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We use an s-channel picture of hard hadronic collisions to investigate the parton distribution function
for quarks at small momentum fraction x, which corresponds to very high energy scattering. We study the
renormalized quark distribution at one loop in this approach. In the high-energy picture, the quark
distribution function is expressed in terms of a Wilson-line correlator that represents the cross section for a
color dipole to scatter from the proton. We model this Wilson-line correlator in a saturation model. We
relate this representation of the quark distribution function to the corresponding representation of the
structure function FT�x;Q2� for deeply inelastic scattering.
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I. INTRODUCTION

Proton structure at large Q2 and small Bjorken x has
been extensively investigated in experiments at HERA.
This program is of great intrinsic interest and provides
valuable information for the LHC program, where the
short-distance structure of protons and nuclei will be
probed at TeV energies. Two physical pictures that seem
very different from each other are used to analyze hadronic
structure functions for large Q2 and small x.

There is a parton picture, in which the hadron consists of
partons and the partons undergo a hard collision that
produces the final state. This is reviewed in [1]. This
applies at large Q2. The corresponding theoretical method
is that of factorization. The cross section is written as a
convolution of parton distribution functions, fa=A�x;Q2�,
and a hard cross section for partonic scattering. The parton
distribution functions are evaluated at small x, but the x
dependence is not predicted except insofar as it results
from evolution starting from fa=A�x;Q

2
0� at a smaller vir-

tuality scale Q2
0.

There is an s-channel picture, in which one thinks of the
event in the rest frame of one of the hadrons. See [2] for
recent accounts. This applies at small x. The hard interac-
tion takes place far outside the hadron and the products of
the interaction travel toward the hadron and interact with it.
In the simplest case, there are effectively two objects that
collide with the hadron. These objects carry opposite color,
so that they can be said to constitute a ‘‘color dipole,’’
described by a correlator of two eikonal Wilson lines. An
important concept here is that the cross section for the
color dipole to scatter from the hadron can be simple
when the transverse separation between the elements of
the dipole is large. Then the dipole always scatters as long
as its impact parameter is within the hadron radius. One
speaks of the cross section saturating—that is, being as
large as it possibly could be [3,4].

These pictures seem quite different, as they look at the
collision in different reference frames, and lead to different

theoretical methods, but they are not at all incompatible. In
the region where their domains of validity overlap, they
must describe the same physics. The aim of this paper is to
connect the two pictures.

We examine one of the main ingredients used in the
parton picture, namely, the distribution function for finding
a quark in a hadron, defined as a hadronic matrix element
of a certain product of operators [5]. For very small x, the
parton system created by this operator is far outside the
hadron. We analyze the evolution of the system using
s-channel methods. We find that the quark distribution
can be expressed as a Wilson-line correlator convoluted
with a simple light cone wave function. Moreover, we find
that this answer allows one to relate with precision the
seemingly dissimilar results for structure functions in the
parton framework and the s-channel framework.

Part of the results of this analysis have been used in [6]
to investigate the power corrections to structure functions
that arise from the s-channel picture.

The content of the paper is as follows. We begin by
applying the Hamiltonian method [7] to the quark distri-
bution function. This allows us to write the quark distribu-
tion as a convolution of a light cone wave function and a
matrix element of eikonal-line operators (Sec. II). We work
in the lowest-order approximation, i.e., the dipole approxi-
mation. The convolution formula provides a simple inter-
pretation in coordinate space for the physical process that
probes the distribution. The parton distribution is defined
by matrix elements of operator products that require re-
normalization. We perform the renormalization at one loop
using the MS subtraction scheme for the ultraviolet
divergences.

The eikonal-operator matrix element receives a contri-
bution from both short distances and long distances. We
first analyze it by an expansion in powers of gA (with g the
strong coupling and A the gauge field), valid at short
distances (Sec. III). This expansion is useful to carry out
the matching with renormalization-group evolution equa-
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tions. In particular, it allows us to relate the eikonal matrix
element at short distances to a well-prescribed integral of
the gluon distribution function.

Next, we motivate and discuss a widely used approach
for modeling the eikonal-operator matrix element at large
distances (Sec. IV), based on parton saturation [3,4]. As the
saturation scale in the quark sector is likely to be at much
lower momenta than in the gluon sector (see e.g. [8]), we
critically examine the validity of the treatment for the
quark distribution, and the potential breakdown of the
dipole approximation (Sec. V).

We finally discuss the relation of our results for the
quark distribution with known dipole results for structure
functions (Sec. VI). This discussion also illustrates how
standard factorization properties are reobtained from the
s-channel point of view.

Some supplementary material is left to the appendices.
In Appendix A we collect calculational details on integrals
of light cone wave functions. In Appendix B we give a
relation between products of eikonal operators for color-
octet and color-triplet dipoles. In Appendix C we report
details on applying the Hamiltonian method to the had-
ronic matrix element of two currents.

II. QUARK DISTRIBUTION IN THE s-CHANNEL
PICTURE

We study the quark distribution using the s-channel
picture in the style of [7]. We start with the definition [5]
of the quark distribution as a proton matrix element of a
certain operator,
 

fq=p�x;�� �
1

4�

�
1

2

X
s

�Z
dy�eixP

�y�hP; sj � �0�Q�0�

� ��Qy�y�� �0; y�; 0�jP; sic: (1)

Here for any four-vector z� we use light cone components
z� defined as

 z� �
z0 � z3���

2
p : (2)

The proton momentum is

 P � �P�; P�; P?� �
�
P�;

M2
p

2P�
; 0
�
: (3)

The operator Qy is the path-ordered exponential of the

color potential

 Qy�y�� � P exp
�
�ig

Z �1
y�

dz�A�a �0; z
�; 0�ta

�
; (4)

where the path ordering instruction P puts fields and color
matrices with the most positive values of z� to the left.
Equivalently, following the notation of [7], we can think of
Qy�y�� as creating an eikonal particle that moves in the
minus direction, starting at minus coordinate y�. An eiko-
nal particle is an imaginary particle that retains its plus and
transverse positions no matter how much momentum it
absorbs. The subscript c on the matrix element in Eq. (1)
indicates that we are to take the connected parts of the
graphs, in which some partons from the proton states
communicate with the indicated operators. The operator
product in Eq. (1) is ultraviolet divergent and requires
renormalization. We will use the standard MS prescription.
The required subtraction at the one-loop level is analyzed
in Sec. II E.

A. The quark distribution as a forward scattering
amplitude

We begin by rewriting the matrix element in Eq. (1) so
that it has the form of the real part of a forward scattering
amplitude. To do this, we write fq=p�x;�� in two pieces,

 fq=p�x;�� � f�q=p�x;�� � f
�
q=p�x;��; (5)

where
 

f�q=p�x;�� �
1

4�

�
1

2

X
s

�Z 1
0
dy�eixP

�y�hP; sj � �0�Q�0�

� ��Qy�y�� �0; y�; 0�jP; sic (6)

and
 

f�q=p�x;�� �
1

4�

�
1

2

X
s

�Z 0

�1
dy�eixP

�y�hP; sj � �0�Q�0�

� ��Qy�y�� �0; y�; 0�jP; sic: (7)

We note that

 f�q=p�x;�� � �f
�
q=p�x;��	


: (8)

Thus f is twice the real part of f�:

 

fq=p�x;�� � Re
1

2�

�
1

2

X
s

�Z 0

�1
dy�eixP

�y�hP; sjTf � �0�Q�0���Qy�y�� �0; y�; 0�gjP; sic: (9)

The operator product in f� is time ordered since y� < 0. The T here indicates this time ordering. For our purposes, it is
helpful to insert a factor x and another y� integral:
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 xfq=p�x;�� � Re
2xP�

2�

�
1

2

X
s

�Z
dy�2 dy

�
1 ��y

�
2 > y�1 �e

�ixP��y�2 �y
�
1 �
Z dP0�

�2��2P0�

� hP0; sjTf � �0; y�2 ; 0�Q�y
�
2 ��

�Qy�y�1 � �0; y
�
1 ; 0�gjP; sic: (10)

The integral over P0� can be thought of as setting the
proton state to position y� � 0. We have thus rewritten
the original f, which was analogous to a total cross section,
as a Green function analogous to a forward scattering
amplitude. Our next task is to break the scattering ampli-
tude into parts that can be analyzed separately.

B. Decomposition of the gluon field

The Fourier transformed operator Qy�y�1 � �0; y
�
1 ; 0� in

Eq. (10) creates an antiquark and an eikonal particle with a
total plus-momentum xP�. We consider that x is very
small, say 10�3. That means that the typical distance y�1
from the proton to where the antiquark and the eikonal
particle are created is large, of order 1=�xP��. This is way
outside the proton. The antiquark and eikonal particle
develop into a shower of partons with minus-momenta of

order k� � �k2
? � k

2�=�2k�� �m2=�xP��, where k? is
the transverse momentum of the parton and k2 is its vir-
tuality and we take both of these to be of order m2 �
�300 MeV�2. Thus the partons created by the original
operator have very large minus-momenta. We will speak
of them as ‘‘fast’’ partons. As noted, the fast partons travel
a long distance in y� before meeting the proton.

When the fast partons meet the proton, they scatter from
the gluon field of the proton, as depicted in Fig. 1. The
gluon field of the proton consists of ‘‘slow’’ gluons, with
plus-momenta much larger than xP�. (Then the minus-
momenta of these gluons, k� � �k2

? � k
2�=�2k�� is much

smaller than m2=�xP��, assuming again that k2
? and k2 are

of order m2.) We represent the gluon field produced by the
proton as an external field A��x� and consider the quantity

 U�A	 �
2xP�

2�

Z
dy�2 dy

�
1 e
�ixP��y�2 �y

�
1 �fh0j � �0; y�2 ; 0�Q�y

�
2 ��

�Qy�y�1 � �0; y
�
1 ; 0�j0iA

� h0j � �0; y�2 ; 0�Q�y
�
2 ��

�Qy�y�1 � �0; y
�
1 ; 0�j0i0g: (11)

This is the amplitude for the fast partons to be created by
the operator Qy , scatter from the external field A, then
be annihilated by the conjugate operator � Q. In the second
term, we subtract a no-scattering term with the external
field set to zero, in accordance with the instruction to take
only connected graphs. Then the quark distribution is a

proton matrix element of U�A	, with the external field A
replaced by the quantum field A,

 xfq=p�x;�� � Re
�
1

2

X
s

�Z dP0�

�2��2P0�
hP0; sjU�A	jP; si:

(12)

 

FIG. 1. Quark distribution in the s-channel picture. The black
circles at the top represent the insertion of the operators in
Eq. (10). The double straight line represents the eikonal. Any
number of slow gluons couple the fast parton and the eikonal to
the proton.
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There is, of course, a catch in this. There is only one
gluon field A��x�. We need to divide it into two pieces, one
associated with the fast partons and one associated with the
proton. To do this, we choose a momentum fraction xc.
Gluons with plus-momenta smaller than xcP� are associ-
ated with the fast partons. Gluons with plus-momenta
larger than xcP

� are associated with the proton and in-
cluded in the external field A in Eq. (11). In order for the
approximations discussed below to work, we need x xc.
It is perhaps easiest to think about the physics taking xc to
be of order 1=�RpP��, so that the proton’s field is consid-
ered to have a spatial extent of the order of the proton
radius, Rp. However, in the end we will want to take xc 
1 and in fact let xc be pretty close to x.

We will, in fact, not need to be very specific about how to
implement the division at momentum fraction xc. For our
discussion of the quark distribution, working at lowest
order in perturbation theory, we are saved from sensitivity
to the splitting method by the fact that the g! q �q
Altarelli-Parisi splitting function does not have a soft
singularity. If we worked with the gluon distribution or
with the quark distribution to higher order, we would need
a more sophisticated analysis.

C. The evolution operator U at high energy

The function U�A	 can be written in the interaction
picture with A as the perturbation:

 

U�A	 �
2xP�

2�

Z
dy�2 dy

�
1 ��y

�
2 � y

�
1 �e

�ixP��y�2 �y
�
1 �h0jU�1; y�2 � � �0; y�2 ; 0�Q�y

�
2 ��

�U�y�2 ; y
�
1 �Q

y�y�1 � �0; y
�
1 ; 0�

�U�y�1 ;1�j0i � �same with A � 0�: (13)

This is without approximation. Now we recognize that for small x, only y�2 � r� and y�1 �r
� are important, where r�

is the effective radius of the proton’s field in the longitudinal direction, r� � 1=�xcP��. The external field is concentrated
in jy�j< r�, so we have

 U�A	 �
2xP�

2�

Z 1
0
dy�2

Z 0

�1
dy�1 e

�ixP��y�2 �y
�
1 �h0j � �0; y�2 ; 0�Q�y

�
2 ��

��U�1;�1� � 1	Qy�y�1 � �0; y
�
1 ; 0�j0i: (14)

Here we have subtracted the no-scattering term as ‘‘�1.’’
At this stage, our quantum fields are evolving with full QCD [not including the external field, which is represented in

U�1;�1�]. Let us now expand this evolution in powers of �s and take just the Born term. Then the fields evolve with just
the free field Hamiltonian. We can insert intermediate states, and at this level of approximation, the intermediate states
contain just one antiquark and the one eikonal particle E. We get

 

U�A	 �
2xP�

2�

Z 1
0
dy�2

Z 0

�1
dy�1 e

�ixP��y�2 �y
�
1 ��2���6

Z 1
0

dp�2
2p�2

Z
dp2

Z 1
0

dp�1
2p�1

Z
dp1

X
s1s2

� h0j � �0; y�2 ; 0�Q�y
�
2 ��

�jp�2 ;p2; s2; Eihp
�
2 ;p2; s2; EjU�1;�1� � 1jp�1 ;p1; s1; Ei

� hp�1 ;p1; s1; EjQy�y�1 � �0; y
�
1 ; 0�j0i: (15)

Taking into account that particle 1 has plus momentum p�1 � p
2
1=�2p

�
1 � while particle 2 has plus momentum p�2 �

p2
2=�2p

�
2 �, we can evaluate the dependence of the matrix elements on y�1 and y�2 as

 

U�A	 �
2xP�

�2��7
Z 1

0

dp�2
2p�2

Z
dp2

Z 1
0

dp�1
2p�1

Z
dp1

X
s1s2

Z 1
0
dy�2

Z 0

�1
dy�1

� e�i�xP
��p�2 �y

�
2 e�i�xP

��p�1 �y
�
1 h0j � �0�Q�0���jp�2 ;p2; s2; Eihp

�
2 ;p2; s2; EjU�1;�1� � 1jp�1 ;p1; s1; Ei

� hp�1 ;p1; s1; EjQy�0� �0�j0i: (16)

We can now perform the y� integrations to produce energy denominators:

 U�A	 �
2xP�

�2��7
Z 1

0

dp�2
2p�2

Z
dp2

Z 1
0

dp�1
2p�1

Z
dp1

X
s1s2

�i
xP� � p�2

�i
xP� � p�1

h0j � �0�Q�0���jp�2 ;p2; s2; Ei

� hp�2 ;p2; s2; EjU�1;�1� � 1jp�1 ;p1; s1; Eihp�1 ;p1; s1; EjQy�0� �0�j0i: (17)
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For the factor giving the interaction of the partons with the external field, we have

 hp�2 ;p2; s2; EjU�1;�1� � 1jp�1 ;p1; s1; Ei � 2�2p�1 ��p
�
1 � p

�
2 ��s1s2

� ~F�p1 � p2�
yF�0� � �2��2��p1 � p2�	; (18)

where

 F��� � P exp
�
�ig

Z �1
�1

dz�A�
a �0; z

�;��ta

�
(19)

and

 

~F�k� �
Z
d�eik��F���: (20)

This gives

 U�A	 �
Z
d�

1

Nc
Tr�1� F���yF�0�	u���; (21)

where

 u��� �
4xP�

�2��6
Z 1

0
dp�

Z
dp2

Z
dp1

X
s

ei���p1�p2�
p�

�2xP�p� � p2
2��2xP

�p� � p2
1�
h0j � �0�Q�0���jp�;p2; s; Ei

� hp�;p1; s; EjQy�0� �0�j0i: (22)

Thus

 xfq=p�x;�� � Re
Z
d�u����I���; (23)

where
 

�I��� �
�

1

2

X
s

�Z dP0�

�2��2P0�

�
P0; s

�������� 1

Nc

� Tr�1� F���yF�0�	
��������P; s

�
: (24)

Here F��� is now defined with the quantum field A,

 F��� � P exp
�
�ig

Z �1
�1

dz�A�a �0; z�;��ta

�
: (25)

Equation (23) has a simple interpretation. First, u��� is the
square of the antiquark wave function, giving the proba-
bility that the antiquark has reached a separation � from
the eikonal line by the time it reaches the hadron. Second,
we have a probability �I��� for the antiquark-eikonal
dipole to scatter from the proton.

D. The squared wave function for the antiquark

We now need the function u���. First, we need the
operator matrix elements:

 M �
X
s

h0j � �0�Q�0���jp�;p2; s; Ei

� hp�;p1; s; EjQy�0� �0�j0i

�
X
s

h0j � �0���jp�;p2; sihp�;p1; sj �0�j0i: (26)

There is an implicit color trace here. Restoring the color
indices makes it

 M �
X
s

h0j � ��0��
�jp�;p2; s; �ihp

�;p1; s; �j ��0�j0i:

(27)

Writing this with spinors gives

 M � ������
X
s

�v�p�;p2; s���v�p�;p1; s�: (28)

Now we need to know about the spin states. We use null-
plane helicity states appropriate to the x� as the ‘‘time.’’
These have the normalization

 �v�p�;p1; s0���v�p�;p2; s� � 2p��ss0 : (29)

Thus

PARTON DISTRIBUTION FUNCTION FOR QUARKS IN . . . PHYSICAL REVIEW D 75, 074020 (2007)

074020-5



 

M � ������
X
ss0

�v�p�;p2; s��
�v�p�;p1; s

0��ss0

�
Nc

2p�
X
ss0

�v�p�;p2; s���v�p�;p1; s0� �v�p�;p1; s0���v�p�;p2; s� �
Nc

2p�
Trfp6 1��p6 2��g

�
Nc

2p�
Trfp6 1;T�

�p6 2;T�
�g �

2Nc
p�

p1 � p2: (30)

Thus

 u��� �
2x2P�

�2��6
Z 1

0
dp�

Z
dp2

Z
dp1ei���p1�p2�

p�

�2xP�p� � p2
2��2xP

�p� � p2
1�

2Nc
p�

p1 � p2

�
4Nc
�2��6

Z 1
0
d�2

Z
dp2

Z
dp1ei���p1�p2�

p1 � p2

��2 � p2
2���

2 � p2
1�
; (31)

where we have defined �2 � 2xP�p�. Extending this to
4� 2� dimensions, we have

 

u��� �
4Nc�4�

�2��6�4�

Z 1
0
d�2

Z
d2�2�p2

Z
d2�2�p1e

i���p1�p2�

�
p1 �p2

��2�p2
2���

2�p2
1�
: (32)

We perform the integration separately in Appendix A. We
find

 u��� �
Nc

3�4

1

�4 ���
2�2�2�

��2� ��2

1� 2�=3
: (33)

E. Renormalization of the quark distribution

Using the result (33) for u���, we have

 xfq=p�x;�� �
Nc

3�4

��2� ��2

1� 2�=3
��2�

Z
d2�2��

1

�4

����2�2�2��I��� � UV: (34)

Here there is an ultraviolet divergence from the small �
integration region. The notation indicates that we should
renormalize the divergence by subtracting a UV
counterterm.

The standard definition of the parton distribution func-
tions gives these functions as hadron matrix elements of
operator products that must be renormalized [5]. It is thus
not a surprise that we have a divergent integral in Eq. (34).
The standard treatment is to apply MS renormalization. At
the one-loop level at which we work here, this means
performing the integrals in 4� 2� dimensions and sub-
tracting a counterterm of the form

 “ UV” � const�
1

�
�4���

��1� ��
: (35)

In this section, we implement this subtraction, turning it
(approximately) into a cutoff on j�j.

We are eliminating only the divergence from the inner-
most loop in the Feynman diagrams that define
xfq=p�x;��, so we treat the outer loops in �I��� as con-
taining only soft momenta. For this reason, we treat �I���
as being an analytic function of � near � � 0. We thus
write

 �I��� � �I�0� � �i�@i�I���	��0

�
1

2
�i�j�@i@j�I���	��0

�
1

3!
�i�j�k�@i@j@k�I���	��0 � R���: (36)

(We follow the convention that indices i, j, k are summed
from 1 to 2 or, with dimensional regularization, from 1 to
2� 2�.) The remainder, R���, goes to zero like �4 as �!
0. The first term vanishes because �I�0� � 0 by construc-
tion. The second and fourth terms vanish upon integrating
over �. In the third term, under the integration over �, we
can replace

 �i�j !
1

2� 2�
�ij�2: (37)

Thus, in the small � integration region, we can replace

 �I��� !
1

4�1� ��
�2�@2

?�I���	��0 � R���: (38)

We introduce this approximation in the small � integra-
tion region, defined by ��< a, where a is a parameter of
order 1 that we can adjust. Thus we write
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 xfq=p�x;�� �
Nc

3�4

Z
d2����2�2 > a2�

�I���
�4 �

Nc
3�4

Z
d2����2�2 < a2�

R���
�4 �

Nc
12�4 �@

2�I���	��0

�
��2� ��2

�1� ���1� 2�=3�
��2�

Z
d2�2��

���2�2 < a2�

�2 ���2�2�2� � UV: (39)

In the first two terms, there is no ultraviolet divergence, so we set �! 0. We can perform the integration in the third term to
obtain

 

xfq=p�x;�� �
Nc

3�4

Z
d2����2�2 > a2�

�I���
�4 �

Nc
3�4

Z
d2����2�2 < a2�

R���
�4

�
Nc

12�3 �@
2�I���	��0

1

�
�4���

��1� ��

�
��2� ��2

�1� ���1� 2�=3�
�a2=4�� � 1

�
: (40)

Here we have identified the UV subtraction term and
written it as �1 inside the braces in the last term. The
�1 removes the 1=� pole, but, in general, leaves a remain-
der that is finite as �! 0. We set

 a � 2e1=6�� � 1:326 57; (41)

where � is the Euler constant, � � 0:577 216, that appears
in ��1� �� � 1� ��� � � � . With this choice, we cancel
the finite term and leave
 

xfq=p�x;�� �
Nc

3�4

Z
d2����2�2 > a2�

�I���
�4

�
Nc
3�4

Z
d2����2�2 < a2�

R���
�4 : (42)

The term containing R��� is needed to express the result
of MS renormalization if 1=� is of the order of the proton
radius, Rp. However, the parton distribution function eval-
uated at such a renormalization scale is not really a very
interesting object. For large values of �, the term contain-
ing R��� is of order 1=��2R2

p� and can be neglected. Thus,
as long as 1=��2R2

p�  1, we can write1

 xfq=p�x;�� �
Nc

3�4

Z
d����2�2 > a2�

�I���
�4 : (43)

This is a remarkably simple formula. Almost everything is
contained in the dipole scattering function �I���. In the
following section, we will study �I��� for small �, where
perturbation theory can be used. Then in Sec. IV, we will
introduce and motivate on physical grounds a well-known
model for �I��� for large �.

III. DIPOLE SCATTERING AND THE GLUON
DISTRIBUTION

In this section, we investigate the dipole scattering func-
tion �I��� for small �, where the use of perturbation

theory is allowed. We will see that �I��� for small � is
related to the gluon distribution.

A. The dipole scattering function at small �

We begin by studying �I��� for small � and at lowest
order in an expansion in powers of the strong coupling g.
For the sake of generality, we consider using color matrices
tc in a representation r of SU(N) that need not be the
fundamental representation that is appropriate for the
quark distribution. We start by defining �r

I��� correspond-
ing to the representation r,

 �2��2P0���P� � P0���ss0dr�
r
I���

� hP0; s0jTr�1� Fr���yFr�0�	jP; si; (44)

where

 Fr��� � P exp
�
�ig

Z �1
�1

dz�A�a �0; z
�;��ta

�
: (45)

The matrices ta here are in the color representation r and dr
is the dimension of the representation,

 fundamental : dr � Nc; (46)

 adjoint : dr � N2
c � 1: (47)

For the fundamental representation, averaging over spins
and integrating over P0 gives the definition (24) of �I���
that we used for the quark distribution.

We are interested in small �, for which an expansion in
powers of gA is justified. If we limit ourselves to evaluating
the trace to the accuracy �gA�2, we can ignore the
P -products and the noncommutativity of the fields in the
exponent:

1The derivation assumes that �I���, and thus R���, is defined
with a fixed renormalization scale �. If we use Eq. (43), how-
ever, we can set � in �I��� to a=�.
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 Tr �1� Fr���yFr�0�	 � Tr
	

1� exp
�
ig
Z 1
�1

dz��A�c �0; z
�;�� � A�c �0; z�; 0�	tc

�

: (48)

The exponent has the expansion around � � 0

 A�c �0; z
�;�� � A�c �0; z�; 0� � �i�@iA

�
c �0; z

�;��	��0 �
1
2�

i�j�@i@jA
�
c �0; z

�;��	��0 � � � � : (49)

Now we evaluate the trace to order �2 by expanding the exponential. The zeroth order term from the exponential expansion
cancels against 1. The linear term gives zero because Tr tc � 0. The quadratic term in the exponential expansion receives
an order-�2 contribution only from the first-derivative term in the exponent (49), again because Tr tc � 0. Thus

 Tr �1� Fr���yFr�0�	 ’ �
1

2
�ig�2�i�j Tr�tatb	

Z 1
�1

dz�1
Z 1
�1

dz�2 �@iA
�
a �0; z�1 ;��	��0�@jA�b �0; z

�
2 ;��	��0: (50)

The trace of two generators is

 Tr �tatb	 � cr�ab; (51)

where cr depends on the representation:

 fundamental : cr � TR � 1=2; (52)

 adjoint : cr � CA � Nc: (53)

For matrix elements over hadron states carrying no trans-
verse momentum we can replace

 �i�j@iA�a @jA�b !
1
2�

2@jA�a @jA�b : (54)

Thus, to second order in gA and second order in �, we have

 hP0; s0jTr�1� Fyr ���Fr�0�	jP; si �
1

4
g2cr�2

Z 1
�1

dz�1
Z 1
�1

dz�2 hP
0; s0j@jA�a �0; z�1 ; 0�@jA

�
a �0; z�2 ; 0�jP; si: (55)

At this point we make explicit our restriction on the field operators A��x�, namely, that only modes with gluon momenta
jq�j larger than xcP� are included. (See Sec. II B.) This means that the reach in coordinate space in the integrations over
z�1 and z�2 is limited to jz�1 � z

�
2 j< 1=�xcP

��. Thus we write

 �2��2P0���P� � P0���ss0�
r
I��� �

g2

4

cr
dr

�2
Z 1
�1

dz�1
Z 1
�1

dz�2 ��jz
�
1 � z

�
2 j< 1=�xcP

���

� hP0; s0j@jA�a �0; z�1 ; 0�@jA
�
a �0; z�2 ; 0�jP; si: (56)

B. The gluon distribution function

One might suspect that the right-hand side of Eq. (56),
being quadratic in the gluon field, may have something to
do with the gluon distribution function. Indeed, as we shall
see later, the relation is well known. We can check this
relation by referring directly to the definition of the gluon
distribution [5],

 fg=p�x;�� �
1

2�xP�
Z
dy�eixP

�y�
�
1

2

X
s

�

�hP; sj ~F�ja �0; 0; 0� ~F
�j
a �0; y�; 0�jP; si;

(57)

with

 

~F a�y��j � E�y�abFb�y��j; (58)

 E�y� � P exp
�
�ig

Z 1
y�
dz�A�c �y�; z�; y�tc

�
: (59)

We study this distribution in the s-channel picture. At the
lowest order in this picture the gluons from the background
field couple to the vertex measured by the operator (57).

We use momentum conservation to insert a second in-
tegral over the minus coordinate in Eq. (57), and we also
use rotational invariance to eliminate the spin average:

 2���P0� � P���ss0fg=p�x;�� �
1

2�xP�
Z 1
�1

dy�1
Z 1
�1

dy�2 e
ixP��y�1 �y

�
2 �hP0; s0j ~F�ja �0; y�2 ; 0� ~F

�j
a �0; y�1 ; 0�jP; si: (60)
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As in [7], it is convenient to rewrite ~F�j as

 

~F �ja �y� � @��E�y�abA
j
b�y�� � E�y�ab@

jA�b �y� (61)

and note that inside the integral in Eq. (57), @� gives
�ixP�. Thus, in the limit x! 0, the first term in
Eq. (61) can be neglected. Additionally, to lowest order

in a perturbative expansion, the eikonal operator E�y�ab is
equivalent to the unit operator. Thus we replace

 

~F �ja �y� ! �@jA�a �y�: (62)

This gives

 2���P0� � P���ss0fg=p�x;�� �
1

2�xP�
Z 1
�1

dy�1
Z 1
�1

dy�2 e
ixP��y�1 �y

�
2 �hP0; s0j@jA

�
a �0; y

�
2 ; 0�@jA

�
a �0; y

�
1 ; 0�jP; si: (63)

We need one more approximation. For small x, the factor exp�ixP��y�1 � y
�
2 �� is approximately 1. This is not exact, and

fails for very large �y�1 � y
�
2 �. For jy�1 � y

�
2 j> 1=�xP��, the matrix element is a slowly varying function of �y�1 � y

�
2 �, so

the oscillating factor exp�ixP��y�1 � y
�
2 �� effectively cuts off the integral. Thus we approximate exp�ixP��y�1 � y

�
2 �� by a

theta function that restricts the integration to jy�1 � y
�
2 j< 1=�xP��. This gives

 2���P0� � P���ss0fg=p�x;�� �
1

2�xP�
Z 1
�1

dy�1
Z 1
�1

dy�2 ��jy
�
1 � y

�
2 j< 1=�xP���

� hP0; s0j@jA�a �0; y�2 ; 0�@jA
�
a �0; y�1 ; 0�jP; si: (64)

C. Relation between fg=p and �

If we compare Eqs. (56) and (64), we see that

 �r
I��� �

�g2

4

cr
dr

�2xcfg=p�xc; ��: (65)

Equation (67) in particular implies that

 

�I;fund

�I;adj
�
�1=2�=3

3=8
�

4

9
�
CF
CA

(66)

for small � and small x and to lowest perturbative order.
There is a more general relation between �I;fund and �I;adj,
which we give in Appendix B.

The case of interest to us here is that of the fundamental
representation, which applies to the quark distribution
function. For this case, the result is

 

�I���
�2

�
�2�s
2Nc

xcfg=p�xc; ��: (67)

D. Matching using the renormalization group

In deriving Eq. (67), we have employed rather crude
approximations relating to the integrations over the minus
component of position for the gluon field. The main idea
was that the structure in matrix elements of A��y� occurs
for y� less than 1=�xcP��, so that limits on the integrations
over y� should not much matter. If this were precisely the
case, then the function xcfg=p�xc; �� that appears on the
right-hand side of Eq. (67) would be independent of xc. In
fact, xcfg=p�xc; �� grows slowly as xc decreases. Thus, we
should try to make the relation (67) more precise.

We can use the scale dependence of fq=p�x;�� to pro-
vide a more precise matching condition. On one hand, we
have the leading order renormalization-group equation,
 

d

d log��2�
xfq=p�x;�� �

�s
2�

Z 1

x
dzPqg�z�

x
z
fg=p

�
x
z
;�
�

�
�s
2�

Z 1

x
dzPqq�z�

x
z
fq=p

�
x
z
;�
�
:

(68)

At small x, the gluon distribution dominates and the quark
distribution is effectively �s times the gluon distribution
(as is, in fact, consistent with this equation). Thus the
renormalization-group equation can be approximated by
 

d

d log��2�
xfq=p�x;�� �

�s
2�

TR
Z 1

x
dz�z2 � �1� z�2	

�
x
z
fg=p

�
x
z
;�
�
; (69)

where we have inserted the specific form of Pqg�x=y�.
In our small x approximations, fq=p�x;�� is given by

Eq. (43) (as long as �� 1=Rp). Differentiating this equa-
tion with respect to � gives

 

d

d log��2�
xfq=p�x;�� �

Nc
3�3

	
�I���

�2



��a=�

: (70)

Comparing these equations gives

 

�I���

�2
�
�2�s
2Nc

xG�x; a=��; (71)

for � Rp, where
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 xG�x;�� �
3

2

Z 1

x
dz�z2 � �1� z�2	

x
z
fg=p

�
x
z
;�
�
: (72)

Note that the lower limit on the z integral is just a reminder
that yfg=p�y;�� vanishes for y > 1. Note also that the
integral of the weight function is

 

3

2

Z 1

0
dz�z2 � �1� z�2	 � 1: (73)

Thus xG�x;�� is yfg=p�y;�� averaged over values of y that
are somewhat larger than x. If we consider a typical value
of z to be 1=2, then the typical value of y at which the gluon
distribution is evaluated is y � 2x. If, for example,
xfg=p�x;�� / x

�0:3 for small x, then xG�x;�� � 0:76�
xfg=p�x;�� for small x.

Equation (71) is the same result as in Eq. (67), except
that now xcfg=p�xc; �� is replaced by the more precise
value, xG�x; a=��. Note that the matching condition sug-
gests that xc be set to a value not much bigger than x. This
is in part because our perturbative calculation of U�A�

was to zeroth order only. Had we worked to one more order
in perturbation theory, we could have included the emis-
sion of a fast gluon with momentum fraction between x and
xc. However, to the order to which we calculated, there
were no interactions with fast gluons. Working to this
order, the best choice is to include all possible gluons as
slow gluons. This means setting xc to something close to x.

IV. THE HADRONIC MATRIX ELEMENT

In this section, we motivate a widely used model for
�I��� that applies at large �. We begin by writing �I���
as an integral of a function ��b;�� that has a direct
physical interpretation.

A. Scattering at fixed impact parameter

We can rewrite the hadron matrix element in Eq. (24) by
introducing an integration over an impact parameter b.
Denoting an eigenstate of transverse position by a subscript
x, we have

 

�
P0�; 0; s

�������� 1

Nc
Tr�1� F���yF�0�	

��������P�; 0; s
�
�

�
P0�; 0; s

�������� 1

Nc
Tr�1� F��=2�yF���=2�	

��������P�; 0; s
�

�
1

Nc

Z
db xhP0�;�b; sjTr�1� F��=2�yF���=2�	jP�; 0; si

�
1

Nc

Z
db xhP0�; 0; sjTr�1� F�b��=2�yF�b��=2�	jP�; 0; si: (74)

Thus

 �I��� �
Z
db��b;��; (75)

where2

 

��b;�� �
1

Nc

�
1

2

X
s

�Z dP0�

�2��2P0� xhP
0�; 0; sj

� Tr�1� F�b��=2�yF�b��=2�	jP�; 0; si:

(76)

The quantity ��b;�� is more suitable than �I��� as a
quantity to model since the physics of the dipole-proton
interaction should depend on b. Given a model for
��b;��, one obtains �I��� by integrating over b.

Given that �I��� has the behavior given by Eq. (71) at
small �, we can write for ��b;�� at small �,

 ��b;�� � �2 �
2�s

2Nc
xG�x; a=��	�b�; (77)

where

 

Z
db	�b� � 1: (78)

Given that xG�x; a=�� is the number of gluons per unit
d logx (averaged over momentum fractions somewhat
larger than x), we interpret xG�x; a=��	�b� as the number
of gluons per unit area db and per unit d logx at a distance
b from the center of the proton. Consistently with this
interpretation, we assume that

 	�b� � 0 (79)

and

 	�b� � 0 for jbj>Rp: (80)

We will need a model for 	�b�.

B. Interpretation and properties of ��b;��

Let us write ��b;�� as

 ��b;�� � 1� T�b;��: (81)

Here the 1 comes from the 1 in Eq. (76). Then T comes
from the matrix element of FyF. In the language of clas-
sical optics, T�b;�� is the transmission coefficient for a
dipole of size � impinging on the proton at impact pa-
rameter b. According to the definition (76), the dipole is

2Here ��b;�� is the spin average (with s0 � s) of what is
called � in [8].
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counted as transmitted only if the proton is left intact after
the dipole moves through it. (This is the consequence of
our having switched from a description of fq=p�x;�� as a
total cross section to a description in the form of a forward
scattering amplitude.) Based on this interpretation and on
what we have already learned about ��b;��, we expect
��b;�� to have the following properties.

(1) T�b;�� � 1 for jbj>Rp � �=2.
(2) T�b;�� � 1 for � � 0.
(3) T�b;�� � 0 for jbj<Rp with jbj not close to Rp

and � not small.
(4) T�b;�� � 1� �2��2�s=�2Nc�	xG�x; a=��	�b��

O��4� for �! 0.

Property 1 simply says that a dipole that entirely misses the
proton does not interact with it and is thus perfectly trans-
mitted. Property 2 holds because a dipole with zero sepa-
ration does not have any interaction with the proton. This is
the property of color transparency. Property 3 applies
because a big dipole has strong interactions, so that we
expect that after such a dipole moves through the proton
the proton is almost never left intact. Property 4 is consis-
tent with T being 1 for � � 0 and reflects our previously
obtained perturbative result for � at small �.

C. Model for ��b;��

There is a simple model for T�b;�� that is consistent
with the properties listed in the previous subsection,

 T�b;�� � exp
�
��2 �

2�s
2Nc

xG�x; a=��	�b�
�
: (82)

This is a small variation on the widely used saturation
model [4,9], with the gluon distribution treated according
to the matching of Sec. III D. The same model for ��b;��
is

 ��b;�� � 1� e��2Q2
s �b�=4; (83)

where Qs�b�, known as the saturation scale, is

 Q2
s�b� �

2�2�s
Nc

xG�x; a=��	�b�: (84)

This is the saturation scale for a dipole in the fundamental
representation. From Eq. (66), we have for a dipole in the
adjoint representation (as would be appropriate for the
gluon distribution),

 Q2
s�b; adjoint� �

CA
CF

Q2
s�b; fundamental�

�
4Nc�

2�s
N2
c � 1

xG�x; a=��	�b�: (85)

The name of the model and of the scaleQs derives from the

fact that ��b;�� grows as � increases until it saturates
with ��b;�� � 1 when � reaches approximately 2=Qs.

For a specific model, we follow Mueller [4] in choosing

 	�b� �
3

2�R3
p

������������������
R2
p � b

2
q

��jbj<Rp�: (86)

V. CRITIQUE OF THE MODEL

The dipole picture and saturation model [4,9] along the
lines just described has enjoyed some success when its
predictions are compared to experimental results in both
inclusive and diffractive deeply inelastic scattering ([3],
and references therein). We do not attempt a numerical
comparison in this paper. However, we do offer some
comments on the extent to which the dipole picture for
fq=p should be expected to be reliable.

We have found that the parton distribution function for
quarks can be approximated at small x using Eqs. (43) and
(75),

 xfq=p�x;�� �
Nc
3�4

Z
db

Z
d����2�2 > a2�

��b;��
�4 :

(87)

Clearly, the model for ��b;�� contains nonperturbative
physics. Furthermore the squared wave function 1=�4 is a
perturbative result that should be trusted only for � Rp.
Is there any reason to think that Eq. (87) might be reliable
at all?

To examine this issue, first look at the integration range
for �. There is a renormalization cut �> a=� and we may
suppose that we consider scale choices such that a=�
Rp. The integration extends to arbitrarily large �, but once
�> 1=Qs�b� we have ��b;�� � 1 so that the integrand is
approximately 1=�4. This falloff is sufficiently fast that
values of � greater than 1=Qs�b� are not important in the
integration. Now, Qs�b� is proportional to the gluon distri-
bution and at small x there are lots of gluons. For this
reason, for a central impact parameter b, Qs�b� is larger
than the normal 300 GeV soft hadronic scale. With
xG�x� � 10, �s � 0:2, and Rp � 4:5 GeV�1 one gets
Qs�0; fundamental� � 0:6 GeV.3 If we were dealing with
a large nucleus or with values of xmuch smaller than 10�3,
we could have quite a lot larger values of xG�x� and thus a
larger saturation scale.4 Additionally, Qs�b� is small near
the edge of the proton. If we were dealing with a large
nucleus, the contribution from b near the edge of the
nucleus would be less important than for a proton.

3This value is consistent with the value obtained by compari-
son with diffractive deeply inelastic scattering data in the some-
what different approach [8,10].

4Also, Qs�b� is larger if we had a color 8 dipole instead of a
color 3 dipole, as would be the case if we were to investigate the
gluon distribution. See [11] for a recent discussion.
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To the extent that Qs�b� is large, the main contributions
to xfq=p�x;�� come from regions in the integrations in
which the model is anchored in a reliable perturbative
expansion. But what if Qs�b� is not so large? Then we
must face the facts that the model for ��b;�� is non-
perturbative and that the 1=�4 squared wave function is a
perturbative result applied outside the range of validity of
the perturbative expansion. We can analyze these problems
in two ways. First, the dipole interaction with the proton,
��b;��, should be subject to scrutiny. Second, we can
consider what would happen if we were to work at a higher
order of perturbation theory. Then we would have new
contributions to the partonic state that hits the proton,
including the possibility that this state contains more
than just two partons.

Recall first the behavior of ��b;�� in the model of
Sec. IV C, supposing that the description of the incoming
partonic state as a dipole with the perturbative 1=�4

squared wave function is exactly right. It is indeed true
that ��b;�� cannot be reliably calculated perturbatively
when � is not small. However, ��b;�� corresponds to the
probability that the dipole scatters. When � is large and
jbj<Rp, it is likely that the dipole is almost completely
absorbed, which corresponds to ��b;�� � 1. The model
of Sec. IV C for ��b;�� has this property. Thus ��b;�� is
fixed for small � and for large � as long as b is well inside
the proton. It is certainly true that it is not so well known
for intermediate values of � and for large or medium �
when jbj � Rp. In particular, if Qs is not so large one is
likely to make an error by extending the transparency
region to intermediate �. But the effect is not dramatic,
so that even here there is not too much that one could do to
drastically change ��b;�� from the form given by the
model.

Consider now the higher-order states. The original eiko-
nal quark plus an antiquark state can become an eikonal
quark plus an antiquark plus several gluons, for example.
We could still define a measure � of the transverse size of
this partonic system. The partonic wave function would
depend on �. It would also depend on other dimensionless

shape variables that we could call �. Then we would have a
function ���b;��, given by a matrix element of multi-
eikonal operators, describing the probability for this state,
labeled by b, �, and internal quantum numbers �, to
scatter. This would give an extension of Eq. (87) with the
form

 xfq=p�x;�� �
Z
db

Z
d�2

X
�

j ����j
2���b;��: (88)

The integral needs renormalization, which can introduce
logarithms of ��. Except for this appearance of the renor-
malization scale �, the calculation of the wave function
j ����j2 involves no hadronic distance scales and no
masses. For this reason, dimensional analysis tells us that
j ����j2 is proportional to ��4 times the logarithms of
�� times dimensionless constants and times factors of �s.
This suggests, although it certainly does not prove, that the
squared wave functions j ����j2 are not larger than the
lowest-order result. This leaves us with the scattering
probabilities ���b;��. We do not know the detailed
form of these, but it is plausible that the complicated states
under discussion are almost completely absorbed, which
corresponds to ���b;�� � 1. This is just the behavior of
the simple dipole version of the scattering probability,
��b;��, for large �.

These arguments do not establish that Eq. (87) for the
quark distribution function must be highly accurate if
applied to a proton with x� 10�3 rather than, say, a very
large nucleus or very much lower x. However, they do
suggest that the picture has enough qualitatively right
features built into it that it should be more useful than it
would seem from first appearances.

VI. THE STRUCTURE FUNCTION

The dipole results for structure functions are known
from [4]. The transverse structure function FT is given
by [4]

 FT �
1

4�

X
a

e2
a

4NcQ2

x�2��3
Z 1

0
d��1� 2��1� ��	

Z
db

Z
d�

1

�2 j
��������������������
��1� ��

p
Q�K00�

��������������������
��1� ��

p
Q��j2��b;��; (89)

where Q2 is the photon virtuality, and K00 is the derivative
of the modified Bessel function. The main difference com-
pared to the case of the quark distribution is that the
ultraviolet region of small � is now naturally regulated
by the physical Q2. In Appendix C we sketch a derivation
of this result along the lines of our derivation for the quark
distribution function.

In the remainder of this section, we relate this formula
for FT to the normal factorized form in which FT is ex-

pressed as a sum of perturbatively calculable hard scatter-
ing functions F̂T convoluted with parton distribution
functions. For large Q2, the integral in Eq. (89) is domi-
nated by two integration regions, �� 1=Q and �� 1=Q.
We discuss each region in turn.

In the case �� 1=Q Rp, one can use the small �
perturbative formula for ��b;��, Eq. (67). Then the con-
tribution from this region is a certain one-loop integral
times �s times the gluon distribution function. We can
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recognize that this has the form of a one loop contribution
to F̂T times the gluon distribution. We do not analyze it
further.

The case �� 1=Q is more interesting from the point of
view of this paper. Let us implement the requirement ��
1=Q in a crude fashion by inserting a factor ��Q�> c�
where c is a fixed number of order 1. The only way that we
can get a leading contribution to the integral for large Q�
without the Bessel function cutting off the integral is for
��1� �� to be small. That is, either � must be small or
else 1� � must be small. We consider the case � 1. To
see what this region contributes, we simply neglect �
compared to 1 inside the integral,
 

FLTq
T �

1

4�

X
a

e2
a

4NcQ2

x�2��3
Z 1

0
d�

Z
db

Z
d���Q�> c�

�
1

�2 j
����
�
p

Q�K00�
����
�
p

Q��j2��b;��: (90)

Here we can change variables from � to z2 � �Q2�2,
giving
 

FLTq
T �

1

x

X
a

e2
a
Nc
4�4

Z
db

Z
d���Q�> c���b;��

�
1

�4

Z 1
0
dzzjzK00�z�j

2: (91)

Using

 

Z 1
0
dz zjzK00�z�j

2 �
2

3
; (92)

this is

 FLTq
T �

1

2x

X
a

e2
a
Nc

3�4

Z
db

Z
d�

��Q�> c�

�4 ��b;��:

(93)

Comparing with Eqs. (43) and (75), we see that we have the
lowest-order contribution to the hard scattering, F̂T , times
the dipole form of the quark distribution evaluated at a
renormalization scale of order Q=c. The corresponding
1� � 1 contribution gives the same F̂T times the anti-
quark distribution. Thus we see that the leading order
factorization formula works in the dipole approximation
with the quark distribution function defined independently
according to its definition as the proton matrix element of a
certain operator.5

VII. CONCLUSIONS

There is an s-channel approximation for structure func-
tions that is quite standard in the literature and is, we
believe, well motivated. In this approximation, FT�x;Q2�

is given by Eq. (89). This has the form of a dipole scatter-
ing probability ��b;�� convoluted with the probability to
make the dipole. We have presented a variation of the
‘‘saturation’’ model [4,9] for ��b;�� in Eqs. (83), (84),
and (86).6 The approximation (89) for FT�x;Q2� seems to
be quite different from the factorized form applicable at
large Q2, in which FT�x;Q2� is expressed as a convolution
of a hard partonic structure function F̂T with parton distri-
bution functions. The focus of this paper has been to
connect these apparently dissimilar pictures by investigat-
ing the quark distribution function xfq=p�x;�� at small x
using the s-channel picture.

We have found that the parton distribution function for
quarks can be approximated at small x using Eqs. (43) and
(75),

 xfq=p�x;�� �
Nc
3�4

Z
db

Z
d����2�2 > a2�

��b;��
�4 :

(94)

This has the form of the same dipole scattering function
��b;�� as in FT , now convoluted with a different proba-
bility to make the dipole. In fact, the probability to make
the dipole is beautifully simple,

 

Nc
3�4

���2�2 > a2�

�4 ; (95)

where a is a calculated number of order 1, Eq. (41), that
accomplishes MS renormalization for the quark distribu-
tion, assuming that � is large. The power behavior, 1=�4,
characterizes the squared light cone wave function.

We have seen not only that the quark distribution has a
simple form in this picture, but also that the normal lowest-
order factorized form for FT relates the dipole expression
for FT to the dipole expression for fq=p. Furthermore, the
evolution equation for fq=p relates the exponent in ��b;��
to the gluon distribution.

APPENDIX A: CALCULATION OF u���

In this appendix, we compute the integrals for the func-
tion u��� introduced in Sec. II. We begin with Eq. (32),
 

u��� �
2Nc�4�

�2��6�4�

Z 1
0
d�2

Z
d2�2�p2

�
Z
d2�2�p1e

i���p1�p2�
2p1 � p2

��2 � p2
2���

2 � p2
1�
:

(A1)

We can introduce two Feynman parameter integrals to put
the denominators into the exponent. This enables us to
perform the pj integrals

5Dipole contributions that are power suppressed with respect
to the leading factorized term are investigated in [6] for the Q2

evolution of the structure function.

6The principle refinement is the definition of xG�x;��,
Eq. (72).
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u��� �
4Nc�4�

�2��6�4�

Z 1
0
d�2

Z
d2�2�p2

Z
d2�2�p1e

i���p1�p2�p1 � p2

Z 1
0
d�1 exp���1��

2 � p2
1��

�
Z 1

0
d�2 exp���2��

2 � p2
2��

�
4Nc�

4�

�2��6�4�

Z 1
0
d�2

Z 1
0
d�1

Z 1
0
d�2e���1��2��

2

�
�i

@
@�j

�Z
d2�2�p1 exp���1p

2
1 � i� � p1�

�

�
i
@
@�j

�Z
d2�2�p2 exp���2p

2
2 � i� � p2�

�
4Nc�

4�

�2��6�4�

Z 1
0
d�2

Z 1
0
d�1

Z 1
0
d�2e���1��2��

2

�
�i

@
@�j

�Z
d2�2�p1 exp���1�p1 � i�=�2�1��

2 ��2=�4�1��

�

�
i
@
@�j

�Z
d2�2�p2 exp���2�p2 � i�=�2�2��

2 ��2=�4�2��

�
4Nc�4�

�2��6�4�

Z 1
0
d�2

Z 1
0
d�1

Z 1
0
d�2e���1��2��

2

�
i

�j

2�1

��
�
�1

�
1��

exp���2=�4�1��

�
�i

�j

2�2

��
�
�2

�
1��

� exp���2=�4�2��

�
Nc

26�4
�4��2�2��2

Z 1
0
d�2

Z 1
0

d�1

�1
��1��

1

Z 1
0

d�2

�2
��1��

2 exp
�
���1 � �2��

2 �
�2

4

�
1

�1
�

1

�2

��
: (A2)

At this point, we can perform the �2 integral,

 u��� �
Nc

26�4
�4��2�2��2

Z 1
0

d�1

�1
��1��

1

Z 1
0

d�2

�2
��1��

2

1

�1 � �2
exp

�
�

�2

4

�
1

�1
�

1

�2

��
: (A3)

In order to simplify the exponent, we can change variables to �i � 1=�i:

 u��� �
Nc

26�4
�4��2�2��2

Z 1
0

d�1

�1
�2��

1

Z 1
0

d�2

�2
�2��

2

1

�1 � �2
exp

�
�

�2

4
��1 � �2�

�
: (A4)

Now we can change variables to

 � � �1 � �2; r �
�1

�1 � �2
: (A5)

The inverse transformation is

 �1 � r�; �2 � �1� r��: (A6)

The Jacobian is

 

@��1; �2�

@��; r�
� �: (A7)

Thus

 u��� �
Nc

26�4
�4��2�2��2

Z 1
0
�d�

Z 1

0
dr�r��1����1� r���1��

1

�
exp

�
�

�2

4
�
�

�
Nc

26�4
�4��2�2��2

Z 1
0

d�
�
�3�2� exp

�
�

�2

4
�
�Z 1

0
dr�r�1� r��1��: (A8)

We can perform both integrals with the result

 u��� �
Nc

26�4
�4��2�2��2

�
4

�2

�
3�2�

��3� 2��
��2� ��2

��4� 2��
�

Nc
3�4

1

�4 ���
2�2�2�

��2� ��2

1� 2�=3
: (A9)
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APPENDIX B: AN ALGEBRAIC RELATION FOR
EIKONAL OPERATORS

In this appendix, we seek a relation between the opera-
tors Tr�FyF� for the quark and the gluon distributions,
where F is given in Eq. (45).

Denote by V and U the eikonal operators in the funda-
mental and adjoint representation:

 V�z� � Ffund�z�; U�z� � Fadj�z�: (B1)

The following identity holds between V and U at the same
point:

 

1
2U

ab�z� � Tr�taV�z�tbVy�z�	; (B2)

with ta and tb generators in the fundamental representation.

This can be seen by constructing the adjoint representation
from the product of 3 and �3.

Using (B2) we can write the trace of two U’s at points x
and y as

 Tr �U�x�Uy�y�	 � Uab�x�Uab�y�

� 4taijVjl�x�t
b
lmV

y
mi�x�t

a
pqVqr�y�tbrsV

y
sp�y�:

(B3)

Now with the identity

 taijt
a
pq �

1

2
�iq�pj �

1

2Nc
�ij�pq (B4)

we obtain

 Tr �U�x�Uy�y�	 � Tr�V�x�Vy�y�	Tr�Vy�x�V�y�	 �
1

Nc
fTr�V�x�Vy�y�V�y�Vy�x�	 � Tr�V�x�Vy�x�V�y�Vy�y�	g

�
1

N2
c

Tr�V�x�Vy�x�	Tr�Vy�y�V�y�	

� Tr�V�x�Vy�y�	Tr�Vy�x�V�y�	 � 1: (B5)

For the operators that appear in the definition of �, Eq. (44), from Eq. (B5) we get

 

1

N2
c � 1

Tr�1�Uy���U�0�	 �
CA
CF

1

Nc
Re Tr�1� Vy���V�0�	 �

1

2

CA
CF

1

N2
c
jTr�1� Vy���V�0�	j2: (B6)

From this general relation we recover the simple ratio (66)
in the case of small �, where the quadratic term in the
right-hand side of Eq. (B6) can be neglected.

APPENDIX C: THE EVOLUTION OPERATOR FOR
FT

In this appendix we derive the s-channel formula (89)
for the structure function FT in the same fashion as was
done for the quark distribution in Sec. II.

We start with the definition of FT ,

 FT �
1

8�

Z
d4ye�iq�yhPjJj�0�Jj�y�jPi: (C1)

Here

 q �
�
�xP�;

Q2

2xP�
; 0
�
; P � �P�; 0; 0�: (C2)

Similarly to Sec. II, we rewrite this as

 FT � Re�2���3
Z dP0�

2P0�
Z
dP0hP0jU�A	 �U�0	jPi:

(C3)

Here U�A	 is a function of the field operator A, defined by

 U�A	 �
P�

2�

Z
dy�

Z
dy1

Z
dy2

Z
dy�1

Z
dy�2 ��y

�
2 > y�1 �e

�iq�y�e�ixP
��y�2 �y

�
1 �h0jJj�0; y�2 ; y2�J

j�y�; y�1 ; y1�j0iA;

(C4)

where the matrix element here is taken in an external potential A.
Now using the interaction picture with A as the perturbation we have

 

U�A	 �
P�

2�

Z
dy�

Z
dy1

Z
dy2

Z
dy�1

Z
dy�2 ��y

�
2 > y�1 �e

�iq�y�e�ixP
��y�2 �y

�
1 �h0jU�1; y�2 �J

j�0; y�2 ; y2�U�y�2 ; y
�
1 �

� Jj�y�; y�1 ; y1�U�y�1 ;�1�j0iA: (C5)

In the approximation that the potential is negligible for large jy�j while only large positive y�2 and large negative y�1
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dominate the integrals, this is

 U�A	 �
P�

2�

Z
dy�

Z
dy1

Z
dy2

Z 0

�1
dy�1

Z 1
0
dy�2 e

�iq�y�e�ixP
��y�2 �y

�
1 �h0jJj�0; y�2 ; y2�U�1;�1�Jj�y�; y�1 ; y1�j0iA:

(C6)

We understand here that we are going to use the eikonal approximation for U and if we go beyond the lowest
approximation there will be an effective interval �y�0 < y� < y�0 for y� inside the approximation.

We will evaluate this at the lowest order of perturbation theory for the quantum part of the theory. That is, all of the
particles are treated as free except for the interaction with the external field in A. To carry out this evaluation, we insert
intermediate states. The intermediate states consist of a quark (momentum k) and an antiquark (momentum p). These
particles carry spin and color, but we choose a notation that suppresses the spin and color indices. Thus we have

 U�A	 �
P�

2�

Z
dy�

Z
dy1

Z
dy2

Z 0

�1
dy�1

Z 1
0
dy�2 e

�iq�y�e�ixP
��y�2 �y

�
1 ��2���12

Z 1
0

dp�2
2p�2

Z
dp2

Z 1
0

dk�2
2k�2

�
Z
dk2

Z 1
0

dp�1
2p�1

Z
dp1

Z 1
0

dk�1
2k�1

Z
dk1h0jJ

j�0; y�2 ; y2�jp
�
2 ;p2; k

�
2 ; k2i

� hp�2 ;p2; k�2 ; k2jU�1;�1�jp�1 ;p1; k�1 ;k1iA hp�1 ;p1; k�1 ; k1jJj�y�; y�1 ; y1�j0i: (C7)

For the matrix element of U we use the (leading) eikonal approximation,

 hp�2 ;p2; k�2 ;k2jU�1;�1�jp�1 ;p1; k�1 ;k1iA � �2��22p�1 ��p
�
1 � p

�
2 �2k

�
1 ��k

�
1 � k

�
2 �

~Fc�p1 � p2� ~F�k1 � k2�: (C8)

Here F is the eikonal factor for the quark and Fc is the eikonal factor for the antiquark. In the matrix elements of the current
we can use translation invariance to extract the y dependence. Then

 U�A	 �
P�

2�

Z
dy�

Z
dy1

Z
dy2

Z 0

�1
dy�1

Z 1
0
dy�2 e

�iq�y�e�ixP
��y�2 �y

�
1 ��2���10

Z 1
0

dp�

2p�
Z 1

0

dk�

2k�

�
Z
dp2

Z
dk2

Z
dp1

Z
dk1h0jJj�0�jp�;p2; k�; k2ie

�i�p�2 �k
�
2 �y

�
2 �i�p2�k2��y2 ~Fc�p1 � p2� ~F�k1 � k2�

� hp�;p1; k
�; k1jJ

j�0�j0iei�p
��k��y�1 �i�p

�
1 �k

�
1 �y

�
1 �i�p1�k1��y1 : (C9)

Here

 p�1 �
p2

1

2p�
; k�1 �

k2
1

2k�
; p�2 �

p2
2

2p�
; k�2 �

k2
2

2k�
: (C10)

We can now perform all of the y integrations to get
 

U�A	 �
P�

�2��6
Z 1

0

dp�

2p�
Z 1

0

dk�

2k�
Z
dp2

Z
dk2

Z
dp1

Z
dk1h0jJj�0�jp�;p2; k�; k2ie

�i�p�2 �k
�
2 �y

�
2 �i�p2�k2��y2

� ~Fc�p1 � p2� ~F�k1 � k2�hp�;p1; k�; k1jJj�0�j0ie
i�p��k��y�1 �i�p

�
1 �k

�
1 �y

�
1 �i�p1�k1��y1

�
�i

xP� � p�2 � k
�
2

�i
xP� � p�1 � k

�
1

��p2 � k2���p1 � k1���q� � p� � k��: (C11)

For the minus-momenta we write p� � �q� and k� � �1� ��q�. With the use of the delta functions, the momenta are
 

p1 �

�
p2

1

2�q�
; �q�;p1

�
; k1 �

�
p2

1

2�1� ��q�
; �1� ��q�;�p1

�
;

p2 �

�
p2

2

2�q�
; �q�;p2

�
; k2 �

�
p2

2

2�1� ��q�
; �1� ��q�;�p2

�
:

(C12)

This gives
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 U�A	 �
P�

4q��2��6
Z 1

0

d�
��1� ��

Z
dp2

Z
dp1

�i
xP� � p�2 � k

�
2

�i
xP� � p�1 � k

�
1

Trf ~Fc�p1 � p2� ~F�p2 � p1�g

� h0jJj�0�jp2; k2ihp1; k1jJ
j�0�j0i: (C13)

For the matrix elements of Jj, we can write

 h0jJj�0�jp2; k2ihp1; k1jJ
j�0�j0i �

X
a

e2
a

X
s1;s01;s2;s02

�s1s2
�s01s02 �u�k2; s2��

jv�p2; s
0
2� �v�p1; s

0
1��

ju�k1; s1�: (C14)

Now we can insert

 �s1s2
� �u�k2; s2���u�k1; s1�=�2k��; �s01s02 � �v�p2; s02��

�v�p1; s01�=�2p
��: (C15)

This leads to

 h0jJj�0�jp2; k2ihp1; k1jJ
j�0�j0i �

1

4��1� ���q��2
X
a

e2
a Trf�j 6p2�

�6p1�
j 6k1�

�6k2g � 4
X
a

e2
a

1� 2��1� ��
��1� ��

p1 � p2:

(C16)

Thus
 

U�A	 �
1

4�

X
a

e2
a

2P�

q��2��5
Z 1

0
d�

Z
dp2

Z
dp1

1� 2��1� ��

�2�1� ��2
p1 � p2

�i
xP� � p�2 � k

�
2

�i
xP� � p�1 � k

�
1

� Trf ~Fc�p1 � p2� ~F�p2 � p1�g: (C17)

We can rewrite the energy denominators to obtain

 U�A	 � �
1

4�

X
a

e2
a

4Q2

x�2��5
Z 1

0
d�

Z
dp2

Z
dp1�1� 2��1� ��	p1 � p2

1

��1� ��Q2 � p2
2

�
1

��1� ��Q2 � p2
1

Trf ~Fc�p1 � p2� ~F�p2 � p1�g: (C18)

With

 

~F c�p1 � p2� ~F�p2 � p1� �
Z
dbd�ei�p1�p2���b��=2�ei�p2�p1���b��=2�Fc�b��=2�F�b��=2�; (C19)

we get

 U�A	 � �
1

4�

X
a

e2
a

4Q2

x�2��5
Z 1

0
d��1� 2��1� ��	

Z
db

Z
d� TrfFc�b��=2�F�b��=2�g

�
Z
dp2e�ip2��

pj2
��1� ��Q2 � p2

2

Z
dp1eip1��

pj1
��1� ��Q2 � p2

1

: (C20)

We now take the hadron matrix element (C3), and use the definition (76). Then performing the integrations over p1 and p2

gives Eq. (89).
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