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ABSTRACT
The last two decades have seen considerable progress in foundational aspects of statistical network analysis,
but the path from theory to application is not straightforward. Two large, heterogeneous samples of small
networks of within-household contacts in Belgium were collected using two different but complementary
sampling designs: one smaller but with all contacts in each household observed, the other larger and more
representative but recording contacts of only one person per household. We wish to combine their strengths
to learn the social forces that shape household contact formation and facilitate simulation for prediction of
disease spread, while generalising to the population of households in the region.
To accomplish this, we describe a flexible framework for specifying multi-network models in the exponential
family class and identify the requirements for inference and prediction under this framework to be consis-
tent, identifiable, and generalisable, even when data are incomplete; explore how these requirements may
be violated in practice; and develop a suite of quantitative and graphical diagnostics for detecting violations
and suggesting improvements to candidate models. We report on the effects of network size, geography,
and household roles on household contact patterns (activity, heterogeneity in activity, and triadic closure).
Supplementary materials for this article are available online.
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1. Introduction

Networks of human interaction provide invaluable insights into
epidemiology of directly transmitted infectious disease, and
there is a great deal of interest in translating network data into
epidemic models (Keeling and Eames 2005, for a review). It is
common to focus on epidemiologically important settings such
as households (Grijalva et al. 2015; Goeyvaerts et al. 2018) and
schools (e.g., Mastrandrea, Fournet, and Barrat 2015), and such
data are often used as they are for simulating disease spread and
evaluating the impact of intervention strategies (e.g., Cencetti
et al. 2021). However, observation of larger and broader epi-
demiologically relevant networks is limited by time, resources,
and considerations such as privacy, so it is often indirect or
incomplete in a variety of ways, therefore requiring statistical
models to learn network structure from the available data and
reconstruct (simulate) networks consistent with it (Krivitsky and
Morris 2017).

Exponential-Family Random Graph Models (ERGMs), also
called p∗ models (Wasserman and Pattison 1996; Lusher,
Koskinen, and Robins 2012; Schweinberger et al. 2020, among
many), are a popular framework for specifying probability
models for networks, postulating an exponential family on the
sample space of graphs. Most applications of ERG modeling
concern a single, completely observed population network, but
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methods for incomplete or indirect observation exist (Handcock
and Gile 2010; Krivitsky and Morris 2017, among others). At
the same time, questions of ERGM asymptotics and inference—
particularly under varying network size—have been debated in
the literature (Schweinberger et al. 2020).

Increasingly, networks are collected in samples, however.
Examples include social networks, such as multiple classrooms
(Lubbers 2003; Stewart et al. 2019), multiple households (Gri-
jalva et al. 2015; Goeyvaerts et al. 2018), and multiple per-
sons’ social support networks (Ersig, Hadley, and Koehly 2011);
but also other types of networks such as connections among
brain regions for multiple subjects (Schweinberger et al. 2020,
Sec. 8).

Though simpler mathematically, inference from samples of
independent, nonoverlapping networks is no less substantively
challenging. In practice, the straightforward “iid” inference
scenario (e.g., brain networks) is relatively rare, and it is far
more common—particularly for social and contact networks—
to observe multiple nonoverlapping settings, similar to each
other in nature and with the same notion of a relationship, but
varying in size, composition, and exogenous influences. This
variation is important because size and composition of networks
can have profound effects on their structure (Krivitsky et al.
2011). Furthermore, the selection of networks to be observed
may itself be a complex process, and the selected networks
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themselves may be incompletely observed, requiring network
model inference to be integrated with survey sampling inference.

Samples of networks also offer new opportunities. With just
one network, methods to diagnose how well the model fits—
and how well the inference generalises—are limited to working
within that network: Hunter, Goodreau, and Handcock (2008a)
proposed a form of lack-of-fit testing that compares the observed
network’s relational features not explicitly in the model to the
distribution of those features simulated from the fitted model,
and Koskinen et al. (2018) leveraged missing data techniques
to compute an analogue of Cook’s distance for each actor (the
effect of observing each actor’s observed relations on parameter
estimates). On the other hand, models for independent (if het-
erogeneous) samples of networks can be diagnosed using famil-
iar techniques developed for regression—provided those tech-
niques can be adapted to networks, including partially observed
networks.

A variety of techniques exist for ERG modeling of samples
of networks. One popular approach is meta-analysis, pooling
individual networks’ estimates (Lubbers 2003). This approach
is impractical for large samples of small networks, because the
model may be nonidentifiable on each network individually
(Vega Yon, Slaughter, and de la Haye 2021). More recent is mul-
tilevel (hierarchical) modeling: Zijlstra, Van Duijn, and Snijders
(2006) developed it for the related p2 model, and Slaughter and
Koehly (2016) for a Bayesian ERGM with random effects. Vega
Yon, Slaughter, and de la Haye (2021) described exact maximum
likelihood inference for samples of very small networks. Also,
when modeling a time series of networks, transitions between
successive networks are typically treated as conditionally inde-
pendent (e.g., Leifeld, Cranmer, and Desmarais 2018).

However, assessing an ERGM’s goodness of fit for a sample
of networks has tended to be limited to comparing distributions
of observed network statistics to expected (e.g., Slaughter and
Koehly 2016; Stewart et al. 2019) and replicating diagnostics of
Hunter, Goodreau, and Handcock for each network (Vega Yon,
Slaughter, and de la Haye 2021). Little attention has been paid to
methods appropriate for partially observed networks, for large
samples of networks, and to identifying precisely how the model
is misspecified.

Here, we consider two samples of within-household contact
networks: one more complete but restricted to households with
a young child, the other larger and more representative but with
only one member’s relations observed in each household, and
both heterogeneous in household sizes and compositions. We
wish to fit a probability model to these samples to pool their
information and combine their strengths, which will allow us
to learn about the social forces affecting the formation of their
contacts (i.e., inference) and predict their unobserved relations
or other households in the population (i.e., prediction and sim-
ulation). More generally, we seek to answer three questions:

1. What are we estimating when we jointly fit a model to multi-
ple networks?

2. What do we need to assume to combine information from
multiple networks?

3. How do we test these assumptions?

In Section 2, we begin to address Question 1 by describing
the household contact datasets and applying the principles

of model-based survey sampling inference to make explicit
assumptions associated with inference from samples of networks
that were previously left implicit. In Section 3, we review ERGM
inference for missing data, describe a parameterization for
jointly modeling an ensemble of networks, and discuss its
inferential properties—and the requirements for valid inference,
addressing Question 2. We then consider in Section 4 the
different ways in which these requirements may be violated
and combine missing data theory with classic generalised linear
model (GLM) diagnostics to produce tools for diagnosing lack
of fit in the proposed framework, addressing Question 3; and
in addition propose fast model selection techniques for ERGMs
for ensembles of networks. Finally, in Section 5, we apply these
techniques to select and diagnose models for our data, and
report our substantive findings.

Additional information can be found in the appendices, ref-
erenced throughout. References to appendix figures and tables
are prefixed: for example, Figure B5 is in Appendix B.

2. Data and Inferential Questions

2.1. Study Designs

Two paper-based surveys (Goeyvaerts et al. 2018; Hoang et al.
2021) were conducted in Belgium in 2010–2011, using similar
survey instruments but differing in sampling design. In both sur-
veys, recruited by random-digit dialing, respondents (or their
guardians) reported their and their household members’ demo-
graphic information and recorded their contacts over the course
of one day, including the contacts’ ages and genders. Approxi-
mate duration and frequency of each contact was also recorded,
but here, we focus our attention on presence or absence of
contacts involving skin-to-skin touching.

The first major difference between the surveys is that whereas
in the egocentric (E) survey (Hoang et al. 2021), only one mem-
ber in each household (the ego) was enrolled; in the other (Goey-
vaerts et al. 2018), the whole household (H) was. This within-
household sampling design impacts profoundly the information
available about the households: while all contacts are known
for the networks in the H dataset (Figure 1a), only contacts
incident on the one respondent in the household are known for
the E dataset (Figure 1b), though, importantly (Krivitsky and

1 2 3 4
Female, 40 1 1 1 1

Male, 41 2 1 1 1
Male, 13 3 1 1 0

Female, 11 4 1 1 0

(a) H dataset: Contacts among household members for

1 2 3 4
Male, 26 1 0 0 1

Female, 54 2 0 ? ?
Male, 57 3 0 ? ?

Female, 23 4 1 ? ?

(b) E dataset: Report of within-household contacts by

household #11.

ego #8.

Figure 1. Example observation units from the two datasets. Household composi-
tion is observed for both, but whereas every contact in the H households is observed,
in the E households contacts not involving the ego are missing by design.
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Morris 2017), enough information (discussed in Appendix A.1)
was collected to identify these contacts uniquely within the
household for almost all households.

The second major difference is that the H survey was
restricted to households with a child aged at most 12, whereas
the E survey was not. For convenience, we define E12 to be the set
of households in E with at least one such child—that potentially
could have been in the H dataset—and E12 to be those without
any, that could not. (Throughout, we will use “presence of a
child” and similar wording to refer to this specific criterion.)

More incidentally, the surveys differed slightly in their geo-
graphical localization: both surveys included households in the
Flemish (Dutch-speaking) areas of Belgium, but only the H sur-
vey included households from the (majority-French-speaking)
Brussels-Capital region. Also, both surveys’ designs called for
fine-grained stratification by age, but the surveyor was not able
to adhere to it exactly; and in the H survey, households for
which any members’ contacts were not successfully recorded
were dropped altogether.

2.2. Descriptive Statistics

After the preprocessing discussed in Appendix A.1, dataset H
comprises 317 households of size 2–7 for a total of 1262 mem-
bers/respondents. Requiring less effort per household to collect,
E comprises 1463 respondents whose households (ranging in
size 2–8) have a total of 4780 members with 52% of the house-
holds’ relationship states observed.

In H, individuals in their mid 20s are underrepresented; E
is more representative in this respect, though individuals living
alone or in shared housing (disproportionately young adults
and seniors) are still excluded. Both datasets’ households are
on average gender-balanced, but among E’s respondents women
aged 25–55 are overrepresented and adolescents of both genders
underrepresented relative to E households’ composition. Most
households (H: 71%, E: 75%) were observed on a weekday; 11%
of the H households are in Brussels. E12 constitutes 35% of E.

With respect to social structure, the networks are, on average,
dense (H: 93%, E12: 90%, E12: 67%), with H’s networks being
more dense on average (vs. E12: p = 0.021; vs. E12: < 0.001),
and those of E12 more dense than those of E12 (p < 0.001). H’s
networks exhibit high triadic closure (global clustering coeffi-
cient 3×# triangles

#2-stars averaging 92%); it cannot be estimated on the
partially observed E dataset.

More information can be found in Appendix A.2.

2.3. Implications for Inference

E dataset is representative but consists of egocentric, incomplete
networks; H dataset is very selective but of complete networks. E
generalises better to the population of Flanders. H allows higher-
order (e.g., triadic) effects to be estimated, and includes Brussels.
Combining information from multiple surveys with different
strengths is not uncommon, and a variety of approaches can be
taken (Elliott, Raghunathan, and Schenker 2018).

These data and the substantive problem are particularly
amenable to a model-based approach: the ERGM framework
seamlessly integrates exogenous (e.g., age) and endogenous
(e.g., friend-of-a-friend) effects likely to be relevant. The model-

based approach is also feasible: unlike some egocentric data
(Krivitsky and Morris 2017) each respondent’s contacts in E
could be identified uniquely within the household, so model-
based inference of Handcock and Gile (2010) is possible.

For the purposes of prediction (e.g., given the distribution of
household compositions, how would an infection brought home
from school spread?) we require the analysis to generalise to the
population of households in Flanders and Brussels. The missing
information principle (Orchard and Woodbury 1972; Breckling
et al. 1994) suggests that if the model is accurate enough, it
can be generalised to the population despite the heterogeneous
and biased sample. More precisely, we require that the sampling
process be ignorable or, if viewed as a missing data process,
missing at random: the unobserved relationship states must be
conditionally independent of the selection process given the
model and what is observed (Rubin 1976; Handcock and Gile
2010). In our case, this also means that the model must render
the dataset from which the network had come ignorable, which
entails accounting for network size, composition, geography,
and other relevant effects.

For the purposes of inference (e.g., do mothers have more
contact with their children than fathers?), we in addition require
consistency and a sampling distribution for our model param-
eters’ estimators. Fortunately, we can treat these networks as an
independent sample: the probability that any member of any of
the households in either sample has interacted with a member
of one of the other households in either sample is low, and such
an interaction is unlikely to affect within-household information
in a systematic way in the first place. However, there are further
nuances, discussed in Section 4.1.

3. Model Specification and Inference

In modeling an independent sample of networks, we represent
two levels of effects: (a) the exogenous and endogenous social
forces affecting each network’s relations; and (b) the effects of
a network’s exogenous properties such as size, composition,
and sampling stratum membership on those social forces. For
example, does the presence of a child (a network composition
property) affect the contacts between adult men and women in
the household (an exogenous relation effect)? Is triadic closure
(an endogenous relation effect) stronger or weaker in due to
household size (a network property)? We discuss these levels
in turn.

3.1. Exponential-Family Random Graph Models for
Completely and Partially Observed Networks

We refer the reader to the text book by Lusher, Koskinen, and
Robins (2012) and a review by Schweinberger et al. (2020) for
detailed discussions of ERGMs’ formulation, interpretation, and
inference. For our purposes, let N = {1, 2, . . . , n}, for n ≥ 2, be
the set of actors whose relations are of interest. Since physical
contacts are inherently two-way, we will focus on undirected
graphs: the set of potential relations of interestY ⊆ {{i, j} ∈ N ×
N : i �= j} is a subset of the set of dyads—distinct unordered pairs
of actors. Then, the set of possible graphs of interestY ⊆ 2Y (the
set of all possible subsets of Y). We use y ∈ Y for the graph data
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structure, and yi,j ∈ {0, 1} as indicator of i and j being connected
in y (with yi,j ≡ yj,i).

An ERGM is specified by its sample space Y , a collection x ∈
X of quantitative and categorical exogenous attributes of actors
(e.g., age and gender) or dyads (e.g., distance) used as predictors,
and a (sufficient by construction) statistic g : Y×X �→ R

p. This
statistic operationalises the hypothesized social forces affecting
the network’s relations. With free model parameters θ ∈ R

p, a
random graph Y ∼ ERGMY ,x,g(θ) if

PrY ,x,g(Y = y; θ) = exp{θ · g(y, x)}/κY ,x,g(θ), y ∈ Y ,

where κY ,x,g(θ) = ∑
y′∈Y exp{θ · g(y′, x)} is the normalizing

constant. For the sake of brevity, we will omit specification
elements “Y”, “x”, “g”, and “θ” where unambiguous.

Network statistics that we will use in this work include
the edge count |y| to model propensity to have relations;
edge counts within or between exogenous groups of actors to
model homophily and other types of mixing; and endogenous
effects: count of 2-stars g2-star(y) = ∑n

i=1
(|yi|

2
)

(where |yi| is
the degree—the number of ties incident on actor i) to model
degree heterogeneity and count of triangles gtriangles(y) =∑

1≤i<j<k≤n yi,jyj,kyk,i to model triadic closure. Ordinarily,
we would not use the latter two because of their well-known
tendency to induce badly behaved “degenerate” models in
large networks and instead use less degeneracy-prone—perhaps
curved (Appendix B)—effects (Schweinberger et al. 2020,
Sec. 3.1 for context and history). However, this application’s
networks are very small and thus largely unaffected, so we use
them for their simplicity.

With respect to this ERGM, we may take expectations E(·)
and variances Var(·), including those of the sufficient statistic:
let μ(θ) ≡ E{g(Y)} and Σ(θ) ≡ Var{g(Y)}.

Given an observed network y, an ERGM is typically estimated
by maximum likelihood, with l(θ) ≡ log Pr(Y = y; θ) and
Fisher information I(θ) = −l′′(θ) = Σ(θ). For most inter-
esting models, the normalizing constant κ(θ) is intractable, and
estimation requires MCMC-based techniques (Schweinberger
et al. 2020, Sec. 1.2.1 for references).

If the network is incompletely observed, likelihood estima-
tion proceeds as follows (Handcock and Gile 2010): to the
unobserved true population network y, an observation process
obs(·) (deterministic or conditioned-on) is applied, produc-
ing the observed data structure yobs ≡ obs(y), with yobs

i,j ∈
{0, 1, NA} representing observed-absent, observed-present, and
unobserved potential relations, respectively. For the E dataset,
obs(y) is such that

yobs
i,j ≡

{
yi,j if i = 1 ∨ j = 1,
NA otherwise.

Let Y(yobs) ≡ {y′ ∈ Y : obs(y′) = yobs}: all complete
networks that could have produced yobs or, equivalently, all
possible imputations of unobserved relations of yobs; and define
conditional expectation

μ(θ | yobs) ≡ E{g(Y) | Y ∈ Y(yobs)}
and, analogously, conditional covariance Σ(θ | yobs). Then,
under noninformative sampling and/or missingness at random,

the face-value log-likelihood is l(θ) = log
∑

y∈Y(yobs)Pr(Y =
y; θ) and observed information is (Orchard and Woodbury 1972;
Sundberg 1974; Handcock and Gile 2010)

Iobs(θ) = Σ(θ) − Σ(θ | yobs). (1)

Unlike the completely observed case, (1) is not the Fisher infor-
mation, because it depends on the data yobs. The Fisher infor-
mation, then, also takes the expectation over the possible values
of yobs under the model:

I(θ) = Σ(θ) − EY [Σ{θ | obs(Y)}] (2a)
= VarY [μ{θ | obs(Y)}]. (2b)

3.2. Multivariate Linear Models for ERGM Parameters

Now, consider a sample of networks indexed s = 1, . . ., S, that we
wish to model jointly, incorporating network-level effects. There
is no unique way to do so; the following approach—drawing on
multivariate linear regression models and on seemingly unre-
lated regression models—has the advantages of familiarity, inter-
pretability, and good inferential properties.

Let zs ∈ R
q be a row vector of network-level covariates of

interest and β ∈ R
q×p the parameter matrix. Set network-level

parameters θ s ≡ (zsβ)�. Then, jointly,

(Y1, Y2, . . . , YS) ∼ ERGMz, �Y ,�x,�g(β)

if Ys ∼ind ERGMYs,xs,gs(θ s). Thus, the components of the
network model specification (sample space, sufficient statistic,
and any covariates—respectively, Ys gs, and xs, collected into S-
vectors �Y , �g, �x) may vary arbitrarily between networks, but their
parameter vectors θ s are parameterized in turn, with elements
of β determining, in a manner analogous to the linear predic-
tor of a GLM, how network-level covariates affect the ERGM
parameters.

Although here we treat q and p as the same for all networks,
we show in Appendix E that there is no loss of generality as long
as selected elements of β can be fixed at 0. Also, this framework
can be viewed as a special case (for Σ = 0) of the model
of Slaughter and Koehly (2016), whose prior can be expressed
θ s ∼iid MVN{(zsβ)�, Σ}.

Example: Network size effects. For a given type of social setting
(e.g., classroom, household), bigger networks will typically have
lower density (|y|/{n(n − 1)/2} for undirected networks), with
mean degree (|y|/{n/2}) being close to invariant to size. This
includes our data (e.g., Figure A2); but the “default” ERGM
behavior is to preserve network density (Krivitsky et al. 2011)
so that mean degree grows in proportion to n. Krivitsky et al.
proposed to adjust this behavior by an offset term of the form
− log(n)|y|: other things being equal, the odds of a relation
in a network of size n would be scaled by n−1, stabilizing the
mean degree. But, their result is asymptotic, reliant on sparsity,
and only adjusts lower-order properties (density, mixing, and,
fortuitously, degree distribution).

Butts and Almquist (2015) proposed that the effect of net-
work size on density could be estimated from a sample of net-
works, with log(n) above multiplied by a free parameter γ ,
rather than by −1, making the mean degree approximately
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proportional to nγ+1. Here, we can accomplish this by setting
zs,k = log(ns) and gs,l(ys) = |ys| for some indices k and
l; then γ ≡ βk,l. Considering that our networks are small
and dense, we can model a nonlinear network size effect by
adding a quadratic covariate zs,k+1 = log2(ns), with βk+1,l then
becoming its coefficient. (The resulting design matrix is given in
Appendix E.) Alternatively, orthogonal polynomial contrasts, a
spline, or dummy variables could be used.

3.3. Inference

We now describe this framework’s inferential properties. (Cor-
responding results for curved ERGMs are given in Appendix B.)
Let Id be an identity matrix of dimension d; let ⊗ be the Kro-
necker product; and let Zs ≡ Ip ⊗ zs ∈ R

p×pq. Then, we can
reexpress θ s = β�z�

s ≡ Zsvec(β), for an exponential family
with a complete-data likelihood

L(β) = exp

{
vec(β) ·

S∑
s=1

Z�
s gs(ys)

}/ S∏
s=1

κYs,xs,gs{(zsβ)�}.

Let μs(β | yobs
s ) ≡ E{gs(Ys) | Ys ∈ Y(yobs

s ); (zsβ)�} and
analogously for μs(β), Σ s(β | yobs

s ), and Σ s(β). Then, its
partially observed Fisher information is

I(vecβ) =
S∑

s=1
Z�

s VarYs [μ{β | obs(Ys)}]Zs.

For those networks in the sample that are completely observed,
μs(β | yobs

s ) ≡ gs(ys) and VarYs[μ{β | obs(Ys)}] ≡ Σ s(β).
Since this is an independent sample of networks, consistency and
asymptotic normality of β̂ in S can be shown (Sundberg 1974),
provided the sampling process is noninformative and I(vecβ)

is nonsingular asymptotically, which requires the model to be
identifiable.

4. Diagnosing Multivariate Linear ERGMs

Whether or not the estimation can be consistent and the
inference be generalised to a broader population of households
depends on the model being identifiable given available data
and on its goodness of fit—both of which must take into
account that at least some of the networks in the sample are
partially observed. Here, we discuss likely causes and diagnostics
for nonidentifiability, develop a generalisation of residual
diagnostics to partially observed networks, and consider a
variety of ways in which a model may fit the data poorly and
how to diagnose this.

4.1. Causes and Diagnostics for Nonidentifiability

The key condition for consistency by Sundberg (1974) is that
I(vecβ) must be nonsingular. Substantively, there is a number
of reasons this condition might not be satisfied.

Nonidentifiable Model Specification
A model may erroneously contain a relationship type or other
network feature that is not possible in any potentially sampled

network. For a trivial example, counting the number of con-
nections between adults and children is not meaningful in a
survey of households without children, nor is counting 2-stars
in households of size 2. Similarly, given the large selection of
potential network features, and a large selection of potential
network-level covariates, it is easy to inadvertently specify a
model that is not full-rank. An example of this is network size
as a covariate in a sampling process that observes networks of
only one distinct size; or a quadratic network size effect if only
two distinct sizes are observed. Then the minuend of (2a) (i.e.,
Σ(β)), respectively, has zeros on the diagonal or linear depen-
dence, and the model is not identified even under complete
observation.

This form of nonidentifiability can usually be detected during
estimation by examining the variance-covariance matrices of
simulated sufficient statistics.

Network Observation Process not Informative of the Model
If the sampling process entails partially observed networks,
some observation processes may render some otherwise iden-
tifiable model specifications nonidentifiable.

Example 1. Consider an undirected network with actors par-
titioned into groups A and B. A 3-parameter model whose
statistic comprises the counts of all edges, of edges within group
A, and of edges between members of A and members of B is
identifiable, and its Σ(θ) is full-rank. But, if only relationships
incident on members of group A (A–A and A–B) are observed,
while B–B relations are missing by design, then the elements of
μ(θ | yobs) are affinely dependent, making I(θ) singular. (See
Appendix C.1.)

Example 2. For an iid sample of S 3-node undirected networks,
it is possible to estimate a 3-parameter model with a sufficient
statistic comprising edges, 2-stars, and triangles; but not if any
one of the three possible relations is unobserved in each net-
work: a direct enumeration of the sample space in Appendix C.2
shows that (2b) is singular.

This form of nonidentifiability is more insidious. Its main
symptom is that intermediate estimates of the difference in
(2a) are not positive definite; but the algorithm of Handcock
and Gile (2010) obtains this difference by subtracting the two
simulated variance-covariance matrices, and for data with
high missingness fraction and models with many parameters
in particular, a false positive can result from Monte Carlo
error.

4.2. Residual Diagnostics for Partially Observed Networks

Traditional model diagnostics—whether for linear regression
or for ERGMs (Hunter, Goodreau, and Handcock 2008a)—
work by comparing the observed data points to those predicted
by the fitted model. The approach of Hunter, Goodreau, and
Handcock in particular is to simulate networks from the fitted
model, and compare the statistics of the simulated networks—
particularly those statistics not in the original model—to their
observed values. If the observed value falls outside of the range
of the simulated, lack of fit is indicated. However, most of
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the networks in E are partially observed, and this means that
there is no “true” observed value for a network feature. We
therefore derive equivalent diagnostics for partially observed
networks.

For notational convenience, let �y = [ys]S
s=1 refer to a vector

of completely observed networks. Consider a real-valued func-
tion t(�y) that evaluates a particular network feature of interest,
either cumulatively over all of the networks or for a specific
network. Analogously to μ(·) and Σ(·) in Section 3.1, let τ(β) ≡
E{t(�Y); β} and �(β) ≡ Var{t(�Y); β}, and likewise for the
conditional expectations.

We can form a standardized (Pearson) residual for t(�y) by
evaluating

Rt = {t(�y) − τ(β̂)}/√
�(β̂), (3a)

with the expectation and the variance estimated by simulating
from the fitted model. Under the true model, this residual would,
by construction, have mean 0 and variance close to 1; this also
facilitates outlier detection.

If the networks are not completely observed, t(�y) cannot be
evaluated directly, and it is natural to replace it with its empirical
best predictor (Hunter et al. 2008b; Stewart et al. 2019; Krivitsky
et al. 2023),

τ(β̂ | �yobs) ≡ E{t(�Y) | �Y ∈ Y(�yobs)},

where �yobs is defined analogously to �y. Then,

Rt = {τ(β̂ | �yobs) − τ(β̂)}/√
Var�Y [τ {β̂ | obs(�Y)}] (3b)

Estimating the variance in the divisor in (3b) is not trivial. We
discuss it in Appendix D.1.

4.3. Causes and Diagnostics for Lack-of-Fit

Within-Network
It may be the case that the within-network model fits poorly.
Network statistics used for diagnostics by Hunter, Goodreau,
and Handcock (2008a) include the full degree distribution,
counts of shared partners (i.e., for a given pair of connected
actors, how many common connections do they have?), and
the distribution of geodesic distances. All of these can be used
as t(·), but it may be impractical for two reasons. First, family
networks are relatively small and very dense. This makes the
statistics typically used less than informative. Second, the sheer
number of networks in the dataset means that diagnosing each
network individually is infeasible, but, at the same time, pooling
their within-network diagnostics is likely to wash out any effects
because of their heterogeneity.

Nonetheless, even if a statistic is suboptimal and difficult to
interpret, for a model that fits well, Rt will still have mean 0 and
variance close to 1.

Between-Network
It may be the case that the model for the network-level parame-
ters (θ s) as a function of global parameters (β) fits poorly: in par-
ticular, it may fail to account for network size and composition
effects. At network level, the model has a form similar to that of a
GLM. We can thus use the developments of Section 4.2 directly

to make familiar diagnostic plots: for some statistic ts(�y) ≡ t(ys)
(e.g., density), we can plot residuals Rts for s = 1, . . . , S against
their respective τs(β̂) ≡ E{ts(�Y)} (the fitted values) or against
a candidate predictor zs,new. Or, we can use

√|Rts | instead for a
scale–location plot, analogously to the standard diagnostic plots
in R (2023).

We can also use residuals to test lack-of-fit hypotheses and
assess potential explanatory power of zs,new—without the com-
putationally costly ERGM fitting—by regressing ts(�y) − τs(β̂)

on zs,new, weighted by their inverse-variance (Var−1{ts(�Y)}).
Individual networks are independent, so the residuals should be
nearly independent as well.

Between-Dataset
If we wish for the fitted model to generalise and render the
sampling designs ignorable, the model must account for differ-
ences in datasets without incorporating dataset effects directly.
This can be done via a hypothesis test, such as a simulation
score test, along the lines of that described by Krivitsky (2012)
in the context of valued ERGMs, by testing the significance of
an explicit dataset effect without refitting the model. Details are
given in Appendix D.2.

Nonsystematic Heterogeneity
Lastly, even if there is no systematic bias in the model, there may
be between-network heterogeneity due to unobserved factors.
The above-described Pearson residuals incidentally provide us
with a way to tell whether there is any heterogeneity left to
explain: if there is none, Rts in (3) will, by construction, have
mean 0 and variance around 1.

5. Application

We now return to the data we had introduced in Section 2,
discuss model specification, and report model diagnostics and
results. As one reads this section, it may be helpful to refer
to Appendix E for how these effects are represented in the
framework described.

We have implemented the methodology described in an
extension to the ergm package (Hunter et al. 2008b; Krivitsky
et al. 2023) for the R (2023) statistical environment. To make
this methodology accessible to a broad audience, we have
published our implementation in an R package, ergm.multi.
Materials needed to reproduce the analysis are included in the
supplementary file, and the most recent versions of the packages
can be found on the Comprehensive R Archive Network (R
2023) or the Statnet Project software repositories (https://statnet.
org).

5.1. Initial Model

A model used to join these two datasets must be substan-
tively meaningful and interpretable. It must account for within-
network conditional dependence among the relations. It must
make the network size, composition, and dataset effects ignor-
able to enable generalisable inference. And, it must do so without
requiring more information than is available in the data. We

https://statnet.org
https://statnet.org
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therefore dedicate a great deal of attention to formulating and
justifying each of the model’s elements.

Here, we develop the initial model, Model 0, which we will
then refine using diagnostics.

Household Roles
Our data do not record family relations (e.g., who is married
to whom and who is whose child), so we must infer household
roles from age and gender. In doing so, there is a tension between
interpretability and accuracy: family roles are most conveniently
modeled with discrete age categories; but outside of a few critical
ages defined exogenously (e.g., school attendance, legal adult-
hood, and retirement), age effects are likely to be continuous,
best modeled semiparametrically (e.g., with splines). Our com-
promise is to use relatively fine-grained age categories.

The age categories used were as follows: young child (under
6), preadolescent (6–12), adolescent (13–18), young adult (19–
24), older adult (25–60), and senior (over 60). (The age cut at
12 was chosen specifically to account for the design boundary.)
In order to investigate gender-specific interactions (Goeyvaerts
et al. 2018) we subdivided older adults into older female adults
and older male adults. A total of seven categories results.

We then modeled mixing by counting the contacts between
pairs of these categories—essentially cells of a symmetric 7 ×
7 contingency table. Our data about some of these cells are
limited, both because some age groups are underrepresented for
design reasons discussed above and in Section 2.2, and because
some age combinations, such as young children and seniors, are
rarely found together in a household (Figure A3 for pairwise
counts). Thus, guided by substantive interest, sample size, and
design effects, some of the cells were combined for modeling. For
example, in modeling contacts with seniors, we combine young
children with preadolescents and adolescents with young adults
because of their very small sample sizes; but we do not combine
all four cells because the combined cell would then cross the age-
12 boundary. Similarly, despite a small sample size, young adults
with young children were retained as a separate count, because
their chances of being parent and child are relatively high. The
final parameterization is visualized in Figure 4.

Endogenous Effects
To model actor heterogeneity and triadic closure, we use 2-
star and triangle counts, defined in Section 3.1. An additional
caveat is that the E dataset, by virtue of only containing relations
incident on one individual per household, does not contain
information about triadic closure. (See Section 4.1 Example 2
and Appendix C.2.) We thus assume that net of all other effects,
the effect of triadic closure on a household of a given size that
does not have a child is the same as the effect of triadic closure on
a household of that size that does have a child. It is not possible
to test this assumption with the available data.

Network Size Effects
The effects of network size on our networks is not trivial: for
example, in the analysis of the H dataset by Goeyvaerts et al.
(2018), three different density and two different triadic param-
eters were used, depending on household size. In Model 0, we
use the polynomial effects of log ns described in Section 3.2 on
edge, 2-star, and triangle counts. This also further guards against

ERGM degeneracy, by allowing 2-star and triangle coefficients to
decrease with network size.

Other Network-Level Effects
Some of the surveys were conducted on a weekend and others
on a weekday (Table A2). Past literature (e.g., Goeyvaerts et al.
2018) suggests that contact patterns may differ depending on the
day.

Contact patterns may differ systematically between families
that live in detached housing and families that live in apart-
ments. This potential effect has received limited attention in the
literature to date. Our data do not include housing type but do
include postal codes. The population densities in those postal
codes can then be used as a proxy for housing type. We use
this potential predictor to illustrate the technique proposed in
Section 4.3 of regressing the network-level residuals on potential
network-level predictors. Alternatively, we might ask whether or
not the post code belongs to any of Belgium’s larger cities.

These properties may be predictive of edge, 2-star, or triangle
counts. For the sake of parsimony, Model 0 initially incorporates
only weekend effect on density, and diagnostics are used to
suggest additional effects.

Design Effects
Last but not least, if we wish to generalise our inference to the
population of households, our model must make any design
effects ignorable. The substantively motivated effects described
above already control for some of those. For example, recall
that households in H were omitted if there was nonresponse
from even a single member. To the extent that the nonresponse
rate is a function of household size (i.e., the bigger the house-
hold, the more likely there is at least one nonrespondent), a
model that accurately controls for network size will reduce the
informativeness of this nonresponse. Similarly, although both
surveys’ selection was strongly affected by household members’
ages, particularly children, granular modeling of age mixing
effects—particularly for young children and preadolescents—
already reduces this design effect’s informativeness.

It is, however, also possible that interactions among adult
household members, and other structural features, are affected
by a child’s presence—something that Goeyvaerts et al.’s data
could not be used to test. We can adjust for this by including the
presence of a child in a household as a network-level covariate
for density overall, for the endogenous effects, or for mixing.
Given the wide range of possibilities, we do not incorporate any
such effects into Model 0, instead using residual diagnostics on
it to select them.

To account for only the H dataset containing Brussels house-
holds, we add an indicator of a Brussels post code as a network-
level covariate for density. This completes Model 0.

5.2. Diagnostics

We now apply the techniques from Section 4 to the proposed
models. To validate our diagnostic techniques, we also fit a
number of reduced models: in Appendix F, we demonstrate
how our techniques can identify their deficiencies. In the
following, recall our partitioning of E into E12 (at least
one child at most 12, potentially in H) and E12 (no such
children).
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Effects of a Child in a Household
As discussed, we use diagnostics for Model 0 to select which
network features depend on the presence of a child: we calculate
the Pearson residuals for counts of edges, 2-stars, triangles,
and every pair of actor categories (excluding young children,
preadolescents, and seniors), breaking them down by subset H,
E12, and E12. Then, category pairs with extreme residuals that
have the same sign for H and E12 but the opposite sign for E12
may suggest a relevant child effect.

Three mixing cells have residuals with this sign pattern
(Table G30): contacts between older female and male adults
(H: 2.6, E12: 1.8, E12: −1.8), two male adults (−1.6, −1.8, 0.6),
and two female adults (0.6, 0, −0.1). The latter two are likely
spurious and cannot be used in any case due to small sample
size (per Appendix A.3).

Adding the effect of absence of a child on the coefficient for
contacts between older female and male adults yields Model 1;
none of its global or mixing residuals (Table G37) have both
the requisite sign pattern and nontrivial magnitude. We focus
on Model 1 going forward, but, for illustrative purposes, we also
report Model 1a, with the absence-of-child effect on edge count
instead.

Additional Substantive Models
As proposed in Section 5.1, we regressed (per Section 4.3) edge,
2-star, and triangle count residuals of Model 1 on a number of
candidate predictors, with full results given in Table G34. The
linear effect of log-population-density is the most promising
(p = 0.046), yielding Model 2, and, for illustrative purposes, we
also report Model 2a, adding the effect of the household being
in a major city (p = 0.30) instead. Specifications for all models
are summarized in Table G1, and their complete results and
diagnostics are provided in Appendix G.

Unaccounted-For Between-Dataset Differences
Selected residual plots are provided in Figure 2. We also provide
smoothing curves for each subset individually: these curves
diverging would indicate that the model had failed to account
for some systematic difference between the datasets. Panel (d)
(triangle counts) excludes E’s networks, because those contain
almost no triadic information.

The network residuals for both edges and triangles (Pan-
els (a)–(d)) are skewed downward and exhibit a striped pattern.
This is to be expected regardless of model fit: the underlying
network statistics are small counts close to their exogenous
upper bounds. There do not appear to be any clear patterns
beyond that, and the edge residuals for H, E12, and E12 coincide
on average (Panel (a)). This suggests that the model fuses the
two datasets well. The scales of the residuals (Panel (b)) do not
exhibit unambiguous patterns either, except for the residuals of
E12 having consistently higher variances than others—whereas
the more similar H and E12 networks have similar residual
variances.

The dataset hypothesis tests described above and in
Appendix D.2 yield p-values 0.068, 0.11, and 0.18 for the edge,
the 2-star, and their omnibus test, respectively (with details
given in Table G35). Thus, at the conventional significance
level, we do not detect unaccounted-for differences between

Figure 2. Selected Pearson residual plots of network statistics for Model 1, modeled
after the diagnostic plots produced by R’s (2023) built-instats package for GLMs.
Outliers are identified by their dataset and index within dataset. (Subsets: H E12 E12)

datasets for these features. (In contrast, the respective p-values
for Model 0 (Table G28) are 0.019, 0.06, and 0.062, which is more
suggestive.)

Outliers
Our residual plots reveal some households inconsistent with
typical behavior. For example, the E households #947, #730, and
#554 highlighted in Panels (a) and (c) are families of three or
four with two older adults (male and female) and a young child
(the “respondent”), but no within-household contacts with the
child on the day of the survey.
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Network Size Effects
Edge residuals against the network size are shown in Panel (c).
A model that fails to account for network size would display a
linear or curved pattern in the residuals. We see no evidence of
such a pattern.

We confirm this with lack-of-fit tests, regressing edge, 2-
star, and triangle count residuals on network size treated as
categorical (i.e., a dummy variable for each size but one). Lack
of fit would be indicated by statistical significance of these
regressions; we do not find it for any of the three network
statistics (weighted ANOVA omnibus p-vals. 0.20, 0.17, and
0.22, respectively, full results in Table G33).

Nonsystematic Heterogeneity
The standard deviations of Pearson residuals for edges, 2-stars,
and triangles are 1.00, 0.99, and 0.98, respectively, all close to 1
as hoped. (Breakdown by data subsets in Table G36.)

Continuous Age Effects
Panel 2e shows the Pearson residuals of the total number of
within-household contacts of individuals of each age. We see
some indications that discretising ages into categories has an
impact. For example, a senior’s propensity to interact appears to
drop off as they age, which the cutoff at 60 does not capture. H
households’ contacts for each age tend to be slightly underpre-
dicted relative to those of in E12, though the differences do not
appear to be particularly strong or consistent.

5.3. Results

Model Comparison
Table 1 gives the parameter estimates for Model 1 and Model 2,
suggested by our residual diagnostics. (Those for Model 1a
and Model 2a are in Tables G38 and G52.) AIC (Table G2)
is indifferent between Model 1 (AIC = 3696.6) and Model 2
(3696.8) within margin of MCMC error and prefers them over
Model 2a (3697.8) and Model 1a (3713.6), the latter only slightly
preferred over Model 0 (3714.6). This is as predicted by the
residual analysis discussed in Section 5.2.

A test of population density effect in Model 2 is not significant
at conventional level (β̂ = 0.04, SE = 0.031, p = 0.19), so we do
not find evidence of housing type having an effect—or regional
population density is a poor proxy; we leave these questions for
future work, except to suggest that type of housing should be
considered for future data collection.

Substantive Conclusions
We discuss results primarily from Model 1, though Model 2
yields the same conclusions. Only a few of the effects are inter-
pretable in isolation. In particular, we can conclude with some
confidence (β̂ = 0.14, SE = 0.056, p = 0.015) that weekends
have a positive effect on the number of contacts that are observed
in the household, in line with prior literature (Grijalva et al.
2015). Presence of a child in a household is associated with a
higher propensity of older male adults and older female adults
(likely the parents) to interact with each other (if no child: β̂ =
−1.2, SE = 0.30, p < 0.001). We do not detect an effect of

Table 1. Parameter estimates for Model 1 and Model 2.

Relationship effect Coefficient (S.E.)
× Network-level effect Model 1 Model 2

edges × log(ns) −14.28 (2.87)��� −13.78 (2.98)���

× log2(ns) 5.69 (1.29)��� 5.47 (1.34)���

if Brussels post code 0.08 (0.19) −0.02 (0.20)

× log(pop. dens. in post code) 0.04 (0.03)

if on weekend 0.14 (0.06)� 0.13 (0.06)�

2-stars 1.91 (0.78)� 1.14 (0.82)

× log(ns) −2.15 (0.41)��� −1.22 (0.44)��

× log2(ns) 0.34 (0.11)�� 0.07 (0.11)

triangles 5.55 (0.97)��� 7.30 (0.96)���

× log(ns) −3.46 (1.39)� −5.65 (1.44)���

× log2(ns) 0.93 (0.70) 1.60 (0.74)�

Young child with young child 8.60 (1.49)��� 8.66 (1.54)���

Young child with preadolescent 9.10 (1.48)��� 9.15 (1.54)���

Preadolescent with preadolescent 8.17 (1.45)��� 8.24 (1.51)���

Adolescent with adolescent 7.70 (1.43)��� 7.75 (1.49)���

Young child with young adult 9.64 (1.76)��� 9.67 (1.81)���

Preadolescent with young adult 7.25 (1.46)��� 7.28 (1.51)���

Adolescent with young adult 7.73 (1.45)��� 7.82 (1.51)���

Young adult with young adult 7.66 (1.44)��� 7.70 (1.49)���

Young child with older female adult 10.26 (1.45)��� 10.32 (1.51)���

Preadolescent with older female adult 9.67 (1.43)��� 9.73 (1.49)���

Adolescent with older female adult 8.90 (1.43)��� 8.96 (1.48)���

Older female adult with older female adult 7.45 (1.46)��� 7.50 (1.52)���

Young child with older male adult 9.09 (1.43)��� 9.14 (1.49)���

Preadolescent with older male adult 8.76 (1.42)��� 8.83 (1.48)���

Adolescent with older male adult 8.20 (1.42)��� 8.26 (1.48)���

Older female adult with older male adult 10.11 (1.44)��� 10.17 (1.49)���

if child absent −1.22 (0.30)��� −1.20 (0.30)���

Older male adult with older male adult 6.59 (1.45)��� 6.66 (1.50)���

Older female adult with senior 8.12 (1.42)��� 8.20 (1.47)���

Older male adult with senior 7.51 (1.45)��� 7.58 (1.50)���

Senior with senior 7.82 (1.40)��� 7.89 (1.46)���

Adolescent with young child or preadolescent 8.07 (1.43)��� 8.13 (1.48)���

Young adult with older adult 8.02 (1.43)��� 8.07 (1.48)���

Young child or preadolescent with senior 8.29 (1.52)��� 8.34 (1.57)���

Adolescent or young adult with senior 9.93 (1.70)��� 10.01 (1.76)���

AIC 3696.6 (0.2)† 3696.8 (0.2)

BIC 3926.9 (0.2) 3933.7 (0.2)

log-likehood −1813.3 (0.1) −1812.4 (0.1)

Significance: ��� ≤ 0.001 <��≤ 0.01 <�≤ 0.05
†Standard errors for AIC, BIC, and log-likelihood are due to MCMC error.

being in Brussels on network density (β̂ = 0.1, SE = 0.19,
p = 0.68).

The estimated polynomial log-network-size effects are shown
in Figure 3. Though they are difficult to interpret in isolation
from each other, we observe that edge effect counterbalances 2-
star and triangle effects, which also decrease with network size,
guarding against ERGM degeneracy as hoped. Overall, there is
strong evidence that network size effects are present (p < 0.001),
including quadratic (p < 0.001), and including those on 2-stars
and triangles (p < 0.001). Both 2-star (p < 0.001) and triangle
(p < 0.001) effects are significant in the presence of others. (Test
details are given in Table G32.)

We report the parameter estimates for household member
category mixing in a more intuitive layout in Figure 4. Since,
unlike Goeyvaerts et al. (2018), we do not use a baseline category
(“intercept”), they are not interpretable in isolation but only in
contrast with each other. Thus, we conclude that older female
adults (i.e., mothers) tend to interact more than older male
adults (i.e., fathers) with young children (	̂ = 1.2, SE =
0.47, p = 0.013), preadolescents (	̂ = 0.9, SE = 0.29, p =
0.002), and adolescents (	̂ = 0.7, SE = 0.25, p = 0.006). We
thus confirm and expand on similar findings by Goeyvaerts et al.
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Figure 3. Estimated effects of network size on conditional odds of an instance of a graph feature. Two-stars and triangles are only possible for ns ≥ 3.
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Figure 4. Parameter estimates for mixing by family role. Borders denote parameterization. Because there is no “intercept” effect in the model, testing them against 0 is not
meaningful.

(2018). We also tested whether older female adults interacted
with seniors more than older male adults did, whether because
they are more likely to care for elderly parents or because
in a marriage, the female spouse is typically younger than
the male spouse, and there is some evidence for this (	̂ =
0.6, SE = 0.31, one-tailed p = 0.025). As with housing type, we
recommend that future studies record specific familial relations
for contacts.

6. Conclusion

Motivated by two collections of networks representing the same
phenomena but collected using very different sampling designs,
we combined their strengths, facilitating population-wide sim-
ulation of household networks. In the process, we identified
the requirements of this procedure and developed generally
applicable techniques for specifying and diagnosing models for
large samples of networks, techniques that, through their rela-
tionship to GLMs, can be used by researchers from a wide variety
of disciplines. The techniques we have developed do not rely
on the networks being completely observed. A user-friendly R
implementation is provided.

Our two surveys were conducted in Flanders and Brussels
in 2010–2011. It is important to design and analyze household
surveys in different settings with different inclusion criteria—
but, ideally, compatible measurement instruments—to gain
further insights on the contact patterns and the effects of
endogenous factors such as triadic closure, exogenous individual
attributes such as age, and exogenous household attributes such
as size and type of residence. This work provides a foundation
for identifying and testing these effects and for confirming
the validity of the analysis—and opens the door to design
of future cost-effective yet highly informative hybrid network
studies.

A number of methodological research directions remain. In
our work, we used Pearson residuals. Other types of residuals,
such as deviance, tend to be better behaved and could, perhaps,
be derived for this family of models. Similarly, Cook’s distance
may be possible to compute inexpensively for each network
using the approach of Koskinen et al. (2018).

We did not find evidence of nonsystematic heterogeneity
of networks. Where such is present, it can be accounted for
in a mixed effects framework (Slaughter and Koehly 2016) at
an additional computational cost, or perhaps by constructing
ERGM sufficient statistics to absorb the variation (Krivitsky
2012; Butts 2017). Alternatively, quasi-likelihood and gener-
alised estimating equation approaches may be extended to sam-
ples of networks.

ERGM computational and diagnostic techniques are agnostic
to the structure of the sample space, so these approaches directly
generalise to directed, temporal, valued, and multilayer network
scenarios. For our two surveys in particular, physical contact was
not the only relational measurement: the respondents were also
asked about the approximate duration of interaction (close prox-
imity) on an ordinal scale (time ranges). Along similar lines, the
techniques for calculating standardized residuals under partially
observed data may be applicable to other domains that involve
modeling independent samples of units which are themselves
partially observed.

Supplementary Materials

Appendices A–G: Further details, discussion, and results. (PDF file)
Code and data: Materials to reproduce the analysis. (ZIP file)
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