This item is the archived peer-reviewed author-version of:

Occupation numbers in a quantum canonical ensemble : a projection operator approach

Reference:

Magnus Wim, Brosens Fons.- Occupation numbers in a quantum canonical ensemble : a projection operator approach

Accepted Manuscript

Occupation numbers in a quantum canonical ensemble: A projection operator approach

Wim Magnus, Fons Brosens

PII: \quad S0378-4371(18)31493-6
DOI: https://doi.org/10.1016/j.physa.2018.11.056
Reference: PHYSA 20374

To appear in: Physica A
Received date: 12 September 2018
Revised date: 6 November 2018

Please cite this article as: W. Magnus and F. Brosens, Occupation numbers in a quantum canonical ensemble: A projection operator approach, Physica A (2018), https://doi.org/10.1016/j.physa.2018.11.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights
$==========$

* quantum canonical ensemble
* bosons and fermions
* projection operator
* Fock space
* free energy, chemical potential, occupation numbers

Occupation numbers in a quantum canonical e.. ${ }^{\text {rmic }}$ le: a projection operator approach

Wim Magnus ${ }^{\text {a,b,* }}$, Fons Brosens ${ }^{\text {c }}$
${ }^{a}$ imec, Kapeldreef 75, B-3001 Leuven, Belgı. η
${ }^{b}$ Universiteit Antwerpen, Physics Department, Groenenborgerlaan 171, b ${ }^{-m n}$ intwerpen, Belgium
${ }^{c}$ Universiteit Antwerpen, Physics Department, Universiteitsple ı1, B-~10 Antwerpen, Belgium

Abstract

Recently, we have used a projection operatc vin me number of particles in a second quantization approach in order to deal $w^{i t h}$ the catı ${ }^{\text {nical }}$ ensemble. Having been applied earlier to handle various problems in ${ }^{n}$, clear physics that involve fixed particle numbers, the projector formalism was $\varepsilon_{\boldsymbol{\lambda}}$. ${ }^{n}$ ded to grant access as well to quantumstatistical averages in condensed.......h sics, such as particle densities and correlation functions. In this light, the occupatın numbers of the subsequent single-particle energy eigenstates are key q^{\prime} antittc to be examined. The goal of this paper is 1) to provide a sound extension of the roje tor formalism directly addressing the occupation numbers as well as th che nica ${ }^{1}$ potential, and 2) to demonstrate how the emerging problems related to nume. ${ }^{\prime}$ • 9 ' instability for fermions can be resolved to obtain the canonical statistic al qu. ntities for both fermions and bosons.

Keywords: qu ntu 1 statistics, canonical ensemble, fermions, bosons

1. Intror acti n

Ir a previous paper [1] we proposed a projection operator for dealing with the particle umber onstraint in the framework of the canonical ensemble (CE). As a result, cransparent integral representation was obtained for the partition function $Z_{N}(\beta)^{1}$ of
*Corresponding author
Email addresses: wim.magnus@uantwerpen.be (Wim Magnus), fons.brosens@uantwerpen.be rons Brosens)
${ }^{1}$ The interpretation of β should be handled with care. Thermal equilibrium means that the internal energy U_{N} is stable in time, and β is in essence a Lagrange multiplier for imposing that stability, rather than a
N identical indistinguishable fermions or bosons:

$$
\begin{equation*}
Z_{N}(\beta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G(\beta, \theta) \mathrm{e}^{-\mathrm{i} N \theta} \mathrm{~d} \theta \quad ; \quad G(\beta, \theta)=\operatorname{Tr}\left(\cdot \beta \hat{\mathrm{H}}^{\mathrm{e}} \cdot \theta\right), \tag{1}
\end{equation*}
$$

in which the Hamiltonian \hat{H} and the number operator \hat{N} ar: of co se assumed to be compatible operators. The trace of $G(\beta, \theta)$ is to be taken $o, ~ r r$ the entire Fock space and the angular integration takes care of the projectic $1 \mathrm{on}^{+}, \mathrm{u}^{2}: \mathrm{N}$-particle subspace. Whereas the formal aspects of the corresponding p viection serator have been discussed extensively in Ref. [1], it should be noted that the $\mathbf{c o}$ ः of the projector technique essentially reduces to a well-known integral inı retan.... of the Kronecker delta,

$$
\begin{equation*}
\delta_{n, m}=\frac{1}{2 \pi} \int_{-\pi} \mathrm{e}^{-(\eta-m) \theta} \mathrm{d} \theta, \tag{2}
\end{equation*}
$$

holding for any two integers n and m. Mor r er, the sharply imposed restriction to the N-particle subspace entails a major ditı $\urcorner \tau$. 'e vetween the CE and the grand-canonical ensemble (GCE): whereas the la ...are fixes the expectation value of the particle number operator $\hat{\mathrm{N}}$, the former is e_{a} lusively pointing to the particular subspace addressed by an eigenvalue δ of N .

In principle, the projectu. appr ach is applicable to interacting particles, but exactly solvable systems of t^{\prime} is kind are extremely rare. Mostly, one has to rely on perturbational or ve lation. ${ }^{1} \dagger$ eatments, starting from non-interacting particles with supposedly know / el_{g} nstates and energy levels. As an example, we quote various studies $[2,3,4,, 7]$ having applied the projector operator technique in a quite beneficial and suc - cul way. Furthermore, the extension [1] of the method enabling the explicit ć cul ion of correlation functions, paved the way towards systematic explorations in cu der ed matter physics. A workable and reliable algorithm yielding the parti le occu u_{1} ation numbers (or, equivalently, the distribution functions) is paramount in this . ene , while being the main subject of this paper. In order to keep the course f the th ory self-contained, we briefly return to the very basics of the projector forma"nn.

[^0]Given a system of non-interacting bosons or fermions, the Hamı nian i and the number operator \hat{N} can then be expressed in terms of the single , part le energy spectrum ϵ_{k}, where k denotes any set of generic quantum numbers ${ }_{r}$ serly labeling the single-particle energies:

$$
\begin{equation*}
\hat{\mathrm{H}}=\sum_{k} \hat{n}_{k} \epsilon_{k} \quad ; \quad \hat{\mathrm{N}}=\sum_{k} \hat{n}_{k} \quad ; \quad \hat{\epsilon}_{k}=c_{k}{ }^{\prime} k \tag{3}
\end{equation*}
$$

where the creation and destruction operators c_{k}^{\dagger} and c_{k} atisfy \because. propriate (anti)commutation relations, i.e.

$$
\hat{c}_{k}^{\dagger} \hat{c}_{k^{\prime}}^{\dagger}-\xi \hat{c}_{k^{\prime}}^{\dagger} \hat{c}_{k}^{\dagger}=\hat{c}_{k} \hat{c}_{k^{\prime}}-\xi \hat{c}_{k^{\prime}} \hat{c}_{k}=0 ; \hat{c}_{k} \hat{c}_{k^{\prime}}^{\dagger}-\ddots_{k,}^{\prime \prime} \ddots_{k} ; \xi=\left\{\begin{array}{l}
+1 \text { for bosons } \tag{4}\\
-1 \text { for fermions. }
\end{array}\right.
$$

As detailed in [1], the projector formalism $\cdot n \cdot$ oles an unrestricted summation over the occupation numbers n_{k} entering the en Υ_{1} sion for $G(\beta, \theta)$:

$$
\begin{equation*}
G(\beta, \theta)=\operatorname{Tr}\left(\mathrm{e}^{-\beta \mathrm{H}} \mathrm{e}^{\mathrm{i}+\mathrm{I}},=\dot{1}_{k} T\left(\sum_{n_{k}} \exp \left(\left(\mathrm{i} \theta-\beta \epsilon_{k}\right) n_{k}\right)\right) .\right. \tag{5}
\end{equation*}
$$

Summing n_{k} from 0 to $\infty \mathrm{fc}$ bosoı and from 0 to 1 for fermions, readily gives

$$
\begin{equation*}
\dot{j}(\beta . \theta)=\overleftarrow{I}_{k}^{\top}\left[\left(1-\xi \exp \left(\mathrm{i} \theta-\beta \epsilon_{k}\right)\right)^{-\xi} .\right. \tag{6}
\end{equation*}
$$

It should be noted noweve that the geometric series ${ }^{2}$ leading to (6) for bosons $(\xi=+1)$, only cc iverg if $\left|\exp \left(\mathrm{i} \theta-\beta \epsilon_{k}\right)\right|<1$ holds for all k. The angular integration can equivalent' y be expressed as a complex contour integral along a circle with radius r enclosing the u oin:

$$
\begin{equation*}
\text { z. } \beta \text {) }=\frac{1}{2 \pi \mathrm{i}} \oint_{|z|=r} \frac{\tilde{G}(\beta, z)}{z^{N+1}} \mathrm{~d} z \quad ; \quad \tilde{G}(\beta, z)=\prod_{k}\left(1-\xi z \mathrm{e}^{-\beta \epsilon_{k}}\right)^{-\xi} \tag{7}
\end{equation*}
$$

[^1]The radius r should be chosen small enough to ensure that the con $\cdot \operatorname{rr}|z| \quad r$ does not enclose any of the poles of $\tilde{G}(\beta, z)$ appearing in the case of k ,sol: Though being a useful starting point for further investigations, the above integ. . ${ }^{\text {. }}$ epresentations do not generally lead to closed form expressions for Z_{N} or qui tities arived from it. As an exception, we mention the special case of one-dimensio. ${ }^{1}$ harr onic oscillators ${ }^{3}$ that was solved analytically upon invoking two Eule ider \because 's [1]. Unfortunately, we overlooked the magisterial treatment of non-int "acting fe mions with equidistant single-particle energies by Schönhammer [8], that turns ou to remain quite relevant to the present paper.

Although the projection operator appronn \cdots....... plied to derive generic expressions for the two- and four-point correlation funci. ns, no detailed explicit results were reported in [1]. In section (2) we derive n m rically tractable recurrence relations for both the chemical potentials and the © - natı 1 numbers, the latter being needed crucially to compute the correlation f notions In the same section we remedy the numerical instabilities that were prohibitive to - xtending the number of particles at will in the case of fermions [1]. In par vurn new results are presented addressing not only the occupation numbers but als, the der endence of the chemical potential, the Helmholtz free energy, the intern . enf gy and the entropy of the two-dimensional electron gas (2DEG) on the partir!e in. nber

2. Occupation nbers and chemical potential

Consider the $\sqrt{ }{ }^{\wedge}$ cupation number $g_{k, N}(\beta)$, defined as the expectation value $\left\langle\hat{c}_{k}^{\dagger} \hat{c}_{k}\right\rangle_{\beta, N}$ of the $N-$, arti se sy tem (3):

$$
\begin{equation*}
g_{k, N}(\beta)=-\frac{1}{\beta} \frac{1}{Z_{N}(\beta)} \frac{\partial Z_{N}(\beta)}{\partial \epsilon_{k}} . \tag{8}
\end{equation*}
$$

[^2]\[

Z_{N}(\beta)=\frac{1}{\prod_{k=1}^{N}\left(1-\mathrm{e}^{-k \beta \hbar \omega}\right)} \times $$
\begin{cases}\mathrm{e}^{-N \beta \hbar \omega / 2} & \text { for bosons } \tag{25}\\ \mathrm{e}^{-N^{2} \beta \hbar \omega / 2} & \text { for fermions }\end{cases}
$$
\]

Temporarily disregarding the trivial result $g_{k, N=0}(\beta)=0$, one readily , 'tains rom the representation (7)

$$
\begin{equation*}
g_{k, N}(\beta)=\frac{\mathrm{e}^{-\beta \epsilon_{k}}}{Z_{N}(\beta)} \frac{1}{2 \pi \mathrm{i}} \oint_{|z|=r>0} \frac{\tilde{G}(\beta, z)}{1-z \xi \mathrm{e}^{-\beta \epsilon_{k}}} \frac{1}{v} z . \tag{9}
\end{equation*}
$$

Because of the pole of order N in the origin, the residue thec $\curvearrowright \mathrm{m}$ yir ds

$$
\begin{equation*}
g_{k, N}(\beta)=\frac{1}{Z_{N}(\beta)} \frac{\mathrm{e}^{-\beta \epsilon_{k}}}{(N-1)!} \frac{\partial^{N-1}}{\partial z^{N-1}} \frac{(}{1}-\underline{\xi} z^{\beta,-} \mathrm{e}^{-\beta \epsilon_{k}}| |_{z=0} . \tag{10}
\end{equation*}
$$

Using $\frac{\partial^{j}}{\partial z^{j}} \frac{1}{1-a z}=\frac{j!a^{j}}{(1-a z)^{j+1}}$ and $\left.\frac{\partial^{n} \tilde{G}(\beta, z)}{\partial z^{n}}\right|_{z=0}=n!Z_{n} \hat{v}^{\prime}$ in Leit iiz' differentiation rule for function products, one ends up with

$$
\begin{equation*}
g_{k, N}(\beta)=\sum_{j=1}^{N} \xi^{j-1} \mathrm{e}^{-\jmath r} \frac{Z_{N-j}(\beta)}{Z_{N}(\beta)} . \tag{11}
\end{equation*}
$$

Separating the first term $(j=1)$ and $\mathrm{s} \cdot{ }^{\text {ctitut }} \cdot \mathrm{g} j \rightarrow j-1$ into the remaining sum, one immediately recognizes a recurrence rela ion

$$
\begin{equation*}
g_{k, N}(\beta)=\left(1+\xi g_{k, N-1}(\beta)\right) \mathrm{e}^{-\beta \epsilon_{k}} \frac{Z_{N-1}(\beta)}{Z_{N}(\beta)}, \tag{12}
\end{equation*}
$$

that was earlier obtained bs ¿chmidt 9] and exploited by Schönhammer to treat fermionic systems $(\xi=-1)$ (see F_{i}. (19) or_{1}; 3 j).

If $\epsilon_{k=0}$ had to be sti. ${ }^{+}{ }^{+}$, to positive value in order to avoid spurious poles in the complex plane, on might choose to undo the corresponding gauge transformation at this point since all complc. integrations required to set up the recurrence relation are carried out.

Introdr ing the ${ }^{+}$andard definition of the chemical potential ${ }^{4}$ in the CE,

$$
\begin{equation*}
\mu_{N}(\beta)=F_{N+1}(\beta)-F_{N}(\beta) \quad \text { with } Z_{N}(\beta)=\mathrm{e}^{-\beta F_{N}(\beta)} \tag{13}
\end{equation*}
$$

and $\mathrm{L} \cdot \operatorname{ing} \sum_{k, k, N}(\beta)=N$, one obtains

$$
\begin{align*}
g_{k, N} & =\mathrm{e}^{-\beta\left(\epsilon_{k}-\mu_{N-1}\right)}\left(1+\xi g_{k, N-1}\right), \tag{14}\\
\mathrm{e}^{-\beta \mu_{N-1}} & =\frac{1}{N} \sum_{k} \mathrm{e}^{-\beta \epsilon_{k}}\left(1+\xi g_{k, N-1}\right), \tag{15}
\end{align*}
$$

[^3]where the temperature parameter β (considered to be fixed for the time \wedge^{\wedge} ing) . . as omitted as an argument for the sake of notation's simplicity in the sur ,eqı ent catculations. The initialization of the above recurrence relations is simple:
\[

$$
\begin{equation*}
g_{k, 0}=0 \quad ; \quad \mathrm{e}^{-\beta \mu_{0}}=\sum_{k} \mathrm{e}^{-\beta \epsilon_{k}} . \tag{16}
\end{equation*}
$$

\]

Note that $\mathrm{e}^{\beta \mu_{N-1}}$ is the basic numerical quantity for im' 1 ementing the recurrence relations. At the end of the calculations the chemical pote ı. . all its $^{\prime}$ if and, hence, also the free energy can be easily obtained.

Anticipating the numerical implementation the ${ }^{\prime}$ ati n to the GCE may be beneficially established at this point by comparison wit. the distribution function of the GCE, i.e.

$$
\begin{equation*}
f_{k}(\mu)=\frac{1}{\mathrm{e}^{\beta\left(\epsilon_{k}-\bar{\mu}_{N}\right)}-\xi} \quad ; \quad \sum_{k} f_{k}\left(\bar{\mu}_{N}\right)=N \tag{17}
\end{equation*}
$$

where $\bar{\mu}_{N}$ (to be distinguished from $\mu_{N}{ }^{\prime} \sim$ not ; the chemical potential in the GCE.
For arbitrary values of N an' ${ }^{\prime \prime \prime}$ the elation between $g_{k, N-1}$ and $f_{k}\left(\bar{\mu}_{N^{\prime}}\right)$ can be further elucidated. Assuming the valid L_{ι} of the generic inequality, $0 \leq g_{k, N-1} \leq g_{k, N}$, recurrence relation (14) ims duan 'v implies

$$
\begin{equation*}
g_{,, N-1} \leq f_{k}\left(\mu_{N-1}\right) \tag{18}
\end{equation*}
$$

Furthermore, using the ${ }^{\cdot} \mathrm{J}^{\prime}{ }^{\prime}$ ity ${ }^{1}=\left(\mathrm{e}^{\beta\left(\epsilon_{k}-\mu_{N-1}\right)}-\xi\right) f_{k}\left(\mu_{N-1}\right)$ to replace 1 in the factor ($1+$ $\left.\xi g_{k, N-1}\right)$ of (14), w are left with an alternative formulation of the original recurrence relation:

$$
\begin{equation*}
\hat{\varepsilon}_{\kappa, N}=f_{k}\left(\mu_{N-1}\right)+\xi \mathrm{e}^{-\beta\left(\epsilon_{k}-\mu_{N-1}\right)}\left(g_{k, N-1}-f_{k}\left(\mu_{N-1}\right)\right) . \tag{19}
\end{equation*}
$$

Combinins (19) wis. (18) for fermions, we may infer $g_{k, N} \geq f_{k}\left(\mu_{N-1}\right)$, thus arriving at

$$
\begin{equation*}
\left.f_{k, ~},\right) \leqslant g_{k, 1} \leqslant \cdots \leqslant f_{k}\left(\mu_{N-1}\right) \leqslant g_{k, N} \leqslant f_{k}\left(\mu_{N}\right) \leqslant \cdots \quad \text { for fermions. } \tag{20}
\end{equation*}
$$

For 1 osons $(\xi=+1)$ we were unable to find a similar ladder relation, but the inequalit. (18) now be replaced by a stronger one:

$$
\begin{equation*}
g_{k, N} \leqslant f_{k}\left(\mu_{N-1}\right) \quad \text { for bosons. } \tag{21}
\end{equation*}
$$

ค. $\quad . \quad$ s point, the simultaneous treatment of bosons and fermions becomes a hindrance . ther than a convenience and, hence, we treat fermions and bosons separately in the following sections.

3. Boson occupation numbers

For bosons ($\xi=+1$), the recurrence relations (14) and (15) , ow r con.e

$$
\begin{align*}
g_{k, N} & =\mathrm{e}^{-\beta\left(\epsilon_{k}-\mu_{N-1}\right)}\left(1+g_{k, N-1}\right), \tag{22}\\
\mathrm{e}^{-\beta \mu_{N-1}} & =\frac{1}{N} \sum_{k} \mathrm{e}^{-\beta \epsilon_{k}}\left(1+g_{k, N}-\right) . \tag{23}
\end{align*}
$$

As commonly known, the GCE chemical potential that fixes ne average number of particles rather than the actual, integer number of particles, does not exceed the singleparticle ground state energy ϵ_{0}. Accordingly, $:+$ is ${ }_{4}{ }^{\circ}$.t tempting to consider ϵ_{0} as well as a rigorous upper bound for any μ_{N}, ${ }^{\text {nth }} \ldots \sim^{1}$ ie formal proof turns out to be less trivial than in the GCE case (see Appendix h, The restriction $\mu_{N}<\epsilon_{0}$ ensures the numerical stability of the encoded recurreı. er lations (22-23), although one may have to remedy some overflow and underflc $\quad \therefore$ fich, ncies appearing in the case of extremely low temperatures.

As an example, we treat bosonic in monic oscillators, omitting however the vacuum energy for the sake of , mur ': city in the subsequent work. If desired, it can be restored at the end of the ca. rlatior .. Accordingly, we consider the Hamiltonian

$$
\begin{equation*}
\hat{\mathrm{H}}=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}, \tag{24}
\end{equation*}
$$

where the compo ents $f^{f} \mathbf{k}$ are non-negative integers and the energy spectrum is given by

$$
\begin{equation*}
\epsilon_{\mathbf{k}}=\hbar \omega \sum_{j=1}^{D} k_{j} \quad ; \quad k_{j}=0,1, \cdots, \infty . \tag{25}
\end{equation*}
$$

D is the $s_{r}{ }^{+i} .1$ dir ension (1, 2 or 3 at will). In view of the rapidly growing degeneracy, it pre res more natural to relabel the single-particle energy levels in terms of a shell index τ, poir ing to an energy shell of states that share a common energy $\tilde{\epsilon}_{q}$ with a .ımens $\neg \mathrm{n}$ dependent degeneracy d_{q} :

$$
q=0,1,2,3, \ldots \quad ; \quad \tilde{\epsilon}_{q}=\hbar \omega q \quad ; \quad d_{q}= \begin{cases}1 & \text { if } D=1 \tag{26}\\ q+1 & \text { if } D=2 \\ (q+1)(q+2) / 2 & \text { if } D=3\end{cases}
$$

The occupation numbers $g_{\mathbf{k}, N}$ having the same degeneracy as $\epsilon_{\mathbf{k}}, \tilde{g}_{q, N}$ Jenolu the occupation number of any particular state in the energy shell $\tilde{\epsilon}_{q}$, th: ., in tron, determines the energy occupation probability $p_{q, N}$ of all energy levels in she ${ }_{1}$

$$
\begin{equation*}
p_{q, N}=\frac{1}{N} d_{q} \tilde{z}_{q, N} . \tag{27}
\end{equation*}
$$

The recurrence relations (22-23) for $\tilde{g}_{q, N}$ become

$$
\begin{align*}
\tilde{g}_{q, N} & =\mathrm{e}^{-\beta\left(\hbar \omega q-\mu_{N-1}\right)}\left(1+\tilde{g}_{q, N-1},\right. \tag{28}\\
\mathrm{e}^{-\beta \mu_{N-1}} & =\frac{1}{N} \sum_{q=0}^{\infty} d_{q} \mathrm{e}^{-\beta \hbar \cdot}\left(1++_{\delta,, v-1}\right), \tag{29}
\end{align*}
$$

and are now initialized by

$$
\begin{equation*}
\tilde{g}_{q, N=0}=0 \quad ; \quad \tilde{g}_{q, N=1}=\mathrm{e}^{-\beta \hbar} \quad \mathcal{e}^{\beta \mu_{0}}=\mathrm{e}^{-\beta \hbar \omega q}\left(1-\mathrm{e}^{-\beta \hbar \omega}\right)^{D} \tag{30}
\end{equation*}
$$

where the required summation ir $\cdot \sim(\beta)-(1 / \beta) \sum_{k} \mathrm{e}^{-\beta \epsilon_{k}}$, as appearing in Eq. (16), was done analytically.

In one dimension ($D=1$, vin can check by induction that

$$
\begin{align*}
& \left.\tilde{g}{ }_{N}\right|_{1 \Gamma}=\sum_{=1}^{N} \mathrm{e}^{-\beta \hbar \omega q j} \prod_{m=N+1-j}^{N}\left(1-\mathrm{e}^{-\beta \hbar \omega m}\right), \tag{31}\\
& \left.\mathrm{e}^{\beta \mu_{N}}\right|_{1 \mathrm{D}}=1-\mathrm{e}^{-\beta \hbar \omega(N+1)} \tag{32}
\end{align*}
$$

which is useful monitor the numerical recursion work, because it is tractable with symbolic alg , rav th only 2 independent parameters, namely N and the dimensionless temperatu' $\left.\dot{\prime} \tau=1 / \omega^{\imath} \downarrow \omega\right)$.

For $1 L^{`}$ r scill .ors the energy occupation numbers for the 1D case and the 3D case are s^{\prime} own ir Fig. (1) and Fig. (2). Apparently, the profiles of the latter case attain maxi. יוm ler 1 ls as a direct consequence of the non-trivial 3D degeneracy factors d_{q}. ' he evc 'rution of the chemical potential (in units of $\hbar \omega$) as a function of the number of 4 rticler is shown in Fig. (3) for 1D, and in Fig. (4) for 3D (solid lines). For the sake of ᄂ... arison, also the corresponding GCE chemical potentials are shown. As expected, he chemical potentials of the CE deviate noticeably from their GCE counterparts for relatively small numbers of bosons. The difference can be explained by the observation
that the GCE standard variation of the particle number operator \hat{N} can ι neglc. :ed with respect to the expectation value of $\hat{\mathrm{N}}$ only for sufficiently large um ners of particles, whereas the CE standard variation equals zero for all N by constı. 'on.

Figure 1: Probability $p_{q, N}$ of occur jing ent. y level $\tilde{\epsilon}_{q}$ for 1001 D harmonic oscillators as a function of the shell index q, given three values or . - dimer ionless temperature $\tau=1 /(\beta \hbar \omega)$.

Furthermore, as au. ${ }^{[1} v_{v}$, trati n, we have shown the temperature dependence of the chemical potential nd the internal energy $U_{N}=\langle\hat{\mathrm{H}}\rangle_{N}$ for 10, 100 and 1000 3D harmonic oscillator hosons 11. Fig. (5) and Fig. (6) respectively. As expected, the bosonic nature is mos pror sunced in the low temperature regime ($\tau<4$), whereas the internal energy natcht the classical limit, i.e. $U_{N}(\tau) \rightarrow 3 N \hbar \omega /(\exp (-1 / \tau)-1)$ at high temperat res

4. F rmion s :cupation numbers

For \perp rmions $(\xi=-1)$ the recurrence relations ($14-15$) obviously read

$$
\begin{align*}
g_{k, N} & =\mathrm{e}^{-\beta\left(\epsilon_{k}-\mu_{N-1}\right)}\left(1-g_{k, N-1}\right) \tag{33}\\
\mathrm{e}^{-\beta \mu_{N-1}} & =\frac{1}{N} \sum_{k} \mathrm{e}^{-\beta \epsilon_{k}}\left(1-g_{k, N-1}\right) . \tag{34}
\end{align*}
$$

Figure 2: Probability $p_{q, N}$ of occupying energ, rel $\tilde{\epsilon}_{q} _r 1003 \mathrm{D}$ harmonic oscillators as a function of the shell index q, given three values of the dimensionı 's tu. perature $\tau=1 /(\beta \hbar \omega)$.

For the sake of convenience but without oss of generality, we may assume that k exclusively runs through non- eegativ, integers labeling the energy eigenvalues ϵ_{k} in ascending order and starting at $c_{L}=0$

The recursive solu ${ }^{\prime}$ on r. (33) and (34) is prone to numerical errors that propagate with k, while being propoı. \cdot al to $\mathrm{e}^{-\beta\left(\epsilon_{k}-\mu_{N-1}\right)}$. Dealing with fermions, however, we must abandon the requ. `ment that the chemical potential be restricted to values below $\epsilon_{0}=0$, and rea' ze , lat the sign of $\epsilon_{k}-\mu_{N-1}$ determines the magnitude of the numerical errors appearii ${ }_{b}$: the recursive flow. Clearly, the error level decreases provided that $\mu_{N-1}<\epsilon$ for all k i.e. as long as $\mu_{N-1}<0$. For sufficiently large N, however, the Helmholtz 1ı, e e ergy attains a minimum, say at $N=N_{\min }$, beyond which $F_{N}>F_{N-1}$ and, ience, $\mu_{-1}>0$ holds. Phrased otherwise, once $N>N_{\min }$, the chemical potential cro an energy spectrum and, in particular, the low energy section below μ_{N-1} auses $t_{1} \rightleftharpoons$ errors to grow exponentially. Moreover, the expression for $e^{-\beta \mu_{N-1}}$ in (34) shu.....nat μ_{N-1} greedily accumulates the numerical errors on $g_{k, N-1}$. This explains in r^{\prime} 'pth the numerical accuracy problem encountered in [1] where the recurrence relation t_{1} : the partition function was directly addressed.

Chemical potential versus number of particle。

Figure 3: Scaled chemical potential $\mu_{N} /(\hbar \omega)$ fc $\quad \cdot$ bosc ${ }^{\circ} \mathrm{c}$ harmonic oscillators as a function of the number of particles, given three values of the dimension. ss in perature $\tau=1 /(\beta \hbar \omega)$. Solid and dashed curves correspond to CE and GCE results respecı. ংv.

For a typical 2DEG at $\mathrm{rr} \mathrm{m}_{\mathrm{m}}$ 几 ทperature and contained in a rectangle $0 \leqslant x \leqslant L_{x}$, $0 \leqslant y \leqslant L_{y}$, we found that ${ }^{N}{ }_{\text {min }}=374$ for $L_{x}=L_{y}=100 \mathrm{~nm}$. Bearing the latter in mind as well as the ${ }_{\text {}}$ rad al deterioration of the results for $g_{k, N}$ and its cumulative effect on μ_{N-1}, to be xpt. ${ }^{\circ} \mathrm{d} \mathrm{v}$ nen N exceeds $N_{\text {min }}$, one may now understand why the results become to ${ }^{+}{ }^{1}$, \cdot nreliable and numerically unstable for $N>520$ (even yielding negative values \& the partition function). Being attributed loosely to the infamous sign problem ${ }^{\circ} \mathrm{f}$ frmions [1], this issue is now clarified in greater detail by the error analysis of (33-34).

Fortunc. 1 y , tr : narrow boundaries (20) enable detection and correction of any errone as beh. rior of μ_{N-1} at an early stage if the temperature is not extremely low. (In that $\mathrm{c}_{n} \cdot a$ a sr cable Sommerfeld expansion might be appropriate.) When the inequality $\xi_{k, N-1}-f_{k}\left(\mu_{N-1}\right)$ is violated for the first time at $k=0$, the relative error on $\mathrm{e}^{-\beta \mu_{N-1}}$ is till nall. Since this happens for $N \gg 1$, we may anticipate the detrimental acc' nawation of numerical errors by exploiting the observation that the canonical distri-- tion function converges to the grand-canonical one, when N grows arbitrarily large.

Figure 4: Scaled chemical potential $\mu_{N} /(\hbar \omega)$ for ' D_{ι} 'onic harmonic oscillators as a function of the number of particles, given three values of the-1ize, temperature $\tau=1 /(\beta \hbar \omega)$. Solid and dashed curves correspond to CE and GCE results respectively.

${ }^{\top}$ gure 5: Scaled chemical potential $\mu_{N} /(\hbar \omega)$ for 3D bosonic harmonic oscillators as a function of the norn. lized temperature $\tau=1 /(\beta \hbar \omega)$, given three values of N, the number of particles.

Figure 6: Scaled internal energy $U /(N \hbar \omega)$ for 3 L hos ic harmonic oscillators as a function of the normalized temperature $\tau=1 /(\beta \hbar \omega)$, given thref $\cdots \rho_{\iota^{\prime}}{ }^{\prime}$ the number of particles.

Full knowledge of $f(\bar{\mu})$, thou, \ldots, ould require us to solve the transcendental equation $\sum_{k} f_{k}(\bar{\mu}(N))=N$ for $\left.\bar{\mu}=\bar{\mu}^{\prime} \cdot{ }^{\cdot}\right)$, the g ind-canonical chemical potential compatible with N particles. However, a irst ordeı faylor expansion

$$
\begin{align*}
f(\mu) & \left.=\jmath_{k}^{\prime-}\right)+\left.(\mu-\bar{\mu}) \frac{\mathrm{d} f_{k}(\mu)}{\mathrm{d} \mu}\right|_{\mu=\bar{\mu}}+O\left((\mu-\bar{\mu})^{2}\right) \\
& \rightarrow f_{k}(\mu) \approx f_{k}(\bar{\mu})+\beta(\mu-\bar{\mu}) \mathrm{e}^{\beta\left(\epsilon_{k}-\bar{\mu}\right)}\left(f_{k}(\bar{\mu})\right)^{2} \tag{35}
\end{align*}
$$

provides a dfficlu ${ }^{+1 y}$ accurate approximation in most circumstances.
Let $N \cdot$ be te lo rest value of N for which the preceding occupation number $g_{k=0, N_{\mathrm{c}}-1}$ errone- ily ex. \quad ds $f_{k=0}\left(\bar{\mu}\left(N_{\mathrm{c}}-1\right)\right)$ in the course of the recursion. Imposing the sum rule,$\urcorner_{k} f_{k}\left(\mu_{N,-1}\right)=N_{\mathrm{c}}-1$ in (35) then gives the correction

$$
\begin{equation*}
\beta \mu_{N_{\mathrm{c}}-1}=\beta \bar{\mu}\left(N_{\mathrm{c}}-1\right)+\frac{N_{\mathrm{c}}-1-\sum_{k} f_{k}\left(\bar{\mu}\left(N_{\mathrm{c}}-1\right)\right)}{\sum_{k} \mathrm{e}^{\beta\left(\epsilon_{k}-\bar{\mu}\left(N_{\mathrm{c}}-1\right)\right)}\left(f_{k}\left(\bar{\mu}\left(N_{\mathrm{c}}-1\right)\right)\right)^{2}} . \tag{36}
\end{equation*}
$$

Dar $N>N_{\mathrm{c}}$, the recursion (33) of course becomes increasingly inaccurate, but since nis is a regime of slowly varying μ_{N} with N, we keep using (35), with $\tilde{\mu}$ and μ being
replaced respectively by μ_{N-1} and μ_{N}. Summing over k one thus finds

$$
\begin{equation*}
N>N_{\mathrm{c}}: \beta \mu_{N}=\beta \mu_{N-1}+\frac{1}{\sum_{k} \mathrm{e}^{\beta\left(\epsilon_{k}-\mu_{N-1}\right)}\left(f_{k}\left(\mu_{N-1}\right)^{\prime 2}\right.} \tag{37}
\end{equation*}
$$

At any stage of the calculation one easily monitors the c sality ι° the approach by checking whether $\sum_{k} g_{k}\left(\mu_{N}\right)=N$ remains valid. In case of \leadsto ilure nowever, we have no alternative approach available so far, and we are lef wit ${ }^{\wedge}$ un fermion sign problem remaining unresolved for that particular case.

In order to test the procedure, we first apply it to a twe dimensional (2D) electron gas for which Schönhammer [8] has developen n alu....tive approach by linearizing its energy spectrum. Comparison with our _rain (see below) shows an excellent agreement.

5. Two-dimensional electron gas - I `. . -ize i energy spectrum

Consider again a 2D electron g. in a rectangle $0 \leqslant x \leqslant L_{x}, 0 \leqslant y \leqslant L_{y}$, with periodic boundary conditions imposed on the single-electron wave functions. Before linearization, the energy sr ctrum (.) is expressed in terms of 2D wave vectors $k_{x, y}=$ $2 \pi n_{x, y} / L_{x, y}$ as

$$
\begin{equation*}
\epsilon_{k} \rightarrow \epsilon_{n_{x}, n}=\frac{\ddots}{2 m_{e}}\left\lceil\left(2 \frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{2 \pi n_{y}}{L_{y}}\right)^{2}\right] \quad ; \quad n_{x}, n_{y}=0, \pm 1, \pm 2, \ldots \tag{38}
\end{equation*}
$$

where m_{e} deno ${ }^{+\cdots}$ the electron effective mass. Since we are dealing with fermions ($\xi=-1$), the ocur ence relations (14-15) obviously read

$$
\begin{equation*}
g_{1, N}=r^{-\beta\left(\epsilon_{k}-\mu_{N-1}\right)}\left(1-g_{k, N-1}\right) \quad ; \quad \mathrm{e}^{\beta \mu_{N}}=\frac{N+1}{\sum_{k} \mathrm{e}^{-\beta \epsilon_{k}}\left(1-g_{k, N}\right)} . \tag{39}
\end{equation*}
$$

Whil being valid for fermions with an arbitrary single-particle spectrum, the recurrence slatio (39) turns out to coincide ${ }^{5}$ with the one obtained by Schönhammer in sq. (19, of Ref. [8], when applied to fermions with a linear energy spectrum. Focus1.: on the latter, we note that the density of states in 2D wave vector space equals $L^{\prime} L_{y},(2 \pi)^{2}$. On average, a circle with radius K thus encloses $n_{K}=\pi K^{2} L_{x} L_{y} /(2 \pi)^{2}$

[^4]states, the single-particle energy on the edge of the circle thus being $\epsilon_{K} \quad \hbar^{2} K, \quad,\left(2 m_{e}\right)=$ $2 \pi \hbar^{2} n_{K} /\left(m_{e} L_{x} L_{y}\right)$. For sufficiently large wave vectors, the single parı cle energies can therefore be replaced by a linearized spectrum
\[

$$
\begin{equation*}
\tilde{\epsilon}_{n}=n \Delta \quad ; \quad \Delta=\frac{2 \pi \hbar^{2}}{m_{e} L_{x} L_{y}} \quad ; \quad n=0,1 \quad 2, \cdots \tag{40}
\end{equation*}
$$

\]

resulting in the following recurrence relation, replacin (39

$$
\begin{align*}
g_{n, N}^{\operatorname{lin}} & =\mathrm{e}^{-\beta\left(n \Delta-\mu_{N-1}^{\mathrm{in}}\right)}\left(1-g_{n, N-1}^{\operatorname{lin}},\right. \tag{41}\\
\mathrm{e}^{\beta \mu_{N}^{\mathrm{lin}}} & \left.=\frac{N+1}{\sum_{n=0}^{\infty} \mathrm{e}^{-\beta n \Delta}\left(1-{ }^{\operatorname{lin}}{ }^{{ }^{\prime}}\right.}\right) \tag{42}
\end{align*}
$$

Clearly, the mere introduction of the linearizen 'nectrum does not offer any improvement on the numerical accuracy. The latı, "gur . . ay be reached most easily by implementing the analytical results obtaine 'งv Scı. ־nhammer [8]. Although it is tempting to translate his formulas literally, some car» is ı\&quired because he considers a spectrum $\epsilon_{i}=i \Delta, i=1,2, \cdots$. Of course, a s. 'ge transformation relates both approaches, but applying it in detail to all intermediate relations and quantities is not a trivial task. Instead, a careful recalculatir $\frac{1}{}$ adoptii g the notation of (40) and following the approach we proposed in Sec. 4 o [1]. yit. ' , the following results for the CE partition function $Z_{N}^{\text {lin }}$, the free energy $F_{N}{ }^{\prime}{ }^{\text {tr }} \stackrel{\operatorname{int}}{ }$ nal energy $U_{N}^{\text {lin }}$ and the chemical potential $\mu_{N}^{\text {lin }}$,

$$
\begin{align*}
& {Z_{N}}^{n}=\mathrm{e}^{-\beta N(N-1) \Delta / 2} \prod_{n=1}^{N} \frac{1}{1-\mathrm{e}^{-\beta n \Delta}} \tag{43}\\
& F_{N}^{\operatorname{lin}}=\frac{1}{2} N(N-1) \Delta+\frac{1}{\beta} \sum_{n=1}^{N} \ln \left(1-\mathrm{e}^{-n \beta \Delta}\right) \tag{44}\\
& U_{N}^{\operatorname{lin}}=\left(\frac{1}{2} N(N-1)+\sum_{n=1}^{N} \frac{n}{\mathrm{e}^{n \beta \Delta}-1}\right) \Delta \tag{45}\\
& \mu_{N}^{\operatorname{lin}}=N \Delta+\frac{1}{\beta} \ln \left(1-\mathrm{e}^{-\beta(N+1) \Delta}\right) \tag{46}
\end{align*}
$$

The anal tical expression for $\mu_{N}^{\text {lin }}$ given by Eq. (46) not only replaces the numerical iteration outlined in (41) and (42), but also enables the conversion of (41) into a recurrence
relation connecting subsequent level numbers n for any fixed particle. .mber V :

$$
\begin{align*}
g_{0, N}^{\operatorname{lin}}= & 1-\mathrm{e}^{-\beta N \Delta} \tag{47}\\
g_{n+1, N}^{\operatorname{lin}}= & 1-\mathrm{e}^{-\beta N \Delta}-\frac{\mathrm{e}^{\beta \Delta(n+1)}-1}{\mathrm{e}^{\beta N \Delta}} g_{n, N}^{\operatorname{lin}}, \tag{48}\\
& \leftrightarrow g_{n, N}^{\operatorname{lin}}=\frac{\mathrm{e}^{\beta N \Delta}}{\mathrm{e}^{\beta \Delta(n+1)}-1}\left(1-\mathrm{e}^{-\beta N \Delta}-\operatorname{lin}_{0, \ldots, v}\right) . \tag{49}
\end{align*}
$$

as was already established by Schönhammer [8]. In ordc. \lrcorner rem in fully self-contained, we (re)derive these equations in the spirit of the proje \mathfrak{r} approach in Appendix B. Subtle differences in the intermediate results as colı, ${ }^{\text {ared }} \dagger$, for instance, Eqs. $(15,20)$
 present approach, but $\epsilon_{0}=\Delta$ in [8]), and the au ve mentioned difference in the definition of the chemical potential.

The recurrence relation (48) is n ' neric' ${ }^{\prime} \mathrm{y}$ accurate and stable as long as $\mathrm{e}^{\beta N \Delta}>$ $\mathrm{e}^{\beta \Delta(n+1)}-1$, i.e., $n<\ln \left(\mathrm{e}^{\beta N \Delta}+1\right) /(\beta \Delta)-1$. However, even if n is too large to fulfill this condition, numerical convergenc. hased on Eq. (49) can still be achieved, provided one finds a valuable initial valua of $g_{n, N}^{\operatorname{lin}}$, compatible with sufficiently large n. The latter shouldn't be too difficult, s^{\prime}, ce $\lim _{n-\infty} g_{n, N}^{\operatorname{lin}}=0$. Suppose that $g_{n_{c}+1, N}^{\operatorname{lin}}$ in (49) is negligible for some large enoug $\wedge n_{c}$. Thu $\int_{n_{c}, N}^{\operatorname{lin}}$ should satisfy $g_{n_{c}, N}^{\operatorname{lin}} \lll 1$, i.e., $\mathrm{e}^{\beta \Delta\left(N-n_{c}-1\right)} \lll 1$ which makes it capab. of niti . 1 zing (49). In practice, we required this condition to be satisfied in dour a precisioı1 Fortran up to machine accuracy, but a less severe treatment should not harm, shi. 冫e the numerical error in (49) is self-correcting. The main purpose of the pres nt section being the corroboration of our results by those obtained by Schönh nmer , * the linearized energy spectrum, we refer to [8] for a more detailed investige 'on it the iatter.

6. I vo-dime isional electron gas - quadratic energy spectrum

Fin. 'ly, we revisit the ordinary 2DEG, characterized by the quadratic dispersion reI. ion (ρ), and apply the numerical algorithm, iterating on the recursion relations (33 ,$- \therefore$ for $N \leqslant N_{\mathrm{C}}$ and avoiding the numerical instability issues for $N>N_{\mathrm{C}}$, as outlined . Eqs. (35-37). As an illustration, we show the chemical potential as a function of N in Fig. (7) for $T=77 \mathrm{~K}$ and $T=300 \mathrm{~K}$. The figure also indicates the critical particle
number N_{c} beyond which the Taylor expansion based algorithm sta. corrc ing the fermionic occupation numbers that are found to violate the iner μ alıv $\cap \leqslant \tilde{g}_{q, N} \leqslant 1$. The precise value of N_{C} not only depends on T and the param 's that specify the single-electron dispersion relation (L_{x} and L_{y} in the present ase) $\mathrm{b}+$ also on the tolerance used to estimate the numerical errors on the occupation I $^{\prime}$ 'mber . The values of N_{C} reported in Fig. (7) correspond to a tolerance of 10^{-10}. I 1 add . 7 7, Fig. (7) clearly illustrates that the asymptotic, linear dependence on N : attained ooner at relatively low temperatures. The latter may be expected from the closed form expression - Eq. (32) in [1] - that is available for the GCE chemical noten. ${ }^{\wedge 1}$ in the thermodynamic limit, i.e. when $L_{x}, L_{y}, N \rightarrow \infty$ while the areal electran \cdots tration $n_{\mathrm{S}}=N /\left(L_{x} L_{y}\right)$ remains finite:

$$
\begin{equation*}
\bar{\mu}_{\mathrm{TL}}=\frac{1}{\beta} \ln \left(\operatorname { e x p } \left(\frac{\left.\left.\left.1-n^{+2} \cdot \frac{\mathrm{~s}}{m_{e}}-1\right)\right) . . .\right) .}{}\right.\right. \tag{50}
\end{equation*}
$$

Finally, the occupation numbers are p_{1} 'tu ${ }^{\prime}$ versus the shell energy $\tilde{\epsilon}_{q}$ in Fig. (8) for different values of N. Using the "tin gy $\tilde{\epsilon}_{q}$ as the independent variable instead of the very shell index q, we may straigıtforwardly analyze the profile of the CE occupation numbers in compr ison w the Fermi-Dirac distribution that would govern a GCE approach. It turns out 'at. or the adopted parameter set, the CE distribution function profile is prer' mir antlv exponential up to $N=500$, while the deviation from a Fermi-Dirac distri' ution \llcorner - , mes negligible for $N>3000$.

7. Concludin' reı arks

Not or y the pa. ition function and its derived quantities, but also the boson and fermion ${ }^{\sim} \mathrm{V}$, atio numbers (distribution functions) can be extracted from a workable set of coupled recurrence relations that are straightforwardly derived in the framework of th. project on operator approach. Except for the special case of one-dimensional ' armon:c oscillators, analytical solutions of the recurrence relations are rare, if not un-- ailablf, and a numerical treatment turns out to be paramount for most applications, - .~nally in condensed matter physics and related areas.
'or bosons, one may accidentally have to deal with some minor over/underflow related issues, but the numerical stability of the iterative solutions is generally guaranteed

Chemical potential versus number of particles

Figure 7: Chemical potential μ_{N} of a 2 DEG $a^{\top}{ }^{\top}=77$ and at $T=300 \mathrm{~K}$ as a function of the number of particles $N . N_{\mathrm{C}}$ denotes the critical particle numb - tha narks the cross-over between CE and GCE.
thanks to the self-correcting nature of the recurrence relations.
For fermions, the numerical irors, 7 the occupation numbers are found to grow rapidly beyond a critical value of the ${ }^{1} \mathrm{mb}^{\mathrm{r}}$ of particles, as a direct consequence of the wellknown sign problem. F Jwe er, the proximity of the grand-canonical distribution function in that case was explu. \circ d o construct a simple algorithm remedying the unstable steps in the regim or . \cdot rge particle numbers. Moreover, a clear criterion assessing the validity of this .ut rative algorithm has been established for practical purposes. As a final remar ${ }^{\text {r }}$, ve mention two possible applications of the formalism in the domain of conder ed r atter physics, both requiring an accurate evaluation of the occupation numbers. r. t. v : quote the calculation of the electron density in the inversion layer of m dern, h n no-scaled field-effect transistors. Including the occupation numbers as a kev in $n_{0} \cdot{ }^{-r i f}$. f, the electron density emerges from an iterative, self-consistent solution ff Poiss, n's and Schrödinger's equations. Traditionally, the GCE yielding the occupathe n. abers in the form of familiar Fermi-Dirac distribution functions is adopted to t^{t} is end. However, in the so-called sub-threshold regime that characterizes the transiᄂ. n of a transistor from its off-state to its on-state, the number of electrons is extremely

Figure 8: Electron occupation number (distribu ©nction) versus the single-electron energy with shell index q calculated for $T=300 \mathrm{~K}$ and for $f \cdots$ values f N.
small, thus making the predictions of the GCE rather questionable if not erroneous. Secondly, the formation of Cooper airs in a superconducting ring confining by construction a sharply defin d numu of electrons calls for a CE treatment. Nevertheless, conventional BCS thc - v .nd, articularly, the Bogoliubov transform applied to the decoupled quartic ${ }^{+} \cdot \mathrm{rms}$ of thu BCS Hamiltonian violates the particle number conservation. A suitable modil. ation of the old BCS theory is thus required to conform it with CE term ${ }^{\prime}$.

Append; A. Che cical potential of bosons - upper limit

T is sec: on demonstrates that, for any number of bosons, the chemical potential canno. axcef \perp the single-particle ground-state energy ϵ_{0}, i.e. $\mu_{N}(\beta)<\epsilon_{0}$ for all N. equivai ntly, using the identity

$$
\begin{equation*}
\mathrm{e}^{\beta \mu_{N}(\beta)}=\frac{Z_{N}(\beta)}{Z_{N+1}(\beta)}, \tag{A.1}
\end{equation*}
$$

'e must prove that

$$
\begin{equation*}
Z_{N+1}(\beta)>\mathrm{e}^{-\beta \epsilon_{0}} Z_{N}(\beta) \tag{A.2}
\end{equation*}
$$

To this end, we first introduce some auxiliary quantities:

$$
\begin{align*}
u & =\mathrm{e}^{-\beta \epsilon_{0}}, \\
x_{j} & =Z_{1}(j \beta)-\mathrm{e}^{-j \beta \epsilon_{0}}=Z_{1}(j \beta)-u^{j}, \\
\Delta_{j} & =Z_{j}(\beta)-\mathrm{e}^{-\beta \epsilon_{0}} Z_{j-1}(\beta)=Z_{j}(\beta)-u Z_{j-1}(\beta), \quad j=1,, 3, \ldots \\
\Delta_{0} & =1 . \tag{A.3}
\end{align*}
$$

Note that, due to $Z_{1}(j \beta)>\mathrm{e}^{-j \beta \epsilon_{0}}$ for all positive integ. valuco of j, each x_{j} is a strictly positive number. With the above notation, it ren. ins to bf demonstrated that $\Delta_{N}>0$ for $N \geqslant 1$.

First, we invoke mathematical induction to r ve the identity

$$
\begin{equation*}
Z_{N}(\beta)=\sum_{l=0}^{N} u^{l} \Delta_{N-\iota} \quad \quad v=0,1,2, \ldots \tag{A.4}
\end{equation*}
$$

The latter trivially holds for $N=0$ an. $/ N-1$ as can be seen by direct application of (A.3). Indeed, assuming that ($\kappa \Omega^{1}$) nuins for all particle numbers up to $N>1$, its validity for $N+1$ boson directly follows from

$$
\begin{align*}
Z_{N+1}(\beta) & \left.=\Delta_{N+1}+u Z_{N,}, ~\right)=\Delta_{+1}+u\left(\sum_{l=0}^{N} u^{l} \Delta_{N-l}\right) \\
& =\Delta_{N+}+\sum_{l=0}^{N} u^{l+1} \Delta_{N-l}=\Delta_{N+1}+\sum_{j=1}^{N+1} u^{j} \Delta_{N+1-j}=\sum_{l=0}^{N+1} u^{l} \Delta_{N+1-l} . \tag{A.5}
\end{align*}
$$

Next, we assume that $N \geqslant 2$ and expand the sum $S_{N} \equiv \sum_{l=1}^{N} x_{l} \Delta_{N-l}$ using the definition of x_{l} :

$$
\begin{equation*}
\left.S_{N}=\sum_{l-}^{N} Z_{1}^{\prime} \beta\right) \Delta_{N-l}-\sum_{l=1}^{N} u^{l} \Delta_{N-l}=Z_{1}(N \beta)+\sum_{l=1}^{N-1} Z_{1}(l \beta) \Delta_{N-l}-\sum_{l=1}^{N} u^{l} \Delta_{N-l}, \tag{A.6}
\end{equation*}
$$

wher we have solated the term with $l=N$ in the first sum of the right-hand side. Repl، ing all \lrcorner_{N-l} in the second sum by their defining expression for $l<N$, and using (A.4) to identify the third sum as $-u Z_{N-1}(\beta)$ upon the substitution $l \rightarrow l+1$, we obtain

$$
\begin{align*}
S_{N} & =Z_{1}(N \beta)+\sum_{l=1}^{N-1} Z_{1}(l \beta) Z_{N-l}(\beta)-u \sum_{l=1}^{N-1} Z_{1}(l \beta) Z_{N-1-l}(\beta)-u Z_{N-1}(\beta) \\
& =\sum_{l=1}^{N-1} Z_{1}(l \beta) Z_{N-l}(\beta)-u \sum_{l=1}^{N-1} Z_{1}(l \beta) Z_{N-1-l}(\beta)-u Z_{N-1}(\beta) \tag{A.7}
\end{align*}
$$

Finally, exploiting the recurrence relations for $Z_{N}(\beta)$ and $Z_{N-1}(\beta)$ disu 'sed i. [1] and references therein, we arrive at

$$
\begin{equation*}
S_{N}=N Z_{N}(\beta)-u(N-1) Z_{N-1}(\beta)-u Z_{N-1}(\beta)=N\left(Z_{N}(\beta)-, Z_{, ~ N-1}(\beta),=N \Delta_{N},\right. \tag{A.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta_{N}=\frac{1}{N} \sum_{l=1}^{N} x_{l} \Delta_{N-l} \tag{A.9}
\end{equation*}
$$

Whereas being derived for $N \geqslant 2$, the above result triv. ${ }^{1}{ }^{1} \mathrm{v}$ holds for $N=1$, as can be seen by direct calculation. Moreover, because of $\Delta_{t}>0$, w may initiate mathematical induction under the assumption $\Delta_{N-l}>0$ for $l<N$. Since all x_{l} appearing in the right-hand side of (A.9) are also strictly posis . we conclude that Δ_{N} must be strictly positive as well, provided that $N \geqslant 1$.

Appendix B. Fermion occupation nus. be for a linear energy spectrum

Inserting a linear energy spectrum $\epsilon_{n}^{" \eta}=n \Delta, n=0,1,2, \cdots$ into Eq. (7), we obtain the generating function for $\mathrm{f}, \mathrm{mlu} . \&(\xi=-1)$ as

$$
\begin{equation*}
G(\kappa, \quad)=\prod_{k=0}^{\infty}\left(1+z \mathrm{e}^{-\beta k \Delta}\right) . \tag{B.1}
\end{equation*}
$$

From (7) the corres onding ${ }_{\mathrm{f}}$ tition function becomes

$$
\begin{equation*}
Z_{N}^{\operatorname{lin}}=\frac{1}{2 \pi \mathrm{i}} \oint_{|z|>0} \frac{1}{z^{N+1}} \prod_{k=0}^{\infty}\left(1+z \mathrm{e}^{-\beta k \Delta}\right) \mathrm{d} z, \tag{B.2}
\end{equation*}
$$

while the c cupatı - number of level n is derived from (9):

$$
\begin{equation*}
g_{n, N}^{\operatorname{lin}}=\frac{\mathrm{e}^{-n \beta \Delta}}{Z_{N}^{\operatorname{lin}}} \frac{1}{2 \pi \mathrm{i}} \oint_{|z|>0} \frac{1}{z^{N}} \prod_{k \geqslant 0, \neq n}^{\infty}\left(1+z \mathrm{e}^{-\beta k \Delta}\right) \mathrm{d} z, \tag{B.3}
\end{equation*}
$$

Consic - fir the ground state occupation $g_{0, N}^{\operatorname{lin}}$. A substitution $k=j+1$ followed by a ;ubstituı on $z \mathrm{e}^{-\beta \Delta}=w$ gives

$$
\begin{equation*}
g_{0, N}^{\operatorname{lin}}=\frac{\mathrm{e}^{-i(N-1) \beta \Delta}}{Z_{N}^{\operatorname{lin}}} \frac{1}{2 \pi \mathrm{i}} \oint_{|w|>0} \frac{1}{w^{N}} \prod_{j=0}^{\infty}\left(1+w \mathrm{e}^{-j \beta \Delta}\right) \mathrm{d} w . \tag{B.4}
\end{equation*}
$$

Replacing j by k and w by z, and inspecting Eq. (B.2), one immea. \prec ly fu ognizes $Z_{N-1}^{\text {lin }}$ in the right-hand side of (B.4) such that $g_{0, N}^{\operatorname{lin}}=\mathrm{e}^{-\beta(N-1) \Delta} Z_{J-1}^{\prime}{ }^{1} /^{\gamma \text { lin }}$. Using (43), one readily obtains

$$
\begin{equation*}
g_{0, N}^{\operatorname{lin}}=1-\mathrm{e}^{-\beta N \Delta} \tag{B.5}
\end{equation*}
$$

which is equivalent to the expression for $\left\langle n_{1}\right\rangle_{N}$ reported in $\mathbf{L}_{1}{ }^{1}$, of [8]. Next, focusing on $n>0$, we separate the factor $1+z$ correspc idir, to $=0$ from the infinite product in the integral representation of $g_{n+1, N}^{\operatorname{lin}}$ to oblu : \cdot

$$
\begin{equation*}
g_{n+1, N}^{\operatorname{lin}}=\frac{\mathrm{e}^{-n \beta \Delta}}{Z_{N}^{\operatorname{lin}}} \frac{1}{2 \pi \mathrm{i}} \oint_{|z|>0}\left(\frac{1}{z^{N}}+\left.\frac{1}{z^{N}-1}\right|_{k-} \prod_{ \pm n+1}^{\infty}\left(1+z \mathrm{e}^{-k \beta \Delta}\right) \mathrm{d} z .\right. \tag{B.6}
\end{equation*}
$$

As for the case $n=0$, we first make the substıt : $\mathrm{ons} k=j+1, w=z \mathrm{e}^{-\beta \Delta}$, and rename them back again into k and z respectively, ${ }^{\text {to }}$ п

$$
\begin{equation*}
g_{n+1, N}^{\operatorname{lin}}=\frac{\mathrm{e}^{-n \beta \Delta}}{Z_{N}^{\operatorname{lin}}} \frac{1}{2 \pi \mathrm{i}} \oint_{|z|>0}\left(\frac{\mathrm{e}^{-\beta(N}}{z^{N}} \cdots \frac{\mathrm{e}^{\beta(N-2) \Delta}}{z^{N-1}}\right) \prod_{k=0, \neq n}^{\infty}\left(1+z \mathrm{e}^{-k \beta \Delta}\right) \mathrm{d} z . \tag{B.7}
\end{equation*}
$$

The contributions to the above integ, 1 corresponding respectively to the fractions $\mathrm{e}^{-\beta(N-1) \Delta} / z^{N}$ and $\mathrm{e}^{-\beta(N-2) \Delta} / z^{N} \quad{ }^{-\alpha}$ proportional to $g_{n, N}^{\operatorname{lin}}$ and $g_{n, N-1}^{\operatorname{lin}}$, as can be derived from Eq. (B.3). Hence, we htain:

$$
\begin{equation*}
\operatorname{Hn}_{\llcorner 1}^{\text {In }}=\mathrm{e}^{-\beta N \Delta} g_{n, N}^{\operatorname{lin}}+\mathrm{e}^{-\beta(N-1) \Delta} g_{n, N-1}^{\operatorname{lin}} \frac{Z_{N-1}^{\operatorname{lin}}}{Z_{N}^{\operatorname{lin}}} \tag{B.8}
\end{equation*}
$$

Using $Z_{N-1}^{\operatorname{lin}} / Z_{N}^{\text {lin }}=\left(\begin{array}{ll}1 & \Delta^{-\beta N \Delta}\end{array}\right) \mathrm{e}^{\beta(N-1) \Delta}$ one rediscovers the recurrence relation Eq. (18) of [8]:

$$
\begin{equation*}
g_{n+1, N}^{\operatorname{lin}}=\mathrm{e}^{-\beta N \Delta} g_{n, N}^{\operatorname{lin}}+\left(1-\mathrm{e}^{-\beta N \Delta}\right) g_{n, N-1}^{\operatorname{lin}} . \tag{B.9}
\end{equation*}
$$

As such, ne a ove recurrence relation is not particularly useful, with both the energy level indox aur ${ }^{+1}$ e particle number N appearing as incremental integers. However, the appl vation oi (41) eliminating $g_{n, N-1}^{\operatorname{lin}}=1-g_{n, N}^{\operatorname{lin}} \mathrm{e}^{\beta\left(n \Delta-\mu_{N-1}\right)}$ and the use of (46) finally $y^{i}-1 \mathrm{~s}$ a $\ldots \ldots$ rrence relation in n only, the value of N remaining fixed,

$$
\begin{equation*}
g_{n+1, N}^{\operatorname{lin}}=1-\mathrm{e}^{-\beta N \Delta}-\mathrm{e}^{-\beta N \Delta}\left(\mathrm{e}^{\beta \Delta(n+1)}-1\right) g_{n, N}^{\operatorname{lin}} \tag{B.10}
\end{equation*}
$$

- hich is easily reversed from increasing to decreasing energy level index n :

$$
\begin{equation*}
g_{n, N}^{\operatorname{lin}}=\frac{\mathrm{e}^{\beta N \Delta}}{\mathrm{e}^{\beta \Delta(n+1)}-1}\left(1-\mathrm{e}^{-\beta N \Delta}-g_{n+1, N}^{\operatorname{lin}}\right) . \tag{B.11}
\end{equation*}
$$

Acknowledgment

The authors are indebted to Lucien Lemmens for useful di cuss ons und suggestions as well as for critical reading of the manuscript.

References

[1] W. Magnus, L. Lemmens, F. Brosens, Quantum `anonical _nsemble: A projection operator approach, Physica A 482 (2017) 1 - 13 .
[2] H.-T. Elze, W. Greiner, Quantum statistics w. ' internal symmetry, Physical Review A 33 (1986) 1879-1891.
[3] H.-T. Elze, W. Greiner, Finite size eftc 'ts ${ }^{+}$, quark-gluon plasma droplets, Physics Letters B 179 (1986) 385.
[4] H.-T. Elze, D. Miller, K. Red́.. \because, , こ....e theories at finite temperature and chemical potential, Physics Review D 35 (1987) 748.
[5] M. Bender, P. H. Hee ॰n, P. G Reinhard, Self-consistent mean-field models for nuclear structure, R view ot 1. odern Physics 75 (2003) 121 - 180.
[6] P. T. Landsberg Therı. \downarrow namics, Interscience, New York, 1961.
[7] P. Borrmann. G. Franı , Recursion formulas for quantum statistical partition functions, Jou nal c Chemical Physics 98 (1993) 2484 - 2485.
[8] K. Sc' jnh mmer, Thermodynamics and occupation numbers of a Fermi gas in the canonı ens mble, American Journal of Physics 68 (2000) 1032.
[9] 1'. Schm lt, Eine einfache Herleitung der Verteilungsfunktionen für Bose- und Fernı-statistik, Zeitschrift für Physik 134 (1953) 430-431.

[^0]: . ven quantity. The internal energy $U_{N}(\beta)=-\mathrm{d}\left(\ln \left(Z_{N}(\beta)\right)\right) / \mathrm{d} \beta$ is in fact the fixed quantity. This correct interpretation of the principle of maximum entropy in thermal equilibrium was treated in Appendix A of [1].

[^1]: ${ }^{2}$ Re... ${ }^{-1}$ n , the common ratio of a similar geometric series appearing in the grand-canonical partition unction - icially depends on the grand-canonical chemical potential $\bar{\mu}(N)$. More specifically, as converin nce req res the common ratio to be smaller than $1, \bar{\mu}(N)$ is bound to be located below ϵ_{0}. The latter, in thrn. requires that the single-particle ground-state energy be strictly positive. In this light, it is explicitly - sumed that $\epsilon_{0}>0$ until the recurrence relations for the partition function and the occupation numbers a. established. Afterwards, a simple gauge transformation consisting of a constant energy shift can be performed to generalize the results to the case of arbitrary, but finite values of ϵ_{0}.

[^2]: ${ }^{3}$ Form 'a (25) in [1] contains a serious misprint, and should read

[^3]: ${ }^{4}$ In Eq. (12) of [8] $F_{N}-F_{N-1}$ was used to define μ_{N}, rather than Eq. (13) in the current paper.

[^4]: ${ }^{5}$ Schönhammer adopts the definition $\mu_{N}=F_{N}-F_{N-1}$, whereas we use $\mu_{N}=F_{N+1}-F_{N}$.

