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Abstract

Two-level orthogonal arrays of N runs, k factors and a strength of 3 provide suitable
fractional factorial designs in situations where many of the main effects are expected
to be active, as well as some two-factor interactions. If they consist of N/2 mirror
image pairs, these designs are fold-over designs. They are called even and provide
at most N/2 − 1 degrees of freedom to estimate interactions. For k < N/3 factors,
there exist strength-3 designs that are not fold-over designs. They are called even-
odd designs and they provide many more degrees of freedom to estimate interactions.
For N ≤ 48, attractive even-odd designs can be extracted from complete catalogs
of strength-3 orthogonal arrays. However, for larger run sizes, no complete catalogs
exist. In order to construct even-odd designs with N > 48, we develop an algorithm
for an optimal concatenation of strength-3 designs involving N/2 runs. Our approach
involves column permutations of one of the concatenated designs, as well as sign
switches of the elements of one or more columns of that design. We illustrate the
potential of the algorithm by generating two-level even-odd designs with 64 and 128
runs involving up to 33 factors, because this allows a comparison with benchmark
designs from the literature. With a few exceptions, our even-odd designs outperform
or are competitive with the benchmark designs in terms of the aliasing of two-factor
interactions and in terms of the available degrees of freedom to estimate two-factor
interactions.

Keywords: Even-odd design, generalized aberration, local search, second-order saturated,
two-factor interaction, variable neighborhood search
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1 Introduction

Two-level screening designs can be used as experimental plans to identify, from a list of

potentially influential factors, those that are indeed influential; see Mee et al. (2017) for a

recent review of these designs. Many two-level screening designs currently in use involve

orthogonal arrays (OAs). Denoting the two levels for each factor by −1 and +1, these OAs

have main effect contrast vectors that are level-balanced and orthogonal to each other.

This paper is motivated by two practical experiments involving many runs and factors

that were conducted using an OA. The first one is an enzyme stability experiment conducted

at TNO, Zeist, The Netherlands. In order to improve the stability of an enzyme in a watery

solution at room temperature, 17 possible additives were considered. The experiment

actually carried out had 64 runs. The second experiment involves a sensitivity analysis of

a simulation model for a software process (Houston et al., 2001), and used a design with 30

factors and 64 runs. In this paper, we propose a method to construct high-quality designs

for these two experiments. The method is suitable for constructing large two-level OAs

involving many runs and factors in general. We revisit the enzyme stability experiment and

the software process simulation experiment after introducing and evaluating our method.

OAs of strength t are such that all 2t level combinations of any set of t factors occur

equally often (Hedayat et al., 1999). Consequently, an OA of strength t has a run size

that is a multiple of 2t. A strength of 2 implies that main effect (ME) contrast vectors

are orthogonal to each other but not to two-factor interaction (2FI) contrast vectors. This

feature may make it hard to find out whether it is the main effect of one of the factors or the

interaction of two other factors that causes a change in the responses. On the positive side,

the run sizes of strength-2 OAs can be small. For example, the smallest 17-factor strength-

2 OA involves 20 runs; a 20-run 17-factor design that minimizes the aliasing between the

MEs and the 2FIs can be found in Sun et al. (2008). The smallest 30-factor strength-2

OA involves 32 runs. Textbooks such as Mee (2009) and Wu and Hamada (2009) provide

suitable design options for this case.

OAs of strength 3 allow the main effects to be estimated independently from the 2FIs.

They are attractive options whenever several 2FIs are suspected to be active, but they

have larger run sizes. For 17 and 30 factors, the smallest strength-3 OAs have 40 and 64
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runs, respectively. In general, for an N -run k-factor OA of strength 3, N ≥ 2k. Butler

(2004, 2007) showed that all strength-3 OAs for which k ≥ N/3 must be even designs,

which are also called fold-over designs (Cheng et al., 2008). In these designs, half of the

runs are mirror images of the other half, in the sense that the signs of the factor levels

are switched. A weakness of even designs is that they provide at most N/2− 1 degrees of

freedom for estimating 2FIs. For k < N/3 factors, there may be strength-3 designs that

cannot be constructed by folding over. These designs, called even-odd designs, generally

provide many more degrees of freedom for estimating 2FIs. Therefore, they are attractive

to experimenters who want to estimate a substantial number of interactions along with

the main effects. Due to the fact that their run size N should be larger than 3k, even-

odd designs must have at least 56 and 96 runs for experiments with 17 and 30 factors,

respectively.

Complete catalogs exist for two-level strength-3 OAs with up to 48 runs (Schoen et al.,

2010). Based on these catalogs, Schoen and Mee (2012) showed that, for run sizes of 32,

40 and 48, even-odd designs exist for up to 10, 10 and 14 factors, respectively. One way

to obtain even-odd k-factor strength-3 designs for which the number of runs is larger than

48 is to concatenate two different strength-3 designs involving N/2 runs and k− 1 factors,

which we call parent designs. Subsequently, a factor whose level equals −1 for the first N/2

runs and +1 for the last N/2 runs can be added to the concatenated design. Strength-3

designs constructed in this way have run sizes that are multiples of 16. This approach can

thus be used to construct even-odd 64-run and 128-run designs based on existing strength-3

designs with 32 and 64 runs, respectively.

Several authors have constructed even-odd designs using variants of the above general

approach. Li and Lin (2003), Li et al. (2003) and Cheng et al. (2008) concatenate two copies

of a single parent design and subsequently switch the signs of all elements in one or more

select columns of the second copy to improve the properties of the concatenated design.

Their approach involves a complete enumeration of all possible selections of columns in

which to switch the signs of the elements. Li and Lin (2016) suggested to also permute

the columns of the second parent design before switching the signs in the selected columns.

As a result, this approach also involves an enumeration of column permutations. In any
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case, the end product of the approaches of Li and Lin (2003), Li et al. (2003), Cheng et al.

(2008) and Li and Lin (2016) is a concatenation of a parent design with another design

that is isomorphic to that parent design (two OAs are said to be isomorphic if one array

can be obtained from the other by permuting rows or columns, and switching the signs

of the elements in one or more columns). There are two problems with these approaches.

First, it may not be optimal to concatenate two isomorphic designs. Second, for strength-3

designs with run sizes larger than 48, the numbers of factors may be too large to allow for

a complete enumeration of all possible sign switches and/or all column permutations. For

example, for 17 factors, there are 131, 072 possible sets of columns in which to switch the

signs and 3.55687× 1014 possible column permutations.

The first contribution of this paper is to develop an efficient algorithmic procedure to

construct even-odd designs by concatenating two strength-3 parent designs, which may

or may not be isomorphic. At present, our algorithmic approach requires designs of the

same run size and strength, but it can easily be adapted to concatenate designs of different

strengths and run sizes.

The second contribution of this paper is to generate new two-level concatenated designs

with 64 and 128 runs and up to 33 factors, for instance for the 17-factor enzyme stability

experiment and the 30-factor software process simulation experiment. We compare the

newly generated designs with the best designs from the literature. In addition to the

benchmark designs of Li and Lin (2016), our comparisons involve the regular 64-run designs

reported in Chen et al. (1993), the 17-factor 64-run design from Cheng et al. (2008), the

regular 128-run designs reported in Block and Mee (2005) and Xu (2009), the 64- and

128-run designs constructed by Xu and Wong (2007) using quaternary linear codes, and

the 64-run designs generated from projections of the folded-over 32-run Hadamard matrix

given by the Paley construction. To our knowledge, our study of the projections from this

folded-over 32-run Hadamard matrix is new to the literature. Most of our new designs

outperform or are competitive with the best known designs in the literature in terms of

the aliasing of two-factor interactions and in terms of the degrees of freedom they provide

to estimate two-factor interactions.

The rest of this paper is organized as follows. Section 2 presents classification criteria
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for strength-3 designs. Section 3 describes our algorithmic approach for concatenating

two strength-3 parent designs. Section 4 compares the new designs with 64 and 128 runs

with the benchmark designs from the literature. We return to the motivating examples

in Section 5, and conclude with a discussion and some suggestions for future research in

Section 6.

2 Classification of strength-3 designs

Orthogonal two-level designs of strength 3 are most commonly evaluated in terms of their

G-aberration and generalized resolution (Deng and Tang, 1999), their G2-aberration (Tang

and Deng, 1999), and the rank of the matrix consisting of the 2FI contrast vectors (Cheng

et al., 2008). We briefly review all of these criteria.

All but the last of the criteria are based on the Js-characteristics of s-factor interaction

contrast vectors. When coding the two levels of each factor as −1 and +1, any s-factor

interaction contrast vector involves the elements −1 or +1. Its Js-characteristic is the

absolute value of the sum of the vector’s elements. For strength-3 OAs, any J2- or J3-

characteristic is zero. Deng and Tang (1999) showed that the J4-characteristics of N -run

two-level strength-3 OAs necessarily equal N − 16q, where q is a non-negative integer. A

four-factor interaction contrast vector can be calculated as the product of two two-factor

interaction contrast vectors. Therefore, whenever a J4-characteristic of N occurs in an N -

run design, this implies that three pairs of two-factor interactions are completely aliased.

Whenever J4-characteristics of zero occur in a design, this implies that certain pairs of

two-factor interactions are not aliased at all. Intermediate J4-characteristic values imply

partially aliased two-factor interactions. The maximum J4 value for a given strength-3

design determines its generalized resolution. More specifically, the generalized resolution

equals 5−max(J4)/N for a strength-3 design. So, a large J4-characteristic implies a small

generalized resolution. Ideally, the generalized resolution of a design is large.

The frequencies of the Js-characteristics calculated for all s-factor interaction contrast

vectors are generally collected in a vector Fs. For strength-3 designs, the entries of the

F4 vector are the frequencies of the J4-characteristic values N , N − 16, N − 32, etc. The

frequency of the zero value is usually omitted. The concatenated vector (F4, F5, F6, . . . , Fk)
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is the confounding frequency vector (CFV) of a strength-3 k-factor design. Ideally, the

leftmost elements of the CFV are small, because this means that there is little severe

aliasing between the low-order interactions.

To determine the G-aberration of a k-factor design, all available designs are sorted

according to the entries of the CFV (F4, F5, F6, . . . , Fk), from left to right. The G-aberration

of the design is its ranking after the sorting procedure, and a minimum G-aberration design

has the best of the rankings. In this paper, we restrict our attention to the F4 vector,

because this vector quantifies the most serious aliasing in strength-3 designs, namely the

aliasing among the 2FIs.

Like the G-aberration, the G2-aberration is determined by sorting all available designs

according to a vector. The vector used for the G2-aberration is called the generalized

word length pattern (GWLP), (B1, B2, . . . , Bk), where Bi is the sum of the squared Ji-

characteristics divided by N2. A minimum G2-aberration design has the best of the rankings

after sorting all available designs according to the entries of the GWLP from left to right.

For strength-3 OAs, B1 = B2 = B3 = 0, and B4 > 0. The Bi values are called generalized

word counts. The most important of these is B4, because it quantifies the aliasing among

the 2FIs. Ideally, it is small.

Finally, strength-3 OAs permit the estimation of the intercept and all the main effects

simultaneously. The rank of the 2FI contrast matrix quantifies the number of degrees of

freedom available for estimating two-factor interactions (Cheng et al., 2008). In the rest of

this paper, we use the term ‘degrees of freedom for two-factor interactions’ to refer to this

criterion.

3 Algorithmic construction of even-odd designs

In this section, we first describe the principles to concatenate two orthogonal arrays of

strength 3. Next, we propose two interconnected algorithms to find an optimal permutation

of the columns of one of the two parent designs, and the best subset of columns for sign

switching. Our first algorithm is called the column change (CC) algorithm. It is a local

search algorithm making small structured changes to one of the parent designs. The CC

algorithm is embedded in a variable neighborhood search (VNS) algorithm that investigates
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increasingly diverse new versions of that parent design. The complete algorithm, called the

CC/VNS algorithm, reduces the number of evaluations needed to test column permutations

and subsets of columns in which to switch the signs. We conclude this section with an

evaluation of the CC/VNS algorithm and with a study concerning the choice of parent

designs.

3.1 Concatenation principles

Our CC/VNS algorithm concatenates two strength-3 orthogonal arrays, Du and Dl, which

both have N/2 runs and a given number of factors, say m. Adding the column z =

[1T
N/2,−1T

N/2]
T to the concatenated m-factor design generated by our algorithm results in

an N -run strength-3 design D with k = m + 1 factors. We call the added column the

indicator factor, because it identifies the two original OAs. The m 2FIs involving this

factor are all orthogonal to the 2FIs of the original factors. As a result, the B4 value and

the F4 vector of a concatenated design are not affected by adding the indicator factor. Since

a strength-3 orthogonal array with N/2 runs can accommodate at most N/4 factors, the

concatenated design has N runs and involves at most k = N/4 + 1 factors, including the

indicator factor. In this respect, our approach is similar to that of Cheng et al. (2008). We

refer to Du, Dl and D as the upper design, the lower design and the concatenated design,

respectively. We call Du and Dl parent designs.

The first step in the construction process is the selection of two strength-3 parent

designs with N/2 runs. The parent designs may or may not be isomorphic. One of the

parent designs serves as the upper design Du, while the other becomes the lower design

Dl. Which of the two parent designs is the upper and the lower design does not impact

the quality of the resulting concatenated design. Next, we permute the columns of Dl and

switch the signs of the elements in a certain number of columns of Dl, so as to improve the

concatenated design in terms of a desired criterion. We refer to the lower design produced

after switching the signs in a subset of its columns and applying a column permutation as

a plan for Dl.

Whenever m ≥ N/6, the N/2-run strength-3 parent designs for our procedure must be

even. Since sign switches and column permutations in the parent designs do not change
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their even nature, m-factor concatenated designs are also even when m ≥ N/6. A parent

design provides at most N/4 − 1 degrees of freedom for 2FIs. Therefore, m-factor con-

catenated designs provide at most 2(N/4 − 1) = N/2 − 2 degrees of freedom for 2FIs.

Concatenated even designs become even-odd only after adding the indicator factor. The

m 2FIs involving this factor can be estimated independently from all other 2FIs. Hence,

the maximum number of degrees of freedom for 2FIs is N/2− 2 + m when m ≥ N/6.

Concatenated designs with added indicator factors become second order saturated (SOS,

Cheng et al., 2008) if the number of main effects, m + 1, plus the number of degrees of

freedom for 2FIs equals N − 1. That can happen only if N/2− 2 + m = N − 1− (m + 1),

or m = N/4. Therefore, the concatenation of even designs with m < N/4 does not lead

to an SOS design, while the concatenation of even designs with m = N/4 may or may not

lead to an SOS design.

The total number of plans that can be obtained for a lower design Dl by permuting its

columns and switching signs in sets of columns is m! × 2m. Evaluating all possible plans

is computationally infeasible when m ≥ 10. Rather than completely enumerating all plans

for the lower design, our concatenation procedure uses the column change (CC) algorithm

embedded within a variable neighborhood search (VNS) algorithm.

Our CC/VNS algorithm improves the concatenated design either in terms of the F4

vector or in terms of the B4 value. By optimizing the F4 vector, the CC/VNS algorithm

also automatically maximizes the generalized resolution of the concatenated design.

3.2 Column change algorithm

Algorithm 1 shows our CC algorithm, which is a local search algorithm (Michalewicz and

Fogel, 2004) that evaluates changes to the current plan for the lower parent design in terms

of the B4 value or the F4 vector. We developed fast update procedures for the B4 value and

the F4 vector, so that the evaluation of the B4 value and the F4 vector can be done without

computing the 2FI contrast matrix from scratch for every change applied by the algorithm.

A detailed account of our update procedures is given in Section A of the supplementary

materials. Algorithm 1 requires two m-factor designs with N/2 runs as inputs.

The algorithm starts by switching the signs in the leftmost column of the current plan
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for the lower design Dl and evaluates the resulting concatenated design. If the change

does not yield an improvement, the algorithm starts evaluating swaps between the leftmost

column and the columns to its right; see lines 11–19 in Algorithm 1. Two types of swaps

are performed. The first swap involves the unmodified columns 1 and j, while the second

swap involves the original column 1 and the sign-reversed column j. As soon as these

modifications to the lower design result in an improvement of the concatenated design in

terms of the B4 value or the F4 vector, the improved design replaces the original and the

algorithm shifts its attention to the second column. First, it switches the signs in column 2

of the current plan for the lower design Dl and evaluates the resulting concatenated design.

If the sign switch does not yield a better concatenated design, the algorithm evaluates

swaps between column 2 and the columns to its right. This process is repeated for each of

the columns in the current plan for the lower design Dl, and it ends with an evaluation of

the concatenated design resulting from a sign switch of column m of the current plan for

Dl.

Each time a sign switch of a certain column i or a swap of it with one of the (pos-

sibly sign-reversed) columns to its right results in an improved concatenated design, the

algorithm continues its operations on this newly obtained improved design. The algorithm

therefore uses a first-improvement optimization strategy. The algorithm makes several

passes through all the columns and stops when no better plan can be found for the lower

design Dl. The output of Algorithm 1 is an improved plan D?
l of the original lower parent

design Dl.

3.3 Variable neighborhood search algorithm

Variable neighborhood search or VNS is a metaheuristic introduced by Hansen and Mladen-

ović (2001) as an improvement over local search algorithms for combinatorial optimization.

A weakness of a local search algorithm is that it may get stuck in a locally optimal solu-

tion instead of a global optimum because it does not examine all possible changes to the

existing solution. VNS attempts to overcome this weakness by systematically exploring

more than one neighborhood structure. A neighborhood structure is defined by a type of

change that can be made to a given solution s. Each allowable change is called a move.
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Algorithm 1: Pseudocode of the CC algorithm.

Input: Du and Dl

1 D?
l ← Dl

2 Set i← 1

3 repeat

4 for i = 1, . . . ,m do

5 Construct plan D′l by switching signs in column i of D?
l .

6 if concatenated design (Du, D
′
l) is better than (Du, D

?
l ) then

7 D?
l ← D′l

8 else

9 Set j ← i + 1

10 Set no improvement← True

11 while j ≤ m and no improvement do

12 Construct plan D+
l by swapping columns i and j of D?

l .

13 Construct plan D−l by switching the signs in column j of D?
l and

swapping the resulting column with column i.

14 Evaluate the concatenated designs (Du, D
+
l ) and (Du, D

−
l ).

15 Set D′l to be the best of the plans D+
l and D−l . If both concatenated

designs are equally good, select at random.

16 if concatenated design (Du, D
′
l) is better than (Du, D

?
l ) then

17 D?
l ← D′l

18 no improvement← False

19 j ← j + 1

20 until no change in D?
l

Output: Improved plan D?
l

All solutions s′ that can be reached by one move are said to be in the neighborhood N(s)

of s. The rationale for using more than one neighborhood is that a solution which is a

local optimum with respect to one neighborhood is not necessarily a local optimum with

respect to another neighborhood. For this reason, escaping from a locally optimal solution
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can be done by changing the neighborhood structure. Unlike many other metaheuristics,

VNS is simple to implement and requires few, and sometimes even no tuning parameters.

Moreover, Hansen et al. (2008) showed that the VNS framework is very general and can be

easily extended to integrate features from tabu search (Glover and Laguna, 1997), simulat-

ing annealing (Eglese, 1990), and other local search algorithms. VNS has been successfully

applied to a wide variety of optimization problems such as vehicle routing (Kytöjoki et al.,

2007), project scheduling (Fleszar and Hindi, 2004), automatic discovery of theorems (Ca-

porossi and Hansen, 2004), graph coloring (Avanthay et al., 2003), and synthesis of radar

polyphase codes (Mladenović et al., 2003).

On various occasions, VNS has also been used to construct experimental designs. For

instance, Garroi et al. (2009) proposed a VNS algorithm to compute D-optimal run orders

for response surface designs in the presence of serial correlation. More recently, Sartono

et al. (2015) and Syafitri et al. (2015) used VNS to construct fractional factorial split-plot

designs and optimal mixture designs in the presence of ingredient availability constraints,

respectively.

Our CC/VNS algorithm performs systematic changes to the lower parent design Dl so

as to minimize the F4 vector or the B4 value of the concatenated design. It involves two

main components: (i) four neighborhood structures to create neighboring plans from the

current best plan of Dl and (ii) the CC algorithm described in Section 3.2 to improve these

neighboring plans. Two plans A and B of the lower design are said to be neighboring plans

if A ∈ Ni(B) or B ∈ Ni(A) for a neighborhood structure Ni. Because of the two main

components of our CC/VNS algorithm, it belongs to the general class of VNS algorithms

in which a local search algorithm is used to improve the neighboring solutions created by

the neighborhood structures (Hansen et al., 2008).

The four neighborhood structures used by our CC/VNS algorithm are listed in Table 1

and start by modifying one, two, two and three columns, respectively. As a result, the four

neighborhoods explore increasingly diverse plans for the lower parent design Dl. Table 1

shows that the size of the first neighborhood structure increases linearly with the number

of factors m of the parent designs. For this reason, the size of this neighborhood structure,

N1, is denoted by O(m). The sizes of the second and third neighborhood structures, N2
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Table 1: Neighborhood structures of the CC/VNS algorithm.

Ni Size Description

N1 O(m) Switch signs of any column

N2 O(m2) Swap any two columns

N3 O(m2) Switch signs of any two columns

N4 O(m3) Choose any subset of three columns, move

the first two columns one position to the right

and move the third column to position 1

and N3, increase according to a second-order polynomial in m, which is why these sizes are

denoted by O(m2). The size of the last neighborhood, N4, increases according to a cubic

polynomial in m, which is denoted by O(m3).

The outline of our CC/VNS algorithm is shown in Algorithm 2. The input to the

algorithm is an upper parent design Du and a lower parent design Dl. The algorithm

begins by generating a starting plan for Dl in three steps; see lines 1 and 2 of Algorithm 2.

First, the signs of all elements in r randomly selected columns of Dl are switched, where

r is a random integer between 0 and m. Second, the columns of the resulting plan are

randomly permuted. Third, the resulting plan is optimized by the CC algorithm described

in Section 3.2.

After the starting plan of the lower design Dl has been generated, the CC/VNS algo-

rithm continues by exploring the first neighborhood structure (N1) of the starting plan. To

this end, it randomly selects a plan from the neighborhood and applies the CC algorithm

to it, to attempt to find a better plan for the lower parent design. If a better plan is indeed

found, the CC/VNS algorithm continues by exploring the first neighborhood structure of

the newly obtained improved plan. If the CC algorithm does not produce a better plan, a

second plan is selected from the first neighborhood structure of the starting plan and an

attempt is made to improve it using the CC algorithm. The exploration of the first neigh-

borhood structure of a given plan continues until all plans it contains have been optimized

by means of the CC algorithm. If this does not yield any better plan than the current
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Algorithm 2: Pseudocode of the CC/VNS algorithm.

Input: Du and Dl

1 Rl ← Random plan for Dl

2 Generate starting plan D∗l using the CC algorithm and Du and Rl as input.

3 Set i← 1

4 while i ≤ 4 do

5 Set improvement← False

6 repeat

7 Randomly select a plan Sl from Ni(D
∗
l ).

8 Generate an improved plan D′l using the CC algorithm and Du and Sl as

input.

9 if concatenated design (Du, D
′
l) is better than (Du, D

∗
l ) then

10 D∗l ← D′l

11 improvement← True

12 i← 0

13 until no unexplored plans left in Ni(D
∗
l ) or improvement

14 i← i + 1

Output: concatenated design (Du, D
∗
l )

best one, the algorithm starts exploring the second neighborhood structure (N2), in the

same fashion. As soon as the exploration of the second neighborhood structure results

in an improved plan, the CC/VNS algorithm returns to the first neighborhood structure

and explores that first neighborhood structure of the improved plan. If the exploration of

the second neighborhood structure does not produce any improved plan, the third neigh-

borhood structure (N3) is explored, and, if that does not lead to any improved plan, the

fourth neighborhood structure (N4) is explored. The process is repeated until no further

improvement can be reached. In the course of the optimization, each neighborhood struc-

ture involves high-quality neighbors of the current best plan for the lower parent design,

which has a positive impact on the performance of our CC/VNS algorithm.

Finally, to increase the likelihood of finding a globally optimal plan for the lower parent
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design, the CC/VNS algorithm is repeated a number of times, each time starting from a

randomly generated plan for the lower parent design. This multi-start procedure in the

algorithmic construction is common to virtually all design construction algorithms in the

literature. Eventually, the overall best plan found for the lower parent design over all

iterations is reported.

A Matlab implementation of the CC/VNS algorithm is included in the supplementary

materials of this paper. Matlab allows parallel computations to decrease the calculation

time. For specific parent designs, we present a comprehensive evaluation of the neigh-

borhood structures of the CC/VNS algorithm and the computing times in Supplementary

Section B. A key result from our evaluation is that each of the four neighborhoods of the

CC/VNS algorithm contributes significantly to the quality of the concatenated designs

generated.

3.4 Performance of the CC/VNS algorithm

In this section, we first evaluate the performance of our CC/VNS algorithm to generate

the best 32- and 64-run concatenated designs with up to 11 factors from strength-3 regular

designs with 16 and 32 runs. To this end, we compare our concatenated designs to those

obtained by Li and Lin (2016). Next, we assess the performance of our algorithm to generate

the best 128-run concatenated designs with up to 30 factors from regular and nonregular

designs of strength 3 with 64 runs.

3.4.1 Comparison with a benchmark approach

We first evaluate the potential of our CC/VNS algorithm by testing whether it is able

to match or even improve the results of Li and Lin (2016, LL16), using the strength-3

parent designs they used. LL16 constructed 32-run designs with up to 9 factors and 64-run

designs with up to 12 factors by concatenating regular resolution IV 2m−p designs with

16 runs and up to 8 factors and regular resolution IV 2m−p designs with 32 runs and up

to 11 factors, respectively. They used the same design as upper parent design Du and as

lower parent design Dl and searched for a plan for Dl that sequentially minimizes the CFV

of the concatenated design. For this reason, we now focus on the minimization of the F4
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vector, which is the most important component of the CFV for strength-3 designs. LL16

showed that, when the same regular 2m−p design is used as upper and lower parent design,

the number of computations required to evaluate all possible sign switches of columns can

be reduced from 2m to 2p. For parent designs with up to 9 factors, they evaluated all

m! × 2p possible plans for Dl. Evaluating all m! column permutations for parent designs

with more than nine factors was computationally infeasible. For this reason, for ten factors

or more, they used a large number of randomly chosen permutations instead of all possible

permutations. They ran their enumeration program for 10- and 11-factor parent designs

for 168 hours and reported the best results found. They did not report the computing

times for the complete enumeration of concatenated designs based on parent designs with

up to 9 factors.

The results of 1,000 iterations of the CC/VNS algorithm applied to the cases of LL16

are shown in Table 2. The computing times for the 6-, 7-, and 8-factor designs were less

than a second per iteration on a standard CPU (Intel(R) Core(TM) i7 processor, 2.8 Ghz,

8 GB). For 9 factors or more, the computing times ranged from 1 to 6 seconds per iteration.

The first column of the table shows the run size N of the concatenated design. The

second column shows the parent designs used for the concatenation in the form m-p.z,

where m is the number of factors, p is the number of generators of the design and z is

the ranking of the design according to the aberration criterion (Chen et al., 1993). The

third column presents the frequencies Fmax
4 of the largest values of the J4-characteristics

of the concatenated designs. The largest J4-characteristic equals 16 for the best 32-run

designs we found and 32 for the best 64-run designs, except for the designs constructed

from the parent designs 7-2.1 and 7-2.2. These parent designs resulted in 64-run designs in

which all J4-characteristics equal zero. As a result, all designs we found have a generalized

resolution of at least 4.5. None of the 32-run designs we obtained have J4-characteristics of

32, so that there is no complete aliasing between 2FIs. For all 64-run designs we obtained,

F4(64, 48, 16) = (0, 0, 0), meaning that J4-characteristics of 64, 48 and 16 do not occur.

So, there is also no complete aliasing between 2FIs in the 64-run designs. The F4 vectors

of the best designs we obtained coincide with those found by LL16, except for the 11-

factor 64-run design based on parent design 11-6.2. The design produced by our CC/VNS
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algorithm outperforms the benchmark design of LL16, for which F4(32) = 46. For our

design, F4(32) = 44. So, in our design, there is less aliasing between the 2FIs.

The fourth column of Table 2 shows the percentage of iterations during which the

CC/VNS algorithm was able to find the best F4 vector. For all but three of the cases

in Table 2, this percentage equals 100. In other words, the CC/VNS algorithm generally

obtained the best possible concatenated design at each iteration. For the parent designs

7-2.1, 10-5.4 and 11-6.2, the percentages were 88.1, 96.8 and 65.9, respectively. These large

percentages imply that it is almost certain that 10 iterations of the CC/VNS algorithm

suffice to find the best concatenated design. As a matter of fact, even for the worst

case in Table 2, the probability to obtain the best design at least once in 10 iterations is

1 − (1 − 0.659)10 ≈ 1. Remarkably, in each iteration where the CC/VNS algorithm failed

to find the best design with F4(32) = 44 for this case, it produced LL16’s design with

F4(32) = 46. This shows that, even when the algorithm fails to find the best design, it

produces a high-quality alternative.

Column 5 of Table 2 shows the number of plans for the lower parent design Dl explored

by the algorithm, relative to m! × 2p and expressed as a percentage. In all but one case,

less than 40% of the total number of plans are evaluated by the CC/VNS algorithm. The

exception is parent design 6-2.1, for which the CC/VNS algorithm evaluated 34% more

plans than a complete enumeration would (6! × 22 = 2880). However, in each iteration

of the CC/VNS algorithm, the CC algorithm provided a starting plan with an optimal F4

vector. Constructing this plan only required 2.35% of the total number of evaluations. The

additional computations are due to the CC/VNS algorithm’s visits to the four neighborhood

structures, to confirm the excellent quality of the starting solution produced by the CC

algorithm.

Our comparison with the benchmark approach and the comprehensive evaluation of

the CC/VNS algorithm in Section B of the supplementary materials allows us to conclude

that our CC/VNS algorithm creates high-quality concatenated designs using a considerably

smaller computing effort than that needed by LL16.
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Table 2: Results produced by the CC/VNS algorithm for 32-run and 64-run concatenated

designs constructed from regular resolution IV designs. The labels of the parent designs are

those used by Chen et al. (1993). Fmax
4 represents the frequency of the largest values of the

J4-characteristics. The number of plans evaluated to find the optimal F4 vector is expressed

as a percentage of the total number of possible plans averaged over 1,000 iterations.

N Parent Fmax
4

Percentage of Percentage of

iterations plans

32 6-2.1 4 100 134.104

7-3.1 12 100 18.953

8-4.1 24 100 2.132

64 7-2.1 0 88.1 24.580

7-2.2 0 100 27.421

7-2.3 4 100 39.416

8-3.1 4 100 4.643

8-3.2 6 100 4.765

8-3.3 8 100 4.649

8-3.4 12 100 4.492

9-4.1 8 100 0.448

9-4.2 12 100 0.441

9-4.3 12 100 0.464

9-4.4 16 100 0.444

9-4.5 24 100 0.419

10-5.1 16 100 0.036

10-5.2 24 100 0.036

10-5.3 26 100 0.037

10-5.4 30 96.8 0.044

11-6.1 42 100 0.002

11-6.2 44 65.9 0.003
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3.4.2 Performance for 128-run designs

We also tested the potential of the CC/VNS algorithm by constructing 128-run designs

involving 10, 15, 20, 25 and 30 factors from 64-run parents. We obtained suitable 10-,

15-, 20-, 25- and 30-factor parent designs from the complete collection of regular 64-run

resolution IV 2m−p designs (Chen et al., 1993), the collection of nonregular designs based

on quaternary linear codes (QLC) found by Xu and Wong (2007), and the 64-run designs

generated from projections of the folded-over 32-run Hadamard matrix given by the Paley

construction (Sloane, 1999).

Supplementary Section B shows our detailed results for 100 iterations of the CC/VNS

procedure, for the case where we optimized the B4 value of the concatenated designs as

well as for the case where we optimized the F4 vector. When optimizing the B4 value of

designs with up to 20 factors, the best design was found in 65% or more of the iterations of

the CC/VNS algorithm. The cases with 25 and 30 factors were clearly more challenging, as

the success rate dropped to values as low as 6% and 13% for these cases. When optimizing

the F4 vector, the success rates are even lower than that, due to the fact that optimizing

the F4 vector is harder than optimizing the B4 value. The small probability of identifying

the best concatenated design is not a major problem, because, whenever it fails to find the

best design, the CC/VNS algorithm still produces a high-quality concatenated design with

the same generalized resolution as the best one and with a B4 value and an F4 vector that

are only slightly worse than those of the best concatenated design. From our results, we

concluded that 10 iterations will generally suffice to find a high-quality 128-run design. In

the event there are no more than 20 factors, that design will most likely be the best.

For all cases studied here, only a very small proportion (generally much smaller than 1%)

of all possible plans for the lower parent design Dl are evaluated by the CC/VNS algorithm

when constructing the concatenated design. The computing times for optimizing the B4

value ranged from 1 to 709 seconds for one iteration of the algorithm. For optimizing the

F4 vector, the computing times varied from 2 to 904 seconds per iteration, for up to 20

factors. For 25 and 30 factors, the computing times went up to 3.3 hours.
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3.5 Choice of parent designs

To investigate how the quality of concatenated designs depends on the choice of the parent

designs, we constructed 64- and 128-run concatenated designs with parent designs that

differ in G- or G2-aberration. The parent designs we used in this study to construct 64-run

designs were selected from the complete catalog of 32-run strength-3 designs (Schoen et al.,

2010) with 8, 10, 12, 14 and 16 factors, while the parent designs we used to construct

128-run designs were selected from the complete catalog of regular 64-run resolution IV

2m−p designs (Chen et al., 1993) with 16, 18 and 20 factors. In this section, we discuss

the results for concatenated designs with 10 factors and 64 runs, as well as those for

concatenated designs with 16 factors and 128 runs. Results for all other cases follow the

same pattern and allow for the same conclusions.

The complete catalog of 32-run designs with 10 factors includes 32 designs. Their

B4 values range from 10 to 18 and the frequencies of the J4-characteristics of 32 range

from 1 to 18. The complete catalog of 64-run regular designs with 16 factors includes 48

designs. Their B4 values and, equivalently, the frequencies of the J4-characteristics of 64

range from 43 to 105. From each of these two catalogs, we selected a set of five parent

designs to construct F4-optimized concatenated designs and a set of five parent designs for

B4-optimized concatenated designs. For B4-optimized concatenated designs, the selected

parent designs were the best and worst designs according to the G2-aberration criterion and

those corresponding to the first, second and third quartiles in that ranking. For minimizing

the F4 value, we selected the designs in a similar fashion based on the G-aberration criterion.

We concatenated all 15 possible pairs of the five selected parent designs, including pairs of

the same designs.

Table 3 shows the results for 100 iterations of the CC/VNS algorithm when the objective

is to minimize the B4 value. The table shows that the smallest B4 values in the 64- and

128-run concatenated designs result from concatenating two copies of the minimum G2-

aberration designs. Concatenating minimum G2-aberration designs with any of the four

other designs results in larger B4 values for the concatenated designs. Table 3 also shows

that using bad 32- and 64-run designs in terms of the G2-aberration criterion, such as the

worst design (W) and the design corresponding with the third quartile (Q3) of the G2-
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aberration ranking, generally results in 64- and 128-run designs with the largest B4 values.

It is interesting to mention though that the 64-run concatenated design constructed from

the 32-run parent designs B and Q2 has a better B4 value than the concatenated design

constructed from the parent designs B and Q1, even though design Q2 has a worse G2-

aberration than design Q1. This implies that the G2-aberration ranking of the parent

designs does not necessarily agree with the ranking of the resulting concatenated designs

in terms of the B4 value.

Table 3: B4 values for the B4-optimized concatenated designs with 64 and 128 runs. The

symbols B, Q1, Q2, Q3 and W correspond to the best ranked design, the designs corre-

sponding to the first, second and third quartiles and the worst ranked design, respectively,

in terms of G2-aberration.

(a) 10 factors and 64 runs

Parents B Q1 Q2 Q3 W

B 4

Q1 5.69 6

Q2 5.5 6.19 6

Q3 5.63 6.31 6.38 6.38

W 6 6.69 7 7.13 7.5

(b) 16 factors and 128 runs

Parents B Q1 Q2 Q3 W

B 17

Q1 21.75 20

Q2 22 25.25 25

Q3 23 26.25 26 27

W 32.5 33.75 36.5 37.5 45

Table 4 shows the results for 100 iterations of the CC/VNS algorithm when the objective

is to minimize the F4 vector. The conclusions that can be drawn from that table are similar

to those for the B4-optimized concatenation. That is, better parent designs in terms of the

F4 vector lead to better F4 vectors for the concatenated designs. For instance, the table

shows that concatenating two copies of the best parent design with 32 runs leads to a 64-

run concatenated design without any J4-characteristic of 64 and a generalized resolution

as large as 4.75. For the 128-run design case, concatenating two copies of the best 64-

run regular design leads to a much lower frequency of the J4-characteristics of 64 than

concatenating any other pair of selected parents.

The specific cases discussed here as well as our more comprehensive study of the relation
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Table 4: Frequencies of J4-characteristics of 32 and 64 for the F4-optimized concatenated

designs with 64 and 128 runs, respectively. The symbols B, Q1, Q2, Q3 and W correspond

to the best ranked design, the designs corresponding to the first, second and third quartiles

and the worst ranked design, respectively, in terms of G-aberration.

(a) 10 factors and 64 runs

Parents B Q1 Q2 Q3 W

B 0

Q1 2 4

Q2 4 6 8

Q3 7 9 12 16

W 14 15 19 24 30

(b) 16 factors and 128 runs

Parents B Q1 Q2 Q3 W

B 72

Q1 89 96

Q2 90 105 108

Q3 94 109 110 116

W 134 147 150 156 196

between the quality of concatenated designs and the choice of the parent designs permit

the following conclusion: Concatenating the best parent designs in terms of the G- and

G2-aberration generally leads to the best concatenated designs in terms of the F4 vector

and B4 value, respectively. For this reason, when constructing concatenated designs using

our CC/VNS algorithm, we recommend to use the best parent designs available in terms

of the desired optimization criterion.

4 Results

Encouraged by the test results, we used the CC/VNS algorithm to generate two-level even-

odd designs for run sizes 64 and 128, based on the best parent designs available with

32 and 64 runs, respectively. A detailed description of the parent designs is included in

Supplementary Section C. Tables showing the sign switches and permutations in the lower

parent design along with the full F4 vectors of the concatenated designs are presented in

Supplementary Section D. In the present section, we discuss the most important features of

the concatenated designs and compare them with benchmark designs from the literature.

For each combination of number of runs and number of factors, we considered several
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pairs of attractive parent designs. We concatenated each pair of attractive parent designs

to investigate which pair gives rise to the best concatenated design. For each given pair of

parent designs, we used 40 iterations of the CC/VNS algorithm when the objective was to

minimize the B4 value and 10 iterations when the objective was to sequentially minimize

the F4 vector. We used a larger number of iterations when minimizing the B4 value because

calculating the B4 value is computationally less demanding than calculating the F4 vector,

especially when the number of factors exceeds 20 (see Supplementary Section A). After

running the CC/VNS algorithm, we constructed our final k-factor design by adding the

indicator factor to the resulting m-factor concatenated design. Section D of the supplemen-

tary materials shows that nine of our best 66 concatenated designs are constructed from

different, non-isomorphic parent designs. In all other cases, the upper and lower parent

designs were isomorphic.

4.1 64 runs

Table 5 shows the B4 value, the generalized resolution (GR), the frequency of the largest

J4-characteristic (Fmax
4 ) and the degrees of freedom for two-factor interactions (df) of 48

64-run designs involving 9–17 factors. It should be pointed out that comparing the Fmax
4

values of two designs only make sense if they have the same GR value and thus the same

maximum J4-characteristic. In that case, the design with the smaller Fmax
4 value has the

better F4 vector of the two.

The tabulated results are for the best concatenated designs the CC/VNS algorithm

produced in terms of the F4 vector (denoted by CC/F4) and in terms of the B4 value

(denoted by CC/B4). The parent designs we used as inputs were the best designs from the

enumeration of Schoen et al. (2010); see Supplementary Section C. The table also includes

the following benchmark designs:

• The regular designs listed by Chen et al. (1993). The designs included in the table

have the smallest possible B4 value and, subject to this, the largest number of degrees

of freedom for 2FIs. Therefore, they are either minimum aberration designs (denoted

by MA) or alternative designs with a larger number of degrees of freedom for 2FIs

than the MA design (denoted by EST).
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• The QLC designs of Xu and Wong (2007). We denote the QLC design with the best

B4 value as QLC/B4 and the design with the best F4 vector as QLC/F4. We use the

label QLC whenever there is a single design that is best in terms of the B4 value and

in terms of the F4 vector.

• The 17-factor design of Cheng et al. (2008), denoted by CMY.

• The best projections of the folded-over 32-run Paley matrix.

The third column of Table 5 shows whether the designs are admissible (Sun et al., 1997),

meaning that they are not dominated by another design when considering the B4 value,

the generalized resolution, the F4 vector and the degrees of freedom for 2FIs. A design

that is dominated by another design is called inadmissible. For example, the 9-factor MA

design has the same B4 value as the CC/B4 design, but its GR value and number of degrees

of freedom for 2FIs are lower (note that the Fmax
4 value for the MA design should not be

compared to that of the CC/B4 design, because the GR value and thus also the maximum

J4-characteristic are different for the two designs). Therefore, the 9-factor MA design is

inadmissible.

Overall, 31 of the 48 64-run designs under comparison are admissible. Table 5 shows

that all but two of the designs produced by the CC/VNS algorithm are admissible. The 10-

factor CC/F4 design is inadmissible because it is dominated by the CC/B4 design, while the

14-factor CC/B4 design is inadmissible because it is dominated by the QLC design. There

are seven inadmissible QLC designs, all of which are dominated by the CC/B4 designs.

Three regular MA designs are inadmissible as they are dominated by the CC/B4 design,

and one regular EST design is inadmissible because it is dominated by the QLC design.

The 9-, 10- and 11-factor designs based on the folded-over Paley matrix are dominated by

the CC/F4 designs. Finally, the 17-factor CMY design is dominated by the CC/B4 design.

Using the folded-over 32-run Paley matrix always results in the largest generalized

resolution of 4.75, but, for 9, 10 and 11 factors, the CC/B4 and/or the CC/F4 design

have the same generalized resolution, a better F4 vector and a larger number of degrees of

freedom for 2FIs. For larger numbers of factors, the CC/VNS algorithm does not produce

designs with that large a generalized resolution, because the CC/VNS algorithm involves
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Table 5: 64-run designs involving 9–17 factors. B4 values rounded to nearest integer. CC/B4:

design by CC/VNS under B4 optimization; CC/F4: design by CC/VNS under F4 optimization;

MA: regular minimum aberration design; EST: regular design with same B4 value as MA design,

but larger number of degrees of freedom for 2FIs; QLC: design based on quaternary linear code

with best B4 value and F4 vector; QLC/B4: QLC design with best B4 value; QLC/F4: QLC

design with best F4 vector; CMY: design from Cheng et al. (2008); P: projection of folded-over

32-run Paley matrix; a: design permits estimation of all 2FIs; s: SOS design.

k Construction Admissible B4 GR Fmax
4 df k Construction Admissible B4 GR Fmax

4 df

9 CC/B4a Yes 1 4.75 16 36 14 CC/B4 No 22 4.5 88 43

MA No 1 4 1 33 EST No 22 4 22 45

QLCa No 1 4.5 4 36 QLCs Yes 14 4.5 56 49

P No 4 4.75 58 31 P Yes 33 4.75 526 31

CC/F4a Yes 1 4.75 16 36 CC/F4 Yes 24 4.5 24 43

10 CC/B4a Yes 2 4.75 32 45 15 CC/B4 Yes 33 4.25 8 44

MA No 2 4 2 39 MA Yes 30 4 30 43

QLC No 2 4.5 8 39 QLC No 33 4 21 43

P No 6 4.75 96 31 P Yes 45 4.75 726 31

CC/F4 No 2 4.75 32 44 CC/F4 Yes 35 4.5 38 44

11 CC/B4 Yes 4 4.5 16 48 16 CC/B4 Yes 45 4 9 45

MA No 4 4 4 44 MA Yes 43 4 43 43

QLC No 4 4.5 16 47 QLC/B4 No 47 4 31 43

P No 10 4.75 160 30 QLC/F4 No 60 4 28 31

CC/F4 Yes 7 4.75 108 40 P Yes 61 4.75 978 31

12 CC/B4 Yes 10 4.5 21 41 CC/F4 Yes 49 4.5 57 45

MA Yes 6 4 6 50 17 CC/B4s Yes 60 4 12 46

QLC Yes 6 4.5 24 48 CMYs No 60 4 28 46

P Yes 16 4.75 252 31 MA Yes 59 4 59 43

CC/F4 Yes 11 4.5 5 41 QLC/B4 Yes 59 4 59 43

13 CC/B4 Yes 15 4.5 36 42 QLC/F4 No 64 4 40 43

ESTs Yes 14 4 14 50 P Yes 80 4.75 1286 31

QLC Yes 10 4.5 40 48 CC/F4s Yes 65 4.5 83 46

P Yes 23 4.75 370 31

CC/F4 Yes 16 4.5 10 42
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strength-3 parent designs and the folded-over Paley matrix is essentially a concatenation

of two strength-2 designs.

For 9 and 10 factors, the B4 values we obtained are the minimum values possible (Xu,

2005). For 12–14 and 17 factors, the B4 values of the designs produced by the CC/VNS

algorithm are larger than those of the QLC designs and/or those of the regular MA or

EST designs. This might imply that we did not use the best possible input designs for the

CC/VNS algorithm. However, it is impossible to split the 64-run QLC designs with 12–14

and 17 factors into two strength-3 designs, so that these designs cannot be constructed by

concatenating two strength-3 32-run designs. Likewise, it is not possible to split the regular

resolution IV designs with 12, 13, 15, 16, and 17 factors into two strength-3 32-run designs.

Therefore, the fact that the CC/VNS algorithm did not produce designs with lower B4

values should not be viewed as a weakness of the algorithm, but as a consequence of our

focus on concatenating strength-3 designs.

The column labeled df in Table 5 shows that the CC/VNS algorithm produces designs

with 9–11 and 15–17 factors that provide at least as many degrees of freedom for 2FIs as

the best benchmark designs. For 12–14 factors, the numbers of degrees of freedom for 2FIs

of the CC/B4 and CC/F4 designs are smaller than those of the regular designs and the

QLC designs. However, the numbers of degrees of freedom for 2FIs of the concatenated

designs with 12–14 factors are the maximum numbers obtainable by concatenating even

parent designs; see Section 3.1. As there are no even-odd strength-3 parent designs with

32 runs and more than 10 factors, it is not possible to construct concatenated designs with

larger numbers of degrees of freedom for 2FIs for these cases when using strength-3 designs

as parent designs.

Table 5 also identifies designs with which all 2FIs are estimable as well as SOS designs.

The CC/VNS algorithm produced 9- and 10-factor designs which allow all 2FIs to be

estimated. Our 17-factor designs, the 17-factor design of Cheng et al. (2008), the 13-factor

regular resolution IV design, and the 14-factor QLC design of Xu and Wong (2007) are

SOS designs. The 13- and 14-factor SOS designs cannot be constructed by concatenating

two strength-3 designs.
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4.2 128-run designs

The parent designs we used for the CC/B4 designs with 128 runs were the 64-run reg-

ular minimum aberration designs (Chen et al., 1993), the 64-run QLC designs (Xu and

Wong, 2007), and our own 64-run designs that minimize the B4 value. For the 128-run

concatenated designs that optimize the F4 vector, the parent designs we used were the

best projections of the folded-over 32-run Paley matrix and the 64-run concatenated de-

signs produced by the CC/VNS algorithm. A detailed report of the best 128-run designs

we obtained and their parent designs is given in Sections C and D of the supplementary

materials.

4.2.1 10–15 factors

It is known that strength-4 128-run designs exist with up to 15 factors; see Hedayat et al.

(1999) for the construction of the 15-factor design. These designs necessarily consist of two

concatenated strength-3 64-run designs augmented with an indicator factor. Therefore,

provided the right strength-3 64-run parent designs are used as input, the CC/VNS algo-

rithm should be able to construct strength-4 128-run designs. This proved to be the case

for our CC/B4 designs with 10–15 factors and our CC/F4 designs with 10 and 11 factors

constructed using QLC and CC/B4 parent designs with 64 runs. For 12–15 factors, our

CC/F4 designs only have a resolution of 4.75. The parents of these strength-3 designs are

the best projections of the folded-over 32-run Paley matrix and our CC/F4 designs with

64 runs.

Supplementary Section E provides a comprehensive discussion of the strength-4 de-

signs. It compares the 10- and 11-factor regular resolution V designs, the QLC designs

involving 10–15 factors and the minimum G-aberration designs we identified based on the

complete catalog of 128-run strength-4 OAs produced by Schoen et al. (2010). To the best

of our knowledge, we are the first to identify the minimum G-aberration 128-run designs

of strength 4.
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4.2.2 16–33 factors

Table 6, which has the same format as Table 5, shows the main results for designs with

16–33 factors. The table includes our own concatenated designs as well as the following

benchmark designs:

• The regular designs listed by Xu et al. (2009). The designs we used as benchmarks

have the smallest possible B4 value and, subject to this, the largest number of degrees

of freedom for 2FIs. Therefore, they are either MA or EST designs.

• The QLC designs of Xu and Wong (2007).

Table 6 includes 84 designs, 19 of which are inadmissible. Seven of the 36 designs

produced by the CC/VNS algorithm are inadmissible. The 16-factor CC/B4 design is

dominated by the QLC/F4 design. The CC/B4 designs involving 17, 22–24, 26 and 27

factors are dominated by the corresponding QLC/B4 designs. The regular (MA or EST)

designs for 16, 17, 20, 21 and 22 factors are dominated by the corresponding QLC/B4

designs and the 26-, 27- and 28-factor regular designs are dominated by the corresponding

QLC designs. Four QLC designs are inadmissible: the QLC/B4 designs for 29 and 30

factors are dominated by the MA designs, while the QLC/F4 designs for 21 and 30 factors

are dominated by the CC/B4 designs. The table further suggests that the QLC/F4 design

with 30 factors is also dominated by the CC/F4 design, but this is due to the rounding of

the B4 value to the nearest integer.

All CC/F4 designs outperform all benchmark designs as well as the CC/B4 designs in

terms of generalized resolution. Therefore, all CC/F4 designs are admissible. Except for

the 12-factor case, the best parent designs for the CC/F4 designs are the 64-run designs

generated from projections of the folded-over 32-run Paley matrix. So, all but one of the

CC/F4 designs are constructed from a Paley-based design. If we denote the number of

factors from that parent design by m, then we can verify in the column labeled df in

Table 6 that the degrees of freedom for 2FIs is 2× 31 + m for each CC/F4 design.

The fact that our CC/B4 designs involving 16, 17, 22–24, 26 and 27 factors are inad-

missible is not due to a bad choice of strength-3 parent designs. To reach this conclusion,

we verified that none of the 128-run QLC designs can be split in two 64-run strength-3
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designs according to one of their factors. Therefore, the 128-run k-factor QLC designs,

say, cannot be constructed by concatenating two strength-3 designs with k− 1 factors and

adding the indicator factor. If it were possible to construct k-factor 128-run QLC designs

by concatenating two 64-run strength-3 parents, then these parents should also involve k

factors. Now, 64-run strength-3 parent designs involving 22 factors or more are necessar-

ily even designs. Since concatenating two even designs results in a design that is even

too, the QLC designs for 22 factors or more, which are even-odd, cannot be constructed

by concatenating two strength-3 designs. For the 16-factor and 17-factor cases, even-odd

parent designs do exist. If a construction by concatenation of the strength-3 QLC designs

were possible, we should be able to extend the 16-factor and 17-factor designs with an

extra factor that indicates the parent designs, and the extended designs should also have a

strength of 3. We tried to extend the 16-factor and 17-factor designs using the algorithm

of Schoen et al. (2010), but it did not produce an extension in 6 hours of computing time,

while it normally takes less than a second to extend similar designs with 64 runs. For

this reason, we conjecture that the 128-run QLC designs with 16 and 17 factors cannot be

constructed by concatenating strength-3 designs. So, the reason why many of our CC/B4

designs are inadmissible is that we restrict ourselves to strength-3 parent designs and not

that the CC/VNS algorithm performs poorly.

Table 6 shows that we were able to find designs with 18, 20, 21 and 30–33 factors which

provide more degrees of freedom for 2FIs than the benchmark designs. The two 33-factor

designs we obtained and one of our 21-factor designs are SOS designs. The same goes for

the 28-factor design of Xu and Wong (2007) and the regular resolution IV designs with 25

and 29 factors.

The CC/VNS algorithm enabled us to add 11 admissible CC/B4 designs and 18 ad-

missible CC/F4 designs to the literature on 128-run designs. We also found that certain

designs from the literature are inadmissible when considering the generalized resolution,

the B4 value, the F4 vector and the degrees of freedom for 2FIs.
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5 Practical examples

We now return to the enzyme stability experiment and the software process simulation

experiment that motivated this paper. For each of the two experiments, we explore several

64- and 128-run design options.

5.1 The enzyme stability experiment

The goal of the enzyme stability experiment was to improve the stability of an enzyme in a

watery solution at room temperature. There were 17 experimental factors, which indicated

the presence or absence of 17 possible additives. The experiment involved small test tubes

with the enzyme and the additives. The tubes were stored at room temperature for eight

weeks, and sampled at the start of the study and after 15, 30 and 60 days to check enzyme

activity. A total of 64 combinations of the stabilizer was practically feasible, so that a

64-run design was used.

Table 7 shows 11 design options for the enzyme stability experiment. Designs with 64

runs available in the literature were the regular 64-run MA designs (Chen et al., 1993), the

QLC designs (Xu and Wong, 2007), and the 17-factor design of Cheng et al. (2008), denoted

as CMY in the table. We were reluctant to use the designs from the literature because they

have 28 or more J4-characteristics of 64, so that many pairs of 2FIs are completely aliased.

Via an ad hoc procedure, we derived design X, which has only three J4-characteristics of

64. Its complete F4 vector is F4(64, 48, 32, 16) = (3, 6, 125, 625). So all the 64-run designs

from the literature as well as design X have a generalized resolution of 4. Design X was

the one eventually used for the experiment.

Table 7 includes three 64-run candidate designs for the enzyme stability experiment

from our work for the present paper: the CC/B4 design, the CC/F4 design, and a design

obtained by folding over the 32-run Paley matrix (design P in the table). It turns out that

the 64-run CC/F4 design dominates design X, so that the ad hoc design actually used is

inadmissible. The CMY design is also inadmissible because it is dominated by our CC/B4

design. In hindsight, we should perhaps have opted for the design obtained by folding over

the 32-run Paley matrix, because of its large generalized resolution and the implication that

the maximum J4-characteristic value is only 16 for that design. The Paley-based design
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Table 7: Design options for the 17-factor enzyme stability experiment.

N Design B4 GR Fmax
4 df

64 X 76 4 3 34

CMY 60 4 28 46

MA 59 4 59 43

QLC/B4 59 4 59 43

QLC/F4 64 4 40 43

CC/B4 60 4 12 46

CC/F4 65 4.5 83 46

P 80 4.75 1286 31

128 QLC/B4 15 4 3 102

QLC/F4 16 4.5 48 99

CC/F4 28 4.75 189 78

provides 31 degrees of freedom for estimating 2FIs. This number compares rather poorly

with the designs from the literature and with the CC/VNS designs. However, for the

enzyme stability case, substantially fewer important interactions than 31 were expected, so

that 31 degrees of freedom for estimating 2FIs would have been amply sufficient.

When discussing supersaturated designs, Marley and Woods (2010) argue that the

degrees of freedom available for model selection should be at least half the number of

eligible terms. As the strength-3 designs studied here are supersaturated for the 2FIs,

heeding the advice of these authors in an unrestricted search for 2FIs (i.e., without imposing

heredity) would require at least
(
17
2

)
/2 = 68 degrees of freedom for the 2FIs. Obviously,

64-run experiments are not large enough to provide this number of degrees of freedom. For

this reason, we also study several admissible 128-run options that are compatible with the

advice of Marley and Woods (2010). These design options are shown in the last three lines

of Table 7. As minimizing the correlations among the 2FI contrast vectors reduces the

ambiguity in the interpretation of the results, we prefer the 128-run CC/F4 design, despite
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the fact that it has the smallest number of degrees of freedom for estimating 2FIs of the

three 128-run design options. By construction, the 128-run CC/F4 design has an indicator

factor whose interactions with the 16 other factors can be estimated independently. As the

total number of degrees of freedom for estimating interactions is 78 for that design, this

leaves 62 degrees of freedom for the remaining 120 2FIs. This is compatible with the advice

of Marley and Woods (2010).

5.2 The software process simulation experiment

The second motivating experiment is discussed in Houston et al. (2001) and is concerned

with a sensitivity analysis of a simulation model for a software process. One of the designs

used had 30 factors and 64 runs. Houston et al. (2001) mention that it was a regular design

constructed using statistical software, but they do not provide any further details. Given

that complete catalogs of regular 64-run designs of strength 3 have been available since

1993 (Chen et al., 1993), they might have used the 64-run 30-factor minimum aberration

design. Table 8 shows the properties of that option, along with those of an alternative

based on the folded-over 32-run Paley matrix and several admissible 128-run options.

Both 64-run design options listed for the software process simulation experiment are

constructed by folding-over a strength-2 design. Both designs provide 31 degrees of freedom

for estimating 2FIs and have a B4 value of 945. However, the MA design is inadmissible

because its GR value is smaller than that of the Paley-based design. So, the latter design

is a better alternative for the software process simulation experiment. Given that there are

435 2FIs when 30 factors are studied, it is impossible to analyze the interactions without

imposing restrictions such as strong heredity, which implies that a 2FI should be considered

for inclusion in the fitted model only if both of its parent MEs are active. One option is to

conduct the analysis of the MEs and the 2FIs in two successive steps, and to impose strong

heredity restrictions in the second step (Miller and Sitter, 2001). The analysis would be

compatible with the advice of Marley and Woods (2010) if the number of active MEs turns

out to be at most 11.

Table 8 also lists three admissible design options with 128 runs. The number of degrees

of freedom for estimating 2FIs of these designs is more than twice as large as that for
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Table 8: Design options for the 30-factor software process simulation experiment.

N Design B4 GR Fmax
4 df

64 MA 945 4 945 31

P 945 4.75 15120 31

128 CC/B4 386 4 70 91

MA 335 4 335 87

CC/F4 396 4.75 3280 91

the listed 64-run options. Therefore, under strong heredity, model selection based on the

128-run designs would be compatible with the advice of Marley and Woods (2010) if the

number of active MEs identified in the first step turned to be at most 19 (8 more than

for the 64-run design options). Among the 128-run designs in Table 8, we would prefer

CC/F4 design because it minimizes the correlations between pairs of 2FIs contrast vectors

and because it has the largest number of degrees of freedom for estimating 2FIs.

6 Discussion

In this paper, we introduced the CC/VNS algorithm to optimize the concatenation of two

strength-3 orthogonal arrays. The algorithm employs sign switches and column permuta-

tions to minimize the aliasing among the two-factor interactions in the concatenated design.

Using the CC/VNS algorithm, we generated two-level even-odd designs with 64 and 128

runs and up to 33 factors. Sixteen out of the 18 newly generated 64-run designs and 29

out of the 36 newly generated 128-run designs were admissible in terms of the aliasing of

two-factor interactions and in terms of the degrees of freedom for estimating two-factor

interactions when compared with benchmark designs from the literature.

All but one of our 64-run designs have a smaller G-aberration than the designs of

Chen et al. (1993), Block and Mee (2005), Xu and Wong (2007), and Xu (2009). We

obtained the best 64-run designs in terms of the generalized resolution from projections
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from the folded-over 32-run Hadamard matrix given by the Paley construction. However, a

drawback of these designs is that they are even. Therefore, they provide at most 31 degrees

of freedom for estimating two-factor interactions. The even-odd 64-run designs we obtained

by sequentially minimizing the F4 vector for 9–11 factors have a better G-aberration than

those based on the folded-over Paley matrix.

The 128-run designs we obtained by sequentially minimizing the F4 vector for 16–33

factors have a better generalized resolution than all alternative designs available from the

literature. We recommend the use of these designs when the experimenter’s interest is in

minimizing the correlation between pairs of two-factor interaction contrast vectors.

The indicator factor with N/2 positive ones and N/2 negative ones causes even concate-

nated designs, produced by concatenating two even parent designs, to become even-odd,

and, for k = N/4+1 factors, to be second order saturated. When based on even-odd parent

designs, concatenated designs can be even-odd without the inclusion of the indicator fac-

tor. Even-odd and SOS designs are attractive for estimating models including all the main

effects and a considerable number of two-factor interactions. Alternative nonorthogonal

designs to estimate interactions can be found in Li and Nachtsheim (2000), Smucker et al.

(2011), Smucker et al. (2012), and Smucker and Drew (2015).

Selection strategies for models with main effects and interactions can be found in Drag-

uljić et al. (2014), for instance. Alternatively, one might conduct a two-stage analysis

similar to the one proposed by Miller and Sitter (2001). In the first stage of their proposed

analysis, the active main effects are identified, while, in the second stage, only two-factor

interactions obeying effect heredity are studied. An interesting subject for further research

is to improve this approach by taking into account the independence of the two-factor

interactions involving the indicator factor in our concatenated designs.

The indicator factor can also be used as a blocking factor to arrange the concatenated

design in two blocks of size N/2. This blocking factor is orthogonal to the main effects and

to all second-order interactions of the remaining factors. Thus, the upper parent design

Du and the optimal plan for the lower parent design Dl can be run on two different days

or machines, offering more flexibility for the experimentation.

If the concatenated design is made up from non-isomorphic parent designs, we recom-
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mend to run the parent design with the smallest B4 value first, or the one with the best F4

vector, or the the largest number of degrees of freedom for estimating interactions, depend-

ing on the interest of the experimenter. There are four cases in which our 64-run designs

are constructed from non-isomorphic parent designs and five cases in which our 128-run

designs are constructed from non-isomorphic parents. Details are given in Supplementary

Section D.

Finally, the CC/VNS algorithm may be able to improve on the designs with 64 and

128 runs of Xu and Wong (2007) in terms of G2-aberration, by concatenating strength-2

parent designs instead of strength-3 parent designs. The main challenge here is to identify

the ideal strength-2 parent designs. This would be an interesting topic for future research.

Since our algorithmic approach is very general, it would also be interesting to investigate

the concatenation of orthogonal arrays of different strengths and even different sizes. In

addition, the parent designs considered could include nonorthogonal arrays, multi-level

arrays or mixed-level arrays.

SUPPLEMENTARY MATERIALS

Supplementary sections.pdf Objective functions and fast update methods; algorithm

performance evaluation; parent designs; concatenated designs; 128-run designs of

strength 4.

Programs.zip Matlab implementation of the CC/VNS algorithm.
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