±5.0 38.0±4.6 36.7±4.3 0.2 
Total cholesterol (mg/dL) 174±38 170±39 177±40 0.30 
Calcium (mg/dL) 9.3±0.7 9.2±0.9 9.3±0.7 0.6 
Phosphorus (mg/dL) 4.5±1.4 4.3±1.3 4.6±1.7 0.2 
hsIL-6 (pg/ml) 3.6 (2.3-7.2) 4.03 (2.7-7.25) 2.38 (2.09-4.22) 0.001 
TNF-α (pg/ml) 3.9 (3.2-5.4) 4.17 (3.50-

5.62) 
3.56 (3.17-4.51) 0.09 

CRP (mg/l) 3.3 (1.4-6.3) 3.1 (1.5-6.0) 2.8 (0.9-5.7) 0.4 
Albumin (g/l) 44.5±4.1 44.4±4.2 44.6±4.2 0.8 
25(OH)D (µg/L) 39.9 (30.7-51.9) 39.2 (29.8-

52.2) 
39.3 (29.7-50.2) 0.9 

1,25(OH)2D (ng/l) 36.8 (22.9-47.7) 30.0 (20.8-
42.3) 

38.6 (26.5-48.3) 0.07 

biPTH (ng/L) 185 (100-276) 150.0 (87.3-
276.1) 

192.0 (108.6-
298.7) 

0.18 

AP (U/l) 195 (163-273) 198 (166-279) 197 (152-268) 0.6 
 Therapy 

Vitamin D (%) 46 41 49 0.5 
Active vitamin D (%) 49 42 59 0.1 
Ca containing phosphate binders (%) 62 58 73 0.15 
Dose CaCO3 (g/day)   2.0 (1.3-4.0) 3.0 (2.0-4.0) 0.3 

 
HD, hemodialysis; PD, peritoneal dialysis; Tx, transplantation; BMI, body mass index ; RRT, renal replacement 
therapy; BMI, body mass index; Hct, haematocrit; hsIL-6, high-sensitive interleuking 6; TNF, tumour necrosis factor; 
CRP, c-reactive protein; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)2D, 1,25-dihydroxyvitamin D; BiPTH, biointact 
parathyroid hormone; AP, alkaline phosphatase; AC, aortic calcification 
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Table 3 – Spearman rank (r) correlation of demographics and biochemistry with bone histomorphometry  
 
   

 Age Gender Diabetes Dialysis 
vintage 

Ca 25(OH)D biPTH AP hsIL-6 TNF-α 

Turnover           
 ObPm/BPm -0.23      

P =0.04 
-0.004 
P =0.9 

0.09         
P =0.4 

0.08 
P =0.5 

0.19   
P =0.1 

0.15         
P =0.2 

0.34  
P =0.002 

0.42 
P<0.000
1 

-0.10     
P=0.3 

-0.11 
P =0.3 

 OcPm/BPm -0.23      
P =0.04 

0.19     
P =0.09 

-0.15      
P =0.2 

0.01 
P =0.9 

0.01 
P =0.9 

-0.08       
P =0.5 

0.36 
P =0.001 

0.22  
P =0.05 

-0.09 
P =0.5 

-0.20 
P =0.08 

Mineralization           
 OAr/BAr -0.21 

P =0.05 
0.05      
P =0.6 

0.12        
P =0.3 

0.06 
P =0.6 

0.17 
P=0.1 

0.13         
P =0.2 

0.33 
P=0.003 

0.34 
P=0.002 

-0.12 
P =0.30 

-0.03 
P =0.8 

 Osteoid  width -0.24 
P =0.03 

0.001    
P =0.9 

0.02         
P =0.9 

0.06 
P =0.6 

0.18    
P =0.1 

0.09        
P =0.4 

0.37       
P=0.0007 

0.34  
P =0.002 

-0.27 
P =0.02 

-0.14 
P  =0.2 

Volume              
 BAr/TAr -0.32    

P=0.003 
0.03      
P =0.8 

0.01         
P =0.9 

-0.07 
P =0.5  

-0.09  
P =0.4 

-0.08       
P =0.5 

0.08  
P =0.5 

-0.07  
P =0.6 

-0.31     
P=0.004 

-0.31 
P=0.006 

 
ObPm/BPm, osteoblast-covered perimeter to total bone perimeter used as a surrogate marker of bone turnover 
OcPm/BPm, osteoclast-covered perimeter to total bone perimeter 
OAr/BAr, osteoid area to bone area;used as a surrogate marker of bone mineralization  
BAr/TAr, bone area to total tissue area used as a marker of bone volume
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Table 4 - Demographics and biochemistry according to presence or absence of low bone area to 
total tissue area 
 

 Low 
(n=17) 

Normal-high 
(n=64) 

P 

Demographics 
Age (y) 61.1±8.9 53.1±14.1 0.03 
Male (%) 76 73 0.8 
Duration previous RRT (months) 3.0 (3.0-47.0) 3.0 (3.0-27.6) 0.4 
HD/PD/none (%) 76.5/23.5 1 67.2/26.6/6.2 0.7 
Previous Tx (%) 12 8 0.6 
Diabetic (%) 23.5 25 0.9 
BMI (kg/m²) 26.7±4.0 25.1±4.0 0.2 

Biochemical parameters 
Creatinine (mg/dl) 7.0±2.2 8.1±2.8 0.2 
Hct (%) 39.6±5.2 36.8±4.2 0.06 
Total cholesterol (mg/dL) 177±41 174±38 0.7 
Calcium (mg/dL) 9.4±0.6 9.3±0.7 0.2 
Phosphorus (mg/dL) 4.4±1.3 4.6±1.5 0.7 
hsIL-6 (pg/ml) 5.2 (3.5-7.6) 3.0 (2.2-6.4) 0.09 
TNF-α (pg/ml) 5.2 (3.6-7.8) 3.8 (3.2-4.8) 0.02 
CRP (mg/L) 4.4 (2.1-7.0) 2.8 (1.1-6.2) 0.1 
Albumin (g/l) 45.7±3.9 44.0±4.2 0.2 
25(OH)D (µg/L) 49.4 (37.6-55.1) 38.3 (30.4-50.0) 0.1 
1,25(OH)2D (ng/L) 37.8 (28.1-44.6) 34.0 (20.1-48.0) 0.5 
BiPTH (ng/L) 206 (90-355) 288 (189-284) 0.7 
Alkalin phosphatase (U/L) 194 (186-278) 198 (153-250) 0.3 

Therapy 
Corticosteroids (%) 6 3 0.6 
Vitamin D (%) 35 52 0.2 
Active vitamin D (%) 65 48 0.2 
Ca containing phosphate binders (%) 71 62 0.5 
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