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Abstract

Quantitive infrared thermography like active thermography is a non-destructive
testing technique that is used to inspect surfaces of components for defects.
A problem with infrared-based defect detection is that misclassifications
based on geometrically dependent measurement characteristics can occur.
This problem becomes more problematic with the inspection of complex 3D
shapes. In this paper, a new infrared quality control procedure using a qual-
ity map is proposed that models the geometrically dependent measurement
characteristics based on available CAD data and CAD matching techniques.
Misclassifications are reduced by using this quality map in combination with
a modified version of principal component thermography post-processing.
We applied our proposed methodology on a prototype bicycle part and a
plaster cast angel figurine. In these experiments, the procedure using quality
maps is able to prevent false defect detection.

Keywords: Thermography, 3D, Matching, Active Thermography, Pulsed
Thermography, Principal Component Analysis, Principal Component
Thermography, 3D Thermography, Infrared Imaging

1. Introduction1

Quantitative infrared thermography such as active thermography is a2

non-destructive testing technique that is used to rapidly inspect the surface3

and subsurface of a component for defects. In scientific literature, usually,4

measurements on simple components (like flat panels) are presented. The5

use of measurements on complex 3D shapes is more complicated because it6
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is difficult to quantify the defect size, 3D location and corresponding mate-7

rial properties using the 2D information represented in the infrared image [1].8

However, when the 3D locations of the measured temperatures are obtained,9

this size and location of the defects can be measured [2]. Secondly, the 3D10

location can be used to visualise and combine several measurements from dif-11

ferent viewing angles. Finally, when the direction with respect to the camera12

of a measured object is available, the influence of directional emissivity can13

be characterised and compared with numerical simulations based on CAD14

data [3].15

In literature, different approaches that map 2D infrared images to 3D16

locations exist. Commonly, these methods obtain location information by17

using additional 3D range camera’s, structured light scanners or laser scan-18

ners to map 2D infrared images to a 3D position [4, 5, 6, 7, 8, 9]. Methods19

that do not use additional equipment but only a 3D model of the test object20

also exist [10, 11, 12, 13]. In this work, an implementation of the method of21

Prisacariu et al. [12] is used.In summary, the algorithm calculates the possi-22

bility if a pixel contains foreground or background information. After this, a23

virtual image of a 3D model is taken and compared with these possibilities.24

Next, the pose of the virtual camera will be updated so that the fore- and25

background regions of the real image and the virtual image align. Although26

the alignment accuracy is object and camera dependant, an accuracy of ap-27

proximately 5 pixels can be easily achieved [14, 15]. Alternative systems use28

accurate position control of a component using traverse systems or robots to29

position a detected defect on the component [16] accurately.30

This work describes a methodology which improves the use of 3D infrared31

mapping techniques. The proposed methodology uses quality maps of the32

3D mapping and uses image segmentation techniques in combination with33

a weighted version of principal component thermography [17, 18] to auto-34

matically detect defects and material types on objects. To our knowledge,35

a weighted version of principal component thermography (PCT) is not used36

in current implementations. In the PCT algorithm, a principal component37

analysis (PCA) is used. In this part, we will introduce weights since for PCA38

various weighted algorithms exist.39

This paper focuses on the analysis of measurement data obtained with40

3D thermography. This analysis in the form of what we call ’quality maps’ is41

described in Section 2. To illustrate the procedure in Section 2 a 3D printed42

model of the Stanford Bunny (Stanford Computer Graphics Laboratory [19])43

is used in example images. The procedure to calculate defects of a surface44
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(a) (b) (c) (d)

Figure 1: (a) Example infrared image of a Stanford bunny (colours for visualisation) (b)
Contour image rendered with the virtual scene (c) Example of a scene with a virtual
camera and 3D model of the bunny. (d) Result of the image alignment where the thermal
information from (a) are plotted on the 3D model. Black parts of the model are parts where
no data is available. Small shadow effects are added to the render for better visualisation.

using 3D data is described in Section 3. The experimental setup and experi-45

mental results displayed on a restored plaster angel figurine and a prototype46

of a bicycle frame together with an automatic calculation of the defects are47

given in Sections 4 and 5.48

2. Methodology: quality of mapping49

Principal component thermography is a technique used in active thermo-50

graphy to analyse the heat response of a test object using principal compo-51

nent analysis (PCA). This analysis highlights differences in material proper-52

ties in the image by constructing temporal modes [17, 20]. Temporal modes53

are images constructed with a corresponding principal component calculated54

from a singular value decomposition of a time series of infrared images. With55

active thermography, this time series is the recording of the heat-up or cool-56

down characteristics of an object. Ideally, when the analysed material is uni-57

form, the first mode highlights the primary material. Next, the second mode58

will highlight the most significant defects or a secondary material. Work59

of Marinetti et al. [17] shows that 95% of the main differences in material60

properties on flat surfaces are detectable in the first 3 to 5 modes.61

In reality, this analysis is distorted by multiple environmental factors:62

factor 1 The image contains background information. This information is63

not part of the test object but is used in the principal component64

thermography calculations.65

factor 2 The normal of the surface is not perpendicular to the camera sensor66

[16]. This introduces an error in the measured emissivity recorded67
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by the camera. These errors can result in false-positive fault detec-68

tions because these areas will correspond with different principal69

components in the principal component thermography analysis.70

factor 3 The spatial resolution of the thermal camera is too low to detect a71

small change in material properties, e.g. a defect is smaller than 172

pixel in the camera image.73

factor 4 The distance between the object and the camera increases the noise74

in the recordings (emissivity of the atmosphere) and/or can give75

problems when focusing the lens. In our setup transmissivity is ne-76

glected because it only influences results when objects are located77

more than 3 meter [21].78

This work aims to solve these problems by using the known pose of the79

test object and the corresponding 3D model. In the next paragraphs, we will80

explain how virtual views of the object are used to segment foreground and81

background. Moreover, we will also show how to calculate a quality map of82

the measurement that quantifies the described environmental factors. This83

quality map Q is used in the singular value decomposition to compensate for84

low-quality measurements. Pixels with Q = 1 are pixels with a high quality85

where no error in the measurement is expected. Pixels with Q < 1 are pixels86

where measurements errors might occur. Next, the quality-map is used in87

combination with a weighted version of principal component thermography88

to detect differences in material properties of the surface of an object (Section89

3).90

The quality map Q is composed of three parameters (see next Sections)91

that quantify the mentioned environmental parameters:92

1. Normalised distance Gn between a pixel p and the contour of the object93

C (factor 1).94

2. Normalised spatial distance Sn: Each measured point has a correspond-95

ing 3D coordinate from the CAD matching procedure. With this cor-96

respondence, the distance between measured points (pixels) can be cal-97

culated (factor 2 and 3).98

3. Depth Df of a measured point (factor 4).99

Only three parameters describe the four environmental parameters be-100

cause the normalised spatial distance describes both factor 2 and factor 3101

(see next Section). As a total weight that can be used as a quality measure-102

ment Q we propose:103

Q = GnDfSn (1)
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Figure 2: Example of differences in spatial distances si and their constant projections
sprojected. Xc represents a 3D point of the object detected by the camera sensor.

giving values between 0 and 1.104

2.1. Notation105

An image (Figure 1a) is denoted as I with the image domain Ω ⊂ R2 ,106

Ωf is the foreground image domain and Ωb is the background image domain.107

An image pixel is denoted as p = [u, v] with I(p) a grey scale value (related108

to thermal information in infrared images). A pixel coordinate p ∈ Ωf has a109

corresponding 3D point in the camera coordinate system Xc = [Xc, Yc, Zc]
T ∈110

R3 . This 3D point is obtained from a CAD matching procedure using a 3D111

model of the object or a calibrated range camera setup (see Section 1).112

C (Figure 1b) is the projected contour of the 3D model (Figure 1c) in113

the camera image. This contour separates the foreground and background114

domains Ωf ,Ωb.115

2.2. Quality maps116

The depth of a pixel is also an important parameter because all cameras117

have a depth-of-field where the camera is in focus. In this work we define118

depth of field Df as:119

D(pi) =
1

σ
√

2π
e
−(Zc(pi)−dfocal)

2
/
2σ2

(2)

which gives values of the normal distribution with Zc(pi) (see Figure 2) the120

depth of a pixel pi from the camera reference frame. dfocal is the distance121

from the camera where an object is in focus and σ the standard deviation122

describing the Gaussian blur occurring when an object is out of focus. An123
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example is given in Figure 3b. In this example and in our experiments we124

assumed dfocal = min(Zc) (the closest point to the camera) and σ = 2 cm.125

This is done because the camera is manually focused at the front of the126

object and experimentally we found that a standard deviation of σ = 2 cm127

resembles the blur in the image.128

Due to the perspective nature of a camera lens, the spatial distance be-129

tween pixels will be larger near the edges of the image and smaller in the130

center of the image, this is visible in Figure 2. Therefore, we use the spatial131

distance matrix S as an error measure. The spatial distance S also encodes132

the perpendicularity of the surface normal to the camera sensor. If a point133

is located far away from its nearest neighbour, this will give a higher value134

of S and means the point is part of a surface seen under an angle (Figure 2).135

An example of this spatial distance matrix S is visible in Figure 3a. Each136

element of Xc gives a 3D location to a pixel pi. This can be calculated by137

projecting the 3D model under a detected pose (see Section 2.1) in a virtual138

camera model. Then the spatial distance S matrix consists of the set of139

points si. si is for each point the distance to its closest neighbour.140

An example is given in Figure 3a. The distance between points can be141

used as a direct quality measure (in meter). Note that with this formulation,142

a low spatial distance means points are close to each other, resulting in higher143

quality measurements. The normalised spatial distance matrix Sn is defined144

as Sn = S
max(S)

, ensuring values between 0 and 1.145

For 3D thermal measurements, the distance between a contour and a146

pixel is also significant because when this distance is low, the pixel is most147

probably near the contour, where a small error in image alignment can cause148

a pixel of the background to be rendered on the 3D model. We define this149

distance function G as:150

φ(pi) =

{
d(pi, C) ∀ p ∈ Ωf

0 otherwise
(3)

151

G(pi) = He(φ) (4)

Where d(pi, C) is the smallest distance (in pixel) between the contour152

C and the corresponding pixel. The use of the smoothed Heaviside function153

He(φ) = π−1(− arctan(bφ)+(π/2)) allows to only give large weights to pixels154

near the edges of the contour. In all our experiments b is set to 3. This value155

is found experimentally, and worked well in all our test cases. The normalised156
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Figure 3: In all images blue refers to higher quality points and yellow to a lower quality.
(a) Example of the spatial distance. (b) The normalised distance to the contour. (c)
Depth of field quality. (d) Combined quality of mapping.

distance Gn is defined as Gn = G , since the smoothed Heaviside function157

already ensures values between 0 and 1. An example is given in Figure 3c.158

2.3. Quality of mapping159

The three quality measurements (Sn,Df ,Gn) can be used independently160

if needed. As an example, the normalised spatial distance Sn can be used161

as an indication of the error on the length of a measured defect. As a total162

weight that can be used as a complete quality map Q we propose the product163

of the normalised quality measurements (see Equation 1). This product will164

ensure Q consists of values between 0 and 1.165

In Figure 3, a pose of the model of the Stanford bunny is used as an166

example where the three quality maps are calculated and combined. This167

figure shows that, as expected, the quality near the edges of the object is low.168

The quality is also low at the transition of neck to head and at the upper side169

of the leg. The highest quality is located in the leg of the model. In this part,170

the camera is focused, the mapping is accurate, the spatial resolution is the171

highest, and the surface is parallel to the camera sensor. Quantifying this172

quality directly from the thermal image without using additional information173

of the 3D model and position of the object is not possible.174

The quality map can also be used as a weighting factor to combine over-175

lapping measurements on a 3D model. This is useful in cases where multiple176

images are taken to compose a complete thermal image of an object. Com-177

posing images can, for example, be used in engineering cases to visualise the178

energy efficiency of buildings [22].179
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3. Methodology: defect detection180

When executing active thermography measurements, the test sample is181

heated for a defined time period. In our experimental setup (see Section182

4) the heat response (cool-down) is recorded. From this entire image time-183

sequence, a principal component analysis (PCA) is performed. The standard184

algorithm used in thermography (PCT: principal component thermography)185

is available in the work of Marinetti et al. [17]. Differences with our proposed186

procedure are summarised in Algorithm 1. In the first step of the PCT algo-187

rithm, the image sequence (Data) is converted to a 2D matrix (WarpedData).188

In a standard PCT analysis, background pixels are not removed from this ma-189

trix. With our methodology, this is possible. Next, the matrix is normalised190

(NormData), and a singular value decomposition is performed. In the pro-191

posed algorithm, this singular value decomposition uses weights Q. Next, the192

TemporalModes are calculated, and the dimensions of this matrix are warped193

so that the first two dimensions contain image data, and the third includes194

the mode.195

Algorithm 1 Weighted Principal Component Thermography

Input: Heat response: Time sequence of images ; Q
Output: Thermal Modes

1: WarpedData = Warpdata(Data) . Make 2D matrix from 3D matrix
(time in second dimension)

2: WarpedData = RemoveBackgroundPixels(WarpedData) . Not done in
standard PCT

3: NormData = (WarpedData-mean(WarpedData)) / std(WarpedData)
4: Calculate USV = BIRSVD(NormData,Q) . No weights in standard

PCT
5: TemporalModes = U S
6: TemporalModes= DeWarpData(TemporalModes) . dim 1-2=image

data ; dim 3=mode
7: Analyse TemporalModes

In this work, the standard SVD algorithm is replaced by a Bi-Iterative196

Regularized Singular Value Decomposition (BIRSVD) developed by Dasa et197

al. [23]. This implementation of the SVD algorithm additionally allows the198

use of weights in the calculations to compensate for low quality or missing199

data. Other algorithms and implementations exist and are described in litera-200
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ture[24, 25, 26, 27]. In this work the BIRSVD algorithm is used because of its201

relatively easy implementation reported performance. We also removed the202

background (Q = 0) from the input data, to eliminate the background values203

from the normalisation step and SVD calculation. The altered algorithm is204

summarised in Algorithm 1. The removal of the background ensures that the205

primary material of a test object is highlighted in the first temporal mode206

calculated by the algorithm. The use of the quality map ensures that the207

second mode corresponds with the secondary material or most substantial208

defects. This is not true in the original algorithm because edges and other209

factors (see Section 2) can distort the results and spread these properties210

over multiple modes [17]. Examples can be found in Section 5.211

4. Experimental setup212

(a)

Flash lamp

Camera

Test sample

(b) (c)

Figure 4: Experimental setup. (a) Image of bicycle test sample. (b) Clamped bicycle part
with camera FLIR X6540sc and flash light.(c) Used 3D model (3D scanned mesh file)

In this work, active (pulsed) thermography is used in the validation of213

the procedure proposed in Section 2. As a first test sample, a plaster cast214

figurine of an angel is analysed. The figurine is heated with a halogen lamp215

(500 W) for 60 s. Next, the heat response (cool-down) is recorded (2000216

frames, 50 fps) using a cooled infrared camera (FLIR X6540sc). In a second217

experiment, a prototype part of a bicycle (Figure 4a) with its corresponding218

CAD file (Figure 4c) is used. In this experiment, a short heat pulse (1 ms) of219

6 kJ is induced in the test sample using a Xenon flash lamp (Figure 4b). Next,220

the heat response of the sample is recorded with 2000 frames, at 50 fps with221

the cooled infrared camera. As a post-processing technique, the standard222

PCT analysis [17, 18] is compared with the proposed version using weights.223
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To be able to neglect reflections of surroundings, it is made sure that the224

surrounding objects of the experimental setup are at room temperature. As225

a CAD matching procedure, a pixel-wise posterior segmentation technique226

in combination with 3D pose optimisation (PWP3D) [10, 12, 28] is used for227

mapping 2D thermographic images on 3D models.228

5. Experimental results229

The detection methodology is tested on a cast figurine of an angel and a230

prototype bicycle part. The measurements of the bicycle part show that the231

quality map can be used to avoid to detect false defects.232

5.1. Cast figurine233

(a) 3D Infrared (b) Ground Truth (c) Standard PCA (d) Weighted PCA

Figure 5: (a) 3D infrared image (one image of the recording sequence) (b) RGB image
with restored wing section (polymer modelling paste) in pink (c) Automatic determined
defects/difference in material (red) with a standard PCA analysis (with the background
removed). (d) Automatic determined defects/difference in material with the proposed
weighted PCA. This weighted method does not include the false positives of the standard
PCA method.

The proposed method is tested on a restored cast figurine of an angel.234

Initially, the figurine right wing was missing and is sculptured with polymer235

modelling clay. Next, the angel was repainted with acrylic paint to hide the236

restoration. The ground truth polymer clay restoration is highlighted in pink237

on the image in Figure 5b. The 3D shape is obtained by scanning the figuring238

with a structured light scanner (Faro Scan-In-A-Box).239

The heat response of the figurine is recorded, and next the 3D pose is240

calculated. A mapped heat image on the 3D model is visible in Figure241

5a. Afterwards, the quality map is calculated, and the heat response is242

analysed with the PCT analysis (with background removed) (Figure 5c) and243

the proposed PCT analysis using weights (Figure 5d).244
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The red parts are parts that correspond with a high chance of difference245

in material properties (highest 1 % values in the second temporal mode). In246

the standard PCT analysis (Figure 5c) parts of the head arm,legs and foot247

are highlighted incorrectly. The standard analysis also highlights surface248

edges. In this case, this is undesirable because these edges do not correspond249

with a change in material properties. In the image showing the weighted250

analysis using the quality map (Figure 5d) these edges are not highlighted.251

In contrast to the standard method, the proposed analysis highlights the252

wing correctly without false positives. The restored section has an area of253

4705 pixels that is highlighted in the infrared image. The standard method254

highlights 3814 pixels, from which 2341 pixels are correctly highlighted (50255

% of the restored area). The proposed method only highlights 2015 pixels256

of the true 4705 pixels (42 %), which is less than the standard method but257

has no false positives. The true positive pixel area is calculated by manually258

selecting the restored area in the 3D scan of the figurine.259

(a) (b)

Figure 6: 3D mapping of multiple (three) measurements. The red area corresponds with
the detected restored areas using the same procedure as described on one image. White
areas are areas that are not measured.

Figure 6 shows the mapping of multiple (three) measurements on the 3D260

model. The camera is positioned in three different positions and from each261

location, the weighted PCT method is used to calculate material differences.262

These differences are highlighted in red in the figure. In this case, weights of263

different measurements are not combined only the detected area from each264

analysis is highlighted. A combination of weights of different measurements265

can be investigated in future research.266
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5.2. Bicycle frame267

19 20 21 22
Temperature (°C)

(a) (b) (c) (d)

Figure 7: (a) Reference image used in image alignment (b) defect locations (pink) (c)
Aligned image mapped on 3D model (same temperature scale as (a), black parts have no
data) (d) quality map of measurement

Figure 7a shows an infrared image of a prototype bicycle part. At two268

locations, the object is hit with an impact hammer (12 J). These locations269

are indicated in Figure 7b. The CAD mapping result is visible in Figure 7c270

and the quality map in Figure 7d.271

From the complete heat response, the standard principal thermography272

analysis is performed. The third temporal mode is shown in Figure 8a. Figure273

8b shows the segmented defects. Green areas are false positives detected with274

this method. These areas are also areas where the quality Q is below 0.5.275

Note that an additional image-open filter (image erosion followed by image276

dilation) is used to only highlight regions larger than 2 pixels.277

In Figure 8c, the second temporal mode calculated with the weighted278

method is shown. Figure 8d shows the segmented defects in red. These279

defects correspond to the impacted locations.280

6. Conclusion281

Information on the alignment of an infrared image with a CAD file can be282

used to predict measurement artefacts in the form of a quality map. These283

predictions, together with a weighted version of the principal component284

thermography analysis, can be used to detect defects. In future research,285

the calculated position of the camera can also be used to cope with the286

directional behaviour of the emissivity when calculating temperatures out287

of the measured data. The use of the proposed methodology decreases the288

chance of false defects. The calculated quality map also gives the user a289

way to quantify possible measurement errors and optimise the setup by re-290

positioning the object and compare or combine results.291
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(a) Standard PCA

Q>0.5

Q<0.5False Defect

Defect

(b) Standard PCA
Segmented

(c) Weighted PCA (d) Weighted PCA
Segmented

Figure 8: (a) Temporal mode composed with standard PCA analysis. (b) Segmented
defects where green denotes false defects and red positive defects (c) Temporal mode
composed with weighted PCA analsyis (d) Segmented defects in red
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