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Abstract

This paper presents two modifications to the traditional model of
optimal replacement of capital equipment. Starting from the concept
of cost-minimization over an infinite planning-horizon, we will intro-
duce a variable intensity of utilization in the traditional replacement
model, to explain the concept of functional degradation, i.e. the re-
duction in intensity of utilization as equipment ages. Next, it will be
demonstrated that technological progress can have a very substantial
influence on the optimal time of replacement, which is neglected in
the traditional model.

1 Introduction

The basic concept of an economic analysis of replacement investment goes
back to the idea that it is not necessarily optimal to maintain a piece of
equipment until it physically falls apart. Often, it is quite profitable to stop
utilizing machinery long before this, so that the economic life can be much
shorter than the physical life of equipment. The concept of replacement
investments has been studied in the economic literature since the first half of
this century, but it took economists a long time to come up with a more or less
uniform criterium to evaluate the replacement decision. Pioneering research
in this field has been done by Taylor[10], Hotelling[2], and Preinreich[9].
Although in these early studies, some very fundamental conclusions were
found, it still took some time to let these ideas trickle down to practical
applications in management situations. It was mainly Terborgh[11, p.176]
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who transformed the theory from a purely academic to a more practical level.
His introduction of a number of assumptions and simplifications reduce the
computational effort to determine the optimal time of replacement. However,
modern computers and software allow us to stick to the more rigorous models.
The argument of Terborgh that 'their (i.e. Preinreichs e.a.) speculations
remain on a completely abstract and academic basis, and are of interest only
to mathematical theorists’ is therefore -nowadays- somewhat overstated.

In modern replacement theory, the analysis is nearly always based on dis-
counted cash-flows. The problem can be solved both in a profit-maximizing
or a cost-minimizing framework. Within the concept of a cost-minimizing
framework, we find both the minimization of total (discounted) costs (see
e.g. Preinreich) or the minimization of equivalent yearly costs which will be
used in the present analysis. Fortunately both methods are basically equiva-
lent and can be translated into each other easily. The choice for one of these
systems can be subscribed to subjective preference. For a brief overview of
developments in replacement analysis, we can refer to Meyer [6] and Howe &
McCabe [3].

In this work we will attempt to make some contributions and new inter-
pretations in the theory of single-machine replacement. We will not extend
the analysis to a multiple-machine environment, at least not in this study.
The contribution to the theory of optimal replacement in this paper will be
restricted to two complications of the replacement problem.

First, we will cast our view on the problem of the correct choice of a
decision variable in the equipment replacement problem. Although in most
theoretical analysis the optimal replacement moment is expressed in terms of
age of the capital equipment, empirical applications of this theory often suffer
from a certain ambivalence in this variable. The moment of replacement is by
definition a time-variable, like age is, but in many cases this moment strongly
depends on the output a certain piece of equipment has produced. A formal
model will be constructed in which both time and outputrate determine the
time of replacement. Furthermore, the model we use to demonstrate this will
allow to explain another important observation in the practice of machine
replacement, namely that machines are generally not suddenly replaced. On
the contrary, in many cases the utilization of their services diminishes as
their age grows; new equipment is mainly used for high-performance duties,
whereas older equipment is often used for less demanding tasks. Or as Ter-
borgh put it very eloquently: ‘In the bloodless warfare of machines, life is
taken, as a rule, by stages’[11, p.17]. It will become clear that the problem

2




of the correct variable choice and the principle of functional degradation can
be formalized by one and the same model.

Second, once the problem of the choice of the correct decision variable is
solved, we will focus on the effect of technological progress. Contrary to the
practice of Terborgh, an exponential form of technological progress will be
introduced. We will analyze the effect of technological progress on the opti-
mal time of replacement. It will become clear that in the presence of ongoing
technological progress, replacement will be postponed beyond the moment a
better performing machine comes available. We will demonstrate that this is
caused by the opportunity cost of lost future technological progress at the mo-
ment of replacement and reformulate the traditional replacement-problem in
a way that demonstrates the value of future technological progress. It will be
demonstrated that with ongoing technological progress, the optimal time of
replacement can be influenced considerably. This concept is not entirely new
-Massé [5, p. 66 - 68] and Perrin [8, p.62| for instance devoted some atten-
tion to it -, but it is often completely neglected in handbooks of managerial
economics or engineering economics. Also, the misconception occurs that
technological progress necessarily encourages the equipment to be replaced
sooner than in a static situation (See e.g. Young [12, p.244], Constantinides
[1, p.10] and Howe & McCabe (3, p.304]). It will be demonstrated with a
simple example that this is not always the case.

Three different models with growing complexity will be developed to
demonstrate the effect of technological progress. Their difference lies in
the time-horizon taken into consideration in evaluating future technological
progress. In the first model, we assume that progress ceases after the first
replacement. Although this is in a sense an oversimplification, we base this
assumption on the fact that decision-makers, like all other people, lack the
ability of clairvoyance and therefore partially limit the time-horizon of their
analysis. In the following models this myopia will be corrected. However,
the important characteristics and conclusions of the former model remain
virtually unchanged. In the process of developing these ideas, we also hope
to present some refreshing interpretations of existing replacement models.

This paper is structured as follows. In a first paragraph, an introduction
to standard replacement techniques is given. We explain the basic technique
of minimizing equivalent costflows in the absence of technological progress.
At the same time, we mention the basic terminology in this field. The second
paragraph deals with the variable intensity problem. The third paragraph
focuses on the effect of technological progress on the replacement decision.
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We approach this problem from the standpoint of a decision-maker with very
- limited knowledge about the future and extend the problem to a case with
an infinite horizon. Although the text may still be rather technical at some
points, it has been attempted to move the purely mathematical derivations
in appendix.

2 Terminology and basic model

The basic idea of replacement analysis is the distinction between the phys-
ical and economic life of capital equipment. In most cases, the operating
costs to keep equipment running (i.e. maintenance and repair, energy, man-
power, downtime, ...) gradually increase with time and will at a certain
point in time be considered too high to continue operating the equipment.
In a profit-maximizing firm for instance, one will never operate a piece of
equipment which operating costs exceed the market-value of its production
(See Preinreich[9] for a formal model). At the moment of replacement, the
old equipment (called the defender) will be replaced by new equipment (the
challenger). The challenger can be of the same type and technology of the
defender (and thus differ only in age), but can also be quite different.

A standard textbook model of capital replacement determines the eco-
nomic life by minimizing the equivalent costflow of a piece of equipment (or
as mentioned earlier, the total discounted cost of an infinite stream of pieces
of capital equipment). The implicit assumption of this elementary model
is that each machine will be replaced at the end of its economic life by an
identical piece of equipment. The objective is to minimize costs over an infi-
nite planning horizon. The equivalent costflow is simply a transformation of
total discounted costs over the entire economic life of the equipment into a
continuous constant flow over the same span of time, with the same present
value. In discrete time, we will refer to it as the equivalent annual cost. The
equivalent costflow can be stated as:

T
ko(T) 1_6_1T/k ).e~i dt (1)
0

In which k(t) is the total cost of the equipment at time ¢, consisting of
operating costs and capital costs: k(t) = m(t) + .V (t) — v(t).
The operating cost m(t) comprises costs of maintenance, energy costs,




labor costs of operating staff, ... The capital cost consists of the opportunity-
cost of the capital invested in the equipment 7.V (t), in which V' (¢) represents
the value of the equipment on the second-hand market, and the loss of value
of the equipment at time t: v(t) = dV(t)/dt = V(t) . Setting the first
derivative of the objective function equal to zero and simplifying gives the
following expression as the first order condition for the optimal replacement

date T':

k(T) = ke(T) (2)

The second-order condition can be stated as:

K(T) > k(T) | (3)

Since the derivative of k.(t) is zero in the optimum, the second order condition
implies that total costs must be rising in the optimum.

The intuition behind this basic problem can easily be demonstrated graph-
ically. Even though it is possible that the cost of operating the equipment
declines with age at the beginning of the economic life of the equipment,
because of some kind of learning effect, we can assume that it starts in-
creasing with age at a certain point in time. On the other hand, it also
seems acceptable that the capital cost decreases with age (dV/dt < 0 ),
and that also the rate of depreciation declines in absolute value with time:
dv/dt = d?V/dt* > 0 . Furthermore, we can assume that the value of the
equipment approaches a constant (the scrap value) as age goes to infinity. In
this case, depreciation will tend to zero. Because of this, it is fair to postu-
late U-shaped total costs as a function of age. Under these circumstances,
we can prove that the total cost curve passes through the minimum of the
equivalent cost curve, as shown in figure 1.

The basic model can easily be generalized in a situation in which the
challenging equipment differs from the defender. In that case replacement
should take place whenever the cost of the defender exceeds the equivalent
costflow of the challenger (as opposed to its own equivalent costflow in the
basic model). Nonetheless there remain a number of apparent shortcomings.
For a start, the replacement decision based solely on the age of the equipment
seems an oversimplification. Qutput seems a worthy substitute for age to base
a replacement decision on (See e.g. Nash [7] for an application in transport
equipment).
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Figure 1: Basic model

Second, although the model can be used to distinguish the economic life
of a defender with a non-identical challenger, it fails to predict the optimum
if the challenger is continuously changing as a result of ongoing technolog-
ical progress. Therefore we will extend the model to take this continuous
evolution into account. Finally, the above model fails to explain why some
pieces of equipment are replaced at a time where its operational costs are
still falling. In the following paragraphs we will develop models which clarify
these difficulties.

3 Model with variable intensity of utilization

Empirical research on the optimal time of replacement often struggles with
the choice between age and output as the decision variable to determine the
optimal replacement moment with. From intuition, it is obvious that both
variables will play an important part in this problem. Too often, this problem
is viewed as a matter of binary choice, as if only one variable at a time can
be used in the replacement model. To resolve this problem, a new variable




linking age and output will be introduced in the basic model.

Let 9 (0 < 9 < 1) be the intensity of utilization of a certain piece of
equipment. This variable is defined as the rate of output production as a
percentage of the maximum outputrate. For simplicity, we will assume that
the intensity of utilization is constant over the entire economic life. We
will demonstrate that this parameter has a major influence on the economic
life of equipment. Most types of equipment can be used with a variable
intensity: locomotives, trucks, ... can perform variable mileage per day, or
they can be used to haul heavy or light cargo, electrical power plants can
vary the produced power, machines can produce at different speeds, etc.
It is reasonable to assume that the intensity of utilization affects the cost
of operating the equipment and its depreciation. Hence, the value of the
equipment will be a function of the past intensity, or to put it differently, of
the output produced. For the moment however, we will neglect the influence
of intensity of utilization on the depreciation and the remaining value of
the equipment. This is of course a simplification, but in cases where the
potential buyers of second-hand equipment are uninformed about the past
performance of the equipment, this simplification seems not to undermine
the fundamentals of the problem.

In this case, total costs can be expressed as:

k(t,v) = m(t, ) +1.V(t) — v(t) (4)

Minimizing the equivalent costflow using this cost function implies an
optimality condition very similar to the one of the basic problem: k(T',¢) =
ke(T,) . Thus, the optimal time of replacement will be a function of the
intensity of utilization: 7'(). The effect of 1 on the economic life can be
clarified by taking the total differential of the optimality condition. Since
Oke/Ot = 0 in the optimum, the effect of 1) on the economic life can be
written as:

ke _ Bk
dT _ oy ~ow (5)
N

Since the second-order condition of the basic problem implied that total
costs had to be rising in the. optimum, the sign of the derivative is solely
determined by the respective magnitude of k. /8% and 8k /0y. However, if
we assume that 3;"12 >0, then:
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Hence, a decrease in the intensity of utilization will increase the economic
life of the equipment,based on the assumption we made about the sign of the
second cross-partial derivative of the operational cost function. Of course
we have to wonder if this assumption is reasonable. The answer is yes.
If we rewrite the derivative as follows:d (%—’5) /0t > 0, we can see that
our assumption implies that the influence of the intensity of utilization on
operational costs has to increase in time. Provided that operational costs are
proportional to the rate of intensity: m(t,y) = f(y)M(t), where M(t) is the
operational cost at full intensity and f(v) is a positive monotonic function,
the second cross-partial derivative will be positive since M(t) is a positive
function of age. From the above, it is also obvious that a decrease in the
intensity will reduce costs, thus: g—ﬁ > 0.The problem can be visualized as
in figure 2. Suppose that in the initial situation, the intensity is 100%. In
that case we return to the basic problem, where optimality implies equal
total costs and equivalent costflow (point a). Reducing the intensity will
increase optimal life and reduce costs, i.e. the minimum of the equivalent
costflow will shift down and to the right as the intensity falls. We will call
the path along the optimality condition when 1) is falling the cost-reduction
path (CRP); it shows how optimal life and minimal costs evolve as intensity
of utilization falls. Geometrically, the cost-reduction path can be considered
as the intersection of the k(t,1)-surface and the k.(t,1)-surface in a three-
dimensional space. A three-dimensional representation can be found in figure
3.. As explained for the basic model, the economic life can be found at the
intersection of k(t) and k.(t). If we consider the function MIN {k(t), k.(t)},
optimal replacement age can be found as the point in time where this function
is not smooth.

Now, consider the variable intensity case. The total cost and the equiv-
alent costflow function depend in that case of two variables: the age of the
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Figure 2: 2D-view of the variable intensity model

equipment and the intensity of utilization of the equipment. Thus: k(t,1))
and k.(t,v) can be represented by a surface in a three-dimensional space.
The optimal time of replacement can again be found as the intersection of
both surfaces or at the locus where the MIN {k(t,v), ke(t,) }-function is
not smooth, represented by the line AB. On the left side of the line AB we
can see the total cost as a function of age and intensity of utilization, on the
right side the equivalent costflow is presented. The line AB is the locus of
optimal replacement ages as a function of the intensity of utilization.

There are important advantages of this model-specification. First, it re-
solves the debate about the correct measure to determine the time of replace-
ment. In the model, time is chosen as the main variable, but the solution
to the problem is contingent upon the intensity of utilization. This new
variable captures the influence that the rate of production exercises on the
replacement moment. Second, the model can also be applied to illustrate
the principle of functional degradation. This last point requires some further
explanation.

Suppose a new machine were acquired that can be used at different de-
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Figure 3: 3D-view of the variable intensity model

grees of intensity. If the new equipment is used at full intensity, its economic
life will end at ¢, (see figure 2). In the basic model, the equipment was
necessarily abandoned at this age. However, in this model there is an alter-
native, since the equipment can be maintained for lighter duty. For instance,
if the equipment is used with an intensity of ¥ < 1, the economic life can
be prolonged to t,. This principle is often observed in real-life production
applications and has been verbally described by Terborgh[11], as mentioned
before. In formal models however, this principle has been neglected.

To further explore the idea of functional degradation, we should view
the problem in a multiple-machine environment (See e.g. Malcomson[4]).
However, the construction of a formal multiple-machine replacement model,
incorporating the effect of the intensity of utilization on the economic life of
equipment, is beyond the scope of this paper. For the moment, we will turn
our attention to the concept of technological progress, to refine the model.

4 Model with technological progress

In the previous paragraph our attention was mainly focussed on the choice of
a correct variable to determine the optimal time of replacement. We found
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the answer in the introduction of a new variable: the intensity of utilization.
However, in order not to overload notation, in what follows we will omit the
explicit reference to this variable.

We previously stated that the basic model of equipment replacement can
easily be generalized to situations where the challenging equipment is not
identical to the defending equipment. The decision rule becomes then: “re-
place the defending equipment when total costs of the defending equipment
exceed the minimal equivalent costflow of the challenging equipment”. This
principle seems simple, but it is valid only under the very restrictive condi-
tion that nothing can be gained by postponing the replacement, as we will
demonstrate. In a situation where there is ongoing technological progress,
this is not the case since postponing the replacement decision will further
reduce the cost of the challenging equipment.

We assume that the impact of technological progress consists of a reduc-
tion of all costs of newly installed equipment. Technological progress has
no influence on capital and operating costs of equipment already installed; it
only affects the costs of new equipment yet to come. The total cost of capital
equipment is thus determined by its age (I} and the time it was first installed
(t). For simplicity, we assume that the rate of technological progress (g) is
constant in time. This implies:

k(1,t) = k(1,0).e7 | (7)

The basic model of replacement stated that existing equipment should be
replaced whenever the equivalent costflow of the challenger became smaller
than the operating cost of the defender. Since with technological progress
the challenger will become less expensive, it could be argued that technolog-
ical progress will lower the replacement-age. The decision-rule of the basic
model is clear, but seems not entirely in accordance with the actual behavior
of economic agents when faced with a replacement decision. We can not
undo ourselves of the impression that quite often economic agents wait much
longer to replace their equipment. Replacement often does not take place,
although a challenger with lower equivalent costflow is available. In many
cases where there is a strong ongoing technological progress, replacement is
postponed because it is argued that the longer one waits, the more impor-
tant the advantage of the challenger on the existing equipment. In view of
the basic model of replacement, this kind of behavior is not rational, since it
seems not to minimize costs.
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The way in which this problem will be tackled is rather unconventional.
We will start the analysis from the standpoint of a decision-maker with an
infinite planning horizon, but with limited knowledge about technological
progress in a more distant future, who makes simplified assumptions about
future replacement decisions. We will denote this as the behavior of a par-
tially myopic decision-maker. Although this line of reasoning is somewhat
an oversimplification, it has the advantage of simplicity and graphical repre-
sentation. Even more important, correction of this myopia does not funda-
mentally alter the conclusions of the more simple model.

4.1 Two-period model with technological progress

An important problem with replacement under technological progress is often
that there is little or no information on the technological progress in the more
distant future. The only information available is often the rate of ongoing
technological progress, i.e. the rate at which the immediate challenger of
existing equipment grows more efficient. For example, consider the market
of computers. We can observe the rate at which the price of new computers
is presently falling, but it is practically impossible to predict the price of
computers in five years.

The decision-maker is thus confronted with a dilemma. Although he
may want to use an infinite planning-horizon for replacement decisions, he
lacks the correct information to base this decision on. Suppose however
we try to find an approximation of the real situation. Assume therefore
that the technological progress ceases to exist once the first machine has
been replaced. After that, the new - more advanced and hence cheaper -
equipment will be replaced at the end of its economic life by an infinite
stream of identical machines.

In our new model, total costs of the challenger depend on both age and
date of purchase. The later the equipment is purchased, the lower capital
and operating costs. Once the equipment has been installed, total costs vary
with age as described in the previous section. We use AT} to denote the
life of the j-th piece of equipment and T; as the time the j-th replacement
occurs. Thus: Ty = ATy, To =T + ATy, ...

The economic life of the challenging technology can be found using the
basic model, since then we fall back on a simple like-for-like replacement.
Once the new technology has been installed, it will cause an infinite stream
of costs. The objective is then to minimize the present value of the total
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cost of the equipment of present technology and the cost of the perpetuity
induced by the new technology. |
Hence, the minimization problem takes the following form:

ATy
MIN i _iam k(AT Th)
ar, K(AT)= 0/ k(1 0).e7dl + e7AT (8)
in which AT, satisfies k(AT,,T}) = ke(ATé,Tl). Observe that the economic
life of the challenger is independent of the time of the first replacement T7,
since in the optimality condition, the time of the first replacement can easily
be canceled. Moreover, if the defending equipment were to be replaced with
identical equipment, the replacement would also take place at the same age
ATs.
A minimum will be reached when 8 K/ AT} = 0 . Differentiating with
respect to ATy, and setting equal to zero gives:

k(AT},0) = ko(ATy, Th) + %ke(ATz, T)) 9)

This expression can be interpreted as follows. If in the basic model - i.e.
in the absence of a continuous technological progress - at a certain moment
in time, the defending equipment were challenged by other equipment with
an equivalent costflow that is equal or smaller than the total cost, it would
be optimal to replace the defender by the challenger. However, if we intro-
duce the concept of a continuous technological progress, which ceases when
the existing equipment is replaced, the total cost k(ATy,0) of the defender
at the time of replacement T has to exceed the equivalent costflow of the
challenger k.(AT,,T;) at that time with the second term of equation 9, be-
fore it becomes optimal to replace. Hence, we can interpret this second term
as the opportunity cost of lost future technological progress at the date of
replacement, as it is perceived by a myopic decision-maker.

An other way to represent the same optimality condition is:

k(ATh,0) = ¢ k.(ATy, Th) (10)

with: ¢ = %—‘1 The total cost of the defender has to exceed the equivalent
costflow of the challenger by a factor ¢ before replacement is due. It is
important to see that this coefficient can easily attain relatively high values
when the rate of technological progress is high relative to the interest rate.
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Depending on the gradient of the cost curve, this could lead to substantial
differences in economic life according to this model as opposed to the basic
model.

A graphical representation can be found in figure 4. We start the analysis
as in the basic problem. Consider the total cost of the defending equipment
k(l,0) and the corresponding equivalent costflow ke(l,0) as a function of age.
The optimum replacement age for the basic problem is AT, the correspond-
ing minimum equivalent costflow k.(AT3,0). Observe that this is at the
same time the optimal age of the challenging equipment, since the solutions
of k(1,T1) = ke(l,T1) and k(I,0) = k.(I,0) coincide. Of course, although
AT, does not depend on the time of the first replacement, the correspond-
ing minimum cost does. Thus, the minimum costflow of the challenging

equipment can be represented as a function of the time of replacement ¢ of
the defender: k.(ATs,t).

Costs

ke(AT;,0)

— Ok

\
ke(AT3,b)

AT,

Figure 4: 2-period model with technological progress
Notice that in the absence of ongoing technological progress, the defender

would be replaced at time AT™* , if a challenger with equivalent costflow
ko(ATy, AT*) were to occur at that moment. The (perceived) value of future
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technological progress however, leads to postpone the replacement until ATy,
namely the time where the total cost curve k(l,0) and pk.(AT,,t) intersect.

Notice also that in this model, technological progress has an ambivalent
influence on the cost of replacement. The progress reduces the cost of poten-
tial challengers, making it more attractive to replace. However, simultane-
ously it increases the loss of future savings due to forgone progress after the
replacement date. From this point of view, we can argue that in some cases,
technological progress may even increase the economic life beyond AT,. We
will demonstrate this in the following numerical example.

Example 1 Suppose that the equipment depreciates al a constant rate (di-
gressiwe depreciation): éKdg_ = —¢. In that case we can represent the value
of the equipment at time t as: V(i) = Vo.e™®, in which V, is the value at
time 0. A similar hypothesis will be made regarding the operating costs. Sup-
pose that the operating costs grow at a constant rate: d";ém = A. In that
case m(t) = mg.e™ (mg being the operating cost of new equipment), and
k(t) = (i + 6)Vo.e™® + mg.e. The discrete time version of this equation
i8: ky =1V, — AV, +mp = Vp(r = 1)(1 = d)* + V(1 — &)™ + me(1 + 1)"
wherer = et —1,d=¢e®—1,1 =e* — 1. To demonstrate the principle of
prolonged life as a consequence of technological progress, we can insert some
values in this equation and analyze the corresponding replacement decision.
Let Vo = 4000, mg = 100. Suppose also that the value of the equipment drops
30% a year and the operating cost increases 10% a year. Finally, let the op-
portunity cost of capital be 2% and assume that technology grows at a rate of
g = 5% a year. In that case, the replacement problem can be represented as
in figure 5. In the absence of technological progress, this piece of equipment
would be replaced at an age of approzimately 17 years. However, a myopic
dectsion maker would keep this equipment in operation as long as over 20
years, given the present parameters. Hence, the perceived economic life of
the equipment is prolonged as a consequence of technological progress.

Another interesting aspect of this model is its second order condition of
the optimal replacement date. This can be formulated as:

8k(AT1, 0) a@ke(ATz, T]_)
AT, ~  0ATL (11)

3

This implies that the total cost curve of the defender intersects with
@ko(AT,,t) from below. Notice that it is no longer required that total costs
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Figure 5: 2-period model with technological progress (example)

are rising to find an optimum. This is of particular interest for those cases
in which the operating cost of the defender is constant over time. This case
could not be optimized with the basic model, since in this case the equivalent
yearly cost has no minimum. In practice this would lead to a coincidence of
the economic and physical life of this kind of equipment. We will demonstrate
that the previous model is able to tackle this kind of problem.

Therefore, suppose the operating cost of a piece of equipment is constant
in time. Suppose also that the depreciation of the equipment goes to zero
and the value of the equipment tends to a constant (the scrap value) as its
age goes to infinity. In that case zllglo K'(1,0) =0 and llixg k(,0) =iV,+mg .
In the basic problem, we were unable to deal with this kind of replacement,
since there is no age at which costs are rising. Since costs are always falling,
so will the corresponding equivalent costflow. As age goes to infinity, we find:

1

fim ke1,0) = fm

/ iV (6,0) — v(0,0) + mo].e®d0  (12)
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The limit of the first factor is the interest rate, the second factor goes to:

!
lim [Vo = V(1,0).™| + mo. lim [ e7d0 = Vo + o (13)
— 00 ~>00 1
0

Thus, when costs tend to a constant value, the corresponding equivalent
costflow will be 7V + myp.

Now, although we still have to assume the second piece of equipment
will have an infinite economic life, we can find a finite economic life for the
first piece. Following this model, we assume the second piece of equipment
will last for ever, at a minimum equivalent costflow of k.(co, ATy) = (iV, +
my).e~*AT1: Its predecessor will be replaced after AT} satisfying k(AT},0) =
wke(0o, ATy) . All functions necessary to find the economic life of the first
piece of equipment are depicted in figure 6.

Costs

Figure 6: 2-period model with technological progress and decreasing costs

To interpret this figure, we start with the cost function k(,0), which
tends to iV}, + mg and the corresponding equivalent yearly cost k.(l,0). The
minimum equivalent costflow can be found at age infinity and amounts to
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k(oo,0) = iV + mg. This minimum cost falls at a constant rate as the time
of installation proceeds, as k.(co,t). Replacement will take place at time
Ty when costs of the existing equipment amount to ¢ times the minimum
equivalent costflow of the challenger, i.e. at the intersection of k(I,0) and

ke(o0,t).

4.2 n—périod model with technological progress

In the previous model, we partially limited the planning horizon to the
first replacement. After this moment, we simply assumed that technolog-
ical progress ceases and that the challenging equipment will eventually be
replaced with identical equipment. Although this line of reasoning may be
the only feasible one when there is insufficient information about technolog-
ical progress in the distant future, it is not entirely correct because future
technological progress after the first replacement is ignored. Since in real-
ity, the challenger will probably not be replaced by identical equipment, the
costs considered in the previous model are inaccurate. We therefore have to
consider an infinite stream of challengers, each one more efficient than its
predecessors. : ,

The information necessary to find this series of replacement dates, is
too vast and uncertain to be of any use in practical applications. However,
we will attempt to generalize the problem from a theoretical standpoint, to
assess the error made in the two-period model. We will show that if we
assume that technological progress is constant, the (myopic) 2-period case
can be viewed as a special case of the standard replacement-model under
technological progress.

The optimization problem considered here is in essence a discrete dy-
namic programming problem. We will deduct the optimality conditions in a
recursive way. We first optimize the final period, conditional upon the start-
ing moment of the last period. Let T,,—; be the time of the last replacement,
which ends technological progress (in the previous section n was 2, since tech-
nological progress ceased after the first - i.e. (n — 1)th replacement). The
economic life of all later machines will be identical, since there is no further
technological progress. Then we work our way back towards the present.
The optimum for the last period is easy to find, since it is not different than
the basic problem. Thus we minimize a perpetuity of the equivalent costflow
of technology at moment T),_;.
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The objective function becomes then:

.
MIN Ki(AT,) = e(ATn.,Tn—l)

AT, - (14)

The basic problem learned us that the optimum has to satisfy k(AT,,0) =
k.(AT,,0) and is thus independent of T,,_;.

By adding one previous period, we create a variant to the 2-period prob-
lem, in which the objective is:

MIN
ATn-l

ATn
k(l, Th_g).e”%dl + ¢ *ATn—1

Ky(AT, 1) = (15)

ke(ATn, Th-1)

1
0

The objective is thus to minimize the sum of the costs of the first machine,
purchased at a given time T,,_, and the cost of an infinite stream of machines,
which starts at T,,_1 = T,,_o + AT, _;.

A slightly similar formulation of the objective function shows the relation
with the 2-period model from the previous section:

Ky(ATh) = (16)
ATh
e_ng—Q / ]C(l, 0).e”ildl + e—(‘i-&-g)ATn_1 ke(ATm 0)
(]
0

The first factor of this function is a constant, the second factor (between
square brackets) is exactly the equivalent of the objective function in the
2-period model. Notice that the optimal value of AT;,_; does not depend on
Tn—2- In fact the only difference with the 2-period model studied so far is
that the starting time of technological progress is now T,,_5 in stead of 0.

It is now possible to further expand the objective function of the model
with additional previous periods. However, the deduction of the optimal
economic life grows considerably more complex as new periods are added.
Therefore we will first examine a 3-period model before addressing the general
n-period model. The objective for period n — 2 is then:

ATn—Q ~
MIN »
AT, Ka(&Tuz) = 0/ K, Ts)e ™l + (17)
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ATn
¢~ i0Tn-2 / k(l,Tn_2).e—ildl+e—i(ATn-—1+ATn—2)ke(ATn‘,Tn—l)

0

7

In this expression the first term represents the present value of all costs of
the defending piece of equipment. The second term is the present value of
all costs of the first challenger, and the last term the cost of the second and
following challengers. Notice that, although the economic life of the first
and second challenger is independent of the economic life of the defender,
the costs of these challengers have to be included in the objective function,
since their present value is affected by the length of the economic life of the
defender.
The objective function can be transformed to:

ATn—-Z’ )
K3(ATp_y) = 9T, / k(1,0).e~%dl+ (18)
,
ATn—l

e~ (i+9)AT -2 / k(l,O).e—ildl+e—(i+9)(ATn—1+ATn-2)ke(ATnu0)

]
0

Again, this makes clear that the optimum will not depend on the time the
defender is purchased (7,,—3). The optimum can be found by setting the first
derivative of the factor between square brackets in equation 18 equal to zero.
Calculations are given in detail in appendix A. The first-order condition can
be written as:

k(AT,_5,0) = (19)
© [kg(ATn_l, AT, ).(1 — e7®8T-1) 4 e=8Tn-1 | (AT, AT,_1 + ATn_z)]

The interpretation of this optimality condition is very similar to the in-
terpretation of the optimality condition in the 2-period model. Suppose an
investor where certain that the present equipment could be replaced by new
(more advanced) equipment after a given AT, _, and AT,,_; + AT,_5 units
of time. Suppose also that this replacement scheme were the only alternative
to replacing the equipment with identical machines. Then, according to the
basic model, it would be optimal to switch to the new replacement scheme
if its equivalent costflow became smaller than the total costflow of the ex-
isting equipment. The equivalent costflow of such a scheme is exactly the
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factor between square brackets in equation 19. However, since technological
progress is a continuous ongoing process, a replacement (temporarily) fixes
the benefits of technological progress. As a result, total costs of the existing
equipment have to exceed the equivalent costflow of the challenging equip-
ment by a factor ¢. Again, this reflects the opportunity cost of lost future
technological progress.

In an n-period model, the objective function for the first replacement
becomes:

1 AT;
M Ko aT) = 3 | [k Ty dl| 4 emTons el BT o)
' 0

Jj=1 ¢

(20)
The summation represents the costs of the first n — 1 machines. From the
n-th machine on, we will switch to a system of like-for-like replacement. The
cost of this perpetuity, which starts at T),_1,is reflected in the last term of
the objective function. The optimum has to satisfy the first order condition
for this problem (for the more technical aspects we refer again to appendix

A):

k(ATy,0).e AT = (21)
n—1

@ {2 [(e7 T — ™ T3) ko (AT, Tyo1)] + e-”"-lkean,Tn-l)}
F=2

As expected, the cost of the defender has to exceed the equivalent costflow
of all challengers by a factor ¢ before it becomes optimal to replace.

4.3 Infinite-period model with technological progress

In all previous models, we saw that the optimal economic life of present equip-
ment depended on the number of replacements before technological progress
ceased. The time of purchase of the first defender and past replacements
never influence the economic life of present equipment. Thus, we could ar-
gue that in the infinite horizon model the economic life AT of all successive
machines will be equal, since after each replacement infinite replacements will
follow. It is also obvious that in that case, the last term in the previous op-
timality condition vanishes. Thus, in the infinite-period case, the optimality
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condition is:

BAT, 0.7 = Y [ B — Bk (AT, T1r)] (22)

j=2

The interpretation is again very similar to the previous models. If at time
T} the existing equipment could be replaced by a series of new machines, one
would decide to replace if the equivalent yearly cost of the challenging series
(the summation at the right-hand side of equation 22) were lower than the
cost of the existing equipment. However, since the challenging series grows
continuously less expensive as time passes, it becomes more interesting to
wait longer. The costs of the challenging equipment will have to outperform
the costs of the defending equipment by a factor ¢ before replacement is due.
The degree by which ¢ exceeds 1 - which could be substantial - is a measure
of the opportunity cost of lost technological progress.

Perhaps a more convenient representation of the same optimality condi-
tion is (See also appendix A):

AT
' t+g —il
0

This rule says that replacement is due when the cost is equal to the costflow
equivalent with all previous costs, provided that this equivalent is calculated
with a discount rate of (i + g).

5 | Conclusion

The problem of optimal replacement has a long history, but still leaves op-
portunities for further refinement. In this paper, we tried to find answers to
two important difficulties in this area. First, we focussed on the problem of
the correct variable to base the replacement decision on. Although in the
literature, both output and age are considered as important variables, lit-
tle attention has been given to bringing these variables together in a single
model. In the model presented in this paper, both variables were combined
in a single model, displaying age and the intensity of utilization as variables.
We showed that the economic life of equipment was dependent upon the in-
tensity of utilization and that economic life could be prolonged by lowering
this intensity. This model represented a formal explanation of the principle
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of functional degradation, meaning that in practice equipment often under-
goes shifts in its application. It also suggested that in practice, the most
demanding jobs in terms of intensity of utilization will be performed by the
newest, equipment.

Second, we tried to further examine the effect of technological progress
on the economic life of equipment. We demonstrated that the basic model
of replacement, which can be found in many textbooks on engineering eco-
- nomics or managerial economics, is often quite wrong when there is ongoing
technological progress. We first demonstrated this by means of a myopic
decision-maker, who considers the technological progress only to a limited
extend. Although the objective of this decision-maker is not entirely correct,
it is often the only real feasible way of analyzing the problem, because we
lack the necessary data about future technological progress. Furthermore,
the general idea of the two-period model can be extended to more general
cases and even to the infinite-horizon case. We always found that the basic
model can give quite erroneous results, because the opportunity cost of lost
technological progress at the time of replacement is not taken into account.

A n-period model: mathematical derivation

In period n — 2 the objective is given in equation 18:

ATn -2
K3(AT,_,) = e79T-3 / k(1,0).e"dl+
0
ATp-
e~ (i+9)ATn-2 / k(ljo).e—ildl+e-(z’+g)(ATn-1+ATn_2)ke(A;rn;0)
0

The first factor can be considered as a constant. Setting the first derivative
of the second factor with respect to AT,,_s equal to zero gives:

A1111.—1
k(AT,_5,0).e"T-2 = (4 g).e=(H9ATn-2 / k(1,0).e7"dl  (24)
0

+(7: _l_g)_e—(i+g)(ATn—1+ATn_2)ke(ATm0)
7
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Or after simplification:

k(AT,-s,0) = — (25)
ATn-—-l .
G+9) | Bl AT )e a4 228 0Tt (AT, AT, + AT, )
0
or:
k(ATp_3,0) =

' [ke(ATn—l; ATn—2)-(1 - e—iATn—l) + e—iATn_lke(ATm ATﬂ—l + ATH—Z)]

Which is the first order condition 19. It is important to notice that again, the
economic life of the equipment is independent of the moment the equipment
was used for the first time. If we expand the problem further, we can also
derive the economic life of the first piece of equipment in a series of replace-
ments. We assume again that the n-th machine is replaced with identical
equipment. The objective 20 was then:

MIN

Ar Fn(AT) =

ke(ATn, Tn—l)

k(l: Tj_l).e_il dil + g~ Tn-1 -

N
4}
|
H%
L
o\ E]

Calculating the first derivative and setting equal to zero gives:

k(ATl, 0).€_iAT1 = (26)

3 T e ko(AT,,0

Z (’L +g).e‘(i+g)Tj-1 / k(l,O).e_il dll — (Z +g) e-—(i+g)Tn-1 e( . n) )
1

=2 o
Rearranging and simplifying:

k(AT 0).e7"AT1 = (27)
ke(ATn) T'n,——l)

n—1 AT;
>, |(i+g)eH / k(l, Tj-1)-e~ " dl| + (i + g) e Z
0

=2
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Which is equivalent to equation 21:

k(ATy,0).e™"T =

n—1
©. {Z [(e'iTj‘1 — e‘m).ke(AJ},Tj_l)] + e'iT"'lke(ATn,Tn_l)}

=2

Since economic life of present equipment depends on the number of replace-
ments before technological progress ceased and since the time of purchase of
the first defender and past replacements never influences the economic life
of present equipment, we can argue that in the infinite horizon model the
economic life AT of all successive machines will be equal. Thus, if n — oo,
we find equation 22:

k(AT,0).e*4T cpi (€75 — &%) ko (AT, Ty y))|
=2

Or:

o0

k(AT,0).e7T = Z[-@ﬂﬂ‘w e 4T).k(AT,0)]  (28)

The two last factors do not depend on j and can be placed in front of the
summation. We replace the equivalent costflow by its full notation, to find:

AT

E(AT,0).e74T = (i + g). / k(1,0).e7"dl. S e~ ¢t Ti (29)
0 j=2
Finally, replace the infinite geometric series by Zk‘w —k(i+9)AT _ %,

to find the result of equation 23:

(i +g) v T
0
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