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Abstract

Recently, we have used a projection operatc. -u ux e number of particles in a second
quantization approach in order to deal w**h the cai.onical ensemble. Having been ap-
plied earlier to handle various problems in » «clear physics that involve fixed particle
numbers, the projector formalism was <. nded to grant access as well to quantum-
statistical averages in condensed .. ~u.. ~h sics, such as particle densities and correla-
tion functions. In this light, the occupauiun numbers of the subsequent single-particle
energy eigenstates are key g antitic. to be examined. The goal of this paper is 1) to pro-
vide a sound extension of the ~roje _tor formalism directly addressing the occupation
numbers as well as th- che aica! potential, and 2) to demonstrate how the emerging
problems related to aume. 2" instability for fermions can be resolved to obtain the
canonical statistic .l qu. tities for both fermions and bosons.

Keywords: qu .atu 1 statistics, canonical ensemble, fermions, bosons

1. Intror acti’ n

Ir a previous paper [1] we proposed a projection operator for dealing with the par-
ticle . umber ¢ onstraint in the framework of the canonical ensemble (CE). As a result,

- ransparent integral representation was obtained for the partition function Zy(8) ! of
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I The interpretation of 8 should be handled with care. Thermal equilibrium means that the internal energy

Uy is stable in time, and § is in essence a Lagrange multiplier for imposing that stability, rather than a
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N identical indistinguishable fermions or bosons:

2® =5 [(GBoew i cEo=T( ), M)

in which the Hamiltonian A and the number operator N ar : of co. “se assumed to be
compatible operators. The trace of G(8,6) is to be taken o. >+ the entire Fock space
and the angular integration takes care of the projectic 1 on* . u.> N-particle subspace.
Whereas the formal aspects of the corresponding . ~iectir Lperator have been dis-
cussed extensively in Ref. [1], it should be noted that the co. 3 of the projector technique

essentially reduces to a well-known integral imc. ~retac. .. of the Kronecker delta,

1
6n,m =

T=me g 2
o f e , 2)

Jn
holding for any two integers n and m. Morc v er, the sharply imposed restriction to the
N-particle subspace entails a major difi “tc. ~e vetween the CE and the grand-canonical
ensemble (GCE): whereas the la. -. .-~+='v fixes the expectation value of the parti-
cle number operator N, the former is ea_lusively pointing to the particular subspace
addressed by an eigenvalue v of I

In principle, the projecto. ~opr ach is applicable to interacting particles, but ex-
actly solvable systems of t'.s kind are extremely rare. Mostly, one has to rely on
perturbational or vz 1ation.' t catments, starting from non-interacting particles with
supposedly know ( e1g ~states and energy levels. As an example, we quote various
studies [2, 3,4 o, 7] having applied the projector operator technique in a quite ben-
eficial and suce < ful way. Furthermore, the extension [1] of the method enabling the
explicit c-.culr .ion of correlation functions, paved the way towards systematic explo-
rations in cu der .ed matter physics. A workable and reliable algorithm yielding the
parti le occu, ation numbers (or, equivalently, the distribution functions) is paramount
in this . ~ene ( while being the main subject of this paper. In order to keep the course
of the th ory self-contained, we briefly return to the very basics of the projector for-

muj N -

_‘ven quantity. The internal energy Un(8) = —d(In(Zy(B)))/dB is in fact the fixed quantity. This correct

interpretation of the principle of maximum entropy in thermal equilibrium was treated in Appendix A of [1].




Given a system of non-interacting bosons or fermions, the Hamu. “ian " and the
number operator N can then be expressed in terms of the single- sart ~!= energy spec-
trum €, where k denotes any set of generic quantum numbers , - oerly labeling the
single-particle energies:

A=Yhe 5 N=Ya : =qu G

k k

where the creation and destruction operators c,j and ¢ ~tisfy - propriate (anti)commuta-
tion relations, i.e.
. . + . 7 +1 for bosons,
G, 6, —&C,6, =¢.C,—&C,6,=0;¢828,-7.0, ww; €= (@)
—1 for fermions.
As detailed in [1], the projector formalism ~n- oles an unrestricted summation over the

occupation numbers 7y entering the ex . ~siov. for G(, 6):

G(B.6) =Tr(ePMe "\ = 1 ] Z exp ((i0 — Ben) |. 5)

k ny

Summing n; from 0 to co fo boson  and from O to 1 for fermions, readily gives
, Y . ¢
JB.0) = [ (1-€gexpio-pe)) . (6)
k

It should be noted. noweve. chat the geometric series 2 leading to (6) for bosons
(¢ = +1), only cc.averge if |exp(if — Ber)| < 1 holds for all k. The angular integration
can equivalent’y be xpressed as a complex contour integral along a circle with radius
r enclosing the ¢ oin:

1 G G, . -
7B = _9|§|— g%f)dz LGB = ](1-&e) )

2mi z B

2 Rew. *~*, the common ratio of a similar geometric series appearing in the grand-canonical partition
unction ¢ ‘icially depends on the grand-canonical chemical potential (V). More specifically, as conver-
L nce req@ res the common ratio to be smaller than 1, (V) is bound to be located below €. The latter, in
“rn. requires that the single-particle ground-state energy be strictly positive. In this light, it is explicitly
- ,sumed that €y > O until the recurrence relations for the partition function and the occupation numbers
a. established. Afterwards, a simple gauge transformation consisting of a constant energy shift can be

performed to generalize the results to the case of arbitrary, but finite values of .




The radius r should be chosen small enough to ensure that the conw. v [z] - r does
not enclose any of the poles of G(8, z) appearing in the case of b ,sor.: Though being

1

a useful starting point for further investigations, the above integi." epresentations do

not generally lead to closed form expressions for Zy or qus itities <'=rived from it. As
an exception, we mention the special case of one-dimensioi. ' harr onic oscillators 3
that was solved analytically upon invoking two Eule ider ... »s [1]. Unfortunately,
we overlooked the magisterial treatment of non-int' *acting fe- mions with equidistant
single-particle energies by Schonhammer [8], that turns ou to remain quite relevant to
the present paper.

Although the projection operator appro~~* =~~~ - plied to derive generic expres-
sions for the two- and four-point correlation func.. *ns, no detailed explicit results were
reported in [1]. In section (2) we derive n. mr rically tractable recurrence relations for
both the chemical potentials and the ¢ ~v "mati 1 numbers, the latter being needed cru-
cially to compute the correlation f =~tions In the same section we remedy the numeri-
cal instabilities that were prohibitive fo. ~xtending the number of particles at will in the
case of fermions [1]. In par.cuw.  new results are presented addressing not only the
occupation numbers but als. *he der endence of the chemical potential, the Helmholtz
free energy, the interns . enc gy and the entropy of the two-dimensional electron gas

(2DEG) on the particle n. nber

2. Occupatiop _ ~ubers and chemical potential

+

Conside~ the « ~cupation number g y(5), defined as the expectation value <6k6k>ﬁ v

of the N- jarti- .e svitem (3):

1 1 0Zy(B)
gkNPB) = —— : 3
BZnpB) O&
3 Form 'a (25) in [1] contains a serious misprint, and should read
1 e~ Nphw/2 for bosons,
Znp) = (25)

—_ X
N _
IT=s (1 —eHf hw) e VB2 for fermions.




Temporarily disregarding the trivial result g y=0(8) = 0, one readily . “tains 7om the

representation (7)

Pea 1 G, 1
g (pB) = ° 56 GGy 1,

— - 'z 9
Zn(B) 2mi Ji=pso | — zéePe ‘ ®

Because of the pole of order N in the origin, the residue thec. »m yir .ds

1 ePe 9 (B, |

N (B) = — Qg (10)
8B ZyB) (N = D! 9Nt —gze P
Using aa—zj, l—laz = _J:la,;,-ﬂ and a"g;f,z) = n!Z,(,™ in Leil 1z’ differentiation rule for

function products, one ends up with

Zn-i(B)

N
I A
gk (B) § &e 7B

=1

1)

Separating the first term (j = 1) and s ° <titut, *g j — j— 1 into the remaining sum, one

immediately recognizes a recurrence rela ion

—Ber ZN—l (ﬂ)
Zvp) '

that was earlier obtained by Schmidt 9] and exploited by Schonhammer to treat fermionic

systems (¢ = —1) (see F (. (19) o1 . $]).

gknB) = (1 +&gen-108))e (12)

If -0 had to be su.™e .« to - positive value in order to avoid spurious poles in the
complex plane, on might choose to undo the corresponding gauge transformation at
this point since a1l complc.. integrations required to set up the recurrence relation are
carried out.

Introdv _ing the *andard definition of the chemical potential 4 in the CE,
v (B) = Fn.i(B) = Fn(B)  with Zy(B) = e PP, (13)
and . "ing Y, ,xn(B) = N, one obtains

iy = e PETWD (1 4 gy ), (14)

e Puw-1 — N Ze Be (1 +§gk,N—1)’ (1)

k

“In Eq. (12) of [8] Fy — Fy-1 was used to define wy, rather than Eq. (13) in the current paper.




where the temperature parameter 8 (considered to be fixed for the time . ~ing) v. as omit-
ted as an argument for the sake of notation’s simplicity in the sut ;equ =nt caiculations.
The initialization of the above recurrence relations is simple:

go=0 ; ef=) P (16)
k

Note that e®¥-1 is the basic numerical quantity for im' iemer*ing the recurrence rela-
tions. At the end of the calculations the chemical pote...al its' «f and, hence, also the
free energy can be easily obtained.

Anticipating the numerical implementatior the ~lati )n to the GCE may be ben-
eficially established at this point by comparison wn. the distribution function of the
GCE, i.e.

- . S R =N 17
Je(w) = Wg 5 %Jﬁ(HN) =1V, (17)

where [y (to be distinguished from py ' « Mot s the chemical potential in the GCE.
For arbitrary values of N an< " the -lation between gin-1 and fi(fiy-) can be
further elucidated. Assuming the valiai. - of the generic inequality, 0 < grn-1 < kN,

recurrence relation (14) imp cdiaw v implies

2 .N-1 < filun-1)- (18)

Furthermore, using the “Jer ity * = (e#& -1 —&) £, (uy_; ) to replace 1 in the factor (1+
égin—1) of (14), w are left with an alternative formulation of the original recurrence

relation:
£ on = filluyo1) + EPETND (g ) — filun-1)). (19)
Combinins (19) wi.. (18) for fermions, we may infer gxn > fi(iv-1), thus arriving at
Jiu M) € 81 < - < filiw-1) < grv < fi(w) < --- - for fermions. (20)

For | osons (¢ = +1) we were unable to find a similar ladder relation, but the inequal-

it “18) «.._. uow be replaced by a stronger one:

gikN < fi(uy-1) for bosons. (2))

~ . s point, the simultaneous treatment of bosons and fermions becomes a hindrance
.“ther than a convenience and, hence, we treat fermions and bosons separately in the

following sections.




3. Boson occupation numbers

For bosons (¢ = +1), the recurrence relations (14) and (15) * ow t :con.e

gy = e PED (14 gy ), (22)

1
—Bun-1 — —Bex A\
e 1 N Ek e P (1 + gy . (23)

As commonly known, the GCE chemical potential that fixes .ne average number of
particles rather than the actual, integer number of particles, does not exceed the single-
particle ground state energy €. Accordingly, ‘* is y “**. tempting to consider € as
well as a rigorous upper bound for any uy, ~'*»~z* e formal proof turns out to be
less trivial than in the GCE case (see Appendix A, The restriction wy < € ensures the
numerical stability of the encoded recurrel. “e r .lations (22-23), although one may have
to remedy some overflow and underflc ~ '~fici 1cies appearing in the case of extremely
low temperatures.

As an example, we treat bosonic 1. “monic oscillators, omitting however the vac-
uum energy for the sake of .uuy“icity in the subsequent work. If desired, it can be
restored at the end of the ca. mlatior .. Accordingly, we consider the Hamiltonian

A= qcla 24)
k
where the compo’ enw> ~f Kk are non-negative integers and the energy spectrum is given
by
k:thk,- . kj=0,1,---,00. (25)
Disthes, ¢ (dir ension (1,2 or 3 at will). In view of the rapidly growing degeneracy,
it prc ves mcve natural to relabel the single-particle energy levels in terms of a shell

index <, poir ing to an energy shell of states that share a common energy &, with a

amens’ “n dependent degeneracy d;:
1 if D=1,

4=0,1,23,... ; &=hog ; dy={q+1 D=2 (26)

(g+1(@+2)/2 if D=3.




The occupation numbers gy y having the same degeneracy as &, g,» ‘enoi. the oc-
cupation number of any particular state in the energy shell &, th7_, in 'rn, aetermines

the energy occupation probability p, y of all energy levels in she.. -

1
PgnN = qugq,N‘ 27)

The recurrence relations (22-23) for §, v become

gq,N = e Blhwg—w-1) (1 + gq’N_J (28)
s _ LN
e = qz:(;dqe Pl ) (29)

and are now initialized by
> — - D
gq,N=0 =0 ; gq,N=1 = e_ﬁh aﬁl’-ﬂ —e Bhwq (l —e ﬁhw) , (30)

where the required summation ir *~(8) - —(1/B) 3, e P%, as appearing in Eq. (16),
was done analytically.

In one dimension (D = 17, ui.. ~an check by induction that

N N

gl = e [ (1-e?m), 31
=1 m=N+1-j

eﬂp.NllD / 1 _ e—ﬁhu)(N+l)’ (32)

which is useful © monitor the numerical recursion work, because it is tractable with
symbolic alge ~ra v (th only 2 independent parameters, namely N and the dimensionless
temperatu’ > 7 = 1/ 1w).

~

For 10" - scill7 .ors the energy occupation numbers for the 1D case and the 3D case
are s'.own ir Fig. (1) and Fig. (2). Apparently, the profiles of the latter case attain
maxi, 'um lev :ls as a direct consequence of the non-trivial 3D degeneracy factors d,.
".he evc "ution of the chemical potential (in units of 7w) as a function of the number of
} rticlec is shown in Fig. (3) for 1D, and in Fig. (4) for 3D (solid lines). For the sake of
o .., arison, also the corresponding GCE chemical potentials are shown. As expected,

“e chemical potentials of the CE deviate noticeably from their GCE counterparts for

relatively small numbers of bosons. The difference can be explained by the observation




that the GCE standard variation of the particle number operator N can v neglc. ‘ed with

respect to the expectation value of N only for sufficiently large .um rers ot particles,

whereas the CE standard variation equals zero for all N by const. ~ .on.

Occupation probability versus she¢ | index

1D bosons = 7 =10

1072 -=7=30 1
v =7=50

g 107 1
%
<

107 \

10—8 L L a \ L L

0 100 207 39 400 500 600

700

Figure 1: Probability p, v of occur ying ene. -y level &, for 100 1D harmonic oscillators as a function of the

shell index ¢, given three values ot . ~ dimer ionless temperature 7 = 1/(Bhw).

Furthermore, as au "' trati ,n, we have shown the temperature dependence of the

chemical potential nd the imernal energy Uy = (H)y for 10, 100 and 1000 3D har-

monic oscillator hosons 1. Fig. (5) and Fig. (6) respectively. As expected, the bosonic

nature is mos pror ounced in the low temperature regime (r < 4), whereas the inter-

nal energy natche. *he classical limit, i.e. Uy(t) — 3Nhw/(exp(—1/7) — 1) at high

temperat ves

4. F. vmion ¢ :cupation numbers

For i ‘rmions (£ = —1) the recurrence relations (14—15) obviously read

8kN = e Plam) (1 - 8kN-1) 5

1

—Bun-1 — —Bex

e = E e 1- ~1).
N - ( 8k,N 1)

(33)

(34)




Occupation probability versus shell index

0.03 T T T T T T T T —
3D bosons - a T ]y
0.025 + -— 7 =30
-——= 7 50
0.02 + J
1 0015 § .
<
0.01 g
0.005 g
0 2 n h\
0 50 100 150 20uv 250 300 350 400 45

q

Figure 2: Probability p, v of occupying energ, . el & . + 100 3D harmonic oscillators as a function of the

shell index ¢, given three values of the dimensionu. ~s tc. perature 7 = 1/(Shiw).

For the sake of convenience but without .0ss of generality, we may assume that k ex-
clusively runs through non- .egativ. integers labeling the energy eigenvalues ¢ in as-
cending order and startin at ¢, = 0

The recursive solu’.on ¢. (32" and (34) is prone to numerical errors that propagate
with &, while being propoi. ~ .al to e A& -1 Dealing with fermions, however, we
must abandon the cequ.. ~ent that the chemical potential be restricted to values below
€ = 0, and rea’.ze . 1at the sign of € — uy_; determines the magnitude of the numerical
errors appearing * « the recursive flow. Clearly, the error level decreases provided that
uy-1 < € for .l k ie. aslong as uy—; < 0. For sufficiently large N, however, the
Helmbholtz 1. ~ e ergy attains a minimum, say at N = Npjn, beyond which Fy > Fy_;
and, 1ence, . —; > 0 holds. Phrased otherwise, once N > Npjy, the chemical poten-
tial cro.. ~~ “.ie energy spectrum and, in particular, the low energy section below -
sauses t 2 errors to grow exponentially. Moreover, the expression for e #"¥-1 in (34)
shu..  wat uy-; greedily accumulates the numerical errors on g y—1. This explains in
 :pth the numerical accuracy problem encountered in [1] where the recurrence relation

fu - the partition function was directly addressed.
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Chemical potential versus number of particles

1D asons A

ty /hw

: —_— T = 10
' — 17=30
. —17=50
—200 Lt ‘ !
0 20 40 60 80 100

N

Figure 3: Scaled chemical potential uy/(fiw) fc¢ "M bosc ic harmonic oscillators as a function of the number
of particles, given three values of the dimension. 'ss w 1perature 7 = 1/(Bhw). Solid and dashed curves

correspond to CE and GCE results respecu ~'v.

For a typical 2DEG at rc sm « mperature and contained in a rectangle 0 < x < L,,
0 <y < Ly, we found tha. My, = 374 for L, = L, = 100 nm. Bearing the latter
in mind as well as the .rad" al deterioration of the results for g y and its cumulative
effect on uy_1, to be :xpe. =d v nen N exceeds Nnin, one may now understand why the
results become to? .1, “mreliable and numerically unstable for N > 520 (even yielding
negative values .. * the partition function). Being attributed loosely to the infamous
sign problem . ~r f_rmions [1], this issue is now clarified in greater detail by the error
analysis o’ (33- 34).

Fortun.. - v, tF > narrow boundaries (20) enable detection and correction of any er-
roner as beh. 7ior of uy_; at an early stage if the temperature is not extremely low. (In
that c. = a sr cable Sommerfeld expansion might be appropriate.) When the inequality
iN-1 ~ Jfe(uy—1) is violated for the first time at k = 0, the relative error on e -
i> till < nall. Since this happens for N > 1, we may anticipate the detrimental ac-
¢’ auwiation of numerical errors by exploiting the observation that the canonical distri-

« tion function converges to the grand-canonical one, when N grows arbitrarily large.

11




Chemical potential versus number of partic'~<
0 — N

2l 3L . ~sons
~100 | ]

w / (hw)
L L b
(e} () (e}
(«) (=) («)

.
—1=10
-500 — 7=30 A
— 7=50
—-600 ‘
0 80 100

Figure 4: Scaled chemical potential uy /(fiw) for "D v -~onic harmonic oscillators as a function of the num-
ber of particles, given three values of the ... ~%7ec temperature 7 = 1/(Bhw). Solid and dashed curves

correspond to CE and GCE results respectively.

(.. mic’ « potential versus temperature

5 —
¥~
-5t
—-10 } 3D <ons
-15
3-201L
N
S-u5)
=30 r
v N=10
—4. — N =100
—4¢ — N = 1000
_50 I I I I
0 2 4 6 8 10

7= 1/(Bhw)

T.gure 5: Scaled chemical potential wy/(%iw) for 3D bosonic harmonic oscillators as a function of the nor-

n. lized temperature T = 1/(Bhw), given three values of N, the number of particles.
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Internal energy per particle versus temperatu.

30 T T h
— N=10 3D t son

— N=100 /
25 N=1000 //
/

20 +

Uv/(Nhw)
9y

8 10

1/(/‘ w,

Figure 6: Scaled internal energy U/(N#hw) for 3L bos ~ic harmonic oscillators as a function of the normal-

ized temperature 7 = 1/(Bhw), given three .. -~ of ;" the number of particles.

Full knowledge of f(fi), thov _.., “ould require us to solve the transcendental equation
>k (V) = N for i = "N, the g and-canonical chemical potential compatible with

N particles. However, 2 .irst order [aylor expansion

) ) d
f0 =5+ =) L o(-)
w=p
= W ~ fi(i) +B (- {1) L0 (i) (35)

provides a < afficic. “ly accurate approximation in most circumstances.
Let M. be ‘.ie lo vest value of N for which the preceding occupation number gx—o n,-1
errone” _ly exc " 2ds fi—o(f(Ng — 1)) in the course of the recursion. Imposing the sum
rule " fi(wy, -1) = No — 1 in (35) then gives the correction
Ne — 1= 3 fi(Ne — 1))
i BN (fi (NG — 1))*

Uar N > N, the recursion (33) of course becomes increasingly inaccurate, but since

Buwe-1 = BiNe = 1) + (36)

ais is a regime of slowly varying uy with N, we keep using (35), with & and u being

13




replaced respectively by py—; and py. Summing over k one thus finas

1
Zk eBle—pn-1) (fk(MN—l/:?

At any stage of the calculation one easily monitors the ¢ aality ¢ " the approach by

N>N, : ,BHN :ﬁMN—l + (37)

checking whether Y ; gr(iy) = N remains valid. In case of ~ilure nowever, we have
no alternative approach available so far, and we are lef wif* i fermion sign problem
remaining unresolved for that particular case.

In order to test the procedure, we first apply it to a twc dimensional (2D) electron
gas for which Schonhammer [8] has developea . = alte._.ative approach by linearizing

its energy spectrum. Comparison with our __._.... \see below) shows an excellent

r

agreement.

5. Two-dimensional electron gas — L. “c. “izel energy spectrum

Consider again a 2D electron g.~ in a rectangle 0 < x < Ly, 0 < y < L,, with
periodic boundary conditions imposed on the single-electron wave functions. Before
linearization, the energy sy .ctrum (. ) is expressed in terms of 2D wave vectors k., =

2nny /Ly, as

€ — €nn

[/:);nx)2+(@)2

= o oRe,ny, =0,%1,+2, ... (38)
2me |\ Ly L, 4

where m, deno* - the electron effective mass. Since we are dealing with fermions

(¢ = —1), the =cur ence relations (14—15) obviously read

N+1
= rBla—w-1) (1 = - P =
1N k,N—1 > — .
v (1~ 2ex-1) Zre P (1 - gew)

Whil . being valid for fermions with an arbitrary single-particle spectrum, the recur-

(39)

rence ~latior (39) turns out to coincide 3 with the one obtained by Schonhammer in
ig. (19, of Ref. [8], when applied to fermions with a linear energy spectrum. Focus-
1. on ‘e latter, we note that the density of states in 2D wave vector space equals

L ,L,y,'(Zﬂ)z. On average, a circle with radius K thus encloses ng = 7TK2LxLy/ (2n)?

5Schénhammer adopts the definition uy = Fy — Fy_1, whereas we use Wy = Fy41 — Fi.

14




states, the single-particle energy on the edge of the circle thus being ex %>k, (2m,) =
2nhng | (m.L,Ly). For sufficiently large wave vectors, the single par cle energies can
therefore be replaced by a linearized spectrum

27h?

&=nA ; A= N
=i meL,Ly

n=0,12---, (40)
resulting in the following recurrence relation, replacin (39

gy =P (1 gt ) @)
Bl N+lf 42)
Sge (1= .m)

Clearly, the mere introduction of the linearize. ~nectrum does not offer any improve-
ment on the numerical accuracy. The latw ~ gu. . .. 1y be reached most easily by imple-
menting the analytical results obtaine v Sci. “nhammer [8]. Although it is tempting to
translate his formulas literally, some car. is 1equired because he considers a spectrum
g =1iA, i =1,2,---. Of course, a g. "ge transformation relates both approaches, but
applying it in detail to all inte~~diate relations and quantities is not a trivial task. In-
stead, a careful recalculatir 1 adopti1 g the notation of (40) and following the approach
we proposed in Sec. 4 o' [1]. yic. ', the following results for the CE partition function

Zlin the free energy F,’ t ¢ int rnal energy U" and the chemical potential pi"

N b
N

2y = e PNV T L 43)

N E 1 — e Bnp’

1 1 <

lin _ = _ _ _ ~—hBA

Fi' = SNV = DA+ ;m(l e, (44)
1 Y n

lin _ | © _ o~
U —[ZN(N 1)+;em_l]A, 45)

= NA+ ~In (1 - e 00 46
' = ﬁd e ). (46)

The anal tical expression for u}&,“ given by Eq. (46) not only replaces the numerical iter-

ation outlined in (41) and (42), but also enables the conversion of (41) into a recurrence
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relation connecting subsequent level numbers n for any fixed particle . “mbe. V:

gon =1 -, (47)
. _ e,BA(n+1) -1 .
=t S (48)
li SN BNA _ i
in _ — in
< g,N= FAD ] (1 —-€ Ton. ) 49)

as was already established by Schonhammer [8]. In orde. “, rem' in fully self-contained,
we (re)derive these equations in the spirit of the projec ~r approach in Appendix B.
Subtle differences in the intermediate results as comn., ~red t ,, for instance, Egs. (15, 20)
and (21) in [8] are due to the different energy scale . ~vound state energy € = 0 in the
present approach, but €y = A in [8]), and the a. ~ve mentioned difference in the defini-
tion of the chemical potential.

The recurrence relation (48) is ' “erica 'v accurate and stable as long as eV >
efA+D) _ 1 je.,n < In (eﬂNA +1)/(BA) - 1. However, even if n is too large to fulfill
this condition, numerical convergenc. hased on Eq. (49) can still be achieved, provided

lin

one finds a valuable initial valr= of g 'y

, compatible with sufficiently large n. The latter

lin
n.+1,N

shouldn’t be too difficult, s7 «ce lim,,- » gl:‘}v = 0. Suppose that g in (49) is negligi-

ble for some large enoug '« n.. The KEZN should satisfy gili[“’N << 1,ie., AV« ]
which makes it capab.. of mitir .izing (49). In practice, we required this condition to
be satisfied in doul = precisio. Fortran up to machine accuracy, but a less severe treat-
ment should not harm, si..>e the numerical error in (49) is self-correcting. The main
purpose of the pres .nt section being the corroboration of our results by those obtained

by Schonhs .nmer. -the linearized energy spectrum, we refer to [8] for a more detailed

investige ‘on ‘ f the iatter.

6. T vo-dime isional electron gas — quadratic energy spectrum

Finc 'ly, we revisit the ordinary 2DEG, characterized by the quadratic dispersion re-
1l on (?3), and apply the numerical algorithm, iterating on the recursion relations (33
— .., for N < N; and avoiding the numerical instability issues for N > N, as outlined
.1 Egs. (35 -37). As an illustration, we show the chemical potential as a function of N

in Fig. (7) for T = 77 K and T = 300 K. The figure also indicates the critical particle
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number N; beyond which the Taylor expansion based algorithm stai. corrc. fing the
fermionic occupation numbers that are found to violate the inec salnv 0 < g, 5 < 1.
The precise value of N; not only depends on T and the paramc ~ s that specify the
single-electron dispersion relation (L, and L in the present .ase) b’ t also on the toler-
ance used to estimate the numerical errors on the occupation 1. *mber . The values of N
reported in Fig. (7) correspond to a tolerance of 1071°. Ty add” .. 1, Fig. (7) clearly illus-
trates that the asymptotic, linear dependence on N - attained ooner at relatively low
temperatures. The latter may be expected from the closea “orm expression — Eq. (32)
in [1] — that is available for the GCE chemica. ~otewn. ~' . the thermodynamic limit,
i.e. when L, L,, N — oo while the areal elect~~~ ~~~~ tration ns = N/(L.L,) remains

finite:

1 L
firL = Eln(exp‘\— . S _ 1)) (50)

e

Finally, the occupation numbers are pi “tic ' versus the shell energy €, in Fig. (8) for
different values of N. Using the .n~en . gy &, as the independent variable instead
of the very shell index ¢, we may straigntforwardly analyze the profile of the CE oc-
cupation numbers in comps 1son w *h the Fermi-Dirac distribution that would govern
a GCE approach. It turn- owm ™at. .or the adopted parameter set, the CE distribution
function profile is prec ymir antlv exponential up to N = 500, while the deviation from

a Fermi-Dirac distri"ution v ~ ymes negligible for N > 3000.

7. Concludin’, rex arks

Not or y the pa.-ition function and its derived quantities, but also the boson and
fermion « ~v ,atio . numbers (distribution functions) can be extracted from a workable
set of coupled recurrence relations that are straightforwardly derived in the framework
of thy orojec’ on operator approach. Except for the special case of one-dimensional
'.armon‘c oscillators, analytical solutions of the recurrence relations are rare, if not un-
< mailablf, and a numerical treatment turns out to be paramount for most applications,
- ~~-ially in condensed matter physics and related areas.

“or bosons, one may accidentally have to deal with some minor over/underflow re-

lated issues, but the numerical stability of the iterative solutions is generally guaranteed
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Chemical potential versus number of particles

50 ————— =
0 ]
S 50 ]
Q
E
= -100 Non-interacting _.DEG 1
L,=L, 10unm
~150 | - -T=71K,N, =164 |
~= . = 2,0K, N, =492
~200

0 100 200 300 400 .27 600 700 800 900 1000
N

Figure 7: Chemical potential uy of a 2DEG a* ™ = 77 " and at T = 300 K as a function of the number of

particles N. N denotes the critical particle numbc * tha. marks the cross-over between CE and GCE.

thanks to the self-correcting nature of the recurrence relations.

For fermions, the numerical crors « " the occupation numbers are found to grow rapidly
beyond a critical value of the “mbr  of particles, as a direct consequence of the well-
known sign problem. F owe er, the proximity of the grand-canonical distribution func-
tion in that case was explo.=d .0 construct a simple algorithm remedying the unstable
steps in the regim . 01 . “ree particle numbers. Moreover, a clear criterion assessing the
validity of this .. native algorithm has been established for practical purposes.

As afinal rema.- ~e mention two possible applications of the formalism in the domain
of conder ,ed r .atter physics, both requiring an accurate evaluation of the occupation
numbers. r. “t. v : quote the calculation of the electron density in the inversion layer
of m ydern, n. no-scaled field-effect transistors. Including the occupation numbers as a
kev in, =die ¢, the electron density emerges from an iterative, self-consistent solution
»f Poiss. n’s and Schrodinger’s equations. Traditionally, the GCE yielding the occupa-
tic. = .bers in the form of familiar Fermi-Dirac distribution functions is adopted to
t' «s end. However, in the so-called sub-threshold regime that characterizes the transi-

1. “n of a transistor from its off-state to its on-state, the number of electrons is extremely
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Occupation probability versus shell energy

Non-interact ng 2 JEC -
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Figure 8: Electron occupation number (distribu ‘o “mcuon) versus the single-electron energy with shell

index ¢ calculated for T = 300 K and for £~ values t N.

small, thus making the predictinns of the GCE rather questionable if not erroneous.
Secondly, the formation of Cooper airs in a superconducting ring confining by con-
struction a sharply defin d numu. - of electrons calls for a CE treatment. Nevertheless,
conventional BCS the. v .nd, articularly, the Bogoliubov transform applied to the
decoupled quartic * *ms of the BCS Hamiltonian violates the particle number conser-
vation. A suitable modin. ation of the old BCS theory is thus required to conform it

with CE term- .

Append’ - A. Che aical potential of bosons — upper limit

T iis sect’ on demonstrates that, for any number of bosons, the chemical potential
canno. =xcer 1 the single-particle ground-state energy €y, i.e. uy(B) < g for all N.

iquivai. 1tly, using the identity

pm® - NP (A1)
ZN+1 (ﬁ)
'e must prove that
Zna1(B) > e POZy(B). (A2)
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To this end, we first introduce some auxiliary quantities:
u=eho,

xj=Zi(jB) — e P = Z,(jB) —
Aj=Zi(B) - ePZ;i1(B) = Z;(B) — uZ;-1(B), j=1,,3,...

Ao = 1. (A.3)

Note that, due to Z;(jjB) > e % for all positive intege. valuc, of j, each x; is a strictly
positive number. With the above notation, it reri. ins to b¢ demonstrated that Ay > 0
for N > 1.

First, we invoke mathematical induction to .. “ve the 1dentity

N

Zv(B) = Z WAy, ~=0,1,2,... (A4)
=0

The latter trivially holds for N = 0 an' /v - 1 as can be seen by direct application
of (A.3). Indeed, assuming that (~ ") nuiws for all particle numbers up to N > 1, its

validity for N + 1 boson directly follows rrom

N
Iy (B) = Ayt +uZy N = A 41 +u [Z MIAN—I]

1=0
N N+1 N+1
S | j !
=Ane+ , wT AN = Ay + Z WAy -j = Z UWAN 1. (A.S5)
1=0 =1 1=0

Next, we assume that N > ~ and expand the sum Sy = Zﬁl Xx; Ay_; using the definition
of x;:

N N N-1 N
Sv =2 B Avr = Y u Ay = ZiNB) + ) ZiUB) Ay = ) i Anr, (A6)
=1

" I=1 I=1
wherr we have .solated the term with [ = N in the first sum of the right-hand side.
Repl. ~ing all \y_; in the second sum by their defining expression for / < N, and using

“A.4) te identify the third sum as —uZy_; () upon the substitution / — [ + 1, we obtain

N-1 N-1
Sx = Z\NB) + ), Z1UB) Zn-1(B) — u Y, Z1(UB) Zn-1-1B) = uZ-1(B)
=1 =1

=

-1 N-1

= > ZiUB) Zn(B) —u Z Z1(IB) Zn—1-1(B) — uZn_1(B). (A7)
=1

l

]
—_
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Finally, exploiting the recurrence relations for Zy(8) and Zy_;(8) disc ~sed .. [1] and

references therein, we arrive at

SN =NZyPB) —u(N = DZy-1(B) — uZy-1(B) = N (Zn(B) = Zy-1(p), = NAy, (AB)

or
N

Ay = % ; x; Ay, (A.9)
Whereas being derived for N > 2, the above result trivi.''v holds for N = 1, as can be
seen by direct calculation. Moreover, because of », > 0, w . may initiate mathematical
induction under the assumption Ay_; > 0 for / < V. Since all x; appearing in the

right-hand side of (A.9) are also strictly posiu. > we conclude that Ay must be strictly

positive as well, provided that N > 1.

Appendix B. Fermion occupation nm. be.. for a linear energy spectrum

Inserting a linear energy spectrum c;" =nA, n=0,1,2,--- into Eq. (7), we obtain

the generating function for f .mic. < (¢ = —1) as
]_[ (1+ e ) (B.1)
k=0

From (7) the corres” onding , - .tition function becomes

Y/ A — 1 + ﬁkA z B.2
T e ) (I ®2)
while the ¢ .cupatic ~ number of level n is derived from (9):
. —nBA 1 1 ©
lin € —BkA
8uN = T 5= § — 1+ze dz, (B.3)
Z}Vn 2mi 210 ZN k>10_,;[tn( )

Consic - fir_the ground state occupation g})“}v A substitution k = j + 1 followed by a

substitul on ze P2 = w gives
. —i(N-1)BA 1 1 s
1 € A
g&j}va% —Nl_[ 1+We 1B )d (B4)
N

w0 W
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Replacing j by k and w by z, and inspecting Eq. (B.2), one immea.. “2ly rc. ognizes
Zy, in the right-hand side of (B.4) such that g, = e VD471, 7" Using (43),
one readily obtains

goy =1-e?N4, (B.5)

which is equivalent to the expression for (n;)y reported in k., “'") of [8]. Next, fo-

cusing on n > 0, we separate the factor 1 + z correspc \dir _to - = 0 from the infinite
product in the integral representation of gﬁﬁl, y toobl’ ™
A A 1 1 =
lin _ € \ 1 —kBA
ghn v = —.—.99 (— + 1+ ze ) dz. (B.6)
n+ Zk[n 2 2150 ZN ZN 2. l-t:l+1 \ )

As for the case n = 0, we first make the substi.“ons k = j+ 1,w = ze P2 and rename

them back again into k and z respectively, to . «

. oA | ( e BN A o BN-2A
z1>0

= —— 1 + 72672 dz. B.7
8nt1 N Z}\l/n 27i N N1 )k=lo_;[tn( ze )Z (B.7)

Z

The contributions to the above integ. ! corresponding respectively to the fractions

lin

»y_1> s can be derived

e PN=DA /N and e PN=2A /N " -a proportional to g}ln}v and g
from Eq. (B.3). Hence, we . Mtain:
) ) lin
/ AH&I —e ’i’NAng’r}v + e_ﬁ(N_l)Ag}ql,r}V—l ZI\;I;I ) (B8)
N
Using Zin | /Zjin = (1= A) ePN-DA gne rediscovers the recurrence relation Eq. (18)
of [8]:

gy =ePNoghn 4 (1—e V) glin | (B.9)

As such, .ae 2 sove vecurrence relation is not particularly useful, with both the energy
level ir7=x and ¢ e particle number N appearing as incremental integers. However, the
appl -ation o1 (41) eliminating g, | = 1 — gin ef#A~#¥)) and the use of (46) finally

yi-'ds a.currence relation in n only, the value of N remaining fixed,
gty = 1= ePVA — e PVA (A _ ) gl (B.10)
v hich is easily reversed from increasing to decreasing energy level index n:
eBNA

li —BNA li
g = Tt (1 —e P —g,;:w). (B.11)
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