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Abstract: IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum.
Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims
to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect
candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features,
referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly
dense deployments. RAW divides stations into groups and reduces contention and collisions by
only allowing channel access to one group at a time. However, the standard does not dictate
how to determine the optimal RAW grouping parameters. The optimal parameters depend on the
current network conditions, and it has been shown that incorrect configuration severely impacts
throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW
optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current
traffic conditions, optimized for sensor networks in which each sensor transmits packets with a
certain (predictable) frequency and may change the transmission frequency over time. The TAROA
algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet
transmission interval of each station only based on packet transmission information obtained by
access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and
assigns stations to RAW slots based on this estimated transmission frequency. The simulation results
show that, compared to enhanced distributed channel access/distributed coordination function
(EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense
networks in terms of throughput, especially when hidden nodes exist, although it does not always
achieve better latency performance. This paper contributes with a practical approach to optimizing
RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW
mechanism in real-life IoT networks.

Keywords: IEEE 802.11ah; dense IoT networks; restricted access window (RAW); real-time RAW
optimization; dynamic traffic

1. Introduction

The Internet of Things (IoT) aims to provide connectivity among a huge number of “things”
anytime and anywhere. This will highly impact every aspect of the world we live in, including
economics, politics, and social life. Emerging IoT applications and services, such as smart meters,
environmental/agricultural monitoring and automation of industrial processes, require myriads of
battery-powered smart things (e.g., sensors, actuators, controllers) connected together in an energy
efficient way. Currently, there are two categories of low-power IoT communication technologies:
wireless personal area network (WPAN) and low-power wide area network (LPWAN) technologies.
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Within short transmission range (i.e., tens of meters), WPAN technologies (e.g., Bluetooth Low
Energy, ZigBee) provide relatively high throughput (i.e., up to a few hundred kilobits per second),
while long-range communications (i.e., up to several kilometers) can be supported by LPWAN
technologies (e.g., LoRA, SigFox) at much lower throughput (i.e., up to at most a few kilobits per
second). As the transmission range of the WPAN technologies is too short and throughput of the
LPWAN technologies is too low, both of them can only be applied in a limited set of IoT scenarios.
Therefore, a gap still exists for a low-power IoT communication technology that offers sufficient
throughput over longer ranges.

The recently released IEEE 802.11ah Wi-Fi standard, marketed as Wi-Fi HaLow, fills this gap.
It operates in the unlicensed sub-1 GHz frequency bands (e.g., 863–868 MHz in Europe, 755–787 MHz
in China and 902–928 MHz in North-America). Similar to previous Wi-Fi standards, it supports several
modulation and coding schemes (MCS) in order to offer a trade-off between throughput, range and
energy efficiency. This allows it to support transmission ranges from 100 m up to 1 km with data rates
between 0.15 Mbps and 346.67 Mbps. Thus, IEEE 802.11ah has the potential to achieve much higher
transmission ranges than existing WPAN and much higher throughput than both WPAN and LPWAN
technologies. On the MAC (Media Access Control) layer, in order to increase efficiency in the face of a
large number of densely deployed, energy constrained stations, several innovative mechanisms are
introduced, including hierarchical organization, short MAC header, restricted access window (RAW),
traffic indication map (TIM) segmentation and target wake time (TWT).

The RAW feature aims to increase scalability in dense IoT networks, where a large number of
stations connect to a single access point (AP). With RAW, stations are divided into groups, limiting
simultaneous channel access to one group. Therefore, the collision probability for upstream traffic is
highly reduced. However, the grouping strategy, which decides how to split stations among groups, is
not mentioned in the standard. Concretely, a station grouping algorithm should be implemented at
the AP side to determine the number of RAW groups, the duration of each group, and how to divide
stations among them. Furthermore, these parameters should be dynamically adapted by the AP between
consecutive beacon intervals. In previous work, we conducted an in-depth analysis of the influence of
network and traffic conditions on the optimal station grouping parameters [1]. We concluded that the
optimal parameters depend on a wide range of network variables, such as number of stations, network
load and traffic patterns. This shows the need for dynamic station grouping algorithms that determine
the optimal station grouping parameters based on the current network and traffic conditions. As these
conditions change, the algorithm should similarly adapt.

In this article, we present a novel real-time station grouping algorithm that adapts the RAW
parameters based on the current (estimated) traffic conditions, optimized for sensor networks with
mainly upstream traffic. It improves upon the state of the art in three ways. First, it is designed for
dynamic and heterogeneous traffic conditions, where each station has a different packet transmission
interval that may change over time. Second, it only uses information readily available on the AP
side, estimating station-side variables based on available data. Third, it can be executed in real time,
not relying on at-runtime evaluation of complex mathematical models. The combination of these
three factors allows the algorithm to be deployed in realistic environments, executing it at the start
of each beacon interval for instantaneous adaptation to changes in traffic conditions. To the best of
our knowledge, this is the first real-time IEEE 802.11ah station grouping algorithm that can cope
with dynamic and heterogeneous traffic. The algorithm is thoroughly evaluated using our previously
presented 802.11ah ns-3 simulator [2].

The remainder of this article is structured as follows. Section 2 introduces related research on
IEEE 802.11ah station grouping. Section 3 provides a brief overview of the IEEE 802.11ah RAW
feature. The real-time station grouping algorithm for dynamic traffic is presented in Section 4.
Section 5 describes the derivation of the optimal value of two input parameters used by the proposed
algorithm. In Section 6, we provide a comparison of the algorithm to enhanced distributed channel
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access/distributed coordination function (EDCA/DCF) and static grouping using simulation results.
Finally, conclusions and future work are discussed in Section 7.

2. Related Work

Even though the IEEE 802.11ah standard was only officially published recently, research on
IEEE 802.11ah has been conducted for several years. Several articles [3–8] provide a deep overview of
the key features of the new technology, fully describing the advantages and challenges in the design of
PHY and MAC layer schemes. Moreover, performance assessment on IEEE 802.11ah in four common
machine-to-machine (M2M) scenarios, i.e., smart metering, agriculture monitoring, animal monitoring,
and industrial automation, has been conducted by Adame et al. [5]. Baños et al. [8] thoroughly
evaluated performance of IEEE 802.11ah in comparison to the most notable IEEE 802.11 standards,
and exposed the capabilities of IEEE 802.11ah in supporting different IoT applications.

Several recent works study physical layer aspects of 802.11ah and sub-1 GHz communications [9–14].
Hazmi [9] conducts assessment on the link budget, and derives the achievable data rate and optimal
packet size of 802.11ah. Aust and Ito [10] study three urban propagation path loss models of 802.11ah
for carrier frequencies at 900 MHz. Li and Wang [14] compare the indoor coverage and time delay
performance between IEEE 802.11g and IEEE 802.11ah in M2M communications. Aust and Prasad [12]
proposed an IEEE 802.11ah prototype that is configured as a self-contained M2M wireless sensor
system and allows an over-the-air protocol performance assessment. Casas and Papaparaskeva [13]
introduced a design for a programmable 802.11ah station based on the Cadence-Tensilica Fusion
digital signal processor (DSP). Aust, Prasad and Niemegeers [11] built a real-time Multiple-input,
multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) testing platform for
evaluating narrow-band sub-1GHz transmission characteristics. Moreover, Ba et al. [15] developed an
802.11ah fully-digital polar transmitter, this hardware prototype passes all the PHY requirements of
the mandatory modes in IEEE 802.11ah with 4.4% error-vector-magnitude (EVM), while consuming
only 7.1 mW with 0 dBm output power.

More relevant to the research presented in this article is work focusing on RAW analysis and
optimization. Several studies have been conducted on the optimality of RAW configurations given
specific network and traffic conditions [1,16,17]. Park [16] showed the effectiveness of RAW to mitigate
the hidden node problem. Zhao et al. [17] evaluated RAW in terms of energy efficiency, showing that
increasing the number of RAW groups significantly improves energy efficiency for sensor stations.
Finally, in our own previous work [1], we evaluated the optimal RAW station grouping configuration
under a variety of traffic conditions, proving the need for a dynamic regrouping algorithm, that takes
into account changes in network and traffic conditions.

Several such station grouping algorithms have been proposed in literature, as shown in Table 1.
The goal of these algorithms is to determine RAW parameters (i.e., number of groups and slots, group
duration, and station partitioning among groups), given the current network conditions (e.g., number
of stations, traffic demand, station location). For each algorithm, Table 1 shows the assumed upstream
traffic conditions, the optimization objective, and the used algorithmic method. The surveyed
algorithms focus on upstream traffic, as station grouping mainly improves upstream scalability, and it
is the main type of traffic in sensor networks. The traffic conditions consist of two parts. First, the traffic
intensity can be categorized as either (i) one packet per station per slot; (ii) saturated traffic for each
station; (iii) a static finite number of packets per station per slot and (iv) a dynamic (i.e., changing from
slot to slot) finite number of packets per station per slot. Second, the inter-station traffic differentiation
is either homogeneous (i.e., all stations have the same traffic intensity) or heterogeneous (i.e., different
stations may have different traffic intensities). The considered objectives are contention minimization
(i.e., through hidden node mitigation), throughput maximization, energy consumption minimization,
or a combination. It is clear that, to be applicable to real scenarios, supported traffic conditions should
be both dynamic and heterogeneous.
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Table 1. Classification of existing IEEE 802.11ah station grouping algorithms and models in terms of
supported upstream traffic conditions, optimization objective, and used algorithmic method.

Reference Traffic Conditions Objective Algorithmic Method

Yoon et al. [18] 1 packet, homogeneous contention set partitioning (hidden nodes)
Dong et al. [19] static, heterogeneous contention set partitioning (node location)
Damayanti et al. [20] 1 packet, homogeneous contention set partitioning (hidden nodes)
Chang et al.[21] static, heterogeneous throughput set partitioning (traffic demand)
Wang et al. [22] 1 packet, homogeneous energy probabilistic analytical model
Khorov et al. [23] 1 packet, homogeneous throughput Markov chains
Qutab-ud et al. [24] saturated, homogeneous throughput set partitioning (back-off timer)
Bel et al. [25] 1 packet, homogeneous energy multi-objective game theory
Park et al. [26] saturated, homogeneous throughput maximum likelihood estimation
Raeesi et al. [27,28] saturated, homogeneous throughput & energy probabilistic analytical model
Zheng et al. [29,30] saturated, homogeneous throughput Markov chains
Ogawa et al. [31] saturated, homogeneous throughput & energy set partitioning (uniform random)

The algorithms presented in the table are broadly based on two approaches: (i) analytical modeling
and (ii) set partitioning. The analytical models make use of different techniques, such as probability
theory [22,27,28], Markov chains [23,29,30], multi-objective game theory [25], and maximum likelihood
estimation [26]. They all aim to optimize throughput, energy consumption, or a combination of both.
Generally, they are computationally hard. This makes it infeasible to execute them in real time on
actual AP hardware, where, at most, a few milliseconds are available at the start of the beacon interval
to calculate a new RAW configuration. Moreover, such models require information about the station’s
traffic demand that is not readily available on the AP side. To simplify the modeling process, all
existing models for RAW focus on homogeneous traffic with either one packet per station or under
saturation. The combination of these factors make such models useful only from a theoretical point
of view, in order to analyze the effectiveness of RAW under a variety of conditions. However, they
cannot be used for real-time station grouping under dynamic and realistic traffic conditions.

The set partitioning algorithms are much simpler. They assume the number of RAW slots and groups
is given, and decide how to partition the associated stations among them, according to some metric.
Their simplicity makes it computationally feasible to deploy them in real networks. Older work assumes
simplified saturated and homogeneous network conditions. Moreover, it focuses on simple partitioning
metrics, such as fully random [31] or based on the back-off timer value [24], which, in reality, is not
known to the AP. Recently, some more interesting approaches have popped up. Several algorithms focus
on mitigating hidden node collisions by splitting mutually hidden nodes into orthogonal groups [18–20].
Additionally, Chang et al. proposed a set partitioning algorithm that assumes the (static) traffic demand
of each station is known by the AP and load balances them across groups [21]. Most of these recent
algorithms still assume simplified homogeneous traffic [18,20]. However, two algorithms [19,21] focus
on more realistic traffic, where stations have heterogeneous, static and non-saturated traffic.

Although the algorithms of Dong [19] and Chang [21] take a step in the right direction by
supporting more realistic traffic and real-time execution, they still have several shortcomings that
we aim to address in this article. First, none of the presented algorithms take into account traffic
dynamics. In a real network, the upstream traffic intensity of stations may change over time for
a variety of reasons, and the algorithm should therefore adapt to these changes. Second, they expect
all information, such as the exact traffic intensity of each station, to be readily available on the AP side,
which, in reality, is not the case. Third, they assume that the number of groups and slots as well as their
duration are given, and only the partitioning of stations among them needs to be solved. The number
of groups and their duration, however, significantly influence RAW optimality [1]. All parameters
should therefore be jointly optimized.

In this paper, we present a station grouping algorithm for the IEEE 802.11ah RAW mechanism
that addresses these shortcomings. It supports both dynamic and heterogeneous traffic, real-time
execution, estimation of station traffic intensity on the AP side , and optimization of all RAW parameters
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(i.e., number of groups and slots, group duration, and station partitioning). Last but not least, it is
evaluated using our IEEE 802.11ah ns-3 packet-based network simulator [2], which exhibits realistic
propagation behavior (e.g., channel errors, capture effect). These propagation effects are often ignored,
but significantly affect performance results.

3. IEEE 802.11ah Restricted Access Window

IEEE 802.11ah operates over a set of unlicensed radio bands (all in the sub-1 GHz spectrum),
supporting up to 1 km transmission range, and allowing up to 8192 stations to associate with
a single AP. Due to these features, 802.11ah is a highly attractive wireless communication technology
for long-distance IoT use cases, such as smart meters and environmental/agricultural monitoring.
This section provides an overview of the RAW station grouping feature of the 802.11ah standard,
which is the focus of this article. More detailed overview of the complete standard can be found in
existing literature [4–7].

The goal of the RAW mechanism is to mitigate collisions and improve performance in dense IoT
networks where a large number of stations are contending for channel access simultaneously. It splits
stations into groups and only allows stations assigned to a certain group to access the channel at
specific times. Figure 1 schematically depicts how RAW works. Specifically, the channel time is split
into several intervals, some of which are assigned to RAW groups, while the others are considered as
shared channel airtime and can be accessed by all stations. Each interval assigned to a RAW group is
preceded by a beacon frame carrying a RAW parameter set (RPS) information element that specifies
the RAW related information, such as the stations belonging to the group, as well as the group start
time. Moreover, each RAW group consists of one or more slots, over which the stations assigned to
the RAW group are evenly split (using round robin assignment). The RPS information element also
contains the number of slots, slot format and slot duration count sub-fields, which jointly determine
the RAW slot duration as follows [32]:

D = 500 µs + C× 120 µs, (1)

where C represents slot duration count sub-field, which is either y = 11 or y = 8 bits long if the slot
format sub-field is set to respectively 1 or 0. The number of slots field is 14− y bits long. When y = 11,
each RAW consists of at most eight slots and the maximum value of C is 211 − 1 = 2047, the slot
duration is up to 246.14 ms. Otherwise, each RAW consists of at most 64 slots and the maximum value
of C is 28 − 1 = 255, the slot duration is limited to 31.1 ms. Stations are mapped to slots as follows [32]:

islot = (x + Noffset) mod NRAW, (2)

where islot is the index of ith RAW slot to which the station is mapped. NRAW is the number of slots
in one RAW. Noffset is the offset value in the mapping function to improve fairness and equals the
two least significant octets of the FCS field of the S1G beacon frame, and x is the index of the station.
Figure 1 shows an example of the RAW slot assignment procedure.

The RPS also contains the cross slot boundary (CSB) sub-field. Stations are allowed to continue their
ongoing transmissions even after the end of the current RAW slot when CSB is set to true. Otherwise,
stations should not start a transmission if the remaining time in the current RAW slot is not enough to
complete it.
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RAW A! RAW B! RAW C! RAW D!

slot 0! slot 1! slot i! slot NRAW-1!… … 

Station X!

assigned to!

assigned to!

Beacon !
carrying RPS!

Beacon!
carrying RPS!

Figure 1. Schematic representation of the RAW mechanism, with the beacon RPS element carrying
information about the number of RAW groups, their duration, number of equal-sized slots and
assigned stations.

Different from previous IEEE 802.11 standards, each station uses two back-off states of enhanced
distributed channel access (EDCA) to manage transmission inside and outside their assigned RAW slot
respectively (cf. Figure 2). The first back-off function state is used outside RAW slots, while the second
is used inside. For the first back-off state, the station suspends its back-off timer at the start of each
RAW, and restores and resumes the back-off timer at the end of the RAW. For the second back-off state,
stations start back-off with initial back-off state inside their own RAW slot, and discard the back-off
state at the end of their RAW slot, effectively restarting their back-off at the start of their next RAW
period. As shown in Figure 2, station 1 is inside the RAW group and assigned to slot 1, while station 2
is not included in this RAW group. Therefore, station 1 uses the first back-off state outside its RAW
slot period and the second back-off state inside its RAW slot, while station 2 only uses the first back-off
state outside the RAW group period and goes into a sleep state inside the RAW group period.

Beacon !
carrying RPS!

Beacon!
carrying RPS!

1st back !
off function!

Doze state!

1st back !
off function!

1st back !
off function!

1st back !
off function!

slot 0! Slot 1! … …! Slot NRAW-1!

Doze state! 2nd back!
 off function! Doze state!

RAW!

Station  1, assigned to RAW slot 1!

Station  2, not belongs to current RAW group !

Figure 2. Illustration of the novel dual back-off procedure of IEEE 802.11ah.

4. Real-Time RAW Parameter Optimization

This section introduces the RAW optimization problem addressed in this article, and subsequently
proposes the Traffic-Adaptive RAW Optimization Algorithm (TAROA). TAROA solves the RAW
optimization problem in real-time, and is able to instantaneously adapt to changes in station association
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and traffic demand. Table 2 provides an overview of the variables used in the description of the RAW
optimization problem and TAROA.

Table 2. Variables and notations introduced in the algorithm description.

General Variables Description

S Set of all stations
Squeue Queue of stations sorted by increasing next transmission time ts

next
tc Current time ?

Variables of Beacon Interval b Description

Rb Set of RAW slots in beacon interval b
tb Total beacon interval time minus beacon transmission time
Sb Set of stations that are allowed to transmit in the beacon interval b
πb

max Theoretical maximum number of packet transmissions in beacon interval b
πb Number of packet transmissions in beacon interval b

Variables of RAW Slot r ∈ Rb Description

Sr Set of stations assigned to RAW slot r
σr

opt Optimal number of stations in RAW slot r based on throughput
πr Number of packet transmissions in RAW slot r
tr RAW slot duration

Variables of Station s ∈ S Description

πs
b,r Number of packets received by the AP in RAW slot r of beacon interval b from station s

πs
failed Number of consecutive failed transmissions of station Si

ts
next Estimated next transmission time ?

ts
int Estimated transmission interval ?

t̂s
int Real transmission interval ?

ts
succ [0] Last successful transmission time ?

ts
succ [1] Previous to last successful transmission time ?

πs
trans [0] Last transmission result, success or failure

πs
trans [1] Previous to last transmission result, success or failure

? Expressed as a multiple of number of beacon intervals.

4.1. Problem Statement

We consider IoT sensor-based monitoring scenarios, where a large set of sensors S send
measurements to a back-end server (through the AP) at specific time intervals. A sensor s ∈ S ,
also referred to as a station, has a packet transmission interval t̂s

int, which may change over time
(e.g., when an environmental event triggers a change in the sensor measurement interval).

The goal of RAW optimization is to assign stations to a set of RAW slotsRb during each beacon
interval b, maximizing the number of successful transmissions. As an input, it uses only information
readily available at the access point. The first input is the last-in-first-out (LIFO) queue of times
a packet was successfully received by the AP from station s or ts

succ, where ts
succ [0] represents the

time of the last successful packet reception. The second input is the LIFO queue of transmission
results (i.e., success or failure) πs

trans, where πs
trans [0] is the result of the last transmission. A packet

transmission is considered a failure if a RAW slot was assigned to a station, but no packet was received
during that slot. The output of RAW optimization is, for each beacon interval b, the set of RAW slots
Rb, the set of stations S r assigned to each slot r, and the duration tr of each slot r. The goal can then be
formally defined as:

max ∑
b

∑
r∈Rb

∑
s∈Sr

πs
b,r (3)

where πs
b,r represents the number of packets successfully received by the AP from station s during

beacon interval b.
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4.2. Traffic-Adaptive RAW Optimization Algorithm (TAROA) Overview

TAROA aims to solve the aforementioned problem by estimating the transmission interval t̂s
int of

each station s on the AP side (as it is not known by the AP). This estimate ts
int is used to determine for

each beacon interval b the set of RAW groups and slotsRb, their duration tb, and the stations assigned
to each of them Sb.

Figure 3 depicts an example time line up to the current time tc for a single station attempting to
transmit several packets. Station s places a packet in its transmit queue every t̂s

int seconds, while the
access point estimates the related transmission interval as ts

int. The closer this estimate is to the
real value, the lower the transmission latency will be for station s. Based on this estimate, the AP
assigns RAW slots of varying duration tr to s. At the top, Figure 3a depicts an example where the last
transmission attempt at time tc is successful. At the bottom, Figure 3b shows a related example where
the last transmission attempt fails, due to a lack of packets in the queue of station s. For both cases,
the figures graphically depict the parameter values for the last two transmissions results (i.e., πs

trans [0]
and πs

trans [1]) and the last two successful transmission times (i.e., ts
succ [0] and ts

succ [1]). These values
are used by the transmission interval estimation algorithm (i.e., Algorithm 1) to calculate ts

int at the
start of each beacon interval.

time

𝑡"

𝑡# 𝑡# 𝑡#

𝑡$%&' 𝑡$%&'

time

𝑡̂$%&' 𝑡̂$%&'

𝑡')""' 1
𝜋&#,%'' 1

𝑡$%&'
𝜋&#,%'' 0
𝑡')""' 0

𝑡#

packet arrives in queue raw slot assigned to station 𝑠

packet succesfully transmitted to AP packet failed to transmit to AP

Transmission
of station  𝑠

Queue of
station 𝑠

(a)

time

Transmission
of station  𝑠

𝑡#

𝑡$ 𝑡$ 𝑡$

𝑡%&'( 𝑡%&'(
time

Queue of
station 𝑠

𝑡̂%&'(

𝑡(*##( 0𝑡(*##( 1
𝜋'$.&(( 1

𝑡%&'(
𝜋'$.&(( 0

𝑡$

(b)

Figure 3. Parameters used for estimating the transmission interval of station s at time tc.
(a) transmission succeeds at time tc; (b) transmission fails at time tc.
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Algorithm 1: Estimate transmission interval of station s ∈ S
input :Station s ∈ S , ts

succ [0] , ts
succ [1] , πs

trans [0] , πs
trans [1] , ts

int, tc, πs
b,r, πs

failed
output : ts

int, ts
next

1 if πs
trans [0] == failed then

2 πs
failed ← πs

failed + 1

3 ts
int ← tc − ts

succ [0] + 2× πs
failed − 1

4 else if πs
trans [0] == success∧ πs

trans [1] == failed then
5 πs

failed ← 0

6 ts
int ← ts

succ [0]− ts
succ [1]

7 else
8 πs

failed ← 0

9 if πs
b,r == 1 then

10 ts
int ← tc − ts

succ [1]
11 else if πs

b,r > 1∧ ts
int > 1 then

12 ts
int ← ts

int − 1
13 else if πs

b,r > 1∧ ts
int ≤ 1∧ πs

b,r > 1/ts
int then

14 1/ts
int ← 1/ts

int + 1
15 else if πs

b,r > 1∧ ts
int ≤ 1∧ πs

b,r < 1/ts
int then

16 1/ts
int ← 1/ts

int − 1
17 end
18 end
19 ts

next = ts
int + ts

succ [0]

As depicted in Figure 4, the algorithm is executed at each target beacon transmission time (TBTT),
and consists of two main steps. First, the AP updates its estimation ts

int of the packet transmission
interval t̂s

int of each station based on packet transmission information obtained during the last beacon
interval. As the algorithm is optimized for sensor stations, it is assumed that each station transmits
packets with a certain (predictable) frequency. However, as the estimation is updated at the start of
each beacon interval, the algorithm can easily cope with changes in this transmission frequency over
time. Second, TAROA determines the RAW parameters and assigns stations to RAW slots based on
this estimated transmission frequency. Finally, the RAW parameters are transmitted to the stations by
the AP in the RPS element of the beacon frame. The remainder of this section explains the two main
steps of the algorithm (i.e., transmission interval estimation and RAW slot assignment).

Figure 4. Different steps involved in the execution of the TAROA algorithm.
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4.3. Transmission Interval Estimation

The first main step of the algorithm is determining the estimated transmission interval ts
int and

next transmission time ts
next for each station s ∈ S . As shown in Algorithm 1, they are estimated based

on successful and failed transmissions during the previous beacon interval. A station’s transmission
is regarded as successful if the AP received at least one packet from the station. If a station was
assigned a RAW slot, but no packets were received by the AP during that slot, it is considered
a failed transmission. The failed transmission can be be caused by the lack of packets in the station’s
transmission queue, or by a collision or interference. The algorithm consists of three main blocks:
(i) the previous transmission failed (lines 1–3); (ii) the previous transmission was successful, but the
one before failed (lines 4–6); and (iii) the last two transmissions were successful (lines 7–16).

First, if the previous transmission failed, the transmission failure counter πs
failed is increased by 1

(line 2). Additionally, this means that the estimated transmission interval ts
int of station s, is too short,

as we assume s had no packets in its transmit queue. In reality, a transmission failure can also be
caused by collisions. However, as RAW aims to minimize collisions, we can assume the probability
of transmission failure caused by collision is low enough to be ignored. Increasing ts

int sharply could
result in overestimation, which results in fewer packets being delivered to the AP and more packets
being dropped due to the overflow of station’s transmission queue. Although increasing ts

int slowly
can lead to a more accurate estimation, it may waste channel access time, as some stations will be
assigned RAW slots without transmitting packets, while there will be no channel access time left for
other stations that need it. For this reason, the increase of the estimated transmission interval ts

int
follows the multiplicative-decrease principle of the Transmission Control Protocol (TCP) congestion
control, and it is increased by the number of subsequent failed transmissions multiplied by two. As
the number of failed transmission attempts increases, the algorithm assumes its estimation is more
wrong and it will increase the interval faster.

In the second case (lines 4–6), the failure counter πs
failed is set to 0 and the transmission interval is

estimated as the time difference between the last two successful transmissions.
If an accurate ts

int is obtained in case 2, the next transmission will succeed and lead to case 3
(lines 7–16) in which the two last transmissions are successful. If only one packet is received (case 3.1),
ts
int is updated in the same way as in case 2 (lines 9–10). If, on the other hand, ts

int is underestimated,
s may transmit multiple packets to the AP (case 3.2, lines 11–12). In that case, the estimated
transmission interval is reduced by 1 beacon interval (line 12). Finally, there are two more cases
where the current estimated transmission interval is not larger than the beacon interval (i.e., ts

int ≤ 1)
and multiple packets were received from the station s by the AP (i.e., πs

b,r > 1 (cases 3.3 and 3.4).
In case 3.3 (lines 13–14), the number of received packets is higher than the estimated number of
expected packets (i.e., πs

b,r > 1/ts
int) and the transmission interval is reduced by adding 1 to the inverse

(line 14). Case 3.4 (lines 15–16) represents the inverse case, where fewer packets are received than
estimated, and the transmission interval is increased by subtracting 1 from the inverse (line 16). Finally,
the next transmission time is calculated as the last successful transmission plus the newly estimated
transmission interval (line 17). In essence, the algorithm is iterative, and as more information about
successful and failed transmissions becomes available, the estimate of ts

int will become more accurate.

4.4. RAW Slot Assignment

The second main step of TAROA determines the set of RAW slots Rb to initialize in the next
beacon interval b, as well as for each of the RAW slots their duration tr, and the assigned stations S r.
These RAW parameters are selected based on the previously determined estimation of the transmission
interval ts

int and next transmission time ts
next. As shown in Algorithm 2, this is a two-step process:

(i) select a subset of stations with pending packets to be assigned to a RAW slot during the upcoming
beacon interval (lines 2–8); and (ii) partition the selected stations among the available number of RAW
slots and determine the slot duration (lines 9–14).
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Algorithm 2: RAW parameter configuration for beacon interval b

input : σr
opt, πb

max,Squeue, ∀s ∈ S : ts
int, ts

next

output :Squeue,Rb, ∀r ∈ Rb : tr,S r

1 πb ← 0
2 for s ∈ Squeue ∧ ts

next ≤ tc ∧ πb < πb
max do

3 Sb ← Sb ∪ {s}
4 if πb + max

(
1/ts

int, 1
)
> πb

max then

5 ts
int ← 1/

(
πb

max − πb
)

6 πb ← πb
max

7 else
8 πb ← πb + max

(
1/ts

int, 1
)

9 end
10 end
11 for r ∈ Rb do
12 // Sb sorted by ascending AID
13 for s ∈ Sb ∧ |S r| ≤ σr

opt do
14 Sb ← Sb \ {s}
15 S r ← S r ∪ {s}
16 πr ← πr + max

(
1/ts

int, 1
)

17 end
18 tr ← πr × tb/πb

19 end

In the first part (lines 2–8), the algorithm iterates over all stations s, according to ascending last
successful transmission time ts

succ [0] (i.e., Squeue) until the next station has a next estimated transmission
time greater than the current time (i.e., ts

next > tc) or the maximum allowed number of packet
transmissions has been reached (i.e., πb ≥ πb

max) (line 2). The station is first added to the set of
stations allowed to transmit during the beacon interval Sb (line 3). Then, if the station is estimated
to transmit more than one packet per beacon interval (i.e., ts

int < 1) and its estimated number of
transmissions will exceed the maximum packet transmissions in b (line 4), then it is allowed to transmit
part of its packets and its estimated transmission interval is updated accordingly (line 5). Otherwise,
the station is expected to be able to transmit all of its packets and πb is increased with the number of
packets s is estimated to transmit in the beacon interval (line 8).

At this point, it should be noted that all slots within a RAW group have the same duration and
only stations with sequential AID can be assigned to the same group. Moreover, the optimal duration
of a slot depends on the number of stations assigned to it, as well as their data rates, number of queued
packets, and packet payload sizes. As such, for simplicity, we assume throughout the remainder of this
paper that each RAW group has exactly one slot, allowing all slots to have a different size. Overcoming
this problem is possible by selecting a worst-case slot duration (suboptimal) or performing dynamic
AID reassignment. The latter is expected to increase optimality, but falls outside the scope of this paper.

In the second part (lines 9–14), stations are assigned to RAW slots r ∈ Rb according to increasing
AID (as only sequential AID can be assigned to the same group) until the number of stations assigned
to the slot are greater or equal to the optimal number of assigned stations (i.e., |S r| > σr

opt) (line 10).
How to calculate this optimum is explained in more detail in Section 5. The number of packets to
be transmitted by s is added to the expected number of packet transmissions in r (line 13). Finally,
the optimal duration tr of the slot is determined based on the number of expected packet transmission
πr (line 14).
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5. Optimal Input Parameter Derivation

In addition to information about past transmissions, the TAROA algorithm takes two additional
input parameters: (i) the optimal number of stations in one RAW slot σr

opt; and (ii) the maximum number
of packet transmissions in one beacon interval πb

max. The optimal value for each of these parameters can
be derived analytically or experimentally for a given network topology and configuration. This section
describes how to derive these values.

5.1. Optimal Number of Stations in One RAW Slot

As the idea of RAW is to limit the number of station contending for the channel, an appropriate
number of stations σr

opt that share a RAW slot should be determined in order to strike the proper
balance between contention and channel utilization.

Several researchers have proposed analytic models to calculate throughput of 802.11ah networks
with a variable number of stations [23,26–30]. These models can be used to obtain a value for σr

opt.
However, they all assume an ideal channel, which does not take the capture effect into account. In real
life, the capture effect allows the receiver to still decode certain packets in case of a collision, when the
received power of the colliding packets differs significantly. This significantly increases throughput,
resulting in pessimistic throughput estimations of existing analytical models. This is especially true for
low data rates, where packets are more easily captured as lower signal-to-interference power ratio is
required. Currently, our 802.11ah ns-3 simulator implementation inherits the partially implemented
capture effect feature from the standard 802.11 module in ns-3 version 3.23, which allows a packet to
be captured when it arrives at the receiver before a colliding packet with lower receive power, while
both packets will be dropped if the colliding packet has higher power. Therefore, in order to get more
realistic results, we derive σr

opt through simulation rather than analytical models. We calculate σr
opt as

the number of stations that achieve the highest throughput in saturated state.
As 802.11ah focuses on IoT and M2M scenarios, 1 and 2 MHz channel bandwidths are most

commonly used, with the data rate ranging from 0.15 to 7.8 Mbps. Table 3 lists the optimal σr
opt for

different data rates (0.15, 0.6, 2.6 and 7.8 Mbps) and packet sizes (16, 64, 256 and 1024 bytes), as derived
using simulation results. The simulations were performed using the same PHY and MAC parameters
as used in Section 6 (cf. Table 4). All the stations are in saturated state and there are no hidden nodes
among them. The RAW slot duration used in the simulation equals the beacon interval (100 ms).
As Zheng et al. [30] reveal that the amount of wasted channel time in a RAW slot supporting cross-slot
boundary is bounded by the duration of the AIFS (316 µs), the value of σr

opt obtained from these
simulation results is suitable for RAW slots with different durations as well. The simulation results
show that the optimal value of σr

opt is quite small for high data rates and large packet payload sizes,
even becoming 1 station per slot for packets of 1024 bytes. As the data rate and packet payload size
decrease, σr

opt becomes larger, reaching 180 stations for data rate 0.15 Mbps and packet payload size
16 bytes. The larger σr

opt for lower data rates is mainly caused by the capture effect, as low data rates
need lower SIR (signal-to-interference power ratio) in order to capture the collided packets. Since only
stations with sequential AID can be assigned to the same group (and therefore slot), we use σr

opt as
the maximum number of stations that can be allocated in one RAW slot. As AID assignment may be
suboptimal, this may bring about slight performance degradation as the actual number of stations
that can be assigned to one RAW slot may be smaller than σr

opt. This could be alleviated through
AID reassignment.
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Table 3. Optimal number of stations in one RAW slot σr
opt for different data rates and packet

payload sizes.

Packet Payload Size (Bytes)

Data Rate (Mbps) 16 64 256 1024

0.15 180 128 32 6
0.60 5 5 3 1
2.6 5 5 5 1
7.8 2 2 2 1

Table 4. Default parameter values used in the simulation experiments.

(a) Default PHY Parameters

Parameters Values

Frequency (MHz) 868
TX power (dBm) 0
TX gain (dB) 0
RX gain (dB) 0
Noise Figure (dB) 6.8
Coding method BCC
Propagation model Outdoor, macro [9]
Error rate model YansErrorRate

(b) Default MAC Parameters

Common Parameters Values

Duration of AIFS (µs) 316
RTS/CTS not enabled
Beacon interval (ms) 100
Cross slot boundary enabled
Station distribution random
Rate control algorithm constant
Size of transmit queue (packets) 10
Max/min traffic ratio between stations 20

High-Throughput (HT) Parameters Values

Wi-Fi mode MCS8, 2 MHz
Payload size (bytes) 256
Non-hidden node topology radius (m) 50
Hidden node topology radius (m) 100

Low-Throughput (LT) Parameters Values

Wi-Fi mode MCS1, 1 MHz
Payload size (bytes) 64
Non-hidden node topology radius (m) 200
Hidden node topology radius (m) 450

As mentioned above, we derive the optimal number of stations σr
opt in one RAW slot based on the

saturated state. In an unsaturated state, which is the most common case in reality, contention decreases.
In this unsaturated case, allowing l > σr

opt stations to contend in each RAW slot will achieve the same
throughput, and at the same time achieve lower latency. This has been demonstrated through simulation
in our own previous work [1] and by the analytical model presented by Duffy et al. [33]. In this article,
we use σr

opt to maximize throughput in both saturated and unsaturated scenarios. Obtaining a larger
σr

opt based on traffic load and AID re-assignment to further optimize latency as well as throughput is
considered future work.

Even though the derived optimal value of σr
opt depends on the packet size, TAROA does support

packet size variability, due to the use of cross boundary slots. An average packet size can be assumed,
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and some degree of variability in packet size (and thus transmission rate) is averaged out over
multiple slots.

5.2. Maximum Number of Packet Transmissions in One Beacon Interval

Let Smax denote the throughput that can be achieved by assigning σr
opt stations in one RAW slot as

shown in Algorithm 2, the maximum number of packet transmissions in one beacon interval πb
max is

then calculated as follows:

πb
max =

Smax × tb

L
, (4)

where L is the average packet payload size. When the channel is fully utilized (i.e., πb
max packets

scheduled to be transmitted in one beacon interval), the duration tr
avg of a RAW slot r equaling the time

needed on average to finish all packet transmissions assigned to r, can be calculated as:

tr
avg =

πr × tb

πb
max

. (5)

However, as 802.11ah employs EDCA/DCF inside RAW slots, these calculations are based
on average back-off times, and only guarantee successful transmission up to a certain probability.
The transmission success probability can be evaluated by the model proposed by Khorov et al. [23],
which assumes each station only has one packet to transmit during their assigned RAW slot. Given the
sensor use case considered in this article, the assumption that each station will at most transmit one
packet per beacon interval (generally set to 100 ms) can generally be assumed to hold. Based on this
model, Figure 5 depicts how the transmission success probability changes over time using a data rate
of 0.6 Mbps with packet sizes 64 and 256 bytes, respectively. For a packet size of 64 bytes, σr

opt is 5 and
tr
avg is 16.53 ms, while σr

opt is 3 and tr
avg is 17.59 ms for a packet size of 256 bytes. The figure clearly

shows that the transmission success probability is only 50% and 82% respectively when tr
avg is used as

RAW slot duration.

Figure 5. Transmission success probability as a function of time for σr
opt = 5, 3, which are used for data

rate 0.6 Mbps with packet size 64 and 256 bytes, respectively.

The solution is to increase tr
avg to get a higher transmission success probability. However, πb

max will
also become lower and more channel time will be wasted, which, in turn, degrades performance.
However, the model of Khorov et al. [23] considers cross slot boundary transmission as forbidden.
As the cross slot boundary feature of 802.11ah does allow transmissions to continue after the current
RAW slot ends, and our algorithm only estimates traffic intensity based on transmission success at the
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end of the beacon interval (and not at the end of the slot), the actual transmission success probability
when using the optimally calculated πb

max is much higher in reality than depicted in Figure 5. As such,
we propose the use of the cross slot boundary feature in combination with the slot duration calculated
in Equation (5) when the channel is fully utilized. Moreover, we assume all slots are RAW capable, and
therefore the entire channel time is occupied by RAW. When the channel is not fully utilized, πb < πb

max
packet transmissions are allowed in one beacon. The RAW slot r then has the following duration:

tr =
πr × tb

πb > tr
avg. (6)

As such, the transmission success probability is improved. Therefore, instead of looking for
an optimal πb

max and tr that can balance transmission success probability and wasted channel time, we
simply obtain them with Equations (4) and (5) by taking advantage of the cross-slot boundary feature
and allowing the entire channel time to be occupied by RAW slots.

6. Performance Evaluation and Discussion

6.1. Simulation Setup

All evaluations are performed using our previously developed 802.11ah ns-3 module [2], based on
ns-3 version 3.23. We consider two IoT scenarios, where sensors periodically monitor the environment
and send the resulting data to a server (via the AP). Different sensors may have different monitoring
and transmission intervals, which may change over time. The transmission interval of sensors in an IoT
network follows a uniform distribution. The ratio between any two sensors’ transmission interval
in an experiment is never higher than 20. The default PHY and MAC layer parameters used in our
simulation are shown in Table 4. Given the low-power nature of battery powered sensors, the PHY
layer parameters are configured based on the low-power 802.11ah radio hardware prototype developed
by Ba et al. [15], with a transmission power of 0 dBm, a gain of 0 dBi (for both sensor and AP), and
noise figure of 6.8 dB. As Section 5.1 indicates, the data rate and payload size impose an impact on
the performance of TAROA. Therefore, two scenarios are considered: (i) high-throughput (HT) using
MCS8 with 2 MHz bandwidth (data rate 7.8 Mbps) and payload size 256 bytes; and (ii) low-throughput
(LT) using MCS1 with 1 MHz bandwidth (data rate 0.15 Mbps) and payload size 64 bytes. The two
scenarios are hence referred to as HT and LT, respectively. For each scenario, TAROA is evaluated
both with and without hidden nodes, with the stations randomly placed around the AP in a circle of
50 and 100 m, respectively, for the HT scenario, and 200 and 450 m, respectively, for the LT scenario.
Taking into account the IoT scenario we evaluate, in which the traffic of each station is quite low,
a small buffer size can be used. Therefore, the size of the stations’ transmit queues is configured to be
10 packets. Thus, packets can be dropped during simulation due to buffer overflow. No rate control
algorithm (RCA) is used at the MAC layer.

RAW performance is evaluated in terms of two metrics: throughput, latency and packet loss.
Throughput is calculated as the average number of successfully received payload bytes by the AP
per second. Latency is defined as the average time between a packet entering the transmit queue
of the station and being received by the AP. Packet loss represents the ratio between the number of
packets not received by AP, and the number of packets sent by all stations. Each simulation runs
600 s. This simulation time is long enough as each station transmits packets with a certain (predictable)
frequency, the steady-state simulation result is achieved after less than 100 s in all experiments.
All results are averaged over 10 iterations, with the variability of results over these iterations quantified
using the standard deviation (SD).

6.2. Static Traffic Patterns

This section evaluates the performance of TAROA for different traffic loads and numbers of
stations in a static network, which means that stations stay active from the beginning to the end of
the simulation and do not change their transmission interval. Three different total traffic loads are
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simulated for each scenario, i.e., T = {0.75, 0.85, 1.2} Mbps for the HT scenario, and T = {0.095, 0.11,
0.15} Mbps for the LT scenario. Each station s randomly and uniformly chooses an integer value vs in
the interval [1, 20]; therefore, the total value for station set S is

VS = ∑
s∈S

vs.

For each station s its traffic load is calculated as:

T̂s =
T × vs

VS .

Its actual packet transmission interval is subsequently calculated as:

t̂s
int =

PayloadSize× 8
T̂s × t̂b

,

where t̂b represents the beacon interval time. Given the packet payload size and data rate, the maximum
throughput that can be achieved is about 1.049 and 0.124 Mbps for HT and LT, respectively. As such,
T = {1.2, 0.15} Mbps represents a saturated state (η = 114%, 120%), T = {0.85, 0.11} Mbps represents
a medium traffic load (η = 81%, 88%), and T = {0.75, 0.095} Mbps results in low traffic load (η = 71%,
76%). Here, η denotes the ratio between traffic load and maximum practical throughput that can
be achieved. Together with the number of stations, η is used to describe the density of the network.
A network without and with hidden nodes is both simulated. As a benchmark, we compare to the
traditional 802.11 channel access method based on EDCA/DCF and fixed RAW groups.

6.2.1. Without Hidden Node

Figure 6 depicts the performance of the evaluation metrics (throughput, latency and packet loss)
when there are no hidden nodes in the networks for both the HT and LT scenario. For the HT scenario,
Figure 6a clearly shows that TAROA scales much better than EDCA/DCF in dense networks in terms
of throughout. For traffic load T = 1.2 Mbps, EDCA/DCF achieves throughput 0.909± 0.010 Mps and
TAROA gets 0.898± 0.003 Mbps for 32 stations. However, as the number of stations increases to 1024,
throughput of EDCA/DCF dramatically decreases to 0.613± 0.001 Mbps (i.e., −32%), and TAROA
still achieves 0.832± 0.010 Mbps (i.e., only −7%). With traffic load T = 0.85 Mbps, throughput of
EDCA/DCF drops by 25% between 128 and 1024 stations, while there is no significant drop for
TAROA. For the lowest traffic load T = 0.75 Mbps, there is no significant difference between TAROA
and EDCA/DCF.

Figure 6b suggests that the packet loss of TAROA is much less than EDCA/DCF in dense
networks, which is quite straightforward since TAROA achieves much higher throughput than
EDCA/DCF. For traffic load T = 1.2 Mbps, packet loss of EDCA/DCF increases from 24.24%± 0.87%
to 48.87%± 0.12% when the number of stations increases from 32 to 1024, while packet loss caused by
collisions increases from 0.16%± 0.01% to 19.81%± 0.24%. While, for TAROA, packet loss increases
from 25.15%± 0.28% to 30.62%± 0.71%. With traffic load T = 0.85 Mbps, packet loss of EDCA/DCF
is 20.51%± 0.62% and 25.26%± 0.10%, respectively, for 512 and 1024 stations, 7.43%± 0.27% and
14.62%± 0.13% packets are lost due to collisions. While only 1.58%± 0.09% and 2.62%± 0.27% packet
loss occurs with TAROA. For the lowest traffic load T = 0.75 Mbps, there is no significant difference
between TAROA and EDCA/DCF. When using TAROA, no packet loss due to collisions occurred.

In terms of latency, Figure 6c shows that TAROA also outperforms EDCA/DCF in most dense
networks. The latency can be affected by different aspects, and these factors jointly determine the
overall latency. First, fierce channel contention increases the time needed to successfully delivery
packets to the AP. Second, in TAROA, RAW schedules stations to contend for the channel only at
certain times, which extends the queuing time of packets and in turn increases latency. Especially when
the traffic load is low and there is little contention, this results in more packets accumulating in the
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transmit queue. For medium and high traffic load (i.e., T = {0.85, 1.2}Mbps), TAROA usually results
in improved latency compared to EDCA/DCF for 256 stations or more, due to high contention in the
latter. EDCA/DCF only outperforms TAROA for T = 1.2 Mbps and 1024 stations, as EDCA/DCF
results in a huge amount of dropped packets, artificially lowering the latency. For low traffic loads
(i.e., T = 0.75 Mbp), however, EDCA/DCF provides a better latency, due to the slotted nature of RAW.

(a) (b) (c)

(d) (e) (f)

Figure 6. Performance comparison between TAROA and EDCA/DCF for both the HT and LT scenarios
without hidden nodes for different traffic loads and number of stations. (a) throughput, HT; (b) packet
loss, HT; (c) latency, HT; (d) throughput, LT; (e) packet loss, LT; (f) latency, LT.

Performance for the LT scenario is depicted in Figure 6d–f, revealing similar conclusions in terms
of throughput and packet loss scalability as for HT. For a high load of T = 0.150 Mbps, EDCA/DCF
throughput drops around to 46% between 32 and 2048 stations, while that of TAROA remains constant
around 0.11± 0.0002 Mbps. The figure, however, also shows that EDCA/DCF scales better for low data
rates, as throughput under medium load in the LT scenario only decreases with more than 1024 stations
(in contrast to 128 in HT). In this case, throughput drops 23% between 1024 and 2048 stations. In terms
of packet loss, for traffic load T = 0.150 Mbps and T = 0.110 Mbps, TAROA performs better than
EDCA/DCF withe more than 128 and 1024 stations, respectively. However, as EDCA/DCF scales
better for low data rates and TAROA needs to estimate the traffic load of each station, using TAROA
results in more packet loss for traffic load T = 0.110 Mbps with less than 1024 stations. In addition,
for low traffic load T = 0.095 Mbps, up to 1.25%± 0.13% packets are lost for TAROA, and there is no
packet loss for EDCA/DCF. Packet loss caused by collisions for EDCA/DCF increases as the number
of stations increases for traffic load T = 0.150 Mbps and T = 0.110 Mbps. In a network with 2048
stations, it goes up to 40.07%± 0.54% and 18.62%± 9.85%, respectively, while no packets are lost due
to collision when using TAROA.

For the LT scenario, EDCA/DCF always results in better latency, due to the slotted nature of RAW
and the large quantities of packet loss of EDCA/DCF in very dense networks.
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Figure 7 zooms in on the performance (throughput, latency and packet loss) in the HT scenario
with a fixed number of RAW groups (R = 32, 128) under traffic load of 0.85 Mbps, each RAW group
has the same number of stations. The results suggest that the performance of a fixed number of
RAW groups varies as the number of stations changes. This conclusion is further supported by
Table 5. As such, there is no one optimal fixed RAW group configuration for all different network
topologies. This proves the further need for a dynamic RAW configuration algorithm, such as TAROA,
which achieves good performance regardless of the network topology.

(a) (b) (c)

Figure 7. Performance comparison between TAROA, EDCA/DCF and fixed number of RAW groups (R)
for the HT scenario (T = 0.85 Mbps) without hidden nodes. (a) throughput; (b) packet loss; (c) latency.

Table 5. Comparison of throughput of different fixed RAW groups (R), EDCA/DCF and TAROA under
various traffic loads (T) and number of stations (N).

T (Mbps)

HT Scenario, Without Hidden Nodes

n = 128 n = 512 n = 1024

R = 32 R = 128 EDCA/DCF TAROA R = 32 R = 128 EDCA/DCF TAROA R = 32 R = 128 EDCA/DCF TAROA

0.75 0.70 0.52 0.75 0.73 0.34 0.34 0.75 0.75 0.28 0.35 0.75 0.75

0.85 0.75 0.60 0.85 0.79 0.78 0.75 0.68 0.84 0.56 0.74 0.64 0.83

1.20 0.86 0.72 0.75 0.89 0.59 0.58 0.61 0.88 0.44 0.55 0.61 0.83

T (Mbps)

LT Scenario, Without Hidden Nodes

n = 512 n = 1024 n = 2048

R = 32 R = 128 EDCA/DCF TAROA R = 32 R = 128 EDCA/DCF TAROA R = 32 R = 128 EDCA/DCF TAROA

0.095 0.074 0.087 0.095 0.095 0.093 0.092 0.095 0.095 0.069 0.087 0.095 0.094

0.110 0.103 0.095 0.110 0.102 0.104 0.102 0.109 0.104 0.075 0.097 0.086 0.103

0.150 0.115 0.109 0.086 0.105 0.107 0.115 0.072 0.109 0.063 0.108 0.064 0.109

6.2.2. With Hidden Nodes

In this section, we study the impact of hidden nodes imposed on performance by extending
the maximum distance between the AP and the stations to 100 m for the HT and 450 m for the LT
scenario. The results are shown in Figure 8. This clearly reveals that when hidden nodes are present,
TAROA gains additional advantage over EDCA/DCF, showing its potential to successfully avoid
hidden nodes. While TAROA shows stable throughput performance for all traffic loads as a function
of the number of stations, EDCA/DCF suffers more heavily. Even for low traffic loads, the throughput
when using EDCA/DCF degenerates fast with more than 32 nodes in both the HT scenario and the LT
scenario. For HT, EDCA/DCF shows a throughput drop between 32 and 1024 stations of up to 38%.
For LT, its throughput even drops over 56%. Correspondingly, hidden nodes significantly increase the
packet loss of EDCA/DCF, TAROA get less packet loss for all three of the traffic loads with more than
32 stations. With hidden nodes, collisions result in a very small amount of packet loss for TAROA,
up to 0.003%± 0.002%. In the HT scenario, TAROA consistently outperforms EDCA/DCF in terms of
latency. For LT, this is not always the case, due to the aforementioned reasons. For traffic load 1.2 Mbps
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with 1024 stations, in which the traffic is overloaded and stations get less transmission opportunity
than they require, the results show that better performance is achieved with hidden nodes than without
hidden nodes. This is due to overestimation of the transmission interval.

(a) (b) (c)

(d) (e) (f)

Figure 8. Performance comparison between TAROA and EDCA/DCF for both the HT and LT scenario
with hidden nodes for different traffic loads and number of stations. (a) throughput, HT; (b) packet
loss, HT; (c) latency, HT; (d) throughput, LT; (e) packet loss, LT; (f) latency, LT.

6.2.3. Transmission Interval Estimation Accuracy

Figure 9 depicts the accuracy of transmission interval estimation for both HT and LT scenarios
with and without hidden nodes (H.N.). The “accuracy” represents the ratio between the estimated
transmission interval and the real transmission interval, averaged over all stations. As such,
a value equal to 1 means no estimation error, higher than 1 means overestimation and lower than
1 means underestimation. For the HT scenario, the estimation is quite accurate for traffic load
T = {0.85, 0.75} Mbps (η = 81%, 71%) as the accuracy is close to 1. While for high traffic load
T = 0.12 Mbps (η = 114%), the transmission interval is highly overestimated, since the traffic is
overloaded and each station get less transmission opportunity than it requires. The same conclusion
can be drawn for the LT scenario.
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(a) (b)

Figure 9. Accuracy of transmission interval estimation with and without hidden nodes (H.N) for both
HT and LT scenarios. (a) HT scenario; (b) LT scenario.

6.3. Dynamic Number of Stations

In this section, we study the ability of TAROA to adapt to changes in the topology (i.e., number
of associated stations) over time. The total traffic load, 1.275 Mbps for HT and 0.1425 Mbps for LT,
is distributed among 1536 stations in the same way as mentioned in Section 6.2. The simulation only
starts with 1024 associated stations and a traffic load of 0.85 Mbps for the HT scenario, and 1024
associated stations and a traffic load of 0.095 Mbps for LT scenario. A Poisson distribution then is used
to model the arrival (i.e., association) and departure of stations, where a higher Poisson rate λ results
in faster changes.

Table 6 lists the average throughput of TAROA and EDCA/DCF when stations join and leave
the network with Poisson rates 0.1, 1 and 5 every second. The results show that, as expected,
EDCA/DCF adapts quite well to network dynamics. TAROA suffers more significantly, as it constantly
needs to adapt the RAW configuration as the network topology changes. Moreover, estimating the
transmission interval of a newly joined station takes a few packet transfers to converge. Nevertheless,
TAROA shows resilience to topology change and only suffers significantly when the Poisson rate
is 5, which corresponds to on average five stations joining and leaving the network every second.
We argue that five stations joining and leaving the network every second is an unrealistically high
number for the IoT scenario under investigation. As such, TAROA adapt well under realistic dynamic
conditions. Overall, TAROA outperforms EDCA/DCF in all scenarios, except LT without hidden nodes.
However, in this scenario (LT with 1024 stations and 0.095 Mbps), EDCA/DCF also outperformed
TAROA in the static case. To summarize, even if EDCA/DCF is inherently more resilient to topology
changes than a slotted mechanism like RAW, TAROA is still able to outperform EDCA/DCF under
traffic conditions that correspond to static scenarios where TAROA is better. It should be pointed
out that EDCA/DCF simulations with hidden nodes at Poisson rate 1 and 5, respectively, for LT
scenarios use an association time-out of 10 s. This was done as the default association time-out of 0.5 s
prevented stations using EDCA/DCF from properly associating with the AP in these two scenarios,
which resulted in continuous performance degradation.
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Table 6. Comparison of throughput of EDCA/DCF and TAROA under three different intensities of
dynamic number of stations.

λ

HT Scenario

Without Hidden Nodes With Hidden Nodes

EDCA/DCF TAROA EDCA/DCF TAROA

0.1 0.63010± 0.00142 0.83621± 0.00119 0.51374± 0.00237 0.83027± 0.00134

1 0.62942± 0.00165 0.81656± 0.00193 0.51080± 0.00379 0.76800± 0.00274

5 0.60546± 0.00209 0.74428± 0.00305 0.48361± 0.00313 0.67500± 0.00328

λ

LT Scenario

Without Hidden Nodes With Hidden Nodes

EDCA/DCF TAROA EDCA/DCF TAROA

0.1 0.09706± 0.00003 0.09568± 0.00036 0.05440± 0.00140 0.09476± 0.00058

1 0.09485± 0.00004 0.09106± 0.00045 0.04964± 0.00191 ? 0.08864± 0.00053

5 0.09712± 0.00004 0.07749± 0.00029 0.03284± 0.00146 ? 0.07431± 0.00058

? indicates that simulation uses association time out 10 s instead of 0.5 s.

6.4. Dynamic Traffic

In addition to stations changing over time, we also evaluate the performance when the number
of active stations does not change, but instead their transmission interval changes over time. For the
HT scenario, the network consists of 1024 stations with a total traffic load of 0.85 Mbps at the start of
simulation, while for LT there are 1024 stations with a total traffic load of 0.095 Mbps at the start of
simulation. Traffic distribution among stations is done according to the method detailed in Section 6.2.
Every second, a random set of stations is selected that will change their transmission interval, according
to a Poisson distribution with rate λ = 5. For each selected station, the change in transmission interval
∆ is chosen uniformly at random as a percentage between [−10, 10], [−20, 20], or [−50, 50].

Table 7 lists the average throughput for both EDCA/DCF as well as TAROA. The conclusions
drawn in the previous section also apply here. Specifically, TAROA outperforms EDCA/DCF in all
dynamic traffic scenarios if it also outperforms EDCA/DCF under similar static conditions (i.e., in all
scenarios expect LT with 1024 stations and a starting traffic load of 0.095 Mbps). Moreover, changes in
traffic load result in far less degradation of throughput than changes in topology, both for EDCA/DCF
and TAROA.

Table 7. Comparison of throughput of EDCA/DCF and TAROA under three different intensities of
dynamic station transmission intervals.

∆(%)

HT Scenario

Without Hidden Nodes With Hidden Nodes

EDCA/DCF TAROA EDCA/DCF TAROA

[−10, 10] 0.63673± 0.00216 0.82591± 0.00135 0.51863± 0.00501 0.82441± 0.00199

[−20, 20] 0.63741± 0.00265 0.83399± 0.00139 0.52047± 0.00344 0.82843± 0.00065

[−50, 50] 0.64063± 0.00403 0.83163± 0.00085 0.52180± 0.00398 0.82681± 0.00154

∆(%)

LT Scenario

Without Hidden Nodes With Hidden Nodes

EDCA/DCF TAROA EDCA/DCF TAROA

[−10, 10] 0.09465± 0.00004 0.09394± 0.00026 0.05648± 0.00117 0.09346± 0.00031

[−20, 20] 0.09582± 0.00002 0.09486± 0.00028 0.05645± 0.00090 0.09368± 0.00045

[−50, 50] 0.09383± 0.00003 0.09147± 0.00018 0.05777± 0.00101 0.09150± 0.00037
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7. Conclusions

In this paper, we propose a novel traffic-adaptive RAW optimization algorithm (TAROA) to
adjust the RAW parameters in real time based on the current traffic conditions, optimized for sensor
networks with mainly upstream traffic in which each station is assumed to transmit packets with
a certain (predictable) frequency. The TAROA algorithm improves upon the state of art in three
ways, including supporting dynamic and heterogeneous traffic conditions, only using information
available on the AP side and real-time execution. The combination of these three factors allows TAROA
to be deployed in realistic environment. The TAROA algorithm is executed at each target beacon
transmission time (TBTT), it first estimates the packet transmission interval of each station only based
on packet transmission information obtained during the last beacon interval, and then determines the
RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency.

The simulation results reveal three key points on TAROA. First, it scales much better than
EDCA/DCF in dense networks in terms of throughput under static traffic conditions. Second, it is
resilient to dynamic traffic conditions in which topology or transmission interval change over time.
In the scenario under evaluation, TAROA only starts to experience throughput degradation when
topology changes at Poisson rate 5. Third, TAROA gains additional advantages over EDCA/DCF
when hidden nodes are present under both static and dynamic traffic conditions. Hidden nodes highly
degrade the performance of EDCA/DCF, while TAROA is hardly affected. In summary, for dense
IoT networks, TAROA can easily adapt to current traffic conditions in real time and significantly
improves throughput.

In future work, we will further improve the performance of the TAROA algorithm, and, in
particular, the traffic estimation under high load. Moreover, TAROA will be extended to support
adaptive MCS.
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