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Abstract

Recently, we have used a projection operator to fix the number of particles in a second

quantization approach in order to deal with the canonical ensemble. Having been ap-

plied earlier to handle various problems in nuclear physics that involve fixed particle

numbers, the projector formalism was extended to grant access as well to quantum-

statistical averages in condensed matter physics, such as particle densities and correla-

tion functions. In this light, the occupation numbers of the subsequent single-particle

energy eigenstates are key quantities to be examined. The goal of this paper is 1) to pro-

vide a sound extension of the projector formalism directly addressing the occupation

numbers as well as the chemical potential, and 2) to demonstrate how the emerging

problems related to numerical instability for fermions can be resolved to obtain the

canonical statistical quantities for both fermions and bosons.

Keywords: quantum statistics, canonical ensemble, fermions, bosons

1. Introduction

In a previous paper [1] we proposed a projection operator for dealing with the par-

ticle number constraint in the framework of the canonical ensemble (CE). As a result,

a transparent integral representation was obtained for the partition function ZN(β) 1 of
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1The interpretation of β should be handled with care. Thermal equilibrium means that the internal energy

UN is stable in time, and β is in essence a Lagrange multiplier for imposing that stability, rather than a
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N identical indistinguishable fermions or bosons:

ZN(β) =
1

2π

∫ π

−π
G(β, θ) e−iNθ dθ ; G(β, θ) = Tr

(
e−βĤeiN̂ θ

)
, (1)

in which the Hamiltonian Ĥ and the number operator N̂ are of course assumed to be

compatible operators. The trace of G(β, θ) is to be taken over the entire Fock space

and the angular integration takes care of the projection onto the N-particle subspace.

Whereas the formal aspects of the corresponding projection operator have been dis-

cussed extensively in Ref. [1], it should be noted that the core of the projector technique

essentially reduces to a well-known integral interpretation of the Kronecker delta,

δn,m =
1

2π

∫ π

−π
ei(n−m)θ dθ, (2)

holding for any two integers n and m. Moreover, the sharply imposed restriction to the

N-particle subspace entails a major difference between the CE and the grand-canonical

ensemble (GCE): whereas the latter merely fixes the expectation value of the parti-

cle number operator N̂, the former is exclusively pointing to the particular subspace

addressed by an eigenvalue N of N̂.

In principle, the projector approach is applicable to interacting particles, but ex-

actly solvable systems of this kind are extremely rare. Mostly, one has to rely on

perturbational or variational treatments, starting from non-interacting particles with

supposedly known eigenstates and energy levels. As an example, we quote various

studies [2, 3, 4, 5, 6, 7] having applied the projector operator technique in a quite ben-

eficial and successful way. Furthermore, the extension [1] of the method enabling the

explicit calculation of correlation functions, paved the way towards systematic explo-

rations in condensed matter physics. A workable and reliable algorithm yielding the

particle occupation numbers (or, equivalently, the distribution functions) is paramount

in this respect, while being the main subject of this paper. In order to keep the course

of the theory self-contained, we briefly return to the very basics of the projector for-

malism.

given quantity. The internal energy UN (β) = −d(ln(ZN (β)))/dβ is in fact the fixed quantity. This correct

interpretation of the principle of maximum entropy in thermal equilibrium was treated in Appendix A of [1].
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Given a system of non-interacting bosons or fermions, the Hamiltonian Ĥ and the

number operator N̂ can then be expressed in terms of the single-particle energy spec-

trum ǫk, where k denotes any set of generic quantum numbers properly labeling the

single-particle energies:

Ĥ =
∑

k

n̂kǫk ; N̂ =
∑

k

n̂k ; n̂k = c†k ck, (3)

where the creation and destruction operators c†k and ck satisfy appropriate (anti)commuta-

tion relations, i.e.

ĉ†k ĉ†k′− ξĉ†k′ ĉ†k = ĉkĉk′− ξĉk′ ĉk = 0 ; ĉkĉ†k′− ξĉ†k′ ĉk = δk,k′ ; ξ =



+1 for bosons,

−1 for fermions.
(4)

As detailed in [1], the projector formalism enables an unrestricted summation over the

occupation numbers nk entering the expression for G(β, θ):

G(β, θ) = Tr
(
e−βĤeiN̂ θ

)
=

∏

k


∑

nk

exp ((iθ − βǫk)nk)

 . (5)

Summing nk from 0 to∞ for bosons, and from 0 to 1 for fermions, readily gives

G(β, θ) =
∏

k

(
1 − ξ exp (iθ − βǫk)

)−ξ . (6)

It should be noted, however, that the geometric series 2 leading to (6) for bosons

(ξ = +1), only converges if | exp(iθ − βǫk)| < 1 holds for all k. The angular integration

can equivalently be expressed as a complex contour integral along a circle with radius

r enclosing the origin:

ZN(β) =
1

2πi

∮

|z|=r

G̃ (β, z)
zN+1 dz ; G̃(β, z) =

∏

k

(
1 − ξze−βǫk

)−ξ
. (7)

2 Remarkably, the common ratio of a similar geometric series appearing in the grand-canonical partition

function crucially depends on the grand-canonical chemical potential µ̄(N). More specifically, as conver-

gence requires the common ratio to be smaller than 1, µ̄(N) is bound to be located below ǫ0. The latter, in

turn, requires that the single-particle ground-state energy be strictly positive. In this light, it is explicitly

assumed that ǫ0 > 0 until the recurrence relations for the partition function and the occupation numbers

are established. Afterwards, a simple gauge transformation consisting of a constant energy shift can be

performed to generalize the results to the case of arbitrary, but finite values of ǫ0.
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The radius r should be chosen small enough to ensure that the contour |z| = r does

not enclose any of the poles of G̃(β, z) appearing in the case of bosons. Though being

a useful starting point for further investigations, the above integral representations do

not generally lead to closed form expressions for ZN or quantities derived from it. As

an exception, we mention the special case of one-dimensional harmonic oscillators 3

that was solved analytically upon invoking two Euler identities [1]. Unfortunately,

we overlooked the magisterial treatment of non-interacting fermions with equidistant

single-particle energies by Schönhammer [8], that turns out to remain quite relevant to

the present paper.

Although the projection operator approach was applied to derive generic expres-

sions for the two- and four-point correlation functions, no detailed explicit results were

reported in [1]. In section (2) we derive numerically tractable recurrence relations for

both the chemical potentials and the occupation numbers, the latter being needed cru-

cially to compute the correlation functions. In the same section we remedy the numeri-

cal instabilities that were prohibitive for extending the number of particles at will in the

case of fermions [1]. In particular, new results are presented addressing not only the

occupation numbers but also the dependence of the chemical potential, the Helmholtz

free energy, the internal energy and the entropy of the two-dimensional electron gas

(2DEG) on the particle number.

2. Occupation numbers and chemical potential

Consider the occupation number gk,N(β), defined as the expectation value
〈
ĉ†k ĉk

〉
β,N

of the N-particle system (3):

gk,N(β) = −1
β

1
ZN(β)

∂ZN(β)
∂ǫk

. (8)

3 Formula (25) in [1] contains a serious misprint, and should read

ZN (β) =
1

∏N
k=1

(
1 − e−kβ~ω

) ×



e−Nβ~ω/2 for bosons,

e−N2β~ω/2 for fermions.
(25)
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Temporarily disregarding the trivial result gk,N=0(β) = 0, one readily obtains from the

representation (7)

gk,N(β) =
e−βǫk

ZN(β)
1

2πi

∮

|z|=r>0

G̃(β, z)
1 − zξe−βǫk

1
zN dz. (9)

Because of the pole of order N in the origin, the residue theorem yields

gk,N(β) =
1

ZN(β)
e−βǫk

(N − 1)!
∂N−1

∂zN−1

G̃(β, z)
1 − ξze−βǫk

∣∣∣∣∣∣
z=0
. (10)

Using ∂ j

∂z j
1

1−az =
j!a j

(1−az) j+1 and ∂nG̃(β,z)
∂zn

∣∣∣∣
z=0
= n! Zn(β) in Leibniz’ differentiation rule for

function products, one ends up with

gk,N(β) =
N∑

j=1

ξ j−1e− jβǫk
ZN− j(β)
ZN(β)

. (11)

Separating the first term ( j = 1) and substituting j→ j−1 into the remaining sum, one

immediately recognizes a recurrence relation

gk,N(β) =
(
1 + ξgk,N−1(β)

)
e−βǫk

ZN−1(β)
ZN(β)

, (12)

that was earlier obtained by Schmidt [9] and exploited by Schönhammer to treat fermionic

systems (ξ = −1) (see Eq. (19) of [8]).

If ǫk=0 had to be shifted to a positive value in order to avoid spurious poles in the

complex plane, one might choose to undo the corresponding gauge transformation at

this point since all complex integrations required to set up the recurrence relation are

carried out.

Introducing the standard definition of the chemical potential 4 in the CE,

µN (β) = FN+1(β) − FN(β) with ZN(β) = e−βFN (β), (13)

and using
∑

k gk,N(β) = N, one obtains

gk,N = e−β(ǫk−µN−1) (1 + ξgk,N−1
)
, (14)

e−βµN−1 =
1
N

∑

k

e−βǫk
(
1 + ξgk,N−1

)
, (15)

4In Eq. (12) of [8] FN − FN−1 was used to define µN , rather than Eq. (13) in the current paper.
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where the temperature parameter β (considered to be fixed for the time being) was omit-

ted as an argument for the sake of notation’s simplicity in the subsequent calculations.

The initialization of the above recurrence relations is simple:

gk,0 = 0 ; e−βµ0 =
∑

k

e−βǫk . (16)

Note that eβµN−1 is the basic numerical quantity for implementing the recurrence rela-

tions. At the end of the calculations the chemical potential itself and, hence, also the

free energy can be easily obtained.

Anticipating the numerical implementation, the relation to the GCE may be ben-

eficially established at this point by comparison with the distribution function of the

GCE, i.e.

fk(µ) =
1

eβ(ǫk−µ̄N ) − ξ ;
∑

k

fk(µ̄N) = N, (17)

where µ̄N (to be distinguished from µN) denotes the chemical potential in the GCE.

For arbitrary values of N and N′ the relation between gk,N−1 and fk(µ̄N′ ) can be

further elucidated. Assuming the validity of the generic inequality, 0 ≤ gk,N−1 ≤ gk,N ,

recurrence relation (14) immediately implies

gk,N−1 ≤ fk(µN−1). (18)

Furthermore, using the identity 1 = (eβ(ǫk−µN−1)−ξ) fk(µN−1) to replace 1 in the factor (1+

ξgk,N−1) of (14), we are left with an alternative formulation of the original recurrence

relation:

gk,N = fk(µN−1) + ξe−β(ǫk−µN−1) (gk,N−1 − fk(µN−1)
)
. (19)

Combining (19) with (18) for fermions, we may infer gk,N ≥ fk(µN−1), thus arriving at

fk(µ0) 6 gk,1 6 · · · 6 fk(µN−1) 6 gk,N 6 fk(µN) 6 · · · for fermions. (20)

For bosons (ξ = +1) we were unable to find a similar ladder relation, but the inequal-

ity (18) can now be replaced by a stronger one:

gk,N 6 fk(µN−1) for bosons. (21)

At this point, the simultaneous treatment of bosons and fermions becomes a hindrance

rather than a convenience and, hence, we treat fermions and bosons separately in the

following sections.

6



3. Boson occupation numbers

For bosons (ξ = +1), the recurrence relations (14) and (15) now become

gk,N = e−β(ǫk−µN−1) (1 + gk,N−1
)
, (22)

e−βµN−1 =
1
N

∑

k

e−βǫk
(
1 + gk,N−1

)
. (23)

As commonly known, the GCE chemical potential that fixes the average number of

particles rather than the actual, integer number of particles, does not exceed the single-

particle ground state energy ǫ0. Accordingly, it is quite tempting to consider ǫ0 as

well as a rigorous upper bound for any µN , although the formal proof turns out to be

less trivial than in the GCE case (see Appendix A). The restriction µN < ǫ0 ensures the

numerical stability of the encoded recurrence relations (22–23), although one may have

to remedy some overflow and underflow deficiencies appearing in the case of extremely

low temperatures.

As an example, we treat bosonic harmonic oscillators, omitting however the vac-

uum energy for the sake of simplicity in the subsequent work. If desired, it can be

restored at the end of the calculations. Accordingly, we consider the Hamiltonian

Ĥ =
∑

k

ǫkc†kck, (24)

where the components of k are non-negative integers and the energy spectrum is given

by

ǫk = ~ω
D∑

j=1

k j ; k j = 0, 1, · · · ,∞. (25)

D is the spatial dimension (1, 2 or 3 at will). In view of the rapidly growing degeneracy,

it proves more natural to relabel the single-particle energy levels in terms of a shell

index q, pointing to an energy shell of states that share a common energy ǫ̃q with a

dimension dependent degeneracy dq:

q = 0, 1, 2, 3, . . . ; ǫ̃q = ~ωq ; dq =



1 if D = 1,

q + 1 if D = 2,

(q + 1)(q + 2)/2 if D = 3.

(26)
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The occupation numbers gk,N having the same degeneracy as ǫk, g̃q,N denotes the oc-

cupation number of any particular state in the energy shell ǫ̃q, that, in turn, determines

the energy occupation probability pq,N of all energy levels in shell q:

pq,N =
1
N

dqg̃q,N . (27)

The recurrence relations (22–23) for g̃q,N become

g̃q,N = e−β(~ωq−µN−1)
(
1 + g̃q,N−1

)
, (28)

e−βµN−1 =
1
N

∞∑

q=0

dqe−β~ωq
(
1 + g̃q,N−1

)
, (29)

and are now initialized by

g̃q,N=0 = 0 ; g̃q,N=1 = e−β~ωqeβµ0 = e−β~ωq
(
1 − e−β~ω

)D
, (30)

where the required summation in µ0(β) = −(1/β)
∑

k e−βǫk , as appearing in Eq. (16),

was done analytically.

In one dimension (D = 1), one can check by induction that

g̃q,N

∣∣∣
1D =

N∑

j=1

e−β~ωq j
N∏

m=N+1− j

(
1 − e−β~ωm

)
, (31)

eβµN
∣∣∣
1D = 1 − e−β~ω(N+1), (32)

which is useful to monitor the numerical recursion work, because it is tractable with

symbolic algebra with only 2 independent parameters, namely N and the dimensionless

temperature τ = 1/(β~ω).

For 100 oscillators the energy occupation numbers for the 1D case and the 3D case

are shown in Fig. (1) and Fig. (2). Apparently, the profiles of the latter case attain

maximum levels as a direct consequence of the non-trivial 3D degeneracy factors dq.

The evolution of the chemical potential (in units of ~ω) as a function of the number of

particles is shown in Fig. (3) for 1D, and in Fig. (4) for 3D (solid lines). For the sake of

comparison, also the corresponding GCE chemical potentials are shown. As expected,

the chemical potentials of the CE deviate noticeably from their GCE counterparts for

relatively small numbers of bosons. The difference can be explained by the observation
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that the GCE standard variation of the particle number operator N̂ can be neglected with

respect to the expectation value of N̂ only for sufficiently large numbers of particles,

whereas the CE standard variation equals zero for all N by construction.

τ = 50
τ = 30
τ = 10

Occupation probability versus shell index

q

p q
,N
=

10
0

1D bosons

7006005004003002001000

10−2

10−4

10−6

10−8

Figure 1: Probability pq,N of occupying energy level ǫ̃q for 100 1D harmonic oscillators as a function of the

shell index q, given three values of the dimensionless temperature τ = 1/(β~ω).

Furthermore, as an illustration, we have shown the temperature dependence of the

chemical potential and the internal energy UN = 〈Ĥ〉N for 10, 100 and 1000 3D har-

monic oscillator bosons in Fig. (5) and Fig. (6) respectively. As expected, the bosonic

nature is most pronounced in the low temperature regime (τ < 4), whereas the inter-

nal energy matches the classical limit, i.e. UN(τ) → 3N~ω/(exp(−1/τ) − 1) at high

temperatures.

4. Fermion occupation numbers

For fermions (ξ = −1) the recurrence relations (14–15) obviously read

gk,N = e−β(ǫk−µN−1) (
1 − gk,N−1

)
, (33)

e−βµN−1 =
1
N

∑

k

e−βǫk
(
1 − gk,N−1

)
. (34)
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τ = 50
τ = 30
τ = 10

Occupation probability versus shell index

q

p q
,N
=

10
0

3D bosons

450400350300250200150100500

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 2: Probability pq,N of occupying energy level ǫ̃q for 100 3D harmonic oscillators as a function of the

shell index q, given three values of the dimensionless temperature τ = 1/(β~ω).

For the sake of convenience but without loss of generality, we may assume that k ex-

clusively runs through non-negative integers labeling the energy eigenvalues ǫk in as-

cending order and starting at ǫ0 = 0.

The recursive solution of (33) and (34) is prone to numerical errors that propagate

with k, while being proportional to e−β(ǫk−µN−1). Dealing with fermions, however, we

must abandon the requirement that the chemical potential be restricted to values below

ǫ0 = 0, and realize that the sign of ǫk −µN−1 determines the magnitude of the numerical

errors appearing in the recursive flow. Clearly, the error level decreases provided that

µN−1 < ǫk for all k, i.e. as long as µN−1 < 0. For sufficiently large N, however, the

Helmholtz free energy attains a minimum, say at N = Nmin, beyond which FN > FN−1

and, hence, µN−1 > 0 holds. Phrased otherwise, once N > Nmin, the chemical poten-

tial crosses the energy spectrum and, in particular, the low energy section below µN−1

causes the errors to grow exponentially. Moreover, the expression for e−βµN−1 in (34)

shows that µN−1 greedily accumulates the numerical errors on gk,N−1. This explains in

depth the numerical accuracy problem encountered in [1] where the recurrence relation

for the partition function was directly addressed.
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τ = 50
τ = 30
τ = 10

Chemical potential versus number of particles

N

µ
N
/~
ω

1D bosons

100806040200

0

−50

−100

−150

−200

Figure 3: Scaled chemical potential µN/(~ω) for 1D bosonic harmonic oscillators as a function of the number

of particles, given three values of the dimensionless temperature τ = 1/(β~ω). Solid and dashed curves

correspond to CE and GCE results respectively.

For a typical 2DEG at room temperature and contained in a rectangle 0 6 x 6 Lx,

0 6 y 6 Ly, we found that Nmin = 374 for Lx = Ly = 100 nm. Bearing the latter

in mind as well as the gradual deterioration of the results for gk,N and its cumulative

effect on µN−1, to be expected when N exceeds Nmin, one may now understand why the

results become totally unreliable and numerically unstable for N > 520 (even yielding

negative values for the partition function). Being attributed loosely to the infamous

sign problem for fermions [1], this issue is now clarified in greater detail by the error

analysis of (33–34).

Fortunately, the narrow boundaries (20) enable detection and correction of any er-

roneous behavior of µN−1 at an early stage if the temperature is not extremely low. (In

that case a suitable Sommerfeld expansion might be appropriate.) When the inequality

gk,N−1 < fk(µN−1) is violated for the first time at k = 0, the relative error on e−βµN−1

is still small. Since this happens for N ≫ 1, we may anticipate the detrimental ac-

cumulation of numerical errors by exploiting the observation that the canonical distri-

bution function converges to the grand-canonical one, when N grows arbitrarily large.
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τ = 50
τ = 30
τ = 10

Chemical potential versus number of particles

N

µ
N
/(
~
ω

)

3D bosons

100806040200

0

−100

−200

−300

−400

−500

−600

Figure 4: Scaled chemical potential µN/(~ω) for 3D bosonic harmonic oscillators as a function of the num-

ber of particles, given three values of the normalized temperature τ = 1/(β~ω). Solid and dashed curves

correspond to CE and GCE results respectively.

N = 1000
N = 100
N = 10

Chemical potential versus temperature

τ = 1/(β~ω)

µ
/~
ω

3D bosons

1086420

5
0
−5
−10
−15
−20
−25
−30
−35
−40
−45
−50

Figure 5: Scaled chemical potential µN/(~ω) for 3D bosonic harmonic oscillators as a function of the nor-

malized temperature τ = 1/(β~ω), given three values of N, the number of particles.
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N = 1000
N = 100
N = 10

Internal energy per particle versus temperature

1/(β~ω)

U
N
/(

N
~
ω

)

3D bosons

1086420

30

25

20

15

10

5

0

Figure 6: Scaled internal energy U/(N~ω) for 3D bosonic harmonic oscillators as a function of the normal-

ized temperature τ = 1/(β~ω), given three values of N, the number of particles.

Full knowledge of f (µ̄), though, would require us to solve the transcendental equation
∑

k fk(µ̄(N)) = N for µ̄ = µ̄(N), the grand-canonical chemical potential compatible with

N particles. However, a first order Taylor expansion

fk(µ) = fk(µ̄) +
(
µ − µ̄) d fk(µ)

dµ

∣∣∣∣∣∣
µ=µ̄

+ O
((
µ − µ̄)2

)

→ fk(µ) ≈ fk(µ̄) + β
(
µ − µ̄) eβ(ǫk−µ̄)

(
fk(µ̄)

)2 (35)

provides a sufficiently accurate approximation in most circumstances.

Let Nc be the lowest value of N for which the preceding occupation number gk=0,Nc−1

erroneously exceeds fk=0(µ̄(Nc − 1)) in the course of the recursion. Imposing the sum

rule
∑

k fk(µNc−1) = Nc − 1 in (35) then gives the correction

βµNc−1 = βµ̄(Nc − 1) +
Nc − 1 −∑

k fk(µ̄(Nc − 1))
∑

k eβ(ǫk−µ̄(Nc−1)) ( fk(µ̄(Nc − 1))
)2 . (36)

For N > Nc, the recursion (33) of course becomes increasingly inaccurate, but since

this is a regime of slowly varying µN with N, we keep using (35), with µ̃ and µ being
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replaced respectively by µN−1 and µN . Summing over k one thus finds

N > Nc : βµN = βµN−1 +
1

∑
k eβ(ǫk−µN−1) ( fk(µN−1)

)2 . (37)

At any stage of the calculation one easily monitors the quality of the approach by

checking whether
∑

k gk(µN) = N remains valid. In case of failure however, we have

no alternative approach available so far, and we are left with the fermion sign problem

remaining unresolved for that particular case.

In order to test the procedure, we first apply it to a two-dimensional (2D) electron

gas for which Schönhammer [8] has developed an alternative approach by linearizing

its energy spectrum. Comparison with our approach (see below) shows an excellent

agreement.

5. Two-dimensional electron gas – linearized energy spectrum

Consider again a 2D electron gas in a rectangle 0 6 x 6 Lx, 0 6 y 6 Ly, with

periodic boundary conditions imposed on the single-electron wave functions. Before

linearization, the energy spectrum (3) is expressed in terms of 2D wave vectors kx,y =

2πnx,y/Lx,y as

ǫk → ǫnx ,ny =
~2

2me


(

2πnx

Lx

)2

+

(
2πny

Ly

)2 ; nx, ny = 0,±1,±2, . . . (38)

where me denotes the electron effective mass. Since we are dealing with fermions

(ξ = −1), the recurrence relations (14–15) obviously read

gk,N = e−β(ǫk−µN−1) (1 − gk,N−1
)

; eβµN =
N + 1∑

k e−βǫk
(
1 − gk,N

) . (39)

While being valid for fermions with an arbitrary single-particle spectrum, the recur-

rence relation (39) turns out to coincide 5 with the one obtained by Schönhammer in

Eq. (19) of Ref. [8], when applied to fermions with a linear energy spectrum. Focus-

ing on the latter, we note that the density of states in 2D wave vector space equals

LxLy/(2π)2. On average, a circle with radius K thus encloses nK = πK2LxLy/(2π)2

5Schönhammer adopts the definition µN = FN − FN−1 , whereas we use µN = FN+1 − FN .
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states, the single-particle energy on the edge of the circle thus being ǫK = ~2K2/(2me) =

2π~2nK/(meLxLy). For sufficiently large wave vectors, the single-particle energies can

therefore be replaced by a linearized spectrum

ǫ̃n = n∆ ; ∆ =
2π~2

meLxLy
; n = 0, 1, 2, · · · , (40)

resulting in the following recurrence relation, replacing (39)

glin
n,N = e−β(n∆−µlin

N−1)
(
1 − glin

n,N−1

)
, (41)

eβµ
lin
N =

N + 1
∑∞

n=0 e−βn∆
(
1 − glin

n,N

) . (42)

Clearly, the mere introduction of the linearized spectrum does not offer any improve-

ment on the numerical accuracy. The latter goal may be reached most easily by imple-

menting the analytical results obtained by Schönhammer [8]. Although it is tempting to

translate his formulas literally, some care is required because he considers a spectrum

ǫi = i∆, i = 1, 2, · · · . Of course, a gauge transformation relates both approaches, but

applying it in detail to all intermediate relations and quantities is not a trivial task. In-

stead, a careful recalculation adopting the notation of (40) and following the approach

we proposed in Sec. 4 of [1], yields the following results for the CE partition function

Zlin
N , the free energy F lin

N , the internal energy U lin
N and the chemical potential µlin

N ,

Zlin
N = e−βN(N−1)∆/2

N∏

n=1

1
1 − e−βn∆

, (43)

F lin
N =

1
2

N(N − 1)∆ +
1
β

N∑

n=1

ln
(
1 − e−nβ∆

)
, (44)

U lin
N =


1
2

N(N − 1) +
N∑

n=1

n
enβ∆ − 1

∆, (45)

µlin
N = N∆ +

1
β

ln
(
1 − e−β(N+1)∆

)
. (46)

The analytical expression for µlin
N given by Eq. (46) not only replaces the numerical iter-

ation outlined in (41) and (42), but also enables the conversion of (41) into a recurrence
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relation connecting subsequent level numbers n for any fixed particle number N:

glin
0,N = 1 − e−βN∆, (47)

glin
n+1,N = 1 − e−βN∆ − eβ∆(n+1) − 1

eβN∆
glin

n,N , (48)

↔ glin
n,N =

eβN∆

eβ∆(n+1) − 1

(
1 − e−βN∆ − glin

n+1,N

)
. (49)

as was already established by Schönhammer [8]. In order to remain fully self-contained,

we (re)derive these equations in the spirit of the projector approach in Appendix B.

Subtle differences in the intermediate results as compared to, for instance, Eqs. (15, 20)

and (21) in [8] are due to the different energy scale (ground state energy ǫ0 = 0 in the

present approach, but ǫ0 = ∆ in [8]), and the above mentioned difference in the defini-

tion of the chemical potential.

The recurrence relation (48) is numerically accurate and stable as long as eβN∆ >

eβ∆(n+1) − 1, i.e., n < ln
(
eβN∆ + 1

)
/(β∆) − 1. However, even if n is too large to fulfill

this condition, numerical convergence based on Eq. (49) can still be achieved, provided

one finds a valuable initial value of glin
n,N , compatible with sufficiently large n. The latter

shouldn’t be too difficult, since limn→∞ glin
n,N = 0. Suppose that glin

nc+1,N in (49) is negligi-

ble for some large enough nc. Then glin
nc,N

should satisfy glin
nc,N
≪ 1, i.e., eβ∆(N−nc−1) ≪ 1

which makes it capable of initializing (49). In practice, we required this condition to

be satisfied in double precision Fortran up to machine accuracy, but a less severe treat-

ment should not harm, since the numerical error in (49) is self-correcting. The main

purpose of the present section being the corroboration of our results by those obtained

by Schönhammer for the linearized energy spectrum, we refer to [8] for a more detailed

investigation of the latter.

6. Two-dimensional electron gas – quadratic energy spectrum

Finally, we revisit the ordinary 2DEG, characterized by the quadratic dispersion re-

lation (38), and apply the numerical algorithm, iterating on the recursion relations (33

– 34) for N 6 Nc and avoiding the numerical instability issues for N > Nc, as outlined

in Eqs. (35 – 37). As an illustration, we show the chemical potential as a function of N

in Fig. (7) for T = 77 K and T = 300 K. The figure also indicates the critical particle
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number Nc beyond which the Taylor expansion based algorithm starts correcting the

fermionic occupation numbers that are found to violate the inequality 0 6 g̃q,N 6 1.

The precise value of Nc not only depends on T and the parameters that specify the

single-electron dispersion relation (Lx and Ly in the present case) but also on the toler-

ance used to estimate the numerical errors on the occupation numbers. The values of Nc

reported in Fig. (7) correspond to a tolerance of 10−10. In addition, Fig. (7) clearly illus-

trates that the asymptotic, linear dependence on N is attained sooner at relatively low

temperatures. The latter may be expected from the closed-form expression – Eq. (32)

in [1] – that is available for the GCE chemical potential in the thermodynamic limit,

i.e. when Lx, Ly,N → ∞ while the areal electron concentration nS = N/(LxLy) remains

finite:

µ̄TL =
1
β

ln
(
exp

(
2πβ~2nS

me
− 1

))
. (50)

Finally, the occupation numbers are plotted versus the shell energy ǫ̃q in Fig. (8) for

different values of N. Using the shell energy ǫ̃q as the independent variable instead

of the very shell index q, we may straightforwardly analyze the profile of the CE oc-

cupation numbers in comparison with the Fermi-Dirac distribution that would govern

a GCE approach. It turns out that, for the adopted parameter set, the CE distribution

function profile is predominantly exponential up to N = 500, while the deviation from

a Fermi-Dirac distribution becomes negligible for N > 3000.

7. Concluding remarks

Not only the partition function and its derived quantities, but also the boson and

fermion occupation numbers (distribution functions) can be extracted from a workable

set of coupled recurrence relations that are straightforwardly derived in the framework

of the projection operator approach. Except for the special case of one-dimensional

harmonic oscillators, analytical solutions of the recurrence relations are rare, if not un-

available, and a numerical treatment turns out to be paramount for most applications,

especially in condensed matter physics and related areas.

For bosons, one may accidentally have to deal with some minor over/underflow re-

lated issues, but the numerical stability of the iterative solutions is generally guaranteed

17



T = 300 K, Nc = 492
T = 77 K, Nc = 164

Chemical potential versus number of particles

N

µ
N

(m
eV

)

Lx = Ly = 100 nm
Non-interacting 2DEG

10009008007006005004003002001000

50

0

−50

−100

−150

−200

Figure 7: Chemical potential µN of a 2DEG at T = 77 K and at T = 300 K as a function of the number of

particles N. Nc denotes the critical particle number that marks the cross-over between CE and GCE.

thanks to the self-correcting nature of the recurrence relations.

For fermions, the numerical errors on the occupation numbers are found to grow rapidly

beyond a critical value of the number of particles, as a direct consequence of the well-

known sign problem. However, the proximity of the grand-canonical distribution func-

tion in that case was exploited to construct a simple algorithm remedying the unstable

steps in the regime of large particle numbers. Moreover, a clear criterion assessing the

validity of this alternative algorithm has been established for practical purposes.

As a final remark, we mention two possible applications of the formalism in the domain

of condensed matter physics, both requiring an accurate evaluation of the occupation

numbers. First, we quote the calculation of the electron density in the inversion layer

of modern, nano-scaled field-effect transistors. Including the occupation numbers as a

key ingredient, the electron density emerges from an iterative, self-consistent solution

of Poisson’s and Schrödinger’s equations. Traditionally, the GCE yielding the occupa-

tion numbers in the form of familiar Fermi-Dirac distribution functions is adopted to

this end. However, in the so-called sub-threshold regime that characterizes the transi-

tion of a transistor from its off-state to its on-state, the number of electrons is extremely
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Figure 8: Electron occupation number (distribution function) versus the single-electron energy with shell

index q calculated for T = 300 K and for five values of N.

small, thus making the predictions of the GCE rather questionable if not erroneous.

Secondly, the formation of Cooper pairs in a superconducting ring confining by con-

struction a sharply defined number of electrons calls for a CE treatment. Nevertheless,

conventional BCS theory and, particularly, the Bogoliubov transform applied to the

decoupled quartic terms of the BCS Hamiltonian violates the particle number conser-

vation. A suitable modification of the old BCS theory is thus required to conform it

with CE terms.

Appendix A. Chemical potential of bosons – upper limit

This section demonstrates that, for any number of bosons, the chemical potential

cannot exceed the single-particle ground-state energy ǫ0, i.e. µN (β) < ǫ0 for all N.

Equivalently, using the identity

e β µN (β) =
ZN(β)

ZN+1(β)
, (A.1)

we must prove that

ZN+1(β) > e−βǫ0ZN (β). (A.2)
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To this end, we first introduce some auxiliary quantities:

u = e−βǫ0 ,

x j = Z1( jβ) − e− jβǫ0 = Z1( jβ) − u j,

∆ j = Z j(β) − e−βǫ0Z j−1(β) = Z j(β) − uZ j−1(β), j = 1, 2, 3, . . .

∆0 = 1. (A.3)

Note that, due to Z1( jβ) > e− jβǫ0 for all positive integer values of j, each x j is a strictly

positive number. With the above notation, it remains to be demonstrated that ∆N > 0

for N > 1.

First, we invoke mathematical induction to prove the identity

ZN(β) =
N∑

l=0

ul∆N−l, N = 0, 1, 2, . . . (A.4)

The latter trivially holds for N = 0 and N = 1 as can be seen by direct application

of (A.3). Indeed, assuming that (A.4) holds for all particle numbers up to N > 1, its

validity for N + 1 boson directly follows from

ZN+1(β) = ∆N+1 + uZN(β) = ∆N+1 + u


N∑

l=0

ul∆N−l



= ∆N+1 +

N∑

l=0

ul+1∆N−l = ∆N+1 +

N+1∑

j=1

u j∆N+1− j =

N+1∑

l=0

ul∆N+1−l. (A.5)

Next, we assume that N > 2 and expand the sum SN ≡ ∑N
l=1 xl ∆N−l using the definition

of xl:

SN =

N∑

l=1

Z1(lβ)∆N−l −
N∑

l=1

ul ∆N−l = Z1(Nβ) +
N−1∑

l=1

Z1(lβ)∆N−l −
N∑

l=1

ul ∆N−l, (A.6)

where we have isolated the term with l = N in the first sum of the right-hand side.

Replacing all ∆N−l in the second sum by their defining expression for l < N, and using

(A.4) to identify the third sum as −uZN−1(β) upon the substitution l→ l + 1, we obtain

SN = Z1(Nβ) +
N−1∑

l=1

Z1(l β) ZN−l(β) − u
N−1∑

l=1

Z1(lβ) ZN−1−l(β) − uZN−1(β)

=

N−1∑

l=1

Z1(l β) ZN−l(β) − u
N−1∑

l=1

Z1(lβ) ZN−1−l(β) − uZN−1(β). (A.7)
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Finally, exploiting the recurrence relations for ZN(β) and ZN−1(β) discussed in [1] and

references therein, we arrive at

SN = NZN (β) − u(N − 1)ZN−1(β) − uZN−1(β) = N (ZN(β) − uZN−1(β)) = N∆N , (A.8)

or

∆N =
1
N

N∑

l=1

xl ∆N−l. (A.9)

Whereas being derived for N > 2, the above result trivially holds for N = 1, as can be

seen by direct calculation. Moreover, because of ∆1 > 0, we may initiate mathematical

induction under the assumption ∆N−l > 0 for l < N. Since all xl appearing in the

right-hand side of (A.9) are also strictly positive, we conclude that ∆N must be strictly

positive as well, provided that N > 1.

Appendix B. Fermion occupation numbers for a linear energy spectrum

Inserting a linear energy spectrum ǫlinn = n∆, n = 0, 1, 2, · · · into Eq. (7), we obtain

the generating function for fermions (ξ = −1) as

G̃(β, z) =
∞∏

k=0

(
1 + ze−βk∆

)
. (B.1)

From (7) the corresponding partition function becomes

Zlin
N =

1
2πi

∮

|z|>0

1
zN+1

∞∏

k=0

(
1 + ze−βk∆

)
dz, (B.2)

while the occupation number of level n is derived from (9):

glin
n,N =

e−nβ∆

Zlin
N

1
2πi

∮

|z|>0

1
zN

∞∏

k>0,,n

(
1 + ze−βk∆

)
dz, (B.3)

Consider first the ground state occupation glin
0,N . A substitution k = j + 1 followed by a

substitution ze−β∆ = w gives

glin
0,N =

e−i(N−1)β∆

Zlin
N

1
2πi

∮

|w|>0

1
wN

∞∏

j=0

(
1 + we− jβ∆

)
dw. (B.4)
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Replacing j by k and w by z, and inspecting Eq. (B.2), one immediately recognizes

Zlin
N−1 in the right-hand side of (B.4) such that glin

0,N = e−β(N−1)∆Zlin
N−1/Z

lin
N . Using (43),

one readily obtains

glin
0,N = 1 − e−βN∆, (B.5)

which is equivalent to the expression for 〈n1〉N reported in Eq. (15) of [8]. Next, fo-

cusing on n > 0, we separate the factor 1 + z corresponding to k = 0 from the infinite

product in the integral representation of glin
n+1,N to obtain:

glin
n+1,N =

e−nβ∆

Zlin
N

1
2πi

∮

|z|>0

(
1
zN +

1
zN−1

) ∞∏

k=1,,n+1

(
1 + ze−kβ∆

)
dz. (B.6)

As for the case n = 0, we first make the substitutions k = j + 1,w = ze−β∆, and rename

them back again into k and z respectively, to find

glin
n+1,N =

e−nβ∆

Zlin
N

1
2πi

∮

|z|>0

(
e−β(N−1)∆

zN +
e−β(N−2)∆

zN−1

) ∞∏

k=0,,n

(
1 + ze−kβ∆

)
dz. (B.7)

The contributions to the above integral corresponding respectively to the fractions

e−β(N−1)∆/zN and e−β(N−2)∆/zN−1 are proportional to glin
n,N and glin

n,N−1, as can be derived

from Eq. (B.3). Hence, we obtain:

glin
n+1,N = e−βN∆glin

n,N + e−β(N−1)∆glin
n,N−1

Zlin
N−1

Zlin
N

. (B.8)

Using Zlin
N−1/Z

lin
N =

(
1 − e−βN∆

)
eβ(N−1)∆ one rediscovers the recurrence relation Eq. (18)

of [8]:

glin
n+1,N = e−βN∆glin

n,N +
(
1 − e−βN∆

)
glin

n,N−1 . (B.9)

As such, the above recurrence relation is not particularly useful, with both the energy

level index and the particle number N appearing as incremental integers. However, the

application of (41) eliminating glin
n,N−1 = 1 − glin

n,Neβ(n∆−µ
lin
N−1) and the use of (46) finally

yields a recurrence relation in n only, the value of N remaining fixed,

glin
n+1,N = 1 − e−βN∆ − e−βN∆

(
eβ∆(n+1) − 1

)
glin

n,N , (B.10)

which is easily reversed from increasing to decreasing energy level index n:

glin
n,N =

eβN∆

eβ∆(n+1) − 1

(
1 − e−βN∆ − glin

n+1,N

)
. (B.11)
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