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Abstract: Tax authorities have access to unprecedented levels of information on taxpayers. However, 

these vast amounts of data lead to new challenges, with tax authorities running the risk of being 

overwhelmed by the enormous amount of incoming data. We present a valuation technique to 

quantify the value of features for tax audit prediction. Our approach, rooted in the game-theoretical 

Shapley value, effectively assigns importance to features derived from various Directives on 

Administrative Cooperation within the European Union and the OECD's automatic exchange of 

information. We show that our results can be used for global explanations of the predictive model, 

feature selection and determining which data should be acquired or cleaned with priority, similar to 

active feature acquisition. Our results can assist tax authorities in managing the large amounts of data 

they receive under the different disclosure regulations. 

 

1 Introduction 

Over the last decades, many different regulations and agreements concerning the exchange of 

information for tax purposes have emerged. The exchange of information has been increasingly 

important in the fight against tax avoidance and evasion ever since its introduction in the OECD Model 

Tax Convention from 1963. Milestone initiatives like the Global Forum on Transparency and Exchange 

of Information for Tax Purposes in 2000 promoted the exchange of information on request and the 

automated exchange of information. In light of this, the EU adopted Directive 2011/16/EU of 15 

February 2011, which established the legal basis for administrative cooperation in the field of direct 

taxation in the EU. The scope of the original directive has been expanded multiple times with new 

types of data, with the aim of strengthening the administrative cooperation among tax authorities of 

Member States and is commonly known as the Directives on Administrative Cooperation (DACs).  

Agreements on the exchange of information go well beyond the EU directive however. Many countries 

support bilateral agreements with one another to establish similar information flows. The OECD also 

supports exchange of information between tax authorities, with the automatic exchange of 

information as one of the main pillars. As a direct consequence however, tax authorities have 

witnessed an explosion in the amount information they receive from taxpayers. Tax authorities do not 



only receive data from taxpayers in their own jurisdiction, but they also receive related information 

from other jurisdictions under the exchange of information schedules. 

The growth in information poses a challenge for tax authorities, who run the risk of being overwhelmed 

by the enormous quantities of information received. Indeed, a key finding from the European 

Commission in report COM/2017/0781 is that tax authorities’ capacity to handle data has not 

increased at the same rate as the amount of data they receive. This could imply that tax authorities 

become less effective in exploiting and verifying this information, causing costs for tax authorities and 

taxpayers who are confronted with less efficient tax authorities. 

In this regard, determining the value of data to predict tax audits could help tax authorities identifying 

relevant information, and allows them to make informed decisions on which data sources they should 

invest in. In this study, we quantify the value of several types of data received under the automated 

exchange of information for tax audits. Results can be used for a variety of purposes including global 

model explanations, determining which data should be acquired or quality-checked with priority, 

determining which data should get priority in the data cleaning process or should be disseminated to 

other departments of the tax authorities, and feature selection depending on the goal of the modeler. 

To the best of our knowledge, we are the first study to attribute value to data tax authorities receive 

under the automatic exchange of information regulations of the EU and OECD. This paper describes 

the result of a collaboration between the University of Antwerp and the department “Large 

enterprises” of the Federal Tax Authorities of Belgium. 

2 Related work 

The data mining literature on tax audits and value attribution is relatively scarce. We therefore also 

refer to research from the field of tax fraud, and other fields unrelated to tax but following similar 

approaches to ours. The notion of value is central in our research. We define value as the impact a 

feature has on model performance. “Impact” should be understood broadly, both in terms of 

magnitude of predictive power and presence of the feature in the dataset. It could namely be that a 

feature exhibits very high predictive power, but appears only a handful of times in the entire dataset. 

Consider the following fictitious example: a niche industry only appears three times in the entire 

dataset, yet membership to this industry is very indicative for the need of a tax audit. This feature 

would contain high predictive power. Because the feature appears only three times in the dataset, it 

can rarely be used to classify an instance in the right category however. A good valuation method 

should consider both predictive power and appearance, as it is desirable that a feature with high 

predictive power and high occurrence should be marked as more valuable than a feature with equal 

predictive power but lower occurrence (Moeyersoms, d'Alessandro, Provost, & Martens, 2017). 



Features are thus evaluated on their impact on performance metrics of a predictive model. This impact 

can be positive as well as negative. The general use of value attribution methods in machine learning 

is widespread. Feature selection, data valuation and providing explanations for black-box models all 

rely on some form of valuation. In the explanations of black-box model, a distinction can be made 

between global and local importance methods. In this research, we will focus on the former.  

2.1 Global importance 

The relevance of global explanations originates from the need to trust model predictions and the need 

to gain insight in the problem domain. Knowledge extracted from data is often only useful when people 

understand and trust the model applied (Van Assche & Blockeel, 2007). The goal of global explanation 

methods is thus to provide users of predictive models with an overview of the predictive power of 

individual features. These methods can help a user to understand the role of the features across the 

entire model and dataset. Features can thus be ranked on their importance and contribution towards 

the model performance. Global explanations convey information about the features’ general impact 

in the model, but do not explain why an individual instance received a certain class label like local 

importance methods do. Several studies in the tax fraud domain report classification rules and feature 

importance rankings for fraud detection (e.g. Basta et al., 2009; González & Velásquez, 2013; Gupta & 

Nagadevara, 2007). For example, González and Velásquez (2013) show by using global explanation 

methods on a neural network for false invoice detection that the main predictive power of the network 

stems from variables associated with the payment of VAT and to a lesser extent to income-related 

variables. Similarly, Vanhoeyveld, Martens, and Peeters (2020) calculate ratio’s based on VAT 

declaration information and were able to rank these ratio’s based on their predictive power for fraud 

detection for each company. 

2.2 Feature selection 

Related to global importance is feature selection. Feature selection considers the impact of features 

by attributing each feature an importance score so that low-impact features can be removed to make 

large-scale problems computationally efficient. Feature selection can also be used to improve 

classification accuracy, reduce computational burdens or to reduce the amount of training data 

needed to achieve a desired level of performance (Forman, 2003). Feature selection can thus be 

regarded as a way to value features according to their importance to the predictive model (Forman, 

2003). In a tax setting, Hsu, Pathak, Srivastava, Tschida, and Bjorklund (2015) present a case study to 

examine the use of data mining techniques in audit selection for tax authorities. They use feature 

selection techniques to determine the predictive power of feature subsets, and subsequent 

consultations with tax domain experts were held to discuss whether low-scoring features should be 



kept. It is unclear however how the feature subsets were determined. Matos et al. (2020) develop a 

new feature selection algorithm specifically for a tax fraud detection context. After applying feature 

selection, they show significantly improved performance of fraud prediction algorithms. 

2.3 Active information acquisition 

Another setting in which determining the value of data can be useful, is active feature acquisition. The 

idea behind active feature acquisition is based on active learning, where the goal is to obtain new data 

that will improve model performance the most with a limited budget. Given that data acquisition can 

be costly, only acquiring the most valuable data will reduce the amount of resources needed to come 

to an accurate model. In the context of feature acquisition, modelers are usually confronted with 

missing features. The goal is to determine for which instances it is most interesting to acquire 

‘complete’ feature information (Melville, Saar-Tsechansky, Provost, & Mooney, 2004; Saar-

Tsechansky, Melville, & Provost, 2009; Zheng & Padmanabhan, 2002). Feature acquisition can be of 

importance for both model building as well as model usage (Provost, Melville, & Saar-Tsechansky, 

2007). In the building phase, features can be acquired in an effort to improve model performance in 

general. For example, acquiring new feature information on instances that are misclassified can allow 

the model to learn new patterns to avoid such misclassification in the future (Melville et al., 2004; 

Saar-Tsechansky et al., 2009). In the model usage phase, active feature selection techniques have been 

successfully implemented to determine which features of a test case should be acquired, and in which 

order to minimize the cumulative cost of misclassifications and acquisition costs (Sheng & Ling, 2006). 

Similarly, Ghorbani and Zou (2019) develop an algorithm to estimate the value of datapoints, which 

can be used to determine which datapoints should be acquired with priority. 

3 Data and methods 

The Belgian tax authorities provided us with a unique and fully anonymized dataset containing reports 

which certain large companies must provide under two different reporting regulations. The first data 

source is the local file and forms part of transfer pricing documentation. The local file contains detailed 

information relating to specific material intercompany transactions.1 The second data source is the 

information received under BEPS 5 and directive 201/2376/EU, better known DAC-3. Under these 

regulations, tax rulings and advanced pricing agreements are exchanged between different tax 

authorities. As a simplification for the sake of readability, we refer to the data received under both 

DAC-3 and BEPS 5 as ETR (Exchange of Tax Rulings). The third data source is the information received 

under directive 2018/822/EU, better known DAC-6. Under this directive, intermediaries and/or 

 
1 Art. 321/5, § 4 Belgian Income Tax Code and Royal Decree of 28.10.2016 



taxpayers are required to report certain cross-border arrangements when they satisfy certain 

characteristics. Even though the data itself is private, the contents of all types of reports are public 

knowledge as XML-schemes to file these reports are available on the website of the Belgian Tax 

authorities. We will therefore briefly discuss the content, shape and characteristics of this data. 

Table 1 Fictitious example of the different types of data occurring in this study for the Local file 

Identity Continuous Discrete 

(<100 

categories) 

    Discrete(>100 

categories) 

Label 

Taxpayer 

pseudo-

ID 

Turnover 

cross 

border 

goods 

Country 

cross 

border 

goods 1 

Country 

cross 

border 

goods 2 

Country 

cross 

border 

goods x 

Activity Transfer 

pricing 

method 

Industry 

(NACEBEL 

code) 

 

ID1 9,876,543 BE CZ NL Limited 

risk 

distributor 

CUP 64200 1 

ID2 1,000 BE / / Fully 

Fledged 

TNMM 46699 0 

ID3 / / / / Contract 

distributor 

Cost 

plus 

70100 1 

⋮ ⋮ ⋮ ⋮  ⋮ ⋮  ⋮ 

ID 65,812 BE IE CA Fully 

fledged 

TNMM 14140 0 

 For each taxpayer in an Local file report, the data is characterized by the type of cross-border transaction, 

as well as several discrete attributes (e.g. the country of the relevant taxpayer and the country or 

countries involved parties, the transfer pricing method used, the activity of the taxpayer, …). For a subset 

of taxpayers, we know the label as they were audited by the tax authorities. 

 

3.1 Local file 

The local file is part of transfer pricing documentation that companies who are part of multinational 

enterprises must provide to tax authorities. Transfer pricing can roughly be understood as the prices 

divisions within a (multinational) company charge when selling goods or services to other divisions of 

the same company. It is easy to see that, when no restrictions on the pricing are imposed, multinational 

companies can let divisions in high-tax jurisdictions charge high prices to divisions in low-tax 

jurisdictions, reducing the profits in the high tax jurisdiction and increasing profits in the low-tax 



jurisdiction. The multinational would gain an advantage by letting the profits be taxed at lower rates, 

increasing profits after tax. To constrain such practices, transfer prices must adhere to the arm’s length 

principle laid down in article 9 of the OECD model convention. The arm’s length principle roughly states 

that the transfer prices should be set as if the divisions involved are not part of the same company, but 

rather are independent parties. The goal of the local file is thus to identify and report relevant related 

party transactions, the amounts involved in those transactions and the transfer pricing determinations 

made by the taxpayer with regard to those transactions for each country (OECD, 2014). The local file  

Table 2 Fictitious example of the different types of data occurring in this study for ETR 

Identity Continuous Discrete 

(<100 

categories) 

    Label 

Taxpayer 

pseudo-

ID 

Transaction 

amount 

Ruling type Taxpayer 

country 

Affected 

entity 

country 1 

Affected 

entity 

country 2 

Affected 

entity 

country 

x 

 

ID1 1,234,567 ETR602 BE BE NL … 1 

ID2 9,876 ETR601 GB BE / … 0 

ID3 / ETR606 CZ AU BE … 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 

ID 65,812 ETR609 IE GB IT BE 0 

For each taxpayer in an ETR report, the data is characterized by the amount of the ruling (if applicable), as well 

as several discrete attributes (e.g. the ruling type, the country of the relevant taxpayer and the country or 

countries of the affected entities). For a subset of taxpayers, we know the label as they were audited by the 

tax authorities. 

 

is used to ensure taxpayers’ compliance with the arm’s length principle in its material transfer pricing 

positions within a specific jurisdiction (OECD, 2014).  

The local file describes the management and shareholder structure of the local entity in the 

jurisdiction, as well as the activities and most principal competitors of the local entity. Additionally, 

summaries of the material controlled transactions (e.g. procurement of manufacturing services, 

purchase of goods, provision of services, loans, …) and the context in which such transactions take 

place must be reported. The method used to determine the transfer price must also be communicated. 

All such transactions must be broken down by involved tax jurisdiction (OECD, 2014). The full 

requirements and details of the local file can be found in the Annex II to Chapter V of the Guidance on 



Transfer Pricing Documentation and Country-by-Country Reporting (OECD, 2014). A fictitious example 

of selected data from the local file can be found in Table 1. 

3.2 ETR 

DAC 3 and BEPS 5, taken together as “ETR” concerns the exchange of advance cross-border tax rulings 

and advance pricing agreements. An advance cross-border tax ruling is a confirmation or assurance 

that tax authorities give to taxpayers on how their tax will be calculated in a cross-border situation. 

Importantly, such confirmation must be given before the action on which the taxpayer wants 

assurance takes place. Similarly, an advance pricing arrangement determines the appropriate set of 

criteria between group companies for the determination of transfer prices. The most important 

information that needs to be exchanged is a summary of the transactions, a start date and period of 

validity of the tax ruling and the identification of the other involved jurisdiction(s) or persons in the 

other jurisdiction(s), other than natural persons, likely to be affected by the tax ruling. Full information 

can be found in Directive 2015/2376/EU and BEPS Action 5. A fictitious example of selected data from 

the ETR can be found in Table 2. 

3.3 DAC 6 

DAC 6 originates from a call of the European Parliament for tougher measures against intermediaries, 

such as lawyers and accountants who assist in arrangements that may lead to tax avoidance and 

evasion2. Under DAC 6, intermediaries and taxpayers must report details of cross-border arrangements 

that contain at least one of the hallmarks set out in Annex IV of Directive 2018/822/EU. These 

hallmarks can be understood as certain characteristics of the arrangement that present an indication 

of a potential risk of tax avoidance. The goal is thus to gather and exchange information on 

arrangements made by taxpayers which have a high perceived risk of tax avoidance. The main 

information that needs to be reported are the amount of the arrangement, the hallmark(s) it satisfies 

and the parties involved in the arrangement. Full information can be found in Directive 2018/822/EU. 

A fictitious example of selected data from DAC 6 can be found in Table 3. 

Finally, the Belgian tax authorities also provide us with a dataset on which tax audits lead to an 

amendment in the taxpayers’ declarations. Note that this does not mean that the taxpayer committed 

fraud. Any amendment made subsequent to a tax audit is included in our data, and no distinction can 

be made between an error correction or fraud. In addition, we only have data on companies that have 

been audited. This could introduce a possible selection bias in the data. The results of the analyses 

must thus be interpreted with this in mind. 

 
2 See the preamble of Council Directive 2018/822/EU 



Local file and ETR data is observed as of 2017 on, and DAC-6 data is observed as of 2018. Data on tax 

audits is observed for 2021 and 2022. We only use data available preceding a tax audit, as data received 

past the audit should naturally not be predictive for the audit itself. In this research, the goal is to 

quantify the predictive value of the features used in the predictive model for each data source. The 

features in our models consist of the data taxpayers have to provide the tax authorities with in the 

ETR, DAC 6 and local file regulations, and the instances are the taxpayers. The data consists of discrete 

features and continuous features, as well as high-cardinality features3. As the main focus of our 

research is the attribution of value, we assume that the predictive model is given for the different data 

sources and that this is the best possible model the data science team could find. We thus do not focus 

on model building itself. 

Table 3 Fictitious example of the different types of data occurring in this study for DAC 6 

Identity Continuous Discrete (<100 

categories) 

  Label 

Taxpayer 

pseudo-ID 

Hallmark amount Hallmark type Associated 

taxpayer 

country 

Relevant 

taxpayer 

country 

 

ID1 191,523 DAC6C1c US CH 1 

ID2 52,002,540 DAC6A3 NL GB 0 

ID3 0 DAC6E3 / CZ 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

ID 2,415,091 DAC6C1bii AE MT 1 

For each taxpayer in a DAC-6 report, the data is characterized by the amount of the arrangement, as well as 

several discrete attributes (e.g. the type of hallmark, the country of the relevant taxpayer and the country of 

the associated taxpayer if one is present in the arrangement). For a subset of taxpayers, we know the label as 

they were audited by the tax authorities. 

 

3.4 Shapley value for value distribution 

A popular way to attribute importance to features or datapoints is based on the Shapley value from 

cooperative game theory (Cohen, Dror, & Ruppin, 2007; Covert, Lundberg, & Lee, 2020). As we will 

describe in this section, the Shapley value exhibits many desirable properties in a valuation setting. 

Originally, the goal of the Shapley value was to distribute the value of a cooperative game to all players 

 
3 Following Moeyersoms and Martens (2015), we deem a feature to be of high-cardinality when it has more 
than 100 different categories. 



of this game in a fair and unique manner (Shapley, 1953). Linking game theory to machine learning, 

many machine learning problems can be understood as such cooperative games: A set of features or 

datapoints cooperate in a learning algorithm to achieve a certain outcome. This outcome can be overall 

model performance or an individual prediction, depending on the goal of the modeler. The Shapley 

value can thus be applied to distribute the value of the outcome back to the features or datapoints 

responsible for this outcome. Interestingly, many distribution schemes based on the Shapley value are 

model-agnostic and can thus be applied to every type of model. To understand the Shapley value and 

its properties, we  follow Moeyersoms et al. (2017) by defining some core concepts, before we present 

the definition of the Shapley value: 

1. 𝑁 is the complete set of players or grand coalition, with cardinality ‖𝑁‖ = 𝑛 

2. 𝑆 is a subset of players, with ‖𝑆‖ = 𝑠 and 𝑆 ⊂ 𝑁 

3. 𝑣(𝑆) is a value function that represents the total utility (= predictive power) the set 𝑆 generates 

when playing the game 

4. 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) is the marginal utility of adding player 𝑖 to a set 𝑆. 

The definition of the Shapley value for player 𝑖 is the following (Shapley, 1953): 

𝜑𝑖 = ∑
(𝑛 − 𝑠 − 1)! 𝑠!

𝑛!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)), 𝑖 = 1, … , 𝑛.

𝑆⊂𝑁 𝑖∉𝑆

 

The Shapley value can thus be understood as the average marginal utility a player contributes to every 

possible subset of players of the grand coalition. As stated before, the Shapley value can be used to 

allocate the total worth of the coalition back to each individual player in a “fair” and unique manner. 

“Fair” is defined as the satisfaction of several axioms which are desirable in a valuation setting, three 

of which are necessary to come to a unique solution (Shapley, 1953). These are the symmetry property 

(1), the efficiency property (2) and the additivity property (3). Let’s again consider the complete set of 

players 𝑁 and a subset these players 𝑆 ⊂ 𝑁. The Shapley value is denoted by 𝜑: 

1. Symmetry property: If 𝑣(𝑆 ∪ 𝑖) = 𝑣(𝑆 ∪ 𝑗)  for every 𝑆 ⊂ 𝑁 then 𝜑(𝑖) = 𝜑(𝑗). In other words, 

if the contribution of adding player 𝑖 to a subset 𝑆 is always the same as adding player 𝑗 to the 

same subset 𝑆, then 𝑖 and 𝑗 should receive the same value. If 𝑣(𝑆 ∪ 𝑖) = 𝑣(𝑆 ∪ 𝑗)  for every 

𝑆 ⊂ 𝑁 then 𝜑𝑖(𝑣) = 𝜑𝑗(𝑣) 

2. Efficiency property: The Shapley value represents a distribution of the total value of the game 

∑ 𝜑𝑖 = 𝑣(𝑁)𝑖∈𝑁  

3. Additivity property: When two independent games are combined, the values must be added 

player by player 𝜑𝑖(𝑣) + 𝜑𝑖(𝑤) =  𝜑𝑖(𝑣 + 𝑤) 



A fourth useful property but one which is not required to come to a unique solution is the dummy 

principle: 

4. Dummy property: A player who does not contribute to any coalition should get a score of zero. 

If 𝑣(𝑆 ∪ 𝑖) − 𝑣(𝑆) = 0 for every S ⊂ N then 𝜑𝑖 = 0 

Due to these properties, the Shapley value tends to outperform importance scores based on a single 

element like leave-one-out scores in correctly valuing data (Cohen et al., 2007; Keinan, Sandbank, 

Hilgetag, Meilijson, & Ruppin, 2006). Additionally, since one examines the marginal contribution of a 

player to every possible subset of players, the Shapley value takes interactions between players into 

account when attributing importance scores. This gives the Shapley value another edge over single 

element-based scores (Strumbelj & Kononenko, 2010).  

It can be mathematically proven that the Shapley value is the only value that contains all these 

properties (see Shapley (1953) for more details). While the Shapley value clearly offers very interesting 

properties for valuation purposes, the major drawback is its computational complexity. To calculate 

the Shapley value exactly, it is necessary to calculate 2𝑛 possibilities, which leads to computationally 

intractable solutions quickly when the number of players in 𝑁 increases. Therefore, approximation 

methods are proposed. 

3.5 Monte Carlo sampling 

One way to approximate the Shapley value is to obtain an unbiased estimate of its value through 

Monte Carlo sampling (Castro, Gómez, & Tejada, 2009). To see how this works, it is useful to rewrite 

the Shapley value as the sum of adding player 𝑖 to every possible order O of magnitude n: 

∑
1

𝑛!
(𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) − 𝑣(𝑃𝑟𝑒𝑖(𝑂))), 𝑖 = 1, … , 𝑛.

𝑂∈𝜋(𝑁)

 

Where 𝜋 is the set of all possible orders 𝑂 of 𝑛 players. The Shapley value can thus be obtained by 

listing all possible orders the players can enter the coalition in, and calculating the marginal 

contribution of adding the player of interest to the preceding elements in those orders. This 

formulation of the Shapley value lends itself well for a sampling-based approach. One can sample from 

a uniform distribution of orders in which the players participate to the coalition, and calculate the 

marginal contributions of the players in those orders to obtain unbiased estimates of the Shapley value 

(Castro et al., 2009). This Monte Carlo sampling approach can further be optimized by bounding the 

sampling error based on the theoretical variance (Maleki, Tran-Thanh, Hines, Rahwan, & Rogers, 2013) 

and by stratified sampling based on the position of the player in the orders (Castro, Gómez, Molina, & 



Tejada, 2017; Maleki et al., 2013). We follow both the original sampling algorithm (Castro et al., 2009)4 

as well as the two-step approach presented in Castro et al. (2017). In this two-step approach, samples 

are taken with each feature appearing on every ordinal position in a random order, i.e. a stratum. 

When two or more samples per stratum are taken, variances of the estimation in the stratum can be 

calculated. The second step takes additional samples of the stratum based on the variance of the 

stratum determined in the previous step. The larger the variance in a stratum, the more sampling will 

be done for that stratum in an effort to reduce the variance, and thus come to a more precise estimate 

of the Shapley value. The original sampling algorithm and the two-step sampling approach are 

represented in Algorithm 1 and Algorithm 2 respectively. 

Monte Carlo estimations can be calculated in polynomial time, assuming that the marginal 

contribution can be calculated in polynomial time as well (Castro et al., 2009). While Monte Carlo 

sampling can greatly reduce the computational burden, some problems are still too large to be 

computed efficiently. One solution is parallel processing, as the sampling procedure can easily be done 

on multiple cpu’s. In addition, logically grouping features into higher-level meta-features to reduce the 

dimensionality of the feature matrix could also provide a solution (Chen, Zhang, Zhang, & Duan, 2016; 

Ghorbani & Zou, 2019; Kim et al., 2018). When groups are chosen logically and/or based on domain 

knowledge, calculations become feasible without sacrificing the interpretability of the results. For 

example, dummies belonging to a single categorical variable can be grouped together and added to 

the model all at once, which leads to a valuation of the entire categorical variable instead of a single 

dummy. In settings where determining the value of each single dummy is not required or even 

undesirable, such an approach can be preferable .  

Several other approaches to estimate Shapley values also exist, such Shapley Additive Global 

Importance (SAGE) (Covert et al., 2020). This method is computationally even more efficient than 

Monte Carlo sampling, however it rests on the assumptions that all features are independent. In 

practice, this assumption is often violated. Variations of this technique taking into account feature 

dependence can partially solve this issue, however could violate sensitivity (i.e. attributing value to 

features that should not have received value) (Molnar et al., 2022) 

  

 
4 Note in Algorithm 1 we implement the efficiency improvements made by Song, Nelson, and Staum (2016) to 
the original algorithm 



Algorithm 1: ApproShapley (Castro et al., 2009)  

Inputs:  

m = desired sample size 

𝜑𝑖 ≔ 0, ∀ 𝑖 ∈ 𝑁 

Tracker:=0 

While Tracker<m: 

 Take 𝑂 ∈ 𝜋(𝑁) with probability 1/𝑛! 

 𝑣(𝑃𝑟𝑒𝑖(𝑂)):= base performance classifier 

 For all 𝑖 ∈ 𝑁 

  Calculate 𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) ≔ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 0, … 𝑖 

  Calculate 𝑥(𝑂)𝑖 = 𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) − 𝑣(𝑃𝑟𝑒𝑖(𝑂)) 

  𝜑𝑖 ≔ 𝜑𝑖 + 𝑥(𝑂)𝑖 

  𝑣(𝑃𝑟𝑒𝑖(𝑂)) ≔ 𝑥(𝑂)𝑖 

 Tracker := Tracker + 1 

𝜑𝑖: =
𝜑𝑖

𝑚
, ∀ 𝑖 ∈ 𝑁 

 

 

  



Algorithm 2: Two-step ApproShapley (Castro et al., 2017)  

Inputs:  

m = desired sample size 

𝜑𝑖 ≔ 0, ∀ 𝑖 ∈ 𝑁 

𝑃𝑙
𝑖 = 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑎𝑝𝑝𝑒𝑎𝑟𝑖𝑛𝑔 𝑜𝑛 𝑝𝑙𝑎𝑐𝑒 𝑙 

For all 𝑙 = 1, … , 𝑛 and 𝑖 = 1, … , 𝑛 

 𝑚𝑖𝑙
𝑒𝑥𝑝

: =
𝑚

2𝑛2
 

 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 ≔ 0 

 𝑆𝑢𝑚_𝑞𝑢𝑎𝑑_𝑙 ≔ 0 

 While 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 < 𝑚𝑖𝑙
𝑒𝑥𝑝

:  

  Take 𝑂 ∈ 𝑃𝑙
𝑖  with probability 1/(𝑛 − 1)! 

  Calculate 𝑣(𝑃𝑟𝑒𝑖(𝑂)) ≔ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 0, … 𝑖 − 1 

  Calculate 𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) ≔ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 0, … 𝑖 

  Calculate 𝑥(𝑂)𝑖 = 𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) − 𝑣(𝑃𝑟𝑒𝑖(𝑂)) 

  𝜑𝑙
𝑖 ≔ 𝜑𝑙

𝑖 + 𝑥(𝑂)𝑖 

  𝑆𝑢𝑚_𝑞𝑢𝑎𝑑_𝑙 ≔ 𝑆𝑢𝑚_𝑞𝑢𝑎𝑑_𝑙 + 𝑥(𝑂)𝑖
2

 

 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 ≔ 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 + 1 

𝑠𝑖𝑙
2 : =

1

(𝑚𝑖𝑙
𝑒𝑥𝑝 − 1)

(𝑆𝑢𝑚𝑞𝑢𝑎𝑑𝑙
− 

(𝜑𝑙
𝑖)²

𝑚𝑖𝑙
𝑒𝑥𝑝

) 

Calculate 𝑚𝑖𝑙
𝑠𝑡 

For all 𝑙 = 1, … , 𝑛 and 𝑖 = 1, … , 𝑛 

 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 ≔ 0 

 While 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 < 𝑚𝑖𝑙
𝑠𝑡:  

  Take 𝑂 ∈ 𝑃𝑙
𝑖  with probability 1/(𝑛 − 1)! 

  Calculate 𝑣(𝑃𝑟𝑒𝑖(𝑂)) ≔ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 0, … 𝑖 − 1 

  Calculate 𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) ≔ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 0, … 𝑖 

  Calculate 𝑥(𝑂)𝑖 = 𝑣(𝑃𝑟𝑒𝑖(𝑂) ∪ {𝑖}) − 𝑣(𝑃𝑟𝑒𝑖(𝑂)) 

  𝜑𝑙
𝑖 ≔ 𝜑𝑙

𝑖 + 𝑥(𝑂)𝑖 

 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 ≔ 𝑇𝑟𝑎𝑐𝑘𝑒𝑟_𝑙 + 1 

𝜑𝑙
𝑖 ≔

𝜑𝑙
𝑖

𝑚𝑖𝑙
𝑒𝑥𝑝

+ 𝑚𝑖𝑙
𝑠𝑡

 

𝜑𝑖
𝑠𝑡,𝑜𝑝𝑡

: =
1

𝑛
∑ 𝜑𝑙

𝑖𝑛
𝑙=1  for all 𝑖 = 1, … , 𝑛 

 



4 Experimental setup 

By applying the techniques described in section 3, we aim to determine the predictive value of the 

different features in the ETR, DAC-6 and local file reports to predict tax audits. As stated before, we 

assume the predictive model is given. For the data on the local file, we train a random forest classifier. 

For the data on ETR, we use a non-linear support vector machine. Hyperparameters are tuned based 

on a held-out validation set. The minimum number of samples in a leaf for the random forest is 3, the 

regularization parameter C for the support vector machine is 32, the gamma parameter for the support 

vector machine is 1 and the chosen kernel is Radial Basis Function. Other hyperparameters are left on 

default values.  For the data on DAC-6, we use a decision tree and a logistic model. We use a logistic 

model to compare the coefficients of the model to the Shapley values obtained by the estimation 

techniques. We use a 80%-20% train-test split for all datasets, and use 20% of the training set for 

validation purposes. To avoid obtaining results specific to the train-test split, we average our results 

over ten different train-test splits. We choose the Area-Under-Curve (AUC) as a performance metric, 

however any other performance metric can be used. We divide the difference between the observed 

AUC compared to the baseline value of 0.5 over the different features. For the ETR and DAC-6 reports, 

we can benchmark the approximations with the exact Shapley value since the dataset only consists of 

thirteen and seven features before splitting up the categorical variables respectively. The local file 

consists of several thousand features so we will only be able use approximation techniques. We are 

however able to group the features into logical meta-features based on the XML-categories and 

domain knowledge. This reduces the dimensionality substantially, and thus also the amount of samples 

needed to come to accurate estimations. Note that we still use the original features as input in the 

model for the estimation, but the Shapley value is calculated for the meta-feature (i.e. the group). The 

sampling approaches are based on 10,000 samples for ETR and DAC 6, and 40,000 for the local file. 

5 Results 

Results of the analyses are presented in Figure 1. For confidentiality reasons, we do not disclose the 

exact name of the features in this paper. However, we do provide this information to the tax 

authorities. In the case of DAC 6, estimation methods approximate the exact Shapley value very closely, 

with Two-step-ApproShapley generally approaching the true Shapley value better than the original 

sampling approach. For DAC 6, we see that one feature is the dominant contributor to the predictive 

value of the model, and that four other features also improve model performance substantially. Two 

other features receive a Shapley value of close to zero and thus contribute only little towards the 

predictive performance of the model. This can be explained by their low coverage. These two features 

do not have any value for most of the observations, which highlights the importance of taking coverage 



into account. For the ETR data, we see that the ApproShapley method tends to approximate the 

Shapley values better than the Two-step approach. One feature has a strong negative Shapley value, 

suggesting that this feature hurts the model performance. In the case of the local file, ten and nine 

features have negative Shapley values according to ApproShapley and Two-step-ApproShapley 

respectively, which means they hurt the performance of the model in general. Shapley values for the 

Local file tend to be smaller than those for DAC 6 and ETR, which makes sense given the larger number 

of features the local file contains. Nevertheless, the Shapley value allows us to rank these features 

based on their relative performance in the predictive model. 

Figure 1 Shapley values per data source 

 

To check whether the rankings are consistent between the different methods, we calculate Spearman 

rank coefficients. The Spearman coefficient indicates how well the relation between two variables can 

be described as monotonic. A perfect Spearman’s value of 1 or -1 implies a perfect monotonic positive 

or negative relationship. Table 4 to Table 6 present the Spearman rank correlation coefficients 



between the different methods for all data sources. The strongly positive correlation coefficients 

between the Shapley methods mark that all methods come to very similar ranking of the features. 

Table 4 Spearman rank coefficients local file 

Local file data 

 ApproShapley Two-step ApproShapley 

ApproShapley / 0.9512 

Two-step ApproShapley 0.9512 / 

 

Table 5 Spearman rank coefficients ETR 

ETR data 

 Exact Shapley ApproShapley Two-step ApproShapley 

Exact Shapley / 0.9835 0.9890 

ApproShapley 0.9835 / 0.9780 

Two-step ApproShapley 0.9890 0.9780 / 

 

Table 6 Spearman rank coefficients DAC-6 

DAC-6 data Decision Tree 

 Exact Shapley ApproShapley Two-step ApproShapley 

Exact Shapley / 0.8829 0.8829 

ApproShapley 0.8829 / 0.8929 

Two-step ApproShapley 0.8829 0.8929 / 

 

DAC-6 data Logistic Regression 

 Beta coefficients ApproShapley Two-step ApproShapley 

Beta coefficients / 0.3871 0.3944 

ApproShapley 0.3871 / 0.9855 

Two-step ApproShapley 0.3944 0.9855 / 

 

When comparing the coefficients of a linear model to the Shapley values, we see that lower levels of 

correlation exist. A possible explanation for this lower level of correlation can be the fact that a simple 

beta coefficient does not take into account the frequency of occurrence of a certain feature in the 



dataset, referring back to the fictitious example we provided in section 2. It is only a measure for the 

predictive value of the feature, and attributes great importance to features with good predictive 

power, but possibly a low occurrence in the dataset, which is exactly why we prefer the Shapley value 

to value the features. 

 

An alternative way to evaluate the methods is to plot the change in performance of the model when 

we add the features to the model based on their respective rankings. Pane 1 and Pane 2 of Figure 2 

plot the change in performance for the predictive model of the local file as we add features based on 

the highest-to-lowest Shapley values and vice versa respectively. The X-axis denotes the number of 

features added, the Y-axis denotes the performance for the corresponding number of features. We 

benchmark our methods against both random input selection and a greedy forward feature selection 

algorithm. The forward feature selection algorithm selects features based on the largest improvement 

in predictive performance after the previous feature is added at each step. Similar to the Shapley value 

estimation methods, results of the random and forward feature selection are also based on the same 

ten train-test splits.  

In the case of the local file, we see that adding high Shapley value-features to the model leads to an 

increase in performance for the first 30 to 35 features, which starts degrading when we add the 

remaining features. This is what we expect given that the features with negative Shapley values are 

added towards the end. The Shapley value outperforms random feature selection, and is also a clear 

improvement over forward feature selection. In the case of adding low Shapley value features first, we 

observe a stagnating performance when only the low Shapley value-features are added, followed by 

gradually increasing performance as we start adding the higher Shapley value-features. A real 

improvement in performance is noticeable after 60 features with the lowest values have been added. 

For both random and forward input selection, we see a much quicker rise in performance, indicating 

that already more valuable features are added sooner to the model than when we base our ranking 

Figure 2 Local file Shapley values 



on the Shapley value. The Shapley value is thus effective in ranking the features according to their 

predictive value. 

Figure 3 ETR Shapley values 

 

We present the results for the ETR dataset in Figure 3. When adding the high-Shapley value features 

first, an upward trend is observable when we add the first five features to the model. Afterwards, 

model performance stabilizes around the same performance level. The Shapley value clearly 

outperforms both random and forward feature selection. When we add the lowest Shapley values first, 

we observe that performance starts at level slightly below the base rate of 0.5 due to the strong 

negative Shapley value of the worst-ranked feature. Subsequently, performance increases notably 

after the five features with the lowest values are added, and features with higher Shapley values are 

starting to be included. In the case of random and forward input selection, performance rises much 

quicker, indicating that already more valuable features are added sooner to the model, thus showing 

again that the Shapley value is the most effective in ranking the features based on their contribution 

to the performance of the predictive model. Results for DAC-6 are presented in Figure 4. In the case of 

the DAC-6 data, the results are less pronounced due to the limited number of features available. In 

addition, note that the AUC for the DAC-6 data is incredibly high when only the feature with the largest 

Shapley value is used. As a result, adding features with high Shapley values still leads to a decrease in 

performance, as no model has better performance than a model based on this single feature. The 

forward input selection method also attributes the most value to this feature, and thus follows a similar 

trend to the Shapley value ranking methods. When we add the lowest Shapley values first, we again 

see that performance starts at a low level, and increases as the higher Shapley value points are added. 

In this case, the Shapley value is again better suited to identify the least valuable features compared 

to both random and forward feature selection. 



 

5.1 Prioritizing important features 

As a second experiment, we use the Shapley value to determine which features should be acquired or 

cleaned with priority. Quite often, users of data can acquire more data at a certain cost, or users need 

to invest considerable resources to clean large sets of data before they can be useful. It is therefore 

important to know which data should be collected or cleaned first in order to allocate resources 

efficiently. To achieve this purpose, we run a simulation experiment to see whether the Shapley value 

can successfully determine for which features it is most interesting to acquire more observations. 

Unlike many previous active feature selection techniques, we do not consider which features we need 

to acquire for specific instances, but rather determine whether the feature itself should be considered 

for acquisition or cleaning. 

Specifically, we obtain a ‘sample’ of observations to perform the simulation. We delete approximately 

two-thirds of our training data and impute the deleted values based on the remaining third of 

datapoints to come to a new dataset. We chose to delete two-thirds of our data to ensure that the 

impact of newly added data will be large enough, while still ensuring that the remaining training 

dataset still contains enough useful information to train a predictive model. Subsequently, we 

recalculate the Shapley values of the features with ten different test-training splits for each data 

source, as it is more useful to examine how new acquisitions affect the distribution of estimations 

induced from different likely variations of the training set instead of examining the performance 

changes for a model based on one training set (Saar-Tsechansky et al., 2009). An obvious reason for 

this is that, in a real-world setting the training dataset could constantly change due to the acquisition 

of new information (Saar-Tsechansky et al., 2009). We thus want to reduce the risk that peculiarities 

in our test and/or training sets influence our results. We then add back the real datapoints to the 

Figure 4 DAC 6 Shapley values 



dataset in a stepwise approach based on their Shapley values. We present both the case where we add 

the highest Shapley value features first, as well as the lowest Shapley value features.  

Results for DAC 6 data are presented in Figure 5. We see that performance rises much quicker when 

we prioritize adding the real values of the features with the highest Shapley values to the dataset, 

compared to adding the values of the lowest ranked features first. To obtain performance similar to 

the full model, we only need to add the real values of three to four of the most valuable features with 

priority compared to almost all features when we add the real values of the least valuable features 

first. In addition, we observe that adding the real values of the features with the highest/lowest 

Shapley values improves performance more quickly/slowly compared to adding real values of random 

features. 

 

Results for ETR data are presented in Figure 6. We see again that the Shapley value successfully 

determines which features should receive priority when cleaning or acquiring the data. When we 

calculate performance based on datasets where we add the real values of the most important features 

first, we see that performance rises much quicker compared to the situation where we add the real 

Figure 5 Simulation experiment missing data DAC 6 

Figure 6 Simulation experiment missing data ETR 



values of features with the lowest Shapley values first. Specifically, we only need to add real values of 

six features when we prioritize the highest Shapley values to achieve performance similar to the 

complete model. In the case of adding real values of the lowest-ranked features first, we see that this 

level of performance is only achieved when adding real values of ten or more features, depending on 

the ranking method.  

 

Finally, results for the local file are presented in Figure 7. We benchmark the results for both sampling 

algorithms against random selection in separate plots for the sake of readability. Results are not as 

pronounced for this data source however, which is likely due to the larger amount of features and the 

small test set, which causes the curve to have an uneven course. Nevertheless, we see that 

performance of adding real values of the most important features according to both Shapley value 

sampling methods tends to be higher compared to adding the real values of random features. Using 

approximately 40 to 45 of the most valuable features in a model returns similar performance to the 

model on the full dataset, whereas we need to collect full data on almost all features when using the 

least valuable features first to notice a significant increase in performance. When we add the lowest 

ranked features first, we see that models with complete features based random feature selection tend 

to consistently outperform the models based on the Shapley value after the first 30 features are added, 

Figure 7 Simulation experiment missing data local file 



again indicating that the Shapley value is more effective in identifying the least valuable features. In 

summary, our valuation techniques can be used when practitioners are faced with budget constraints 

to prioritize the most valuable data for tax audit selection. 

6 Discussion and conclusion 

In this work, we examined how to attribute value to features in a tax setting for audit prediction. Our 

research is motivated by the need for tax authorities to keep enormous quantities of data manageable, 

as a result of recent disclosure regulations. We apply two different methods based on the theoretically 

sound Shapley value to attribute value to the different features of a predictive model. We find that the 

Shapley value successfully ranks features based on their value for predictive modeling. Our findings 

can be used for global interpretability of the model, feature selection purposes and to determine which 

data should be collected or cleaned with priority to achieve better performance. To the best of our 

knowledge, we are the first study to attribute value to confidential data tax authorities receive under 

the automatic exchange of information regulations of the EU and OECD. 

One limitation of the study is that we assume the predictive model is given because we do not know 

which predictive model the tax authorities actually use in this setting. Even though both approximation 

methods are model agnostic and can thus be applied to any model, they both involve model retraining. 

The need for model retraining can cause long computational times when the predictive model is very 

complex. When the type of predictive model used by the tax authorities is known, model-specific 

applications of the Shapley value can be used if available to increase estimation efficiency. Another 

important limitation is possible selection bias. As mentioned before, we only have data on taxpayers 

that have been audited already in the first place. We do not have information on the exact reason 

these taxpayers were selected for audit. This bias could influence the importance of features in the 

sample, so caution is needed when generalizing these findings to the population.  

Another limitation is the amount of available data. We perform supervised learning tasks, and thus 

need labeled instances. Obtaining class labels for instances in our context means that the tax 

authorities need to audit this instance, which turns labeling very costly. The limited availability of 

labeled instances in our datasets has implications especially for our sample experiment to prioritize 

certain features. Our valuation techniques are based on the value a feature currently has in a dataset. 

For smaller datasets like ours, it could be that a feature is valuable in truth, but that the information in 

our dataset is too limited to discover underlying predictive patterns. Expanding the dataset should 

relieve this problem. 

  



7 Future research 

As is the case in almost all applications of the Shapley value, calculations get challenging when datasets 

become larger. Future research could make use of ways to improve the efficiency of the estimation 

techniques further, such as only estimating the Shapley values of features in coalitions up until the 

intrinsic noise in performance of the model (Ghorbani & Zou, 2019) or using model-specific approaches 

when available. Future research could also try to integrate a forward-looking component in the 

estimation algorithm based on the expected improvement in predictive performance of a feature, in 

line with Saar-Tsechansky et al. (2009). This way, valuation would not only be based on the current 

value of the feature in the dataset, but would also contain an expectation of the value of newly 

acquired data. 

In addition, several of the data sources used in this research have only been available for the few last 

years, which leads to a limited amount of labeled instances. Over the next few years, more labeled 

instances will become available which will improve the validity of our results. Another possible option 

is to combine data from different national tax authorities, as all our data sources are exchanged 

internationally. This would not only greatly increase the size of the dataset, but will also provide 

opportunities to research the data valuation problem in an international setting. 
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