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Improving the Accuracy and Robustness of Ultra-wideband Localization
through Sensor Fusion and Outlier Detection*

Nathan Dwek1,3, Merwan Birem1, Kurt Geebelen1, Erik Hostens1,
Anurodh Mishra1, Jan Steckel2, and Risang Yudanto1

Abstract— This article presents sensor fusion techniques for
ultra-wideband-based localization to achieve sufficient accuracy
and robustness for the control of AGVs in an industrial
environment. We propose two outlier detection methods in
combination with an EKF, and present experimental validation
where 10 cm accuracy is achieved even in difficult NLOS
conditions.

Index Terms— Localization, Sensor Fusion, Outlier Detec-
tion, Range Sensing, Ultra-wideband

I. INTRODUCTION

As research into indoor localization is receiving atten-
tion [1], [2], ultra-wideband (UWB) based localization has
emerged as one candidate solution, with the performance
and availability of commercial off the shelf hardware as
well as turnkey solutions growing steadily [3], [4]. The
principle of operation is to install anchors (also sometimes
denoted as beacons in the literature) at known locations in
the environment and to measure through the exchange of
UWB signals the distance and/or the angle between those
anchors and an antenna installed on the person or object to
be localized (referred to as the tag). From those ranges or
angles and the known anchors positions, the tag can then
be localized by performing multilateration (for ranges) or
triangulation (for angles) [5].

UWB-based localization has however not yet found its
exact niche. Since it is infrastructure-based, setup cost is
high. This makes it inadequate for lower-cost applications
where the target accuracy is in the order of meters, an
order of magnitude worse than what can be achieved using
UWB [6]. Furthermore, it can only track persons or objects
that are equipped with a tag, which must include a UWB-
specific transducer. For the tracking of crowds for exam-
ple, smartphone-based localization techniques using WiFi
Received Signal Strength (RSS) or fingerprinting are more
popular solutions [1].

For use-cases where the higher requirements on accuracy
may justify the infrastructure cost, UWB-based localization
has not proven reliable enough. This is especially true
in industrial environments where metallic obstructions and
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sources of electro-magnetic interferences (EMI) are present,
resulting in the measurement of ranges failing or being biased
and inaccurate. Such events are generically referred to as
UWB outliers in this article. This has driven past research to
focus on detecting and handling Non-Line-of-Sight (NLOS)
conditions and improving the overall accuracy and reliability
of the localization in realistic conditions [7]–[14].

In this article, we present sensor fusion techniques to
tackle those issues and specifically the detection of UWB
outliers, with a focus on the localization of industrial vehi-
cles. In section II, we further detail the problem statement
and present the proposed approach. This leads in section III
to the general design of the sensor fusion. Then, two novel
outlier detection techniques are presented in section IV.
Those techniques are experimentally validated together with
the general sensor fusion in section V, where the setup is
presented, datasets are made available [15], and performance
metrics are shown and compared to previous results. We
conclude in section VI where we also look at further im-
provements to our work.

II. PROPOSED APPROACH

We present in this work sensor fusion techniques for the
localization of vehicles in an industrial environment, based
on UWB ranging data. The goal is to reach accuracy, refresh
rate and robustness all sufficient for the control of automated
guided vehicles (AGVs).

Typical UWB polling rates, in the order of tens of Hz
for affordable large scale deployments with many tags, will
not be sufficient to reach this goal. Moreover, due to EMI
and NLOS conditions, sufficient UWB data might not be
available at all times, and some ranges might have to be
discarded as outliers. For those two reasons, sensor fusion
is needed of UWB ranging with one or several faster and/or
more reliable sensors. As the industrial vehicles we consider
are typically equipped with wheel encoders, we choose to use
encoder data as an additional measurement. This is a standard
scheme where dead-reckoning, which ensures continuity of
the estimated position, is used in conjunction with a source of
absolute position to compensate for the integration drift [7].

As the vehicles considered in this work are expected to
drive on relatively flat surfaces, the focus is set on 2D local-
ization in the horizontal plane, with some prior knowledge
on the vertical position being available. Full 6 degrees of
freedom pose estimation is not required, but the yaw angle
will be estimated, both because it is necessary for the rest
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of the sensor fusion, and because it is a required feedback
signal for the control of an AGV.

To reach the target accuracy, the focus is set on improving
sensor fusion techniques, and not on designing custom UWB
hardware or sensors. In section V the proposed techniques
are validated using two-way ranging (TWR) [16] with com-
mercial off-the-shelf hardware. TWR was chosen as it does
not require very accurate clock synchronization between
anchors, unlike time-of-arrival (ToA) or time-difference-of-
arrival (TDoA) based schemes [16]. It is expected that the
developed techniques translate to other UWB hardware and
that they are sufficiently generic such that minimal effort
is required to adapt them to ranging schemes which do
not output time-of-flight (ToF) measurements such as ToA
and TDoA. Angle-of-arrival (AoA) based schemes are not
directly considered in this article, but the principles behind
the proposed outlier detection methods still apply.

In this work, the main source of improvement is the
development of better outlier detection techniques for the
UWB range measurements. This topic has received attention
in the past already [7]–[11], [14], and remains a challenge
for the deployment of UWB in industrial environments. One
of the outlier detection techniques presented in this article
relies on channel power diagnostics being available, but we
also propose a technique that does not require them, and that
as a consequence should be applicable in all situations and
for other types of range sensors.

III. GENERAL SENSOR FUSION DESIGN

An extended Kalman Filter (EKF) is used to perform
sensor fusion of the UWB ranges and of the encoder data,
based on the vehicle model. It is not the goal of this article
to present a detailed derivation of such an EKF, as this
topic is very well covered in literature [7], [8], [17]. Some
highlights and design choices are however given below. First,
the traditional notations are introduced.

The EKF estimates the state x of a vehicle based on
measurements y. The vehicle is modeled as a dynamical
system by (1) and (2), where f describes the dynamics of
the system and h describes how the system is observed. u is
the system input and q and r are sources of noise.

ẋ = f(x, u, q) (1)
y = h(x, r) (2)

For the purposes of the EKF, this model must be discretized
in time and linearized at every time-step around the current
values of x, u and y into (3) and (4), which now deal with
small-signal variables.

x̃[t+ 1] = A[t]x̃[t] +B[t]ũ[t] + q̃ (3)
ỹ[t] = H[t]x̃[t] + r̃ (4)

Here, q̃ and r̃ are zero-meaned Gaussian random variables
(we denote such variables simply as Gaussian in the rest
of this article for the sake of conciseness), with covariance
matrices Q and R. The covariance matrix of the uncertainty

on the state estimation is denoted P . Finally, the innovation
s is the prediction error as given in (5).

s = ymeas − ypred (5)

It is also a Gaussian random vector, with its covariance S
given by (7).

s ∼ N (0̄, S) (6)

S = HPHT +R (7)

Similarly to [7], the EKF used in this work has as variable
time-step ∆t in order to accommodate measurements at
different sample rates, and handles a varying number of
measurements being received at once. At each time-step,
numerical integration of the continuous time vehicle dynam-
ics (1) is used to perform the prediction step. The predicted
state x(t + ∆t) is computed, along with x(t + ∆t

2 ), which
is used to derive the A matrix for that time-step. Both the
A and H matrices are computed by performing symbolic
automatic derivation using CasADi [18], and H is derived
taking into account the exact position of the tag the vehicle.
This results in the UWB ranges actually contributing to the
orientation estimation.

The vehicle model also allows to correctly tune the differ-
ent sources of noise in the EKF representation. For example,
the sideways speed noise is limited by how much the wheels
can slip on the ground and is lower than the forward and
yaw acceleration which are simply unknown system inputs.

The vertical coordinate z is part of the estimated state. It
is modeled as constant, with variations only due to a source
of noise on the vertical speed. The standard deviation of that
source of noise is set very low since, as mentioned earlier,
very good prior knowledge of the z position is available.

The encoder measurement model includes a slowly-
varying bias, as indicated in (8) and (9) for i = 1, ..., nencoders.

vimeas = vi + δi + riv (8)

δi[t+ 1] = δi[t] + wi (9)

Here, vi denotes the speed measured by a given encoder and
the bias δi is modeled as a slow random walk. riv are inde-
pendent and identically distributed (i.i.d.) Gaussian noises,
and so are wi.

Multilateration is not done as a separate pre-processing
step, but the EKF works directly with UWB ranges. Refer-
ence [7] lists the advantages of this more elegant approach. It
allows to always maximally use the available UWB informa-
tion, even if not enough ranges (less than respectively 3 or 4
in the 2D or 3D case) are available to perform multilateration.
Crucially to this work, it also allows to perform outlier detec-
tion at the level of individual UWB ranges rather than at the
level of the position computed through multilateration of all
the ranges, outliers or not. We add to these arguments of [7]
that working directly with ranges has the advantage that the
EKF will then implicitly handle the geometrical dilution of
precision (GDOP) resulting from the selected anchors and
current vehicle position; only the ranging measurement noise



is required for each anchors. Those sources of noise are
assumed i.i.d.

At each time-step where UWB ranges are available, outlier
detection is performed before the update step, in order to
select only the reliable measurements which will contribute
to that update step.

IV. OUTLIER DETECTION

Two outlier detection methods are proposed, one is based
purely on the estimation of S, the other relies on channel
power diagnostics.

A. Based on the Estimated Covariance of the Innovation

Hypothesis testing has already been proposed for the
detection of outliers in the context of UWB localization [7],
[8]. The idea is to determine whether the prediction error s
(possibly multidimensional) can be attributed with sufficient
probability to its supposed distribution N (0, S).

Reference [7] proposes to look at the marginal distribution
of every element (i.e. sensor or anchor) of the prediction
error, and to discard individual measurements which fall
outside of their confidence interval (e.g. 3σ). This has the
advantage of treating every UWB range individually, but it
does not take cross-correlations between those ranges into
account. The UWB ranges are heavily correlated since they
measure the distances between the different anchors and a
single tag on the vehicle. Checking that the correlations are
respected is important as it enforces that the ranges agree on
a unique position of the tag.

Reference [8] proposes to use the Mahalanobis distance
to check whether the entire measurement vector can be
attributed to the supposed distribution. This is a rigorous
way to take into account the cross-correlations between the
UWB ranges. However, it does not allow to identify which
individual range or ranges must be discarded, and all ranges
must be valid at once for a measurement vector to be kept.
This makes it inadequate if frequent drops of only some of
the anchors are expected.

We propose a method that allows to detect individual
outlying range or ranges while taking into account the cross-
correlations between them. The principle is to compute
for each element of the prediction error s its distribution
conditioned on all the other elements P (si|sj 6=i). In this case
where s ∼ N (0, S), this univariate conditional distribution is
also Gaussian, with mean and variance given by (10) and (11)
from [19, Section 3.4].

µi = SijS
−1
jj sj 6=i (Correlation) (10)

σ2
i = Sii − SijS

−1
jj S

T
ij (Narrowing) (11)

Here, for N simultaneous measurements, S is size N ×N ,
Sjj is S without its ith row and ith column
(size (N − 1)× (N − 1)) and Sij is the ith row of S
without its ith element (size 1× (N − 1)).

Intuitively, using those conditional probabilities enforces
that measurements agree with each other, but also allows a
larger disagreement with the prediction if there is indeed
consensus amongst the measurements. There is however

one problem that if a single strong outlier occurs, all the
other measurements, although valid, become very unlikely
conditioned on that single outlier, which leads to false-
positives through contamination.

To remedy this, we propose algorithm 1 which proceeds

Algorithm 1 Iterative S-based outlier detection
Require: Outlier threshold n > 0

repeat
for every non-outlying element si of s do

Compute µi and σi of P (si|sj 6=i) with (10), (11)
Build ith confidence interval [µi − nσi, µi + nσi]

end for
if one or several si out of their confidence interval then

Find the siM furthest outside of its interval
Remove only siM from s
Remove only the iM th column and row from S

end if
until no outlier found or no measurement remaining
return s and S to be used by the EKF update

iteratively and eliminates only the strongest outlier at each
iteration. This means that if a single strong outlier occurs,
it will be eliminated first and will not contaminate the
conditional distributions of the other measurements during
the next iterations.

B. Based on Channel Power Diagnostics

Identifying NLOS conditions based on features of the
complex impulse response (CIR) of the UWB channel has
often been considered [9]–[14]. References [12], [13] inves-
tigate the choice of those features. Reference [12] proposes
a classifier to discriminate between LOS and NLOS condi-
tions, while reference [13] investigates the direct correlation
between those features and the ranging error.

A similar but slightly simpler approach, recommended
by Decawave themselves [9], is to use the ratio between
the energy in the timing pulse (First Peak Power Level or
FPPL) and the overall Received Signal Strength (RSS) as a
criterion between NLOS and Line-of-Sight (LOS) conditions.
Those two diagnostics already allow for good detection, as
energy and maximum amplitude of the received signal are
significantly more attenuated in NLOS conditions [13]. This
simplicity makes this approach widespread, especially as
those two diagnostics are provided out of the box by the
very popular Decawave transducers.

This last approach can however be improved since FPPL
and RSS are correlated, which means that NLOS conditions
will cause a dip both in the RSS and in the FPPL. This
is pictured in Fig. 1 which shows the channel diagnostics
along with the true ranging error as NLOS conditions occur
around 120 s. Fig. 1 indeed shows a strong correlation
between events in the RSS - FPPL delta (in dB) and events
in the ranging error, but it also shows how the RSS is affected
as well by the NLOS conditions. Furthermore, Fig. 1 shows
that the RSS measurement fluctuates more than the FPPL
measurement. This is understandable, as the RSS is the
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Fig. 1: Effect of NLOS conditions on channel diagnostics
and ranging error. Note how the NLOS conditions at 120 s
affect both the FPPL measurement and the ranging error,
but also the RSS measurement. Note also how the RSS
measurement is noisier than the FPPL measurement. In
this particular instance, a quantitative correlation could be
established between FPPL and ranging error, but in most
cases the link between FPPL and ranging error stops at events
happening simultaneously.

result of the integration of the signal power over the whole
transmission, whereas the FPPL only measures the energy in
the timing pulse, when signal-to-noise ratio is maximal. We
conclude from those observations that a better indicator could
be obtained by working solely with the FPPL and comparing
it with an expected value based on previous measurements.
This avoids comparing with the RSS, which trends similarly
in the presence of NLOS conditions, and allows to only work
with the less noisy of the two measurements.

We propose to use the Friis transmission equation (12)
from [20] to model the FPPL measured at the receiver, and to
then perform hypothesis testing on the measurement against
the predicted value.

PRx =PTx +GTx +GRx︸ ︷︷ ︸
Quasi-static parameters

+ 10n log

(
λ

4πr

)
︸ ︷︷ ︸

Propagation

+ Noise and other unexpected contributions

(12)

In this particular case, PRx is the FPPL measured at the
receiver, PTx the FPPL at the transmitter and GRx and GTx

are antenna gains which include directivity and losses. λ is
the central wavelength of the UWB channel and r is the
distance between the transmitter (the anchor or the tag) and
the receiver (the tag or the anchor). The path loss exponent
n is set to n = 2 (free space propagation) as the goal is
to model an ideal LOS channel to then perform hypothesis
testing. If the channel is indeed purely LOS, the model fits
with the last term reducing to only simple Gaussian noise.
Otherwise, the last term must include additional transmission
and reflections losses and/or n has to change value to account
for multipath propagation [20].

If the antennas are sufficiently omnidirectional, PTx +
GTx+GRx can be considered as a near constant contribution
to the overall budget with variation due only to temperature
and ageing. From there, the proposed method is to run an
inner univariate KF independently for each anchor-tag UWB
channel to estimate PTx+GTx+GRx of that channel (mod-
elled as a slow random walk) based on FPPL measurements.
From this estimation of PTx + GTx + GRx, the FPPL is
predicted using equation (12) where r is computed based on
the estimated position of the robot.

As each inner channel KF is univariate and independent,
detecting an outlier can be as simple as checking that the
measured FPPL falls in the confidence interval around the
predicted FPPL. Measuring an FPPL outside the confidence
interval means that the channel does not fit the ideal LOS
model, a condition for the corresponding range to be reliable,
with sufficient probability. As a consequence, when an FPPL
measurement is determined to be an outlier by the associated
channel KF, the update step of that UWB channel KF is not
done and the range provided by the corresponding anchor is
also discarded by the localization EKF.

Depending on the use-case and the available measure-
ments, one of the two proposed outlier detection techniques
can be used or both in combination. FPPL-based outlier de-
tection is less computationally intensive than S-based outlier
detection and is completely independent from the choice
of sensor fusion technique as it only relies on the position
estimation and not on the estimation of S. It has however
the downsides that it requires the FPPL measurement to be
available, that it can only detect types of outliers where
there is a correlation between FPPL and ranging error, and
that it does not exploit cross-correlations in S to enforce
agreement between the selected ranges. In subsection V-B,
an experimental comparison is shown of the performance of
the two proposed techniques and of their combination.

When both techniques are combined, FPPL-based outlier
detection should be performed before S-based outlier detec-
tion as it is less computationally intensive. Discarding ranges
early makes the matrices in equations (10) and (11) smaller
which especially speeds up the inversions.

V. EXPERIMENTAL VALIDATION

The experimental validation of the outlier detection and
of the overall sensor fusion is presented in this section.

A. Setup and Datasets

The proposed techniques are used to track a Pioneer
P3-DX robot that is driving through a roughly 8 m×10 m test
area. As pictured in Fig. 2 and Fig. 3, an ArUco marker [21]
on the robot is tracked by 8 cameras covering the test area
to provide mm-accurate position ground-truth (GT). 8 De-
cawave TREK1000 [22] devices are used as anchors, with
their spatial configuration varying from dataset to dataset.
The tag placed on the robot is another Decawave TREK1000.
The UWB devices are configured to perform double-sided
TWR [16] at 12.5 Hz. ROS [23] is used to control the robot
and acquire the encoder, UWB and GT data.



Fig. 2: The P3-DX robot tracked in the experiments

Fig. 3: Experimental setup. Depending on the experiment,
the anchors are mounted on the fixed metallic trusses or
on tripods further away from the testing area. The cameras
providing optical ground-truth are mounted on the trusses
and calibrated using ArUco markers at known positions on
the floor.

Several datasets were acquired, with varying trajectories,
anchor placements and obstructions. Those datasets [15] are
provided alongside this work under a CC-BY 4.0 license,
and raw data can also be made available on request.

To establish baseline performance in the ideal case, simple
trajectories were executed with no obstructions and good
anchor placements. Those datasets are pictured in Fig. 4,
with the positions of the antennas indicated by the labels 0
to 7. The antennas are hung at a height of around 4 m.

A slightly more challenging dataset was acquired where
the robot drove right under some anchors, as depicted in
Fig. 5, which resulted in outliers due to the toroidal direc-
tivity of the antennas. The result of simple multilateration
without outlier detection is also shown in green on Fig. 5 to
highlight the parts of the trajectory where outliers occurred.
The lower right part of the trajectory shows that anchor 1,
provides faulty ranges as the robot drives close to right under
it, resulting in simple multilateration giving poor accuracy in
that area. The same phenomenon happens, although with a
less dramatic effect, around anchors 0 and 5.

Finally, to emulate realistic conditions with complex
mixed obstructions, a dataset was acquired with a large
vehicle placed in the middle of the test area, as depicted
in Fig. 6. The vehicle in the middle of the test area was
preventing or disrupting ranging to certain anchors in func-
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Fig. 4: Ideal LOS datasets: Ground Truth (GT) trajectory,
and trajectory estimated using the proposed sensor fusion
techniques (labeled as KF). Labels 0 to 7 on the figure denote
the positions of the anchors.
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Fig. 5: “Stop & Go” dataset: Ground Truth (GT) trajectory,
and trajectories estimated using the proposed sensor fusion
techniques and simple multilateration. Labels 0 to 7 on the
figure denote the positions of the anchors. Note how the
multilateration estimation is affected by UWB outliers as the
robot drives under or near anchors 0, 1 and 5. This is due
to the toroidal directivity of the anchors.

tion of the position of the robot, due to refraction through
glass windows, edge diffraction, transmission through thin
metallic sheets and/or complete reflection on thicker metallic
elements depending on which part(s) of the vehicle the UWB
wave was interacting with.

Again, the result of simple multilateration (in green on
Fig. 6) visually shows how much UWB ranging was dis-
rupted by NLOS conditions, and how these translate into
inaccurate position estimation if not handled properly.

The proposed sensor fusion techniques were implemented
in Python using Scipy [24] and tested on those datasets. The
results of those tests are presented below.

B. Performance Metrics

As proposed by [25], we use the cumulative distribution
function (CDF) of the 2D localization error to quantify the
tracking accuracy.

1) Baseline Performance in the Ideal LOS Case: First the
performance of the sensor fusion is shown in the purely LOS



Fig. 6: “Evoque” Dataset: Ground Truth (GT) trajectory,
and trajectories estimated using the proposed sensor fusion
techniques and simple multilateration. Labels 0 to 7 on the
figure denote the positions of the anchors.

cases. Fig. 7 shows the accuracy for the three datasets that
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Fig. 7: 2D localization error CDF for the LOS cases

did not contain any outliers, and Table I gives a summary of
the corresponding accuracy metrics.

TABLE I: Accuracy metrics for the LOS cases

2D localization error
Dataset Median Third quartile 90th percentile

“Straight Y” 5.6 cm 7.2 cm 8.4 cm
“Circles 1” 4.5 cm 7.1 cm 9.8 cm
“Circles 2” 4.3 cm 5.6 cm 6.5 cm

The obtained localization performance is on par with or
better than what has been previously reported on UWB
tracking for this ideal case [2], [14], [17], [25]. Those
previous results have been obtained with similar anchor
densities i.e. about 8 anchors covering a roughly 100 m2

area. Note however that we have not found state of the art
results that could be compared in a rigorous manner and
that use encoders in combination with UWB ranges, which

should arguably give better performance than e.g. UWB and
Inertial Measurement Unit (IMU). Note also that contestants
did not have access to encoder data at the 2016 IPIN robot
tracking (track 4) competition [2], which remains a reference
regarding the tracking of indoor vehicles.

Similar performance has also been obtained with datasets
from three industrial partners, which further validates our
results. Each of these datasets was acquired using a different
vehicle and different sensors, at different scales, and in two
cases with custom UWB hardware. One was acquired inside
a plant of a leading metal manufacturer, one in a large
outside container terminal and one at a farming automation
specialist. In two cases, anchor density was significantly
lower, with 8 anchors covering areas up to 2500 m2.

2) Performance in Realistic Cases: With the basic sensor
fusion validated, the focus is now set on benchmarking the
outlier detection techniques and overall accuracy in the more
realistic “Stop & Go” and “Evoque” datasets.

To evaluate outlier detection performance, the CDF of the
absolute measurement error of the selected ranges is shown
per outlier detection method, using the known GT positions
to compute the reference ranges. This is depicted in Fig. 8
for the “Stop & Go” dataset and for the “Evoque” dataset.

Fig. 8 shows the improvement obtained with the proposed
outlier detection compared to the existing methods presented
in section IV. In the “Stop & Go” dataset, using only
the marginal distributions does not sufficiently eliminate
outliers, and neither does using a simple threshold on the
RSS - FPPL delta. As expected, using the Mahalanobis
distance as a criterion results in the elimination of many
valid ranges. While it eliminates all measurements with an
absolute error above 30 cm, it selects only 436 ranges, com-
pared to the 24583 selected by the proposed method, which
achieves a very similar CDF and eliminates all measurements
with an absolute error above 40 cm.

Similarly, In the “Evoque” dataset, the Mahalanobis dis-
tance criterion results in the elimination of all but one
measurements, which can be understood as less than 5 %
of the measurement vectors did not contain an element with
an absolute error below 20 cm. Outlier detection based on
the marginal distributions approaches the proposed method
in this particular case but is still slightly inferior. In general,
it appears that from use-case to use-case, one of the exist-
ing outlier detection criteria might approach the proposed
method but the proposed method remains robust across all
the test-cases, including the ones carried out at industrial
partner’s sites and with their hardware.

This improved accuracy of the ranges selected to be used
by the localization EKF translates into an overall improved
localization performance, as depicted in Fig. 9, which com-
pares the localization accuracy of the EKF with the proposed
outlier detection method to the accuracy of the same EKF
with existing outlier detection methods and to the accuracy
of simple multilateration. The accuracy of the EKF with
Mahalanobis outlier detection also indicates the quality of the
encoder measurements. As nearly all ranges are eliminated,
the EKF is essentially performing dead-reckoning.
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Fig. 8: CDF of the absolute UWB ranging error for different
outlier detection methods. “Marginal”: measurements further
than 3σ away from their expected value are eliminated.
“Mahalanobis”: innovation vectors with a Mahalanobis norm
higher than 3 are eliminated. “RSS-FPPL Threshold”: ranges
where the channel has RSS - FPPL > 10 dB are eliminated,
as recommended by Decawave [9]. The proposed outlier
detection method allows to limit the true ranging error from
sometimes over 1 m to always under 40 cm.

Again, the improvement obtained by applying the tech-
niques proposed in this article is clearly visible. These
techniques achieve localization with third quartile of the 2D
localization error at or below 10 cm even in the harshest case.
Third quartile error below 10 cm was also achieved with the
coverage of 50 m× 50 m test-area of a running factory.

VI. CONCLUSIONS AND FUTURE WORK

In this article we have shown how UWB can be used in
conjunction with dead-reckoning in order to achieve tracking
with 10 cm third quartile 2D localization error. This was
experimentally validated even when complex disruptions
of the UWB channel were introduced to mimic a harsh
industrial environment. These results are made possible by
the application of standard sensor fusion techniques as well
as the development of improved outlier detection methods
more specific to UWB based localization.

In our “Evoque” dataset, where more than 30 % of the
measured ranges are outliers with true ranging error from
20 cm up to more than 3.5 m, we have shown experimentally
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(b) “Evoque” dataset

Fig. 9: CDF of the 2D localization error for different outlier
detection methods, and for simple multilateration

how the proposed outlier detection methods successfully
manage to select a subset of 70 % of these measurements
with errors no greater than 50 cm. This leads to a dramatic
improvement of the resulting localization accuracy and we
have shown how in the harshest conditions sensor fusion and
outlier detection allowed to bring the third quartile of the 2D
localization error from over 3 m to 10 cm.

As our approach revolves around improving the processing
of the measurement data rather than its acquisition and
resulting quality, it is very generic. We have proven this
by applying our techniques on datasets collected by three
industrial partners in addition to our own, with different
vehicles, UWB hardware and overall conditions.

We believe that these results can be improved upon
going forward. First, the UWB hardware used during the
acquisition of the datasets presented in this article could be
upgraded or better modeled. The current antennas [26] do not
have perfectly omnidirectional group delay but are modeled
as such. There is also reason to believe that the UWB
ranging error could be further modeled as a function of the
vehicle position. Previous work has shown the multilateration
localization error to be seemingly repeatable [14], [17].

Second, the approach proposed in this article could be
made more powerful and generic by also taking advantage
of data from an IMU. This would require full 6 degrees of
freedom pose estimation to correctly estimate the reference
frame in which accelerations and rotations are measured as



well as some IMU-specific techniques for the compensation
of bias and drift, as has been done before [7], [14]. The
advantages would be a possibly improved accuracy, and
more importantly redundancy and/or the ability to build a
robust, independent localization package that would not rely
on vehicle encoder data being available.

Finally, the proposed outlier detection techniques are
“hard” in the sense that a measurement is either used
with its usual weight, or not used at all. There have been
attempts [14] at “soft” outlier detection techniques that weigh
the incoming measurements based on the estimated condition
of the UWB channel. Somewhat similarly, reference [13]
proposes to correct the measured ranges based on features
in the CIR of the UWB channel instead of classifying
measurements and discarding the NLOS ones. Estimating
the parameters of a more accurate but also more complex
UWB range measurement model based on the information
contained in the CIR and possibly information from other
sources such as a map of the environment or channel
history would be the most comprehensive solution. However,
this remains a (highly dimensional) challenge, and would
probably require using a particle filter to handle the non-
Gaussian measurement model, which is not always practical
on embedded targets.

To make large-scale deployments simpler and UWB a
stronger candidate localization solution overall, research
should also investigate how to estimate the position of the
anchors in the reference frame of interest without resorting
to expensive field surveys. This can be made possible by
formulating the estimation of the whole trajectory and of the
anchor positions from the UWB ranges as a single optimiza-
tion problem. If other sensors are used in this estimation, it
becomes a Simultaneous Localization and Mapping (SLAM)
problem, a topic that is also receiving attention. In either
case, the outlier detection methods presented in this article
remain of interest.
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