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1 Introduction

In 1883 the Cambridge mathematician A.R. Forsyth derived the following
formula for % using Legendre polynomials [5]:
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J.W.L. Glaisher [6] used elliptic functions to prove in 1905 a number of
similar formulas including the following one:
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And there is also this series:
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Both (2) and (3) are equivalent with Euler’s version of Wallis’s famous product

formula for 7 derivable from the infinite product expansion of the sine function
[14]:
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The following series is due to G. Bauer (1859) [10]:
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All the previous series converge very slowly. The last one can be found in
S. Ramanujan’s first letter to G. Hardy, dated January 31, 1913. In a paper
published in 1914 [16] Ramanujan lists some more rapidly converging series
for 1/7 which he found using modular equations. These are two of them:
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In this paper we show how Ramanujan’s series (5) and a number of other
series for % can be derived from Forsyth’s in a straightforward way. The same
method can also be applied to Glaisher’s series (2) and to (3), leading to a
proof of (4) and (6).

Series for % have received much attention lately, see for instance the survey
paper by Baruah, Berndt and Chan [2] and the work of Guillera [7,8] who uses
the Wilf-Zeilberger method to find series of this form. Chu [3] and Liu [11,
12] have obtained similar results by manipulating hypergeometric series using
Dougall’s and Gauss’s summation formulae.

2 A first recurrence

Note that all the series in the introduction contain the central binomial coef-
ficients which can be rewritten using the Pochhammer symbol:
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Using this in the general term of (1) we find that:
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Hence Forsyth’s series can be written in the following form:
2
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This last series is a special case of the more general series
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with a = % and b= % In the rest of the paper we will use the abbreviation:

s(ab) = D ®)
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This expression satisfies the following recurrence relation:
Theorem 1 (40, +1-scheme)
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s(a,b) = 5 - s(a,b+1). (9)



Proof Manipulation of the general term in the series s(a,b + 1) leads to the
required result. We start by writing:
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If we work out the numerator, we get the following 3 series:
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We now deal with this last series. Using a similar trick as before, we get:

oo

> (@plat+n) 1< (@)n(atn)(at+bdb+n—(a+n))
(a+b2(a+b+n) b (a+b)2(a+b+n)

o0

n=0
9]

_ 1 (- (@n(atn) (a)7
_b<z (a+b)2 _nz_;)(a—kb)%(aib—kn))

- (@a(at+n) (@)%
(C‘*ZW‘;(H@%(@TH@)

(a)aia
72 (a—l—b)%(a:-b—i-n))

n=0
@yl (@2, (a+n+1-(atb+n)
b a+b)n+1
a 1—b°° (@ayy  a 1-b

= — = -+ >b_1
by Ze(at b2y, b b (s(a,0) =1)

We bring everything together:

s(ab+1) = ;b)z (s(a,b) +os(ab) —1—2 (Z + 1;b(s(a,b) _ 1)>) .

Rearranging leads to (9).

Note that this theorem can be found in a slightly less general form in Knopp
[9, p. 261-262]. Tt is a special case of Kummer’s transformation of series.
Using Theorem 1 we are now able to rewrite s(a, b):



Theorem 2
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Proof From (9) it follows that:
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s(a,b+n) = -s(a,b+n+1).

Iterating this formula starting from n = 0 proves the result.

Ramanujan’s formula (5) is an immediate consequence of Theorem 2:

Corollary 1
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Proof Forsyth’s formula is equivalent with (7):
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We rewrite the right-hand side using Theorem 2:
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3 Other recurrences

Note that the following recurrence relation:
a2
(a+0)?

is related to the series (8) in the same way that (9) is related to (10). By
combining (9) and (11) we get new recurrences.

s(a,b) =1+ s(a+1,b) (11)



Theorem 3 (+1,+1-scheme)
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Proof We replace s(a,b+1) in the right-hand side of (9) by the corresponding
formula from (11):
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The series follows immediately from this recurrence.

If we take a = %, b= %, we get the following series:
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By combining the two recurrences (9) and (11) we can derive other series. For
instance, if we use (11) again in the recurrence of Theorem 3, we get this series
(42, +1-scheme):
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And this is the series we obtain if we use (9) again in the recurrence of Theorem
3 (41, +2-scheme):
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4 Recurrences related to Glaisher’s and Wallis’s series

Glaisher’s series (2) can be written in the following form:
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The series on the right-hand side is the special case a = %, b= % of this series:
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In a similar way as in the previous sections we can prove the two recurrences
equivalent with (9) and (11) for ¢:
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Using only the last recurrence (40, +1-scheme) with a = % and b = % we get
the following new series:
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With the +1, 4+1-scheme we again obtain the series (12).
The series (3) can be rewritten like this:

where the series on the right is a special case of
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The 40, +1-scheme leads in this case to the series:
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With the +1, +1 —scheme we find this series:
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With these series we can prove (6):



Corollary 2
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Proof 1If we add (12) and (13), we get a new series:
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If we substract (13) from 6 times the previous series, the sum of the new series

is 1—6 and the polynomial in the numerator is given by:

6(—28n% +4n + 1) + 168n> + 200> — 2n — 1 = (42n + 5)(2n — 1)2.
Hence the resulting series is Ramanujan’s series (6).

Note that (3) can also be written in this form:

and hence is a special case (a = %7 b=
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The corresponding recurrences are:

) of this series:

Theorem 4
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v(a,b) =

v(a+1,D).

Proof We prove the first one. The second one follows by symmetry. Note that
the identity we want to prove can be rewritten like this:

v(a,b+1) = (a;b) (1— aJer(U(aab)—l))

o (@n(0+ Do _ (a+b)? a+b—1
;::0 (a+b+1)2 b2 <1 - b (v(a,b) — 1)> ]

or

We use the definition of the pochhammer symbol to rewrite the left-hand side
and at the same time we add a factor:

3 (@)n(b+1)n _ (a+b) 3 (@)n(b)n+1 (a+b+n—(a+n)).
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After simplifying and using the definition of v, what we have to prove becomes:
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Note that two sums cancel out, and we are left with:
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We multiply by b and rewrite the left-hand side:
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If we change the index of summation in the first term on the left, the b at the
right cancels out:

i (@)nt1(0)p1(b+n+1) i (@)nt1(b)n+1(b+n) i Jn+1(b n+1.
=0 (a + b)%+1 = (a + b)n+1 ot (a+b)? )21

It is now easy to see that both sides are equal.

Using the first recurrence in the same way as in Theorem 2, we get the following
result:

Theorem 5

oo
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An immediate consequence is (4):
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Proof We rewrite the right-hand side of (14) using Theorem 5

N J1+23+20) -2 (3)3
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Other consequences of Theorem 5 are:
Corollary 4
% i( H" (6n+1)(%)3 %_ Z 12n+1)(%)3
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Proof These series follow from the Wallis-type products for = which can be
found in [1] (see also [13], formulas (10), (11) and (19)):

sin(mm/k) ﬁnk+k—mnk+k+m
am/k nk+k nk+k

for m, k positive integers with m < k. The choice m = 1, k = 2 leads to Wallis’s
product. If we take m = 1, k = 3, the product takes this form:

3f 2-4 5-7 8-10

2r 33 6:6 9-9
As we did in the introduction with Wallis’s product, we can rewrite this prod-

uct as a series:
3\/3_1 1 24 2:4-5.7

or _?_32 62_32 62.92
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Using Theorem 5, we get the first formula. The second formula is found by
taking m = 1, k = 4, the third one by taking m =1,k = 5, and so on.

Concluding remarks.

1. The method used above to convert a product to a series can be applied
directly to Euler’s product formula for the sine-function:
o0 2
x
sinTx = mx H (1 — mQ>
m=1
The result is the following series:
. oo
S TL —T x
™ n.
n=0
which converges (by Raabe’s test) for all = # 0.
2. Applying Theorem 5 to (16) results in this series:
sinmz i(_l)n 2n+z (z)3
T z nld
n=0
It can be found in Dougall’s paper [4, p. 124 formula (16)]. All series in
Corollary 4 are special cases of this general formula.
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