An overview of the applied definitions and diagnostic methods to assess exercise oscillatory ventilation: a systematic review

Reference:
Cornelis Justien, Beckers Paul, Vanroy Christel, Volckaerts Tess, Vrints Christiaan, Vissers Dirk.- An overview of the applied definitions and diagnostic methods to assess exercise oscillatory ventilation: a systematic review
DOI: http://dx.doi.org/doi:10.1016/j.ijcard.2015.04.111
An overview of the applied definitions and diagnostic methods to assess exercise oscillatory ventilation – a systematic review

Justien Cornelisa,1, Paul Beckersa,b,c,1, Christel Vanroya,d,e,1, Tess Volckaertsa,1, Christiaan Vrintsb,c,1, Dirk Vissersa,1

a. University of Antwerp (Faculty of Medicine and Health Sciences), Department of Rehabilitation Sciences and Physiotherapy, Universiteitsplein 1, CDE S0.22, B-2610 Wilrijk, Belgium.

b. Antwerp University Hospital, Department of Cardiology, Wilrijkstraat 10, B-2650 Edegem, Belgium.

c. University of Antwerp (Faculty of Medicine and Health Sciences), Department of Medicine, Universiteitsplein 1, B-2610 Wilrijk, Belgium.

d. University of Leuven (Faculty of Kinesiology and Rehabilitation Sciences), Tervuursevest 101, B-3001 Heverlee, Belgium.

e. University of Antwerp (Faculty of Medicine and Health Sciences), Translational Neurosciences, Universiteitsplein 1, B-2610 Wilrijk, Belgium.

1. “This author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation”

Systematic review registration number: PROSPERO CRD42013006712

Presentations of the work: None

Provided support: None

Disclosure statement: The authors have nothing to disclose.

Corresponding author: Justien Cornelis

University of Antwerp (Faculty of Medicine and Health Sciences), Department of Rehabilitation Sciences and Physiotherapy, Universiteitsplein 1, CDE S0.22, B-2610 Wilrijk, Belgium. Email: justien.cornelis@uantwerpen.be.

Tel: +3236418265, Fax: +3236418270
Abstract

The variable “exercise oscillatory ventilation” (EOV), assessed during cardiopulmonary exercise test (CPET), recently became a fundamental prognostic parameter in patients with heart failure. In literature, various definitions are suggested, but an uniformly accepted method to identify EOV still lacks. We performed a systematic review of the literature in order to determine the different definitions and diagnostic techniques to assess EOV. A systematic search strategy was established and executed in seven databases (PubMed, Google Scholar, Cochrane Clinical Trials, Science Direct, Pedro, Web Of Science library and Medline (Ovid)) resulting in 605 citations after de-duplication. Full-text articles (n=124) were assessed for eligibility, resulting in 75 citations. The review accounted 17440 patients of whom 4638 subjects presented EOV. Seven studies described EOV in a non-heart failure population accounting 168 EOV subjects. The definitions could be categorized in nine subdivisions of which four (n=43) referred to an original description. The other subdivisions were combinations of the original definitions (n=11), quantifications (n=4), computational (n=3), vaguely described (n=8) or not defined (n=6). Symptom limited maximal exercise tests were conducted to assess EOV, however the modes, protocols, software and data sampling were divers. Heterogeneity in the numerous definitions to identify EOV and the vaguely described assessment methods are hindering the evolution to a standardized uniformly accepted definition and technique to identify this abnormal breathing pattern. Unity in definition and international adopted assessment is warranted to strengthen its validity as a prognostic marker and would promote communication. It may facilitate clinical trials on pathophysiology and origin of EOV.

Word count abstract: 250

Keywords: Cardiopulmonary exercise, Humans, Oscillatory ventilation, Review, Definition, Assessment, Diagnostic
Introduction

In a population with heart failure (HF), exercise oscillatory ventilation (EOV) emerges as a key prognostic parameter that tends to outperform the formerly suggested predictive cardiopulmonary exercise test (CPET) derived variables such as peak oxygen uptake (VO₂) and ventilation over carbon dioxide (VE/VCO₂) slope[1,2]. Furthermore, this oscillatory breathing pattern indicates general deterioration of other CPET derived prognostic values[2]. The reported incidence of this waxing and waning pattern in ventilation (VE) during exercise is 7 to 51%[3,4]. This broad interval originates as no universal definition is currently described to assess EOV[5,6]. The lack of a gold standard definition could arise from the wide variability within the EOV pattern characteristics e.g. amplitude, duration of the oscillations and period[7,8]. Moreover, assessment of EOV is mainly done by manual scoring or visual interpretation of at least one clinician, which is subjective and could therefore vary considerably between centres and individuals[8]. In 2010, the American Heart Association (AHA)[1] declared the definition adopted by most studies stated that oscillations were present for at least 60% of the exercise time with an amplitude ≥15% of the average resting value, in accordance to Corrà et al [9]. This description was followed by a joint scientific statement of the AHA and the European Society of Cardiology (ESC)[5]. Moreover, many different CPET systems are available with each its unique software for processing, analysing and displaying data[1]. This software also determines data sampling and averaging, which the user can select. Modern CPET systems provide a wide variety of automated reports, causing a selection of the available data for the clinicians’ interpretation and therefore significantly influencing the assessment of the test results and the data analysis. It is stated that there is an important need of standardization in data sampling e.g. breath by breath (BbB), the amount of breaths, moving averages or specific time intervals, as there is a misbalance in these methodologies between precision and variability. Especially in EOV, of which the assessment is based on pattern recognition, relates the difficulty in visualization of the signal for analysis. Visualization is commonly done by using a moving average filter which smooth the data and eliminate small variations[10]. The ESC and AHA council recommends to use 10s averaged ventilation data for plotting[5]. Furthermore, each stadia of the test e.g. rest, warm-up, exercise and cool-down should be reported as well as the selected exercise protocol as both could influence the interpreted variables[1]. In a recent meta-analysis of our research group[2], it was stated that more research should be done on defining and assessing EOV in a more accurate and reproducible way. We found that difference in defining EOV influenced significantly the results. Moreover, the mode of protocol was an independent parameter. However, these sub-group analyses were characterized by a high
overall heterogeneity. Therefore we performed a systematic search strategy to provide an overview of the suggested definitions and assessment techniques used to analyse EOV. The purpose of this systematic review was to identify all the applied definitions of EOV through a symptom-limited exercise test (SLMT) and to summate the described test characteristics in literature independently from pathology. As the pathophysiology of EOV is not yet fully understood \[11,7\], analysis of EOV in other populations than HF could lead to new insights in this aspect.

Methods

A systematical search strategy was established: “exercise oscillatory ventilation” OR “exercise periodic breathing” OR “exertional periodic breathing” OR “exertional oscillatory ventilation” OR “exercise oscillatory breathing” OR “exertional oscillatory breathing”. In the Pedro database only “exercise oscillatory ventilation” was searched as the other quotations were not found. As indicated in the specific database, the following filters were applied: only humans (PubMed and Science Direct) and journals (Science Direct), no reviews (Cochrane) or patents and citations (Google Scholar).

The following inclusion criteria were a priori established: (1) defining and/or investigating oscillatory minute VE during a CPET; (2) all populations; (3) all interventions; (4) humans; (5) English, French, German, Dutch, Spanish or Portuguese; (6) normal environmental conditions. The exclusion criteria were: (1) oscillations described during rest, sleep and/or steady-state exercise; (2) the study designs were reviews, meta-analyses or books; (3) high altitude. Expert opinions and recommendations on on-going studies or other relevant data were gathered. Conference proceedings, index lists, doctoral manuscripts, commentaries and editorials were screened and included if oscillations in minute VE were defined through exercise and if it concerned original research by the authors. Reference lists were checked for any topic-related studies. The corresponding author of a study was contacted if needed to obtain any missing information or data. If authors could not be reached or if the data was not available, the citation was excluded. The search included citations published up until October 24th 2014.

All citations identified by the above mentioned electronic databases were organized and the duplicates were deleted. Initially, two investigators (J.C. & T.V.) screened the results from the electronic searches in order to select potentially relevant citations based on titles and abstracts. Full-text articles were retrieved and evaluated based on the proposed in- and exclusion criteria. In case of uncertainty, a third investigator (C.V.) evaluated the citation and
consensus was sought during a meeting. Although the authors were responsible for a specific step in the screening process, the final determination of whether an article was included or excluded was based on common agreement.

The following study characteristics were extracted, and if appropriate coded, from the articles by two researchers (J.C. & C.V.). Concerning the assessment of EOV by CPET, the variables rest, warm-up, mode, protocol, intensity, data sampling and data collection were retrieved. Furthermore, the described EOV definition was acquired. Secondary collected data concerned “population, study centre, respiratory exchange ratio (RER), pathophysiology and incidence of EOV”.

Neither methodological scoring nor Risk of Bias were performed as we only extracted data concerning the methodological analysis and applied definitions in order to evaluate EOV. This scoring would not give an additional value regarding the studies included in this review.

Results

Selection of the studies

Seven databases (PubMed, Google Scholar, Cochrane Clinical Trials, Science Direct, Pedro, Web Of Science library and Medline (Ovid)) were consecutively systematically searched, resulting in 751 citations. Five studies[12,13,3,14,15] were identified after manual reference list screening, resulting in 756 citations. After de-duplication, 605 articles were screened for eligibility on title and abstract, resulting in 124 citations. Ultimately, full text screening resulted in 75 studies (Figure 1).

Characteristics of the included studies

The 75 studies, included in this review, accounted for 17440 patients of which 4638 (26.6%) presented EOV (Figure 2). Seven of these included studies described EOV in another population than HF e.g. cardiac dysfunction[17,18,14], idiopathic dilated cardiomyopathy[19], total cavopulmonary connection after Fontan[20], liver transplantation[21]
and congenital cardiac disorder[10], accounting 752 subjects of which 168 presented EOV. EOV was not reported in healthy control patients[12,22-27]. Ten of the included studies were conducted in a multicentre setting [4,16,28-35], totalling 113 centres, representing 8326 subjects with HF of which 2150 presented EOV. The lowest and highest reported incidence rate was 7%[36,37] and 64%[38], respectively.

[Insert Figure 2]

Assessment

Assessment through a SLMT was performed in all included studies, yet characteristics were only described in 68 citations (n=68) (Table 1). The RER varied between 1.00[33,39] and 1.10[40,21], mainly set ≥1.05[35,9,29] for inclusion. The selected mode of protocol in these studies was bicycle (n=38), treadmill (n=11) or a combination of both modes (n=7). The passive rest, active (un)loaded warm-up and the recovery phase during one to three minutes after SLMT was registered in 18, 25 and five articles, respectively[41-44,19]. The (modified) ramp protocol was selected in the majority of the studies using a bicycle. In treadmill, a (modified) Bruce protocol was often selected. Twenty-two different CPET devices of 12 manufactures were used to collect the data. Generally, BbB data were collected. In order to assess EOV, a moving or fixed averaging method was often applied (Table 1). In the majority of the articles, SLMT was conducted during 8-12min. In a few articles, other limits were obtained such as 7-10min[45] and 6-15min[4,16].

[Insert Table 1]

Definitions

The definitions described in the included studies (n=75) could be categorized in nine subdivisions of which four (n=44) referred to an original definition as suggested by Kremser et al.[12] (n=23), Leite et al.[23] (n=13), Ben-Dov et al.[46] (n=6) and Sun et al.[4] (n=2) (Table 2; Figure 2). The other subdivisions were combinations of the original definitions (n=11), quantifications (n=4), computational (n=3), vaguely defined (n=8) or undefined (n=6). One study[47] compared the difference in EOV incidence upon two definitions[46,9]. When the reported original definitions were applied, EOV was visually determined[21,48,37,49,50] or quite rapidly manual calculated [32,51,52] by at least one clinician. In seven studies, EOV was determined by quantification or by computational techniques. One study [53] reported the use of a familiarization test to confirm the presence of EOV.
Discussion

To our knowledge, this systematic review is the first to provide a full overview of the applied definitions and diagnostic methods to assess EOV. An important finding is the wide variety of definitions applied to describe EOV (table 2). Four original descriptions with many modifications were suggested[12,23,46,4]. Attempts to quantify EOV[24,13,15,54] without proposed cut-off value were performed and authors aimed to assess this abnormal breathing pattern with specific computer techniques[55,25,10]. Moreover, numerous CPET protocols, data collection approaches and data sampling procedures were applied in the included studies (table 1).

EOV is especially recognized in HF, however this review indicates EOV can appear in other cardiac related populations[17,18,14,19,20,10]. The most striking finding is the presence of EOV in liver transplant patients[21]. However, it is not clear whether the subjects presenting EOV in that study had no underlying cardiac pathology. It could be assumed that EOV is a patient related pathophysiologic indicator, as it was not mentioned in normal subjects yet[22,26].

We believe the first authors to describe the oscillations in ventilation were Kremser et al. in 1987[12]. Since then, investigators tried to discover the best possible way to define and assess those oscillations. Up until now, no gold standard was proposed[11], causing a wide variety of suggested definitions for EOV. Recently, the AHA and ESC council published guidelines[1,5] in which the definition by Corrà et al[9] was elected to define EOV. In table 2 is shown that this definition is a modified description of the proposed criteria by Kremser et al[12]. Only one third of the citations included in this review, used this description to assess EOV. It is unclear why the guidelines suggest that definition in particular. Furthermore, it remains elusive why the majority of the authors refer to Corrà et al[9] and only a few to Kremser et al[12], although the latter was put forward 15 years earlier. Furthermore, it seems that two definitions were used in Corrà et al[9,48]. After contacting the authors[9], they confirmed that the second description (>60% duration; amplitude >15%) is the one to follow, not corresponding to the suggested definition in the AHA and ESC guidelines (≥60% duration; amplitude ≥15%). We could assume that the proposed definition in the guidelines slightly misquoted the original author.
Lately, Sun et al. [4] analysed even oscillations in other parameters in addition to VE in order to define EOV. However, it was stated [25] that the oscillations in VO₂, VCO₂ and RER were proportionally smaller than those in VE, and were also different in phase. Therefore, it is questionable if oscillations in other cardiorespiratory parameters simulate the same underlying pathophysiologic processes.

Apart from the wide variety of definitions also many different interpretations were mentioned concerning the mathematical terms and characteristics within the described definitions. Regarding the cycle length, many descriptions were given such as the distance between two nadirs[26], the period of observed oscillation divided by the number of oscillation[56] and the interval from peak to peak for each cycle at rest expressed as mean value[18]. Moreover, different values were proposed for the duration of the cycle length such as approximately 60s [57], 40s-140s[4,16], 30s-60s[23] or a percentage of the average[46]. Furthermore, the total duration of the oscillations could also vary. Suggested durations were >66% of the exercise protocol [12], > or ≥60% [9], ≥50%[58], 2 or 3 regular oscillations[46,23]. Sometimes these characterizations were measured at a specific point in time such as at 50% peak exercise[38,36]. Concerning the amplitude, numerous descriptions were suggested. The amplitude was described as the difference between the peak VE of the oscillation and the average of the VE of the two surrounding nadirs[26]; by calculating the variation coefficient of VE[35]; by assessing the correlation coefficient of VE[36]; or expressed as a percentage of the mean of the rest VE[18]. In addition, “a nadir”, mentioned in numerous definitions[26,17], is neither a mathematical nor a medical term, but rather a term used in physics (meteorology). We assumed to interpret this term as local minima. A recent meta-analysis[2] stated that presence of EOV depended upon the proposed definition. Therefore it is important to describe these above mentioned sub-characteristics unambiguously.

Regarding computational techniques to define EOV, there is an uncertainty about the interpretation of the signal using a Fourier transformation[8,25] as the researchers assumed EOV is a stationary signal. However, other investigators[10] indicated that EOV is a non-stationary signal and therefore Fourier would not be the ideal transformation to apply in a clinical individualized setting as assessment in a frequency domain is not useful for clinical application. These authors applied a calculation of the mean BbB variability in respiratory gas exchange[10]. Although these developed software algorithms are promising to bring new insights in the analysis of EOV, up until now we assume no clear detection methods other than visualization during data collection or chart review were effectively applied. These techniques are characterized by a high heterogeneity as medical charts typically only
provide summarized information, hand scoring could vary considerably between individuals and centres. Moreover, some authors tried to quantify the oscillations and thus obtained to describe an amount, recognized by a number[13,24,54]. However no clear cut-off values to quantify the oscillations were suggested. Yet, the authors [54] make clear that it is a different approach compared to the other studies in which the presence of EOV is analysed by YES/NO criteria. In general, more research towards defining EOV is mandatory.

In the majority of the included studies, data sampling techniques were described. Twelve different unique software systems, of which a few are validated[14], were applied to register and analyse the data. In literature is stated that those devices are not always interchangeably in order to assess peak VO\textsubscript{2} and VE[59]. This attest the possibility that towards analysing EOV there is a lack of congruence between the devices, contributing to a higher heterogeneity[1]. Furthermore, it was suggested that both in clinical practice and in research publications data from patients ought to be accompanied by details of the averaging technique used[1]. This was stated as important as knowing whether the exercise is on a treadmill or a bicycle and the protocol used. This information would assist in interpreting discrepancies between findings from different centres[25]. In the majority of the studies presented, the data was recorded BbB. Consequently a data averaging method was often reported. These researchers averaged the data assuming out of practical consideration or to visualize the oscillations more. These features indicate a high heterogeneity in data sampling techniques which could lead to a higher variability and lower precision in assessing EOV[1]. The recommended[5] 10s averaging VE data technique was only applied in ten of the included studies.

However, it is unclear why this would be the advised data sampling technique in order to estimate EOV. The effects of data averaging (using different periods from 10s to 90s) on the size of the oscillations as well as on the noise-to-signal ratio was already investigated[25], recommending a standardized averaging period similar to the length of the typical periodic breathing cycle, i.e. 60s regardless of whether breathing is periodic or stable. These authors suggested this would improve the physiological validity of the value obtained in subjects with periodic breathing, without adverse effects in subjects with stable breathing. Moreover, they assumed that ideally assessment of EOV should be made on raw data before 60s averaging, as filters eliminate small variations in gas exchange parameters and clarifies the trend in a set of data [25,10]. Since in practice the exact period of oscillatory breathing may vary between patients, no single rectangular window can be guaranteed to eliminate oscillations in metabolic parameters[25]. Furthermore, it is important to evaluate this phenomenon objectively and therefore preferable without excluding these small variations in gas exchange[10].
In the included citations, often large databases were screened over many years. A variety on CPET protocols and data collection methods were suggested. The adopted modes in the SLMT were generally reported. Bicycle as well as treadmill were applied. In the multicentre studies included in this review, those two modes were often used interchangeably. Some investigators declared the results were correctly registered irrespective the mode of exercise[30,31]. However, the EOV prevalence was 25% among patients tested on a bike and 41.3% among those tested on a treadmill[31]. In future studies, both modes could be compared in the same sample of patients to accurately investigate the difference in EOV incidence. Concerning the applied protocol, it was expressed that each stadia of the exercise test (rest, warm-up, exercise and recovery) should be reported in a study assessing cardiac patients[1]. Especially in EOV, this data is of great importance to the authors [12,9], as the investigators defined EOV by comparing oscillations in rest data before the actual exercise test. However, this data was rarely mentioned in the included studies. One can argue if oscillations during rest should be classified as periodic breathing or as exercise oscillatory ventilation. Therefore, it is unclear if defining EOV requires analysis of the oscillations during rest or only during warm-up and exercise[60]. However, it could be interesting to evaluate the oscillations during recovery, as assessed in other prognostic parameters after submaximal exercise testing [61]. Many researchers stated and included the clinical test as maximal if a RER of 1.05 or even 1.00 was reached. However the guidelines described RER≥1.10 as cut-off[1]. One could state that EOV can be assessed by submaximal exercise testing, making the RER value inferior to other characteristics of the exercise test. However, even this should be standardized as Scardovi et al[39] presented a high percentage of EOV in female patients with HF using a 1.00 cut-off for RER, while in the majority of the included articles more male subjects were described. These features confirmed that despite the unpredictability of EOV, there is a need of standardized CPET protocols and data collection to assess EOV in prospective conducted studies.

Conclusions

Heterogeneity in the numerous definitions to identify EOV and the vaguely described assessment methods are hindering the evolution to a standardized uniformly accepted definition and technique to identify this abnormal breathing pattern. Unity in definition and international adopted assessment is warranted to strengthen its validity as a prognostic marker and would promote communication. It may facilitate clinical trials on pathophysiology and origin of EOV.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Mode</th>
<th>Rest (min)</th>
<th>Warm-up</th>
<th>Protocol; Intensity</th>
<th>Data collection (Averaging); Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agostoni[22]</td>
<td>B</td>
<td>3</td>
<td>3</td>
<td>Ramp</td>
<td>BB B; Vmax^2</td>
</tr>
<tr>
<td>Agostoni[53]</td>
<td>B</td>
<td>-</td>
<td>1</td>
<td>0; 60</td>
<td>BB B; Vmax^2</td>
</tr>
<tr>
<td>Agostoni[28]</td>
<td>BT</td>
<td>-</td>
<td>-</td>
<td>Ramp (B) & Modified Bruce (T)</td>
<td>BB B</td>
</tr>
<tr>
<td>Agostoni[29]</td>
<td>BT</td>
<td>-</td>
<td>-</td>
<td>Ramp</td>
<td>BB B</td>
</tr>
<tr>
<td>Apostolo[62]</td>
<td>B</td>
<td>>5</td>
<td>>3</td>
<td>Ramp; ↑5-10W/min</td>
<td>BB B; Vmax^a</td>
</tr>
<tr>
<td>Arena[63]</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>Conservative ramp; ↑±2mlO2/kg/min in workload every 30s</td>
<td>BB B (10s)</td>
</tr>
<tr>
<td>Arena[64]</td>
<td>T</td>
<td>Yes</td>
<td>-</td>
<td>Conservative treadmill protocol</td>
<td>BB B (10s); Vmax29^a</td>
</tr>
<tr>
<td>Ben-Dov[23]</td>
<td>BT</td>
<td>Short</td>
<td>2-3</td>
<td>Naughton modified ↑ every 2min from 1mph 0% to maximum</td>
<td>BB B (8 breath moving); System 2001^b or CPX^b</td>
</tr>
<tr>
<td>Cahalin[41,65]</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>Ramp</td>
<td>BB B (30s, printed rolling averages 10s); Vmax^a</td>
</tr>
<tr>
<td>Callegaro[54]</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>Ramp; 2.4km/h 2% with ↑ every 20s in speed and slope</td>
<td>BB B; Metalyzer3B^c</td>
</tr>
<tr>
<td>Castro[66]</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>↑5W every minute 60rpm</td>
<td>BB B; Vmax229^a</td>
</tr>
<tr>
<td>Corrà[9,48,37,49]</td>
<td>B</td>
<td>-</td>
<td>1</td>
<td>Ramp; 10W/min 60rpm</td>
<td>BB B; Vmax29^a</td>
</tr>
<tr>
<td>Corrà[67]</td>
<td>B</td>
<td>2-3</td>
<td>1</td>
<td>Ramp; 10W/min 60rpm</td>
<td>BB B; Vmax29^a</td>
</tr>
<tr>
<td>Dall’Ago[68]</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>Ramp; 2.4km/h 2%, ↑ every 20s of speed 0.1-0.2km/h and ↑ every 60s 0.5%-1.0% in slope</td>
<td>(20s mean aliquots); TEEM 100^d</td>
</tr>
<tr>
<td>Feld[3]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(8-breaths confirmed by converting data to BB B); System 2001^b</td>
</tr>
<tr>
<td>Francis[24]</td>
<td>T</td>
<td>Short</td>
<td>-</td>
<td>Bruce; Modified initial stage 0.5mph 5%</td>
<td>BB B on-line; Amis 2000^c</td>
</tr>
<tr>
<td>Francis[25]</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>Bruce; Modified initial stage 1mph 5%</td>
<td>BB B on-line (different moving windows 15s, 30s, 60s); Amis 2000^c</td>
</tr>
<tr>
<td>Guazzi[30]</td>
<td>BT</td>
<td>-</td>
<td>-</td>
<td>Ramp</td>
<td>BB B (30s, printed in rolling averages 10s)</td>
</tr>
<tr>
<td>Guazzi[69-71]</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>Ramp</td>
<td>VE collected continuously; CPX-D^d</td>
</tr>
<tr>
<td>Study</td>
<td>Protocol Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[31]</td>
<td>BT - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[72]</td>
<td>B - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[32]</td>
<td>BT - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[73]</td>
<td>B - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[51,52]</td>
<td>B - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[43]</td>
<td>B 3 - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guazzi[74]</td>
<td>B - 2 0; 60 Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingle[47,60]</td>
<td>T - - - Bruce; Modified initial stage 2.74km/h 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joho[56]</td>
<td>B - 3 0 Progressive ↑5-10W/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kato[18]</td>
<td>B 4 4 0 or 20; ↑1W/6s (10W/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kazimierzak[45]</td>
<td>B - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koike[17]</td>
<td>B 4 4 10 or 20 ↑1W/6s (10W/min) 60rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kremser[12]</td>
<td>B - 3-4 0 Continuous ↑6-10W/min or at 1min interval 20-100rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasso[75]</td>
<td>B 3 3 0 Naughton & San Ignacio 20 ↑20W/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leite[46]</td>
<td>B - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lim[76]</td>
<td>T - - - Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matsuki[77]</td>
<td>B yes 3 - Ramp; 10W/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miyagi[14]</td>
<td>B - 3 0 ↑3-15W/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muneuchi[20]</td>
<td>T - 3 0 ↑15%/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murphy[26]</td>
<td>B - 3 0 Ramp; continuous ↑5-15W/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Subjects</td>
<td>Gender</td>
<td>Age</td>
<td>Protocol</td>
<td>Measurement</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Nevire[21] | B 2 2 0 | Ramp; 10W/min | BbB (10s moving); Medisoft ErgoCard
d | | |
| Okumura[19]| B 3 3 <10 | Ramp; 10W/min | - | | |
| Oldenburg[78]| B - - - | 10W and continuous ↑10W/min | BbB (1min) | | |
| Olson[36] | T - - - | 2.0mph 0%; ↑ every 2min to yield an approximate 2MET per work level | BbB (averages obtained over the final 30s of each workload); Medgraphics | | |
| Olson[8] | B 10 - - | - | Bb; CPX/D⁹ | | |
| Ribeiro[79]| B - - - | 0W ↑15W every 3min 60rpm | Bb; Sensormedics Inc⁴ | | |
| Roche[40] | B 2 - - | 10W ↑10W progressively 60rpm (Every 15s); ExpAir Soft¹ | (Every 15s); ExpAir Soft¹ | | |
| Sato[80,81]| B - - - | Ramp | Bb; AE-300S Aeromonitor⁶ | | |
| Scardovi[33,39]| B - - - | - | BbB (10s intervals); Vmax29a | | |
| Schmid[82]| B - 3 0; 60 | Ramp or ramp equivalent (load ↑/min; 0W ↑6-12W/min) | Bb (10s); Vmax⁴ or Oxycon Alpha⁸ | | |
| Sperandio[42]| B - 3 0; 50±5 | Ramp; 5-10W/min 50±5rpm | Bb (arithmetic mean of 20s); CardiO System⁸ | | |
| Sun[4,16] | BT 3 3 0 | Ramp; 5-15W/min (usually 10W/min) or 1min step intervals | BbB (10s bins); 6 different systems | | |
| Ueshima[50]| B 3 3 10 | Ramp; 15W/min | AE-280⁸ | | |
| Vangesselen[10]| T - - - | 4.8km/h <6years or 5.6km/h >6years; 0% ↑2%/min; severe cardiac impairment adapted protocol initial 1km/h/min ↑2%/min | - | | |
| Wang[57] | B - 2 0 | Continuous ↑10W/min | BbB; MasterScreen CPX¹ | | |
| Winkelmann[15]| B - - - | - | BbB; Metalyzer3B⁹ | | |
| Yajima[27]| B 4 3 20:60 | ↑1W/6s | BbB (5 breath moving); RM-300⁶ | | |
| Zurek[35] | B yes 3 0 | Ramp | BbB (rest & warm-up 60s; exercise 30s); Oxycon Alpha⁸ & Vmax29C⁸ | | |

Bicycle (B); Treadmill (T); Bicycle & Treadmill (BT); minute (min); watt (W); rates per minute (rpm); second (s); Breath-by-breath (BbB); ventilation (VE); Second-by-second (SbS). ⁵ SensorMedics, Yorba Linda, CA, USA or SensorMedics, Homestead, FL, USA; ⁶ Medical Graphics Corporation, St Paul, MN, USA or Medgraphics, Minneapolis, MN, USA; ⁷ Cortex, Leipzig, Germany; ⁸ Aerosport, Ann Arbor, Michigan, USA; ⁹ Innovation, Odense, Denmark; ¹ ViaSys Healthcare Inc, Philadelphia, Pennsylvania, USA; ² Minato Medical Science, Osaka, Japan; ³ ZAN Mengerate, GmbH, Germany; ⁴ Ganshorn, Medizin Electronic, Neuenkirchen, Germany; ⁵ Medisoft, Dinant, Belgium; ⁶ Jaeger-Toennies, Höchberg, Germany; ⁷ Cardinal-Health, Germany.
<table>
<thead>
<tr>
<th>Description</th>
<th>Citations quoting the description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original definition of Kremser et al. (1987) [12]: Ventilatory oscillations lasting >66% of the exercise protocol, with an amplitude >15% of the average value at rest.</td>
<td>[9, 48, 37, 49, 47, 19, 20, 83]</td>
</tr>
<tr>
<td>Modified >60% duration; amplitude >15%</td>
<td>[9, 48, 76, 64, 52, 74, 32, 70, 71, 51, 73][84, 77, 85]</td>
</tr>
<tr>
<td>≥60% duration; amplitude ≥15%</td>
<td>[58]</td>
</tr>
<tr>
<td>Cyclic fluctuations in minute VE at rest that persist during effort ≥50% of the exercise duration</td>
<td></td>
</tr>
<tr>
<td>Original definition of Leite et al. (2003) [46]: ≥3 regular oscillations (i.e. clearly discernible from inherent data noise); Regularity was defined if the SD of 3 consecutive cycle lengths (λ) (time between 2 consecutive nadirs) was within 20% of the average; minimal average amplitude (h) of ventilatory oscillation ≥ 5l (peak value minus the average of 2 in-between consecutive nadirs).</td>
<td>[47, 33, 35, 21, 30, 69, 45, 60, 57, 56]</td>
</tr>
<tr>
<td>Modified ≥3 regular oscillations in ventilation</td>
<td>[86]</td>
</tr>
<tr>
<td>Amplitude of oscillation >30% of the mean value for VE, VO₂ or VCO₂, ≥3 consecutive oscillations with amplitude of ≥5L/min for VE and ≥3ml/kg/min for VO₂ or VCO₂.</td>
<td>[40]</td>
</tr>
<tr>
<td>Original definition of Ben-Dov et al. (1992) [23]: Marked oscillations of 30-60s duration. Magnitude(Δ) VE (Δ = (peak-nadir)/mean over the time period of the oscillation) ≥25% in ≥2 consecutive cycles (nadir-nadir) during exercise visually and normalized to 360°.</td>
<td></td>
</tr>
<tr>
<td>Modified Regular oscillations of VE amplitude >25% of mean amplitude VE.</td>
<td>[38]</td>
</tr>
<tr>
<td>≥2 consecutive cycles of clear ventilatory oscillations at rest or warm-up period. The mean of the differences between the peak and nadir of oscillating VE is >30% of the mean value of VE.</td>
<td>[50, 17]</td>
</tr>
<tr>
<td>≥3 consecutive cycles of clear ventilatory oscillations were noted from the beginning of rest until the end of the warm up. Thereafter, the mean of the differences (amplitudes) between the peak and nadir of oscillating VE at rest and the mean resting VE was calculated. Amplitude was >40% of mean VE.</td>
<td>[18]</td>
</tr>
<tr>
<td>Clear regular cyclic waxing and waning of VE without apnea, an amplitude of VE>30% of the mean VE at cycle peak and ≥3 consecutive cycles at rest and during exercise. The same 3 cycles were used for the measurement of amplitude (the difference between</td>
<td>[8]</td>
</tr>
</tbody>
</table>
peak and nadir of a cycle and averaged over 3 consecutive cycles) and period (the time interval between 2 consecutive nadirs or 2 consecutive peaks and averaged over 3 consecutive cycles). Quantifications of the oscillations were also obtained.

Original definition of Sun et al. (2010)[4]: ≥3 consecutive cyclic fluctuations of VE. To be defined as positive, the amplitude of oscillatory ventilation >30% of concurrent mean VE with a complete oscillatory cycle within 40s-140s. Oscillations of similar frequency must also be visible in ≥3 or more of the following variables: oxygen pulse, VO\textsubscript{2}, VCO\textsubscript{2}, VE/VCO\textsubscript{2}, VE/VCO\textsubscript{2}, respiratory exchange ratio (i.e. VCO\textsubscript{2}/VO\textsubscript{2}), or end-tidal pressures for oxygen and carbon dioxide.

Modified ≥3 consecutive cyclic fluctuations of VE or ≥60% of entire CPET period

Combinations of the above stated definitions

≥3 regular oscillatory fluctuations in VE, with minimal average amplitude of ≥5l/min persisting for ≥60% of the entire exercise time. [65,41,72]

>60% duration; amplitude of >30% of the actual VE. [34,53]

Oscillations ≥60% of exercise data at an amplitude of >15%; amplitude of VE ≥5l/min; a regular oscillation as defined by a SD of 3 consecutive cycle within 20% of the average. [31,43,42]

Cyclic fluctuation of VE at rest and during exercise with amplitude swings >30% of the mean VE, >15% for ≥60% of incremental exercise duration. [62]

≥3 consecutive, regular oscillations in VE during exercise with oscillation amplitude ≥25% of average VE, persisting for ≥60% of exercise duration. [26]

≥25% variation of the amplitude of VE, persisting for ≥60% of exercise duration. [36]

Quantifying oscillations

Oscillatory breathing at rest and during CPX. For each cycle of oscillation, the mean and amplitude (half the difference between peak and trough) was calculated. The relative amplitude (α) as the ratio between amplitude and mean e.g. if VE varied between 15 and 25l/min, the mean 20l/min was defined; than amplitude would be 5l/min and αVE would be 5/20 = 0.25

The relative amplitudes of oscillations (α) in VE, VO\textsubscript{2} and VCO\textsubscript{2} were calculated for every 20-s period as the ratio between amplitude and its respective mean throughout the test.

For every 2 adjacent 20-s period of VE, the amplitude of oscillation was calculated as difference between the 2 points divided by their mean. This
value was again divided by the mean to obtain the relative amplitude, and the values of the entire test were averaged to convey in a single ratio.

Computational

Computational analysis using the theorem of Fourier [55,25]

Computational analysis calculating the mean BbB variability in respiratory variables [10]

Vaguely defined (referred to)

Presence of exercise-induced periodic oscillation in VE, VO$_2$, VCO$_2$ and the gas exchange ratio. [22]

Cyclic fluctuations of ventilation.([48]) [28,29]

Oscillatory ventilation during exercise is characterized by a tidal volume (VT) that acts as a crescendo-decrescendo pattern without apnea period.([69,46,4,87,88]) [75]

Visual oscillations. [79]

Ventilatory oscillations.([23]) [27]

Cyclic pattern of respiration confirmed on two separate occasions in each patient. [3]

An oscillatory ventilatory pattern. [14]

Not defined (referred to)

heart failure: the (P)e(R)i(O)dic (B)reathing during (E)xercise (PROBE) study. Journal of cardiac failure 16 (10):799-805. doi:10.1016/j.cardfail.2010.04.014
44. Lasso JI Ventilación oscillatoria durante el ejercicio incremental en pacientes con falla cardiaca. neumología
failure evaluated for cardiac transplantation. Journal of the American College of Cardiology 41 (12):2175-2181

75. Lasso JR Ventilación oscilatoria durante el ejercicio incremental en pacientes con falla cardíaca. neumología:8

