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The impact of transfer batching (also referred to as lot splitting) on the performance of
flowshops has received widespread attention in the literature. Most papers have emphasized
the usefulness of lot splitting in cutting down average flow times, as it enables the overlapping
of operations at different stages of the flowshop. However, as most analytical papers have
studied deterministic flowshops, an important downside of lot splitting has until now been
overlooked: i.e., the occurrence of idle times between the processing of consecutive sublots
belonging to the same process batch (referred to as gap times). Clearly, gap times add
no value to the product: they merely increase the process batch makespan at the different
stages. In deterministic systems, these gap times may be avoided by synchronizing the
processing rates of the different machines in the shop; in stochastic settings however, they
may occur even when the system is perfectly synchronized, due to the inherent variability in
the setup and processing times. Studying a two-stage flowshop with a single product type,
this paper provides insight into the behavior of the gap times, and develops an approximation
for the process batch makespan at the second stage in terms of the system characteristics
and the lot splitting policy.

1. Introduction

In the operations management literature, it is widely acknowledged that batch sizing deci-

sions influence performance measures such as cycle times and work-in-process levels. As

these are decisive factors for the responsiveness of any production environment, setting batch

sizes in a production system is an important control (see e.g. Hopp and Spearman 2000,

Lambrecht et al. 1998, Benjaafar 1996).

When studying the impact of batching decisions in a production environment, one should

make a distinction between two types of batches: process batches and transfer batches. A

process batch (also referred to as a production batch or production lot) is defined as the

quantity of a product processed on a machine without interruption by other items (Kropp
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and Smunt 1990). In multiple-product environments, the use of process batches is often

unavoidable due to capacity considerations: to switch from one product type to the next

(e.g., to change fixtures or dies), a setup or changeover time is necessary, which consumes

part of the capacity of the machine. After a setup has been performed, a certain quantity

of the product (the process batch size) can be produced. Hence, a process batch can also

be defined as the quantity of a product produced between two consecutive setups.

A transfer batch (or transfer lot) refers to the size of a sublot of the process batch, moved

after production on one machine to another operation or machine (Kropp and Smunt 1990).

The use of transfer batches is not linked to capacity considerations, but rather to flow con-

siderations. Indeed, it is widely accepted that the use of transfer batch sizes smaller than

the process batch size can reduce product flow times by smoothing workflow and minimizing

congestion levels (e.g. Santos and Magazine 1985, Benjaafar 1996, Goldratt and Cox 1984,

Hopp et al. 1990 and Umble and Srikanth 1995). This is due to the mechanism of over-

lapping operations: by allowing transportation of partial batches to a downstream station,

this station can already start processing these partial batches while work proceeds at the

upstream station, thereby accelerating the progress of work through the production facility

(e.g. Graves and Kostreva 1986, Jacobs and Bragg 1988, Litchfield and Narasimhan 2000).

There exists a large body of research on the impact of lot splitting in deterministic flowshop

environments. A large variation of lot streaming models has been proposed, depending on

the constraints of the environment that one wishes to model: e.g., it may be assumed that all

sublots have to be of equal size (as in Jacobs and Bragg 1988, Kalir and Sarin 2001), and/or it

may be imposed that sublots have to be consistent throughout the system, implying that the

same sublot sizes have to be used at each machine (as in Van Nieuwenhuyse and Vandaele

2004). The primary objective of these papers is to determine the optimal lot streaming

procedure in order to minimize either the process batch makespan (e.g. Chen and Steiner

1996, Chen and Steiner 1998, Cheng et al. 2000), mean transfer batch flow time (Kalir and

Sarin 2001, Sen et al. 1998, Bukchin et al. 2002, Van Nieuwenhuyse and Vandaele 2004), or

a combination of both (Bukchin and Masin 2004) in such an environment.

While the favorable impact on flow times has received widespread attention, the use of lot

splitting also has a downside: it may lead to idle times between the processing of consecu-

tive sublots, belonging to the same process batch. These idle times are referred to as gaps,

and are caused by the fact that the setup and processing times at the different stages in
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the flowshop are not synchronized (see Van Nieuwenhuyse and Vandaele, 2004): hence, it

may happen that a downstream stage finishes processing a sublot before the next sublot is

available from the upstream stage.

In a deterministic environment, this downside can be avoided by explicitly imposing that

a machine may not remain idle between consecutive sublots. This is referred to as the

no-idling assumption (e.g. Baker and Jia 1993, Ramasesh et al. 2000). However, in a

stochastic flowshop, the occurrence of gaps is a major issue: as setup and processing times

at the different stages are variable, gaps may occur even when the average setup and process-

ing times are synchronized. The occurrence of these gap times leads to an increase in the

makespan of a process batch, without adding value to the product. In fact, gap times may

even represent a cost for the system: during a gap time, the server has to be kept opera-

tional, i.e. ready for processing the next transfer batch when it arrives (Van Nieuwenhuyse

and Vandaele 2004). Depending upon the type of server, this may entail labor and/or

energy costs. Obviously, it is desirable from the point of view of a planner to have an

estimate of the extent to which gap times will influence the average of the makespan of a

process batch at a given stage, such that it can be taken into account in the planning system.

The objective of this paper is to develop insights and approximations for the average gap

time in a two-stage stochastic flowshop with general setup and processing times. Obviously,

in a stochastic system, the gap time will be a stochastic variable, influenced by the level of

variability in the system and the lot splitting policy. Focusing on a flowshop with a single

product type, we can derive a lower bound for the average process batch makespan at the

second stage, as well as an approximation. The performance of the approximation is tested

by means of an extensive simulation experiment, and turns out to be very satisfactory.

To the best of our knowledge, this paper is the first to take a closer look at the occurrence

of gap times in a stochastic environment (analytical expressions for the gap times in a

deterministic flowshop were derived previously in Van Nieuwenhuyse and Vandaele 2004).

The paper is organized as follows: in section 2, we first describe the assumptions of our

setting. Next, section 3 presents some basic insights for the average gap time, along with

a lower bound. As will be shown, the average gap time is analytically intractable. The

remainder of the paper then focuses on estimating the average gap time, in order to yield

a satisfactory approximation for the average process batch makespan at the second stage.

This is done by means of simulation. Section 4 describes the setting of the simulation
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experiment, and examines a suitable approximation for the average gap time based on the

simulation results. Section 5 discusses the resulting approximations for the average process

batch makespan, and tests the performance of the approximation versus simulation results,

using the lower bound as a benchmark. In section 6, we apply the expressions to an example.

Finally, section 7 summarizes the conclusions.

2. Notation and assumptions

As mentioned before, we will consider a two-stage stochastic flowshop with a single product

type. It is assumed that products arrive in process batches of size N in front of the first

stage. The product units in the process batch are processed one by one on each of the two

servers. After processing on the first stage, products are collected to form a transfer batch

of size L (L ≤ N). As soon as a transfer batch is complete, it is moved to the next server

(the transportation time between the two stages is not explicitly modelled). For simplicity

as well as practical reasons, L is supposed to be a divisor of N , such that a single process

batch is split into an integer number (T ) of transfer batches (T = N/L). After stage two,

the transfer batches belonging to the same process batch are regrouped for shipment.

Each stage m (m = 1, 2) requires a setup time SUm > 0 to be performed at the start of

every process batch. This setup time may be necessary, even in single-product type settings,

e.g. when the product type is produced in different colors or sizes. In that case, a setup

time is necessary at the start of every new process batch, in order to change the paint or the

fixtures. While some papers in the literature consider setup times to be necessary at the

start of every transfer batch (e.g. Bukchin et al. 2002), we consider setups only at the start

of a process batch; it is assumed that setup times for the separate transfer batches (e.g. for

mounting the parts on the machine) are negligible.

The processing time for a transfer batch i on stage m is denoted by Xm,i with i ranging

from 1 to T . In our two-stage setting, each of the stages is assumed to be a capacity server.

This means that the transfer batch processing time on each of the stages is dependent on

the transfer batch size, and hence, Xm,i can be expressed as the sum of L unit processing

times on server m (xm), for any arbitrary i:

Xm,i =
i∗L∑

j=(i−1)∗L+1

xm,j
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Setup times as well as unit processing times are assumed to be random variables, with an

arbitrary probability distribution. We will assume that the setup time on stage two can

not start before the first transfer batch of the involved process batch is present in the input

buffer of the second stage. This type of setup has been referred to in the literature as an

attached setup (Potts and Kovalyev 2000, Chen and Steiner 1998). Hence, the first transfer

batch of a process batch acts as a flag (Smunt et al. 1996): its arrival in front of stage

two authorizes the start of the setup, thereby causing the operations on stage two to partly

overlap with the operations on the first stage.

The buffers in front of the stages are assumed to have infinite capacity. When arriving in

front of the second stage, it may happen that the flag has to wait in queue before the setup

can be performed (e.g., when the server is still processing a transfer batch belonging to the

previous process batch); this waiting time will be denoted by W2.

For illustrative purposes, Figure 1 shows the progress of a process batch, consisting of 3

sublots, through a two-stage system.

 

Waiting time Setup time Transfer batch 
processing time 

Gap time 

P2 

m = 1 

m = 2 

g2(3) g2(2) 
Reference 
point 

g2(2) 

P2 

Figure 1: Flowchart of a process batch, consisting of 3 sublots, going through a 2-stage
system

The makespan of a process batch at stage 2 is denoted by P2; it is a stochastic variable,

consisting of the setup time at stage 2 (SU2), the individual transfer batch processing times

(X2,i), and the total gap time (G2). This total gap time consists of a number of partial gaps
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g2(i)( where i denotes the number of the transfer batch following the gap):

G2 =
T∑

i=2

g2(i)

It is clear that a gap can never occur in front of the flag (hence, g2(1) = 0), due to the

attached setup at stage 2. It is also useful to note that in our definition, a gap time is an

idle time occurring between the processing of two consecutive sublots belonging to the same

process batch. Hence, the gap time does not include the idle time that may occur between

the processing of two distinct process batches.

3. Basic insights and lower bound for the average gap

time

For studying the total gap time G2, it is clear that we only have to take into account how

the system behaves after the so-called reference point, i.e. the point in time when the flag is

finished on stage 1 and moved to the next machine (as depicted in Figure 1). As mentioned

above, G2 is given by:

G2 =
T∑

i=2

g2(i) (1)

A partial gap g2(i) can be written as:

g2(i) = max[

i∑
k=2

X1,k − (W2 + SU2 +

i−1∑
j=1

[X2,j + g2(j)])

︸ ︷︷ ︸
V (i)

, 0] (i = 2, ...., T ) (2)

From this expression, we can derive that the probability distribution of a partial gap time

g2(i) will have a zero-inflated shape: the probability that g2(i) equals zero is given by the

probability that V (i) is smaller than or equal to zero. For g2(i) > 0, the density function

of g2(i) is equal to the density function of V (i).

Based upon expressions (1) and (2), the total gap G2 can be written as:

G2 =
T∑

i=2

max[
i∑

k=2

X1,k − (W2 + SU2 +
i−1∑
j=1

[X2,j + g2(j)])

︸ ︷︷ ︸
V (i)

, 0] (3)
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which can be rewritten as follows (the proof is given in Appendix 1):

G2 = max[Z(2), ..., Z(T ), 0] (4)

with Z(i) =
∑i

k=2 X1,k − (W2 + SU2 +
∑i−1

j=1 X2,j) for (i = 2, ..., T ).

This expression is very useful, as it shows that the total gap is in fact a random variable

consisting of the maximum of T − 1 correlated random variables Z(t) (with t = 2, ..., T ) and

a constant (zero). However, the exact distribution of each of the variables Z(t) is unknown.

Based on expression (4), we can write the following for the average of the total gap:

E[G2] = E[max[Z(2), ..., Z(T ), 0]]

As the exact distribution of each of the variables Z(t) is unknown, E[G2] is analytically

intractable. However, it is possible to derive a tractable lower bound. Indeed, based on

Jensen’s inequality (e.g., Ross 1996), we know that:

E[max[Z(2), ..., Z(T ), 0]] ≥ max[E[Z(2)], ..., E[Z(T )], 0]

Hence:

E[G2]LB = max[E[Z(2)], ..., E[Z(T )], 0] (5)

As E[G2] is analytically intractable, we need to develop an approximation. When testing

the appropriateness of this approximation (see section 5), we can use the performance of this

lower bound as a benchmark.

4. Approximation for the average gap time

4.1 Simulation experiment

As mentioned above, an analysis of the average gap time E[G2] can be made by considering

the system behavior after the reference point (see e.g. Figure 1). In view of this analysis, a

simulation experiment was designed using the following variables as factors:

• T : the number of transfer batches per process batch;

• L: the transfer batch size;

• E(X1): the average processing time per transfer batch on stage 1;
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• E(X2)/E(X1): the ratio of the average processing time per transfer batch on stage 2

versus the average processing time per transfer batch on stage 1;

• E(SU2)/E(X1): the ratio of the average setup time per process batch on stage 2 versus

the average processing time per transfer batch on stage 1;

• c2
X1

: the squared coefficient of variation (SCV) of the processing time per transfer batch

on stage 1;

• c2
X2

: the SCV of the processing time per transfer batch on stage 2;

• c2
SU2

: the SCV of the setup time on stage 2;

• the probability distribution used for SU2, X1, and X2;

• ρ1: the utilization rate of stage 1.

The average and variance of SU1 were not used as factors in the simulation model, as SU1

occurs before the reference point. Hence, we have reason to believe that the average and

the SCV of SU1 only have a minor impact on the outcome for E[G2] in the stochastic model:

both parameters can at best have an indirect impact, as they may influence E[W2], which

on its turn affects E[G2] (as evident from expression (4)). Given its minor importance, SU1

was arbitrarily fixed at 15 time units (deterministic) in the experiment.

Table 1 gives an overview of the levels that were used in the simulation for the different

factors. Combining all factors at all levels, this design resulted in 23,328 runs. The length

of each run was fixed at 100,000 process batches, the first 20,000 of which were considered

as warm-up period.

The interarrival times of process batches in front of stage 1 are deterministic, and controlled

in order to yield the desired utilization rate ρ1. Note that the combination of certain levels

of ρ1,
E(X2)
E(X1)

and E(SU2)
E(X1)

yields a utilization rate higher than or equal to 1 on stage 2; obviously,

these runs were skipped.

4.2 Approximation for the density function of the total gap time

G2

By plotting the observed frequency distribution of G2 for different simulation runs of the

experiment, we could draw important insights about the behavior of the gap time in terms
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Factor Levels Number of levels

T = N
L

10,15,20 3
L 1 1
E(X1) 10 1
E(X2)
E(X1)

0.2, 0.5, 0.8, 1, 1.2, 1.5, 1.8, 2 8
E(SU2)
E(X1)

1
3
, 1

2
, 1, 3

2
4

c2
X1

0.3,0.6,0.9 3
c2
SU2

0.3,0.6,0.9 3
c2
X2

0.3,0.6,0.9 3
probability distribution gamma, beta, lognormal 3
ρ1 0.4, 0.7, 0.95 3

Table 1: Input factors and levels for the simulation experiment

of the difference in average processing rates, and the difference in processing time variability

on the two stages.

Figure 2 shows the histograms (gamma, beta and lognormal) for G2 when T = 20, ρ1 = 0.4,
E(SU2)
E(X1)

= 0.5, and c2
X1

= c2
SU2

= c2
X2

= 0.3. The figure in the top pane refers to the setting

where E(X2)
E(X1)

= 0.2, so where stage 2 has a significantly higher processing rate than stage 1.

As expected, the total gap time observed in this setting is always larger than zero. The

probability distribution seems to be strikingly close to normal. Moreover, the histograms

of the beta, gamma and lognormal distributions almost coincide.

The figure in the bottom pane refers to the setting where E(X2)
E(X1)

= 0.8, so where the two

processing rates are almost equal. This histogram is clearly zero-inflated : it shows a sharp

peak at G2 = 0. This is not surprising: it is intuitively clear that, as the ratio of E(X2)

to E(X1) increases, the observed total gap time G2 will more frequently equal zero. More

importantly, the positive values of G2 appear to be close to a normal distribution. Note

that the variance of this distribution is considerably higher than the variance observed in

the top pane.

The histograms in Figure 3 give further insight on the impact of variability: they show the

observed frequency distribution of G2 for the same settings as Figure 2, but with a higher

SCV for setup and processing times (c2
X = c2

SU2
= c2

X2
= 0.9).

Apparently, even in situations when the processing and setup times are highly variable, the

density of G2 is still close to normal. A comparison of the histograms in the top panes
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Figure 2: Sample histogram for G2 when E(X2)
E(X1)

= 0.2 (top pane), and E(X2)
E(X1)

= 0.8 (bottom

pane), when c2
X1

= c2
SU2

= c2
X2

= 0.3.
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Figure 3: Sample histogram for G2 when E(X2)
E(X1)

= 0.2 (top pane), and E(X2)
E(X1)

= 0.8 (bottom

pane), when c2
X = c2

SU2
= c2

X2
= 0.9.
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reveals that a higher variability in setup and processing times leads to a higher variability

in G2.

Histograms for other simulation settings yielded similar results. The histograms lead us to

conjecture that the density function of G2 can be reasonably approximated by the following:

G2 = max[V, 0], with V � N(mV , σ2
V ) (6)

i.e., G2 can be written as the maximum of a normal variable V and 0. Following this

argument, the probability mass observed at G2 = 0 in settings with high values of E(X2)
E(X1)

can

be approximated by the cumulative distribution function of V at 0:

prob(G2 = 0) =

∫ 0

−∞
fV (x) ∗ dx = FV (0)

where fV (x) and FV (x) denote respectively the (normal) density function and the (normal)

cumulative distribution function of V .

The issue now is to determine mV and σ2
V , the mean and variance of this underlying normal

distribution. Based upon further study of the histograms, the following candidates can be

proposed (Van Nieuwenhuyse 2004):

mV = (T − 1) ∗ [E(X1) − E(X2)] − E(SU2) (7)

σ2
V = (T − 1) ∗ [V ar(X1) + V ar(X2)] + V ar(SU2)

For illustrative purposes, the density function of the corresponding (zero-inflated) normal

distribution, with mV and σ2
V given as in expression (7), is depicted in Figures 2 and 3,

revealing that this approximation provides a close fit.

It is particularly useful to confront the proposed approximation for G2 with the theoretically

exact expression derived above (expression (4)). As mentioned before, this expression shows

that the total gap time G2 is a random variable given by the maximum of T − 1 correlated

random variables (where T refers to the number of sublots), and a constant (zero). Using

the parameters for mV and σ2
V proposed in (7), V is de facto approximated by:

V = Z(T ) + W2

=

T∑
k=2

X1,k − (SU2 +

T−1∑
j=1

X2,j)

Hence, our approximation implicitly makes three simplifying assumptions:
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1. The impact of W2 on G2 is ignored:

Indeed, expression (4) (which is analytically exact) reveals that there is a negative

relationship between the waiting time of the flag in front of stage 2 (W2) and the gap

time occurring on stage 2 (G2). As we ignore this relationship, our approximation

will tend to overestimate of the average gap time in cases where stage 2 is highly

utilized. However, we do not expect this simplification to lead to significant errors

on the estimation of the process batch makespan on stage 2: large values for W2 are

bound to occur when the processing rate of stage 2 is relatively low, implying that

gap times will constitute a very small (or even negligible) part of the process batch

makespan when compared to the actual processing time.

2. The impact of Z(2) to Z(T − 1) on G2 is ignored:

Expression (4) reveals that it suffices to have a positive value for any arbitrary Z(i)

(i = 2, ..., T ) in order to have a positive gap time on stage 2. In our approximation, we

only take into account the impact of Z(T ). This simplification may negatively impact

the performance of our approximation in systems where E(X1) is close to E(X2), or

larger than E(X2). In such systems, there is a higher probability for Z(T ) to be

negative while one of the other Z(i) (i = 2, ..., T − 1) is positive. Hence, we can

expect the approximation to underestimate the probability of a gap time occurring for

this type of systems. Conversely, we can expect that the simplification will have little

effect on the performance of our approximation, as long as E(X1) is significantly larger

than E(X2).

3. We assume that Z(T) + W2 can be reasonably approximated by a normal

probability distribution:

For high values of T , we can indeed expect that the density function of Z(T ) + W2

will be close to normal by virtue of the central limit theorem. As the processing times

X1,k on stage 1 are IID distributed,
∑T

k=2 X1,k will approach a normal distribution

with mean m1 = (T − 1) ∗ E[X1] and variance σ2
1 = (T − 1) ∗ V ar[X1] for high

values of T . Similarly,
∑T

k=2 X2,k will also approach a normal distribution with mean

m2 = (T − 1) ∗ E[X2] and variance σ2
2 = (T − 1) ∗ V ar[X2]. As the difference of two

normal distributions is again a normal distribution (e.g. Blumenfeld 2001), we can

expect that, for high values of T,
∑T

k=2 X1,k −
∑T

k=2 X2,k will be normally distributed

with mean m = m1 −m2 and variance σ2 = σ2
1 +σ2

2. The only disturbing factor is the
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presence of SU2 in Z(T ); however, if SU2 is relatively small compared to
∑T

k=2 X1,k

and
∑T

k=2 X2,k, we can expect its impact to be negligible.

4.3 Approximation for E[G2]

Using mV and σ2
V as in expression (7), and assuming a normal distribution, the approxima-

tion for E[G2] is given by:

E[G2]app ≈
∫ +∞

0

x ∗ [
1√

2πσ2
V

∗ Exp{−(x − mV )2

2σ2
V

}]dx (8)

= [
− exp{−(x−mV )2

2σ2
V

} ∗ σ2
V + mV ∗ √

π
2
∗ σV ∗ Erf [x−mV√

2σV

]
√

2πσV

]+∞
0

=
mV

2
+

Exp{−m2
V

2σ2
V
} ∗ σ2

V√
2πσV

+
mV

2
∗ Erf [

mV√
2σV

]

in which Erf [z] refers to the error function:

Erf [z] =
2√
π

∫ z

0

exp{−t2}dt

Note that expression (8) satisfies the lower bound defined in expression (5). Indeed, we can

rewrite expression (8) as follows:

E[G2]app ≈ mV −
∫ 0

−∞
x ∗ [

1√
2πσ2

V

∗ Exp{−(x − mV )2

2σ2
V

}]dx

︸ ︷︷ ︸
<0

> mV

As mV = E[Z(T ) + W2] = E[Z(T )] + E[W2], we then have:

E[Z(T )] < mV < E[G2]app

which proves that the approximation satisfies the lower bound.

5. Performance of the approximation for the average

process batch makespan

Using expression (8) for E[G2]app, we can now develop an approximation for E[P2]:

E[P2]app ≈ E(SU2) + T ∗ E(X2) (9)

+
mV

2
+

Exp{−m2
V

2σ2
V
} ∗ σ2

V√
2πσV

+
mV

2
∗ Erf [

mV√
2σV

]
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Moreover, the lower bound on E[G2] in expression (5) gives us the following lower bound on

E[P2]:

E[P2]LB = E(SU2) + T ∗ E(X2) + max[E[Z(2)], ..., E[Z(T )], 0] (10)

The performance of this approximation was tested versus the simulation results of the exper-

iment, by determining the relative error ε of the approximation (E[P2]app) to the observed

estimate of E[P2] in the simulations (E[P2]sim):

ε =
(E[P2]app − E[P2]sim)

E[P2]sim

and the absolute values of these relative errors:

εabs =

∣∣∣∣(E[P2]app − E[P2]sim)

E[P2]sim

∣∣∣∣
As a benchmark, we also determined the performance of the lower bound.

Table 2 gives an overview of the resulting relative errors of the approximation, along with

those for the lower bound.

E[P2]app E[P2]LB

average ε -1.54 -4.36
stdev ε 1.62 4.13
median ε -1.42 -2.93
5% percentile ε -4.23 -12.47
95% percentile ε 0.76 -0.07
max ε 5.53 0.00004
min ε -5.41 -17.88
average εabs 1.78 4.36
stdev εabs 1.36 4.13

Table 2: Summary statistics for the relative errors of E[P2]app and E[P2]LB compared to
E[P2]sim (in percent)

The table reveals that the range of relative errors on the approximation is very small, and

that the overall performance of the approximation is satisfactory. In general, E[P2]app tends

to underestimate E[P2]sim: this is evident from the histogram of the relative errors, shown in

the top pane of Figure 4. The histogram also shows that the observed frequency of the rel-

ative errors is largest at the bin containing ε = 0, which is certainly a desirable characteristic.
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Figure 4: Histogram and scatterplot of the relative errors of E[P2]app versus E[P2]sim

16



The tendency to underestimate is not surprising: as mentioned before, G2 is theoretically

given by the maximum of (T − 1) correlated random variables (Z(2), ..., Z(T )), and zero

(see expression (4)). Hence, G2 will be positive whenever one of the Z(i) (i = 2, ..., T − 1)

is positive; our approximation however only reflects positive values for Z(T ), as we have

neglected the impact of Z(2) to Z(T − 1) (see assumption 2 above).

As expected, the precision of the approximation decreases slightly when E(X2) is close to

E(X1). This is confirmed by the bottom pane of figure 4, which shows a scatterplot of the

relative errors of the experiment in terms of E(X2)
E(X1)

.

However, this observation does not undercut the power of the model; on the contrary, it is

exactly in these settings that the model proves its usefulness to the fullest. As mentioned in

the introduction, it is precisely in the case of synchronized stages (so, when E(X2) is close

to E(X1)) that gap times are hard to analyze, because they are primarily the consequence of

the setup and processing time variability in the system. In synchronized settings, the lower

bound E[G2]LB will perform particularly poor, as it completely fails to take into account the

impact of these variabilities. This is illustrated in the top pane of figure 5, which shows the

average value of E(G2)sim in terms of E(X2)
E(X1)

for the experiment, along with the average value

of E(G2)LB.

When E(X2) is either very high or very low compared to E(X1), the performance of E(G2)LB

is rather good, as the occurrence of a gap time in these settings is largely determined by

the difference in the mean processing times. However, E(G2)LB obviously falls to zero as

soon as E(X2) = E(X1), while in reality, E(G2)sim continues to gradually decrease as E(X2)
E(X1)

increases, approaching zero but never actually reaching zero. Hence, the lower bound for

E(G2) seriously underestimates the simulated E(G2) for E(X2)
E(X1)

close to 1.

The structure of the approximation however ensures that E(G2)app remains positive and

only gradually drops to zero as E(X2) becomes significantly larger than E(X1). Indeed, the

bottom pane of figure 5 shows that E(G2)app follows the E(G2)sim very closely.

Hence, while the approximation clearly outperforms the lower bound in terms of both average

and standard deviation of ε (as revealed by the results in Table 2), the relative improvement

of the approximation over the lower bound is most pronounced in settings where the average

processing rates of both stages are of the same order of magnitude (so, when E(X2) is close

to E(X1)).
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Figure 5: Comparison of the average value of E[G2]sim versus the average value of E[G2]LB

(top pane), and versus the average value of E[G2]app
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6. Example

Let’s consider a two-stage flowshop where N = 30 and SU1 = 15 (deterministic). The

unit processing times on both stages are gamma distributed (E(x1) = 10, E(x2) = 8,

c2
x1

= c2
x2

= 0.9), as is the setup time at stage 2 (E(SU2) = 0.5, c2
SU2

= 0.9). As the process

batch size equals 30 product units, the number of transfer batches in this setting may be

equal to T = 1 (in this case, no lot splitting is used), T = 2, T = 3, T = 5, T = 6, T = 10,

T = 15 or T = 30 (in this case, the process batch is split in the maximum number of sublots).

Figure 6 shows the average process batch makespan on stage 2 for this setting, in terms of

T . The approximation is clearly very close to the simulated value, at all values of T . An

overview of the actual values and relative errors is given in Table 3.

0 5 10 15 20 25 30
200

220

240

260

280

300

T

E[P2]sim
E[P2]app]

Figure 6: E[P2]app versus E[P2]sim for the example, in terms of T

Interestingly, the figure shows that the average process batch makespan on stage 2 increases

as the process batch is split into a larger number of sublots. In fact, this will be the case

whenever E[x1] > E[x2]: in that case, the average gap time on stage 2 will increase in T (for

completeness, a proof is provided in Appendix 2). This does not mean, however, that lot

splitting should be avoided. Rather, it points towards a trade-off between the well-known
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T E[P2]sim E[P2]app ε

30 312.7170 304.8295 -2.52%
15 309.3135 302.9026 -2.07%
10 306.1598 300.9744 -1.69%
6 300.2889 297.1130 -1.06%
5 297.4579 295.1793 -0.77%
3 286.8907 287.4147 0.18%
2 274.7345 277.5953 1.04%
1 240.5100 240.5000 0.00%

Table 3: Performance of E[P2]app compared to E[P2]sim, for the example

improvement in flow time that can be obtained (which is due to the mechanism of overlap-

ping operations, as described in section 1), and the gap time incurred on stage 2. As the

occurrence of gap times may imply a cost for the system, this observation emphasizes the

importance of taking them into account when assessing the desirability of lot splitting in a

stochastic setting.

7. Conclusions

In this paper, we have analyzed the occurrence of gap times in a two-stage stochastic flowshop

with lot splitting. We have been able to derive a number of basic insights into the behavior of

gap times, in terms of the system’s characteristics (e.g. the difference in processing rates, the

variability present in setup and processing times at the different stages, and the lot splitting

policy used). Based upon these insights, we have developed a suitable approximation for

the average process batch makespan on the second stage. This approximation explicitly

takes into account the impact of setup and processing time variability on the occurrence of

gap times, and hence outperforms the lower bound.

Though the occurrence of gap times is a major issue in stochastic settings, this paper provides

(to the best of our knowledge) the first analysis of their behavior. In the future, we would

like to extend the current model towards settings with more than one product type. Our

results have also pointed towards a trade-off between the improvement in flow time obtained

by using a lot splitting policy, and the occurrence of gap times caused by this policy. Hence,

our interest also goes towards the development of an analytical model for estimating flow

times in terms of the lot splitting policy, as this would enable us to include this trade-off in

20



cost-benefit analyses.

Appendix 1

Without loss of generality, we prove this equality for T = 5. Note that Vi in expression (3)

equals:

Vi =
i∑

k=2

X1,k − (W2 + SU2 +
i−1∑
j=1

[X2,j + g2(j)])

such that we can write:

G2 =

T∑
i=2

max[Vi, 0]

= max[Z(2), 0]︸ ︷︷ ︸
g2(2)

+ max[Z(3) − g2(2), 0]︸ ︷︷ ︸
g2(3)

+ max[Z(4) − g2(2) − g2(3), 0]︸ ︷︷ ︸
g2(4)

+max[Z(5) −
4∑

t=2

g2(t), 0]

︸ ︷︷ ︸
g2(5)

Moreover, we know that, for all random variables X, A and B:

max[X + A, X + B] = X + max[A, B]

By repeatedly applying this property, we get:

g2(2) + g2(3) = g2(2) + [−g2(2) + max[Z(3), g2(2)]]

= max[Z(3), max[Z(2), 0]]

g2(2) + g2(3) + g2(4) = g2(2) + g2(3) + [−g2(2) − g2(3) + max[Z(4), g2(2) + g2(3)]]

= max[Z(4), max[Z(3), max[Z(2), 0]]]

g2(2) + g2(3) + g2(4) + g2(5) = max[Z(5), max[Z(4), max[Z(3), max[Z(2), 0]]]]

Rewriting the last line, we get:

G2 = g2(2) + g2(3) + g2(4) + g2(5)

= max[Z(5), Z(4), Z(3), Z(2), 0]

which is what we had to prove.
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Appendix 2

From expression (8), we know that E(G2) can be approximated by:

E(G2) =
mV

2
+

Exp{−m2
V

2σ2
V
} ∗ σ2

V√
2πσV

+
mV

2
∗ Erf [

mV√
2σV

]

with mV and σ2
V given by:

mV = (T − 1) ∗ N

T
∗ [E(x1) − E(x2)] − E(SU2)

σ2
V = (T − 1) ∗ N

T
∗ [V ar(x1) + V ar(x2)] + V ar(SU2)

Assuming that E(G2) is continuous in T , the derivative of E(G2) towards T can be calculated

as (by means of the software package Mathematica):

∂E(G2)

∂T
=

N

4T 2
[Exp{−m2

V

2σ2
V

}
√

2

π

V ar(x1) + V ar(x2)√
(T−1)N(V ar(x1)+V ar(x2))

T
+ V ar(SU2)︸ ︷︷ ︸

>0

+ 2(E(x1) − E(x2))(1 + Erf [
mV√
2σV

])︸ ︷︷ ︸
≥0

] (11)

As the error function Erf [z] can only vary between -1 and +1, (1 + Erf [z]) is always larger

than or equal to 0, independent of z. Hence, we can conclude from expression (11) that:

E(x1) − E(x2) > 0 =⇒ ∂E(G2)

∂T
> 0

In other words, when the average unit processing time on stage 1 exceeds the average unit

processing time on stage 2, the average gap time on stage 2 increases steadily when the

process batch is split in a larger number of transfer batches. On the other hand, when

E(x1)− E(x2) < 0, it may happen that ∂E(G2)
∂T

becomes negative. In that case, the average

gap time on stage 2 will decrease in terms of T .
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