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Abstract The number of connected devices has reached 18 billion in 2017
and this will nearly double by 2022, while also new wireless communication
technologies become available. Since these modern devices support the use
of multiple communication technologies, efforts have been made to enable si-
multaneous usage and handovers between the different technologies for these
devices. However, existing solutions are missing the intelligence to decide on
fine-grained (e.g. flow or packet level) optimizations that can drastically en-
hance the network’s performance (e.g., throughput) and user experience. To
this extent, we present a multi-technology flow-management load balancing ap-
proach for heterogeneous wireless networks that dynamically re-routes traffic
through heterogeneous networks, in order to maximize the global throughput.
This dynamic approach can be deployed on top of existing solutions and takes
into account the specific characteristics of the different technologies, as well
as station mobility. We both present a mathematical problem formulation and
a heuristic that ensures practical scalability. We demonstrate the heuristic’s
ability to increase the network-wide throughput by more than 100 % across a
variety of scenarios and scalability up to 10000 devices.
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1 Introduction

Over the years, we have witnessed a tremendous increase in the utilization
and availability of wireless networks and devices. The number of connected
devices has reached 18 billion in 2017 and will further grow to 28.5 billion in
2022 [1]. Similarly, the heterogeneity and complexity of (wireless) networks are
increasing as new technologies (e.g. IEEE 802.11ay and 802.11ax) are being
released [2]. As a consequence, the management burden increases as each of
these wireless communication technology has its own unique characteristics
(e.g., capacity and range). Furthermore, these networks are typically being
managed statically as, for instance, no centralized intelligence is present and
connections are being established based on default priorities (e.g., connecting
to the closest infrastructure device by default). This makes them unable to
automatically react in a timely fashion to temporary disruptions that cause
Quality of Service (QoS) degradations. Figure 1 illustrates this envisioned
coexistence of different types of heterogeneous wireless networks, each with its
own application domain, technologies, and devices. At the left top side of the
figure we see a Local Area Network (LAN) environment, consisting of multiple
access points (APs) offering a number of different wireless technologies (e.g.,
directional 60 GHz communication, a sub-1 GHz low power technology, and
more standard 2.4 GHz and 5 GHz IEEE 802.11 (Wi-Fi). Similarly, at the top
right side of Figure 1 we show an Industry 4.0 use case where a combination
of Internet of Things (IoT) technologies and Wi-Fi is used. Furthermore, we
see a number of Vehicular AdHoc Networks (VANETs) (using IEEE 802.11p
or LTE-Vehicular (LTE-V)) that connect both different vehicles and vehicles
with road-side units, while requiring reliable real-time communication.

As both modern connected devices and wireless networks are equipped with
multiple communication technologies, efforts have been made to allow devices
to simultaneously use different communication technologies or to switch in
real-time between them. This dynamic network and traffic management al-
lows for network optimizations such as multipath routing, load balancing, and
dynamic path reconfiguration. This stands in stark contrast to traditional ap-
proaches that typically delegate this to the application layer, or even worse,
to the user. The most important dynamic multi-technology frameworks and
standards that have been proposed are IEEE 1905.1 [3], Multipath Trans-
mission Control Protocol (MPTCP) [4], LTE-Wireless Local Area Network
Aggregation (LWA) [5], and ORCHESTRA [6]. IEEE 1905.1 allows to dynam-
ically re-route flows across different interfaces, while MPTCP allows to split
a Transmission Control Protocol (TCP) flow across different paths through
the network. Furthermore, LWA allows to offload traffic between an LTE base
station and Wi-Fi APs, while ORCHESTRA offers a transparent manage-
ment solution by introducing a Virtual MAC (VMAC), arching different tech-
nologies per device, and a centralized controller. While these frameworks and
standards introduce the features needed to enable dynamic flow rerouting and
load balancing, they are missing the intelligence to decide on the network-wide
optimizations.
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Fig. 1: Example of different possible heterogeneous wireless networks (Home
network, Industry 4.0 network, and Vehicular networks) consisting out a vari-
ety of technologies (indicated by different colors) and a multitude of devices.

To this extent, we propose a multi-technology load balancing approach that
can balance devices across different APs and divide traffic flows over differ-
ent paths (and thus technologies) through the network. The approach can be
run on top of any of the aforementioned frameworks or standards and makes
use of their management functions to dynamically and in real-time handover
devices or reroute traffic in order to configure the network to achieve maxi-
mum global throughput. In contrast to existing load balancing approaches, we
do not assume full knowledge over the network and use real-time monitoring
information from the frameworks used under the hood. Furthermore, the ap-
proach is completely technology independent and we lay the focus on practical
usability in a multitude of scenarios.

In our previous work we have mainly focused on flow management in spe-
cific heterogeneous LANs and providing a framework to enable seamless multi-
technology management (e.g., inter-technology handovers) [7]. The scenarios
considered only stationary devices, a single AP and limited technologies. Fur-
thermore, we introduced a mathematical problem formulation for load bal-
ancing in heterogeneous wireless networks but this approach lacked practical
applicability [8]. In this paper, we extend these works in several ways. First,
we further shift the focus to the more challenging environment of wireless net-
works and take into account the presence of multiple APs (or base stations)
and the mobility of stations. Second, we present a heuristic approach to ensure
practical usability and scalability, in large scale environments as well. Third,
we focus on optimal parameter selection and extensive evaluations across dif-
ferent scenarios.
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The contributions of this paper are threefold: first, we introduce a mathe-
matical model of the load balancing problem in Section 3, for both devices and
traffic flows, in heterogeneous wireless networks. The problem is formulated
as a Mixed Integer Quadratic Program (MIQP), which can be solved using
existing linear programming approaches. Second, as solving the mathemati-
cal model does not scale well, we present a greedy heuristic algorithm that
still takes into account the specifics of the wireless networks. This is done in
Section 4. Third, in Section 5, we evaluate the resulting model and the heuris-
tic in a variety of scenarios, using different network configurations, based on
NS-3 simulations. We show, among others, that the increase in network-wide
throughput by the heuristic algorithm is in the same range as provided by the
MIQP. Furthermore, these contributions are accompanied by an overview of
related work in Section 2, while conclusions are provided in Section 6.

2 Related work

In this section, we discuss existing work on both the topic of multi-technology
network management and load balancing in heterogeneous network environ-
ments.

2.1 Multi-technology standards and frameworks

The first attempt towards a multi-technology management framework is made
by the IEEE 1905.1 standard [3]. This standard introduces an abstract layer on
top of the current data link layer (i.e., OSI layer 2) that hides the underlying
diversity in Medium Access Control (MAC) technologies (Ethernet, Wi-Fi,
Powerline HomePlug, and Multimedia over Coax (MoCA)). Compliant devices
are assigned a unique virtual MAC address, representing the corresponding
device on the network. Data link header rules make it possible to transparently
switch flows between multiple heterogeneous interfaces. Despite its potential,
IEEE 1905 never really took off, without follow-up releases and only a few
products that support it.

In stark contrast, MPTCP on the other hand, is currently being widely
used by, among others, telecommunication operators to split traffic across both
wired and wireless backbone networks (called hybrid access networks). This is,
in particular, the case for Digital Subscriber Line (DSL) and LTE solutions, to
circumvent the limited capacity of DSL wires (also known as DSL-LTE bond-
ing) [9]. Furthermore, MPTCP is also actively being used on a large scale in
Android and iOS devices (e.g., by Siri) [10]. MPTCP is a TCP extension that
enables the transmission and reception of data concurrently over multiple net-
work interfaces in order to maximize resource usage and increase redundancy
in multi-technology networks [4, 11]. Multiple regular TCP connections (de-
noted as subflows), are offered as one to the application layer, while under the
hood each subflow can follow different paths through the network [4]. Based on
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the ever-changing network characteristics (e.g., increased RTT), the MPTCP
scheduler can divide or duplicate application data across these sub-flows [12].
However, this scheduling is done per connection between two hosts and not
a network-wide scale. Furthermore, MPTCP has proven to be very aggres-
sive towards other (regular) TCP connections in the network, sometimes even
without added benefits for the MPTCP users [13].

In order to cope with the ever-growing bandwidth and traffic speed de-
mands, especially towards the highly hyped 5G networks, the 3GPP commu-
nity began exploring the wireless spectrum outside of the traditional licensed
3G/4G bands. Two approaches have been proposed to offload traffic: the di-
rect usage of LTE in the unlicensed spectrum (i.e., LTE-LAA/LTE-U) and the
combined usage of LTE in the licensed and Wi-Fi technology in the unlicensed
spectrum (i.e., LWA) [14, 5]. While the first can cause severe performance
degradations in coexisting Wi-Fi systems (especially in the 5 GHz band), the
LWA approach clearly introduces fewer coexistence issues and no hardware
changes are required on the infrastructure [15, 16]. From a user perspective,
both LTE and Wi-Fi are used seamlessly as mobile traffic flows are tunneled
over the Wi-Fi connection. Some commercially available products for LANs ex-
ist that use a similar tunneling approach between a so-called pro-active router
and a cloud instance, while under the hood different technologies (e.g., DSL,
fiber, satellite or LTE) are hidden away (e.g., Mushroom Networks [17]).

Recently, the ORCHESTRA framework has been proposed as the first so-
lution that can be used transparently with all technologies and communication
protocols [6]. The framework consists of two parts: a VMAC on the devices
and a centralized or cloud-based controller. The VMAC unifies the underlying
heterogeneous technologies per device, offering a single interface to the upper
layers with a single IP address. Based on packet matching rules, the VMAC
forwards packets to the designated underlying technologies. This allows for
fine-grained features such as packet-level load balancing, vertical handovers,
and duplication of traffic flows for reliability. The controller gathers real-time
monitoring information from the different VMACs and can, in turn, send com-
mands to update the rules on specific VMACs in order to optimize the network.

Summarized, different solutions have been proposed that allow for multi-
technology management and features (e.g., handovers or duplication). In com-
plement, there is a need for algorithms and intelligence (as the approach pre-
sented in this work) that use these frameworks and standards to optimize the
network. This is offered by the proposed load balancing algorithm that can be
used on top of the listed solutions. We discuss in Section 3.5 the deployment
of our approach on top of the ORCHESTRA framework.

2.2 Load balancing in heterogeneous networks

Multi-technology load balancing has mainly been investigated in two research
domains: LANs and Wide Area Networks (WANs) (4G/5G). A per-packet load
balancing algorithm for LANs was proposed by Macone et al. [18]. The algo-
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rithm runs centralized on the gateway and assumes full instantaneous knowl-
edge of network resources and conditions. Furthermore, Oddi et al. introduced
a decentralized load balancing algorithm specifically for heterogeneous wireless
access networks based on the Wardrop equilibrium [19]. However, it does not
take into account the fact that users do not have dedicated network resources
when using wireless technologies. In general, Olvera-Irigoyen et al. have shown
that determining the actual available bandwidth on the links has a big impact
on the results of load balancing the flows in a (wireless) network, in partic-
ular with time-varying capacity Wi-Fi and Power line communication (PLC)
links [20]. Recent load balancing solutions for LANs focus also on energy op-
timization by, for instance, selecting the most energy efficient link while still
providing a good QoS [21, 22]. However, this is done by assuming the energy
consumption model is known in advance, and not by real-time measurements.

In WANs, most research proposes technology-specific solutions that are
capable of load balancing across only two technologies (particularly, LTE and
Wi-Fi or Wi-Fi and WiMAX) [23]. Typically, load balancing policies are based
on the number of connected devices to a base station. Furthermore, a num-
ber of decision strategies have been proposed, using, among others, utility
functions, multiple attributes decision making, Markov chains, and game the-
ory [23, 24]. However, these strategies take only a limited number of parameters
into account, with Received Signal Strength Indicator (RSSI) and Signal To
Noise Ratio (SNR) being (by far) the most popular ones [25, 26]. A large num-
ber of open issues remain, including, but not limited to, the development of
more generic solutions, better support for mobility, the use of multi-criteria
decision functions, supporting different QoS classes and the increase of QoS
during or after handovers [25]. More recently, Harutyunyan et al. introduce
an Integer Linear Programming (ILP) formulation for traffic-aware balancing
devices across LTE and Wi-Fi infrastructures [27]. Moreover, in light of the
proposed New Radio principle for 5G networks interest has grown in handover
and load balancing approaches for millimeter-wave communications [28, 29].
For instance, a user association scheme based on mixed integer nonlinear pro-
gramming has been proposed [30]. However, further research and optimizations
are needed within this specific area [28].

Summarized, most existing work on load balancing in heterogeneous net-
works makes use of theoretical models that assume, unrealistic, full knowledge
over the detailed state of the network. Furthermore, the specific nature of
wireless networks is ignored and approaches are technology dependent. Op-
posed to existing work, we propose a technology independent approach that
focuses on wireless networks (taking into account the specifics), while using
only real-time monitored and carefully estimated information.

3 Multi-technology load balancing problem formulation

In this section, we first introduce a model for heterogeneous wireless networks
and present a MIQP representing the load balancing problem. Afterwards, we
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discuss in detail the interaction with the network and how certain parameters
can be determined.

3.1 Problem definition and motivation

In Figure 1, we illustrated already how different wireless networks are om-
nipresent, each with its own application domain, technologies, and devices.
In order to increase the QoS within these networks, support future technolo-
gies and account for rising traffic demands or user expectations, intelligent
management approaches are needed. In the previous section, we have listed
different solutions that enable network features such as inter-technology han-
dovers or load balancing, needed to perform the necessary optimizations in
the wireless networks. The coordination among all the devices in the network
and the use of real-time monitoring information are essential to account for
the ever-changing wireless context. Recently, the Software-Defined Network-
ing (SDN) paradigm has found its way to these wireless networks to facilitate,
among others, station mobility. However, while solutions like ORCHESTRA
or 5G-EmPOWER enable the management features, they do not contain the
intelligence to decide on the needed optimizations.

To this extent, we envision an intelligent solution that can be deployed on
top of the aforementioned frameworks. The approach will use the real-time
monitoring information provided by the underlying framework to decide on
a better network-wide configuration. After calculating an improved network
configuration, the communication and management features (e.g., seamless
handovers) of the underlying framework to roll-out the configuration. Our
approach focuses on the multi-technology load balancing of stations across
different infrastructure devices and of traffic flows across the different available
connections and network paths.

Various use cases can benefit from the presented load balancing approach.
A straightforward application domain is LANs. For instance, in our homes,
we are nearly continuously connected to the internet and consuming online
services like live video streaming, Voice over IP (VoIP) calls, and multiplayer
gaming. Similarly, in an office scenario, services like multi-person teleconfer-
encing or Virtual Reality (VR) prototyping are being consumed. In this con-
text, our load balancing approach can be used to divide the traffic optimally
and thus increasing the bandwidth that is available per flow, as such allowing
the services to offer the highest quality and meet the demands of the users.
Furthermore, as more and more devices are being connected to the Internet,
also the backhaul networks need to be able to support this increasing num-
ber of devices and, consequently, the growing demands in traffic. A scalable
load balancing approach can come to the rescue by balancing the connected
devices and their traffic across different technologies and infrastructure units
(e.g., base stations of APs). Other use cases can, among others, be found in
the areas of smart cities of connected vehicles.
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3.2 Network model

A heterogeneous wireless network is modeled as a multi-graph defined as a
tuple (S,T,B) where:

– S is the set of stations {s1, s2, ..., sn}. These stations represent all kinds of
connected devices, depending on the modeled network (e.g., smartphones,
sensors, vehicles).

– T is the set of technologies {t1, t2, ..., tn}. This can, for instance, be Wi-Fi
(e.g., IEEE 802.11ac, IEEE 802.11ad, ...) or LTE.

– B is the set of all Basic Service Sets (BSSs) {b1, b2, ..., bn}. A BSS is de-
fined as a set of stations {s1, s2, ..., sn} that are connected, over a specific
technology, to an AP, a LTE base station, or an equivalent infrastructure
device. In other words, a BSS encapsulates all the stations that can contend
with each other since they share the capacity of a technology. We assume
no interference between BSS that are in the range of each other (i.e., use
of different channels).

Furthermore, we define the following sets and elements:

– ∀s ∈ S : Ts : defines per station the set of all technologies t ∈ T that are
supported by that particular station.

– ∀b ∈ B : Bt : is the set of all BSS that offer a certain technology t ∈ T .
– ∀s ∈ S : Bs: set of all BSSs to which a station s ∈ S can belong. In other

words, these are all the BSS of which the AP is in range of the station (for
a supported technology).

– Finally, we define ds,b and bs,b to be, respectively, the data rate (depending
on the Modulation and Coding Scheme (MCS)) and bit error rate of the
station s ∈ S for a specific BSS b ∈ B. These values depend on the mobility
and position of stations, with respect to each BSS, and can change heavily
over time. We discuss the estimation of ds,b and bs,b later on (in Section 3.4.

In addition to the network topology, we also need to model traffic flows
going through the network. Therefore, we define F as the set of all flows.
A flow f ∈ F is a triple < sf , r

in
f , r

out
f > with sf ∈ S the station within the

network that is the source or destination of the flow within the network, rinf the

incoming desired rate of f ∈ R+ and routf the outgoing desired rate of f ∈ R+.
Note that we do assume that the gateway is always one of the two endpoints
of the flow, while the other is denoted by sf . Furthermore, we separate the
desired rate of the flow between the incoming and outgoing rates. This allows
us to more precisely schedule all flows across the different paths, as incoming
and outgoing packets of a flow can be assigned a different route. To clarify, for
a TCP flow originating from some web server, the incoming rate is the rate of
the data traffic, while the outgoing rate is the one of the ACKs. In the case of
a User Datagram Protocol (UDP) flow origination from the same web server,
the outgoing rate will be 0 as there are no ACKs.
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3.3 MIQP formulation

The load balancing problem considered in this paper is modeled as a MIQP,
which consists of the necessary inputs, decision variables, an objective function,
and a set of constraints. The inputs of the presented MIQP consist of the
previously described network and flow model. Additionally, we need one more
input: we define χb to be a linear function that approximates the capacity
of the different BSSs, taking into account the number of stations and the
particular technology [7]. We discuss this further in Section 3.4.

Next, we define the following decision variables:

– τ inf ∈
[
0, rinf

]
; the total incoming rate assigned to a flow f ∈ F .

– τoutf ∈
[
0, routf

]
; the total outgoing rate assigned to a flow f ∈ F .

– λinf,b ∈ {0, 1}; the path for the incoming traffic of a flow. If the incoming

traffic of flow f ∈ F is scheduled over BSS b ∈ Bsf then λinf,b = 1, otherwise
it equals 0.

– λoutf,b ∈ {0, 1}; the path for the outgoing traffic of a flow. If the outgoing

traffic of flow f ∈ F is scheduled over BSS b ∈ Bsf then λoutf,b = 1, otherwise
it equals 0.

– γs,t,b ∈ {0, 1}; the connection between a station and an AP. It is equal to
1 if a station s ∈ S on technology t ∈ St is part of the BSS b ∈ Bs ∩ Bt,
otherwise it equals 0. In other words, we assume that per technology a
station can only be connected to one AP or base station.

– δ ∈ [0, 1]: the maximal load over all BSS.

As an objective function, the model maximizes the total rate (bandwidth)
of the network-wide traffic, both incoming and outgoing, while minimizing the
relative maximal load over all BSS:

max(ω · (
∑
f∈F

τ inf + τoutf ) + (1− ω) · (−δ) · (
∑
b∈B

χb))

This objective function consists of two weighted subfunctions that need to
be optimized (with the relative weight between them denoted by ω). The first
subfunction represents the total assigned rate across all flows (which needs
to be maximized). The second part represents the division of load across all
available BSSs. The idea is to minimize the maximal relative load, denoted
by δ, across all BSSs [31]. As many mathematical solvers do not allow the
usage of maximization or minimization functions within the objective func-
tion, δ is bounded by the final constraint. Note that the multiplication of δ
with

∑
b∈B χb is only needed for normalization. While the goal is to maximize

network-wide throughput, the load balancing objective is necessary to spread
all connected devices over APs and technologies. This limits the probability
that the BSS becomes overloaded when a new device joins the network and
connects to that BSS.

We complete the MIQP formulation by defining several constraints. We first
define a constraint that limits the total rate over all traffic flows on a station,
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going over a certain BSS, by the maximal rate supported by the configuration
of that station:

– ∀s ∈ S, ∀b ∈ Bs :
∑

f∈Fs
λinf,b · τ inf + λoutf,b · τoutf 6 dsf ,b · bsf ,b

Next, we define two constraints that guarantee the conservation of flows in the
network (i.e., the right endpoints):

– ∀f ∈ F :
∑

b∈Bsf
λinf,b = 1

– ∀f ∈ F :
∑

b∈Bsf
λoutf,b = 1

Furthermore, we also need to make sure that a station can be connected to
only one BSS per technology (this corresponds to reality where a device is in
general only equipped with a single radio per technology):

– ∀s ∈ S, ∀t ∈ Ts :
∑
b ∈ Bs ∩Btγs,t,b = 1

– ∀s ∈ S, ∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λinf,b 6 γs,t,b
– ∀s ∈ S, ∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λoutf,b 6 γs,t,b

Finally, we define the constraint that bounds the value of δ for balancing the
load across BSSs, while also making sure that the capacity of the BSSs and
their underlying technologies is not exceeded:

– ∀b ∈ B :
∑

f∈F λ
in
f,b · τ inf + λoutf,b · τoutf 6 δ · χb

3.4 Parameter estimation

In the next Section, we explain how monitoring information is acquired from
the underlying framework and fed into the MIQP to calculate the optimal
configuration. While some of the gathered monitoring information, like sta-
tion and traffic information, can be used directly without the need for fur-
ther processing, some other parameters and information are also required. A
key element for determining an optimal configuration is to have an accurate
overview of the available bandwidth per BSS. The big impact of determining
the actual available bandwidth of wireless links on the results of load balanc-
ing approaches has been shown in literature [20, 32]. The actual bandwidth
of wireless technologies depends on several parameters such as the theoretical
physical bandwidth, the configuration of APs, the interference of other devices
within or outside the network, and the number of traffic in the network. Es-
timating each of these parameters is very challenging and is in some cases a
separate research problem on its own (e.g., interference modeling). In order to
avoid the use of complex and resource intensive theoretical models, we make
use of the approximation function χb to estimate the capacity of the wireless
technologies [7]. For each BSS b ∈ B, we define χb as follows:

χb(α, β) = α · (
∑
f∈F

λinf,b + λoutf,b ) + β
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The parameters α and β are technology depending and capture the specifics
of the wireless network under consideration. The following dynamic exper-
imental method can be used to determine these parameters [7]: a series of
experiments can be conducted per technology where the number of stations
and the flow rates are varied within a predefined range of values. For instance,
the number of stations can be varied from 1 to 10. Similarly, the flow rates can
be varied between the theoretical data rate of that technology to a relatively
low value, depending on the number of stations and thus flows present. When
the achieved data rates are stored, for example, per number of stations present,
the average values can afterwards be interpolated (using a linear trend line)
as a function of the number of stations, leading to the approximation function
defined above. This method can be applied for each individual heterogeneous
network to capture the specific characteristics of that particular environment.
As characteristics of the wireless environment change over time, this method
can be rapidly re-executed if needed [7].

Furthermore, the MIQP also requires the data rate (depending on the
MCS) and bit error rate of the station s ∈ S for a specific configuration, re-
spectively denoted by ds,b and bs,b. For the two parameters a mapping can be
constructed: in case of the first parameter this is a mapping from measured
RSSI values to MCS values (and theoretical data rate). For the second pa-
rameter bs,b, a linear function can map the measured RSSI values to packet
loss, in order to correct the theoretical achievable data rate. Both mappings
can be experimentally determined by using the well-known fingerprinting ap-
proach to record MCS and packet loss values at different distances (and thus
different RSSI values) in the network environment [33]. These mappings can
be re-created to adjust for dynamic changes to the network environment.

3.5 Deployment and interaction with underlying framework

In Section 2.1 we listed a number of existing multi-technology frameworks and
standards that offer features such as handovers and dynamic flow-rerouting
in order to optimize the network configuration and performance. While our
load balancing approach can be deployed on top of all listed frameworks, we
choose to deploy this onto ORCHESTRA for several reasons. First, it offers
the centralized control and monitoring features needed as inputs of our load
balancing approach and to roll-out the calculated optimal configuration. Sec-
ond, it offers the option to split traffic flows on a packet-level across different
paths in real-time and in a fully transparent manner through the VMAC func-
tionalities. This is in strong contrast to, for instance, MPTCP that only works
between two endpoints and does not offer centralized control and monitoring
information.

Through the framework we interact with the network and its devices in the
following ways: in a regular interval, all VMACs send monitoring information
to the controller that keeps the most recent information stored. For each flow,
the following information is stored: the number of transmitted and received
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packets, the number of transmitted and received bytes, the source, the desti-
nation, and the type. Furthermore, per link information such as the number of
packet errors, the number of transmitted and received packets, MAC through-
put, link availability and the theoretical physical rate is reported. Finally, also
information regarding the wireless technologies is stored, like the RSSI val-
ues for all APs that are in range per station, for a specific technology. The
necessary information to calculate the optimal configuration (e.g., flow rates,
flow destinations, and available BSSs per station) is gathered from the stored
monitoring information and passed to the MIQP. In turn, after the MIQP
has calculated the optimal configuration, we translate this configuration from
the MIQP variables to specific per-device VMAC rules. Finally, the controller
of ORCHESTRA will handle the transmission of the updated rules to each
device and the configuration is thus rolled-out.

The question that remains is when exactly we have to run the load bal-
ancing algorithm. This clearly depends on the dynamic characteristics of the
network and its environment as in a very static scenario it would only be a
waste of resources when the algorithm is running almost continuously. But
in contrast, this could be the right thing to do in a very dynamic scenario.
An example of such a highly dynamic environment could be the VANETs
depicted in Figure 1. The topology and devices in such networks are highly
volatile depending on the number of cars passing by while requiring reliable
real-time communication. In order to have an approach that can be utilized
across a multitude of scenarios and networks, we propose to trigger the ex-
ecution of the algorithm when dynamic changes to the network are detected
in the monitoring information. This could, for instance, be a variation in one
of the flow rates of at least x %. Furthermore, a timeout can be added to en-
sure the execution of the algorithm on a regular base, when no such dynamic
events would occur. Note that while this repetitive execution allows reacting
to dynamic behavior such as station mobility or changed traffic demands, this
also requires a limited execution time of the algorithm.

4 Heuristic approach

Optimally solving the MIQP model scales exponentially in terms of the number
of devices and flows in the network. As such, heuristic solutions are needed
for larger scenarios. To this extent, we propose a heuristic approach in this
section.

When solving the multi-technology load balancing problem addressed in
this paper, it is necessary to balance both stations across available APs (or
base stations) and flows across different paths (i.e., technologies). Both are
clearly linked together as flows can only be scheduled across established paths
or connections. However, it could be that the capacity of the technologies
of the current connections is not sufficient to schedule all the flows from a
single station. This would mean that new connections need to be established
to less occupied APs or base stations, if possible. The previously introduced
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Algorithm 1 First step: Station Association

1: for s ∈ S do
2: for t ∈ Ts do
3: Let W [1 . . . |b|] be a new array . b ∈ Bs ∩Bt
4: for b ∈ Bs ∩Bt do
5: if max

b′∈B

∑
s′∈S

γs,t,b > 0 then

6: W [b]← rssis,b,t
max

b′∈Bs
rssis,b′,t

+

∑
s′∈S

γs,t,b

max
b′∈B

∑
s′∈S

γs,t,b

7: else
8: W [b]← rssis,b,t

max
b′∈Bs

rssis,b′,t

9: end if
10: end for
11: γs,t,b ← 1, with b ∈ Bs and W [b] = min

b′∈Bs

W [b′]

12: end for
13: end for

MIQP performs the station and flow load balancing jointly while finding the
network configuration with the highest possible overall throughput. In order to
reduce the complexity and computation time, we propose a heuristic approach
that consists of two steps. First, we load balance stations across the available
infrastructure devices and resources. Second, we route the flows across the
different available paths, established in the first step. We make use of the
same inputs as the MIQP formulation (defined in Section 3.2).

In the first step, depicted in Algorithm 1 we iterate over all stations in S.
This list of stations can be sorted based on a number of criteria. For instance,
according to the arrival of the stations in the network or on the decreasing sum
of rates (across all flows) per station. We have opted for the latter more greedy
approach. For each supported technology per station, we create a map with
an assigned score per available BSS (line 3). This score combines the relative
distance from the station to each infrastructure device with the load on that
AP or base station (lines 4-10). This score allows us to take into account the
mobility of stations and the shared spectrum per infrastructure device. We
distinguish two cases. First, the most common case where already at least one
station has been assigned to a BSS, meaning the max load across all BSSs is
larger than zero (line 6). Second, the initial case where no load was assigned
yet (line 8). Here, we only take into account the relative distance to avoid a
division by zero. Next, the station is assigned to the BSS with the lowest score
(line 11).

The second step of the heuristic is shown in Algorithm 2. We first create
an array where we store the remaining capacity (initially the max capacity)
per BSS (line 1 and 2). A second array represents the total assigned rates
per BSS (line 3). We then iterate over all flows in F . Once again these flows
can be sorted by decreasing rates. For each flow, we first assign a path for
the incoming traffic by selecting the BSS with the most capacity remaining
(line 5). Next, we update the traffic assigned to the selected BSS by adding
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Algorithm 2 Second step: Flow Path

1: Let C[1 . . . |B|] be a new array
2: C[b]← χb . ∀b ∈ B
3: Let T [1 . . . |B|] be a new array
4: for f ∈ F do
5: λinf,b ← 1 with γsf ,t,b = 1 and C[b] = max

γsf ,t,b′=1
C[b′] . ∀b′ ∈ Bsf , ∀t ∈ T

6: T [b]← T [b] + min
((
dsf ,b · bsf ,b

)
, rinf

)
7: C[b]← max (0, (χb − T [b]))
8: λoutf,b ← 1 with γsf ,t,b = 1 and C[b] = max

γsf ,t,b′=1
C[b′] . ∀b′ ∈ Bsf , ∀t ∈ T

9: T [b]← T [b] + min
((
dsf ,b · bsf ,b

)
, routf

)
10: C[b]← max (0, (χb − T [b]))
11: end for

the minimum from the allowed rate on the station (depending on the MCS)
and the incoming rate of the flow (line 6). On line 7, we also update the
remaining capacity of the selected BSS by subtracting the assigned rates from
the approximation function χb. By doing so, we account for the loss in the
maximal capacity of a wireless technology when more and more devices are
added. After the selection of the path for the incoming traffic, we repeat the
same for the outgoing traffic on lines eight to ten.

5 Results and discussion

In this section, we evaluate the presented load balancing approach across a
variety of scenarios. We focus on comparing the performance of the heuris-
tic against the MIQP and demonstrating the scalability and versatility of the
approach. For this, we mainly make use of simulation results obtained from
the ns-3 event-based network simulator [34], complemented with a direct algo-
rithmic evaluation in python. The structure of this section is as follows. First,
we discuss the evaluation setups and the topology of the different scenarios.
Next, we discuss in detail how we selected the values for the different required
parameters. Afterwards, the performance of the approach, in terms of achieved
throughput and execution time, is evaluated in a variety of static and dynamic
scenarios.

5.1 Evaluation setup

Most simulations are conducted using the NS-3.27 network simulator, where
we implemented the entire ORCHESTRA framework [6], the MIQP problem
formulation, and our heuristic approach. To optimally solve the MIQP we
make use of the Gurobi Optimizer (7.5.2). All experiments are conducted on a
single core of an Intel R© Xeon R© E5-2680 Processor running at 2.8 GHz and with
8 GB RAM. Furthermore, we also extended the basic NS-3.27 implementation
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to allow for multi-channel Wi-Fi networks. During all of our experiments, we
assume two technologies present: IEEE 802.11n and IEEE 802.11ac (respec-
tively, 2.4 GHz and 5 GHz Wi-Fi). Note that as our load balancing approach is
fully technology independent, it is of less importance which technologies were
selected for the evaluation. Every scenario has at least two APs that support
both technologies. Dynamic rate adaptation for all devices is made possible
through the Minstrel rate adaptation algorithm. Besides the generated traffic
flows themselves, also the management traffic is considered in the simulations.
In other words, the packets that contain monitoring information and configu-
ration instructions, sent between the devices and the controller or vice versa,
are also generated and transmitted. As such, our results consider the overhead
of the management interactions.

As NS-3 emulates all packets within a network, simulation time grows
exponentially when increasing network size and traffic number. In order to
allow us to investigate the scalability of the approach to larger networks and
to perform a rapid evaluation of algorithm parameters, we created a second
experimental setup, outside of the NS-3 simulator. In Python, we implemented,
on a 2016 Intel NUC, both the MIQP and heuristic approach. As before,
the Gurobi Optimizer (7.5.2) is used to solve the MIQP. Furthermore, we
created a framework that could artificially generate the required inputs for the
algorithms. This allows us to easily test the impact of varying configurations
of stations, APs, and flows, without the need for any network interaction or
full network simulation. This was mainly used to investigate the execution
time and scalability of the approaches, and not for optimality or network
performance. For each experiment, we will clearly specify the ranges of values
that were evaluated. Finally, we assume the presence of 4 technologies (e.g.,
IEEE 802.11n, IEEE 802.11ac, IEEE 802.11ad, and LTE).

For every scenario throughout the evaluation, we provide a comparison
to a fully distributed baseline, where each device decides for itself to which
AP to connect, based on the best RSSI values. For this baseline, we assume
that when the RSSI of the current connection drops below a certain thresh-
old, a better connection is selected (if present) for that device on that specific
technology. The selection of the threshold value will be discussed in the next
section. In other words, the baseline corresponds to the current state of the
art, where one of the discussed multi-technology management solutions (Sec-
tion 2.1) is in place, without the centralized intelligence, but with seamless
handovers. Furthermore, we also compare against the performance of a fully
randomized algorithm that selects uniformly at random for each station the
corresponding infrastructure device (i.e., BSS) to connect to, and for each in-
coming and outgoing flow its path. Note that a comparison to our previous
work is not possible as that did not support the option for multiple APs in a
single network [7].

In order to generate representative network topologies and conditions, sev-
eral types of devices are defined, each with different mobility and traffic rates.
This information is depicted in Table 1. The exact number of devices, the
assigned flow type, and the rate of the flow are chosen uniformly at random
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Table 1: Overview of the devices, and the supported flow rates, used in the
scenarios

Device type Rate boundaries per flow type
(and mobility) Download Video stream Conference call
Laptop (mobile) 10–30 Mbps 8–20 Mbps 4–10 Mbps
HD Television 5–25 Mbps 10–20 Mbps 5–10 Mbps
4K Television 5–25 Mbps 15–25 Mbps 7.5–12.5 Mbps
Tablet (mobile) 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps
Smartphone (mobile) 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps

between an upper and lower bound, based on the involved device and depend-
ing on the scenario. Each mobile device (all except for the televisions) moves
around according to the Random Waypoint Model within a certain area, with
a random start position and a uniformly random chosen speed between 0.3-
0.7 m

s . The size of the area and the wait times at the waypoints depend on the
scenario. Moreover, in the static scenarios, the flow rates do not change over
time, while in the other scenarios the download flows will consume as much
bandwidth as possible (reflecting their actual behavior). Assuming a static flow
rate for the first part of the evaluations allows us to better estimate the impact
of only the mobility aspect. The size of the download is uniformly at random
chosen between 10 MB and 10 GB. We assign one flow per device and as such
do not assume the concurrent usage of both Wi-Fi interfaces, as this is gener-
ally not supported by current hardware. Note, that the flow rates were selected
based on representative figures from literature of existing applications [35]. We
decided to use only TCP traffic flows, as current Internet traffic is dominated
by TCP [36]. Finally, for every described scenario, results are averaged over
20 different randomly generated flow and topology configurations.

5.2 Selection of parameters

Both in the algorithms themselves as in the interaction with the network there
are a number of parameters that can potentially have a large impact on the
evaluation results. Below we discuss all parameters one by one and clearly
highlight how the values are selected.

– Weight w for MIQP objective function: as the objective function of the
MIQP is built out of two subfuctions, respectively, the throughput maxi-
mization function and the load balancing function, a weight is needed to
combine both goals. Using our Python experimental setup, we optimally
solved the MIQP for a large number of scenarios, testing out a range of
weights per scenario. We used Gurobi to provide an optimal configuration
for a specific scenario and weight. Afterwards, we tried adding a random
number of flows to the calculated configuration. The number of capac-
ity requested by the flows that were available (normalized over the total
capacity of the network), was added to the objective score calculated by
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Fig. 2: Normalized score, optimal throughput (normalized), and optimal load
difference over different scenarios for different values of the weight in the MIQP
objective function

Gurobi for that specific scenario and weight. In case no capacity was avail-
able the objective score did not change. Per unique combination of scenario
and weight, we repeated this 20 times. In total we varied the number of
stations between 5 and 15, the number of APs between 2 and 5, and the
number of additional flow between 1 and half of the number of stations
selected. While considering weights between 0 and 1 with a step-size of
0.01 between the different considered values. Finally, we averaged results
per weight across all scenarios and normalized the scores between 0 and 1.
Results are depicted in Figure 2. From the figure, it is clear that the best
performance was achieved when using a weight of 0.91. Furthermore, we
see that for the value of 0.91, the network-wide throughput (as calculated
by the MIQP) is at its highest, while this is not the case for the differ-
ence in load across the APs. Intuitively, this clearly shows that the major
objective is to maximize network-wide throughput. However, to account
for the dynamic behavior of traffic, the weight needs to be selected where
the difference in load is minimized as much as possible, without strongly
impacting network-wide throughput. During all the following experiments,
the weight of 0.91 will be used. Note that for visualization reasons, we do
not show the weights below 0.5, as they scored the lowest of all, while also
the MIQP throughput is normalized between 0 and 1.

– Parameters α and β for the χb capacity approximation function: here we
applied the method as described in detail in Section 3.4. Per technology,
we considered a number of stations between 1 and 15, while varying the
flow rates between the theoretical data rate of the particular technology
and 1 Mbps. We determined the following parameters: for the function χb,



T. De Schepper1 et al.

Table 2: Setup for static scenarios

Device Home Small Large Flows
office office

(20x10 m) (25x10 m) (30x15 m)
APs 2 3 4 N/A
Laptop 2 9 12 Download/Conf. call
HD TV 0 1 1 Video stream
4k TV 1 0 1 Video stream
Tablet 2 1 2 All types of flows
Smartphone 3 5 8 All types of flows
Total 10 19 28

α and β are respectively, for 2.4 GHz Wi-Fi -1.74 and 57.58, and for 5 GHz
Wi-Fi -3.21 and 112.99.

– Algorithm execution parameters: the execution of the algorithm (either
MIQP or heuristic) is triggered by the real-time monitoring component
when dynamic changes to the network have been detected (e.g., a variation
in one of the flow rates of at least 25 %, or the arrival of a new flow) or
when it has been 10 s since the last execution. The latter ensures that the
network configuration is optimized on a regular base, even in very static
environments. The value of the parameter can be chosen based on the
applicable environment. The first value (of 25 %) was chosen based on a
similar experiment as conducted for the weight of the objective function. In
our NS-3 implementation, we tried out different values and selected the one
with the highest impact. Furthermore, to avoid oscillations in the decision
making and allow changes to occur in the network, there should be at least
2 s between two consecutive executions. The other two values were selected
based on expert knowledge.

– MIQP time limit: in order to ensure the continuation of experiments and
thus ending simulations in a feasible amount of time, a time limit is set for
solving the MIQP. Here, a value of 900 s was chosen. Note that this value
was chosen a magnitude larger than the number of time maximally available
between two executions and required for reactive real-time optimizations.
This allows us to sufficiently investigate the scalability of the MIQP in
terms of execution time and show that it is not feasible to solve the MIQP
in real-time.

– Baseline RSSI threshold: as mentioned in the previous section, a threshold
is used to determine when a device needs to handover to a better connection
(if existing). We chose a threshold of -75 for this, as this value is considered
to still correspond to an average connection quality. Note that during some
of the following experiments, we also tried out other threshold values (e.g.,
-65, -70, and -80) with limited differences.
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Fig. 3: Throughput as a function of time for the home scenario, comparing
the heuristic, MIQP formulation, random algorithm, and the baseline
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Fig. 4: Throughput as a function of time for the small office scenario, com-
paring the heuristic, MIQP formulation, random algorithm, and the baseline

5.3 Static scenarios

In order to get a first impression of the performance of the different approaches,
we created three basic scenarios with varying topologies. As depicted in Ta-
ble 2, these scenarios grow in size and density. The results for all three scenarios
are shown in, respectively, Figures 3, 4, and 5. The graphs compare the base-
line, MIQP formulation, random algorithm, and the heuristic to the sum of the
desired flow rates (known as we use fixed flow rates here). Across all graphs,
we clearly see a significant improvement by our approach in comparison to the
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Fig. 5: Throughput as a function of time for the large office scenario, com-
paring the heuristic, random algorithm, and the baseline

distributed baseline and to the random algorithm. Moreover, we see nearly no
difference between the heuristic and the optimal MIQP approach.

For the Home scenario, we can report the following rates (± the standard
error), respectively for the baseline, random algorithm, MIQP, and heuristic:
81.61 Mbps (±2.62), 87.34 Mbps (±2.24), 90.15 Mbps (±2.36), and 89.84 Mbps
(±2.37). There is thus an improvement of, respectively, 10.46 and 10.08 % com-
pared to the baseline for the optimal and heuristic solutions, while the differ-
ence of 0.31 Mbps between the MIQP and the heuristic solution is negligible.
Furthermore, there is an increase of, respectively, 2.81 and 2,5 Mbps towards
the random algorithm. Note that the random algorithm performs better than
the baseline due to the fact that by selecting connections and flow routes at
random, a simple form of load balancing is performed (on average). As the
total desired rate is 90.40 Mbps (±2.35), it is clear that our approach suc-
ceeds in providing the optimal network configuration. Similarly for the Small
office scenario, the following average rates are achieved: 131.46 Mbps (±3.73),
179.85 Mbps (±3.52), 193.90 Mbps (±3.76), 192.63 Mbps (±3.14), for respec-
tively, the baseline, random algorithm, MIQP, and heuristic. The increases
towards the baseline are larger than for the Home scenario: 47.50 and 46.53 %,
while also the increase towards the random algorithm is larger (respectively,
10.69 and 9.72 %). The difference between the heuristic and the optimal MIQP
solution is 1.27 Mbps (or 0.65 %), which is once again negligible. The same can
be said for meeting the requirements of the flows as the total desired rate is
195.21 Mbps (±3.46). For the Large office scenario, the largest network con-
sidered, it was impossible to calculate solutions for the MIQP within the time
limit of 900 s. For, respectively, the baseline, random algorithm, and heuristic
the following rates are achieved: 179.71 Mbps (±3.61), 239.41 Mbps (±3.41),
and 283.60 Mbps (±3.61). This means that there is an increase of 103.89 Mbps
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Table 3: Impact of mobility on throughput

Wait times Baseline (Mbps) Random (Mbps) Heuristic (Mbps)

Home
0-10 s 83.16 (±3.31) 86.94 (±2.20) 89.74 (±2.31)
5-15 s 81.61 (±2.62) 87.34 (±2.24) 89.84 (±2.37)
10-20 s 80.32 (±2.88) 87.85 (±2.30) 89.35 (±2.25)

SME
0-10 s 157.19 (±4.70) 178.06 (±3.65) 191.03 (±3.80)
5-15 s 131.46 (±3.73) 179.85 (±3.52) 192.63 (±3.14)
10-20 s 135.46 (±3.98) 179.89 (±3.95) 193.16 (±3.19)

Office
0-10 s 229.47 (±6.22) 238.78 (±3.67) 282.91 (±3.62)
5-15 s 179.71 (±3.61) 239.41 (±3.41) 283.60 (±3.61)
10-20 s 178.73 (±5.06) 239.27 (±3.93) 286.56 (±3.30)

or 57.81 % towards the baseline. Compared to the random algorithm, there
is an increase of 44.19 Mbps pr 24.59 % If we compare the throughput of the
heuristic to the overall desired rate, we see that the heuristic is 15.41 Mbps
off. The reason for this is that the limits of the wireless technologies are being
reached. This is also the reason for the fluctuations that can be seen in the
throughput of the heuristic in Figure 5.

As already mentioned, it proved to be infeasible to optimally solve the
MIQP for the larger Office scenario. While it was possible to find a solution
for the first two scenarios, the execution time was high: respectively, 16.38 s
(±4.28) and 736.58 s (±39.71). Note that these execution times are signifi-
cantly above the minimal interval (of 2 s) between two consecutive runs of
the algorithm. Luckily, the heuristic performs significantly better in terms of
execution time: 8.23 × 10−5s (±3.92 × 10−5), 1.93 × 10−4s (±1.24 × 10−5),
and 5.23× 10−4s (±2.58× 10−5) for, respectively, all three scenarios. We will
discuss the scalability of both the MIQP and heuristic approach in more detail
in the next section but the significant difference between the two is already
clearly illustrated.

Finally, we considered the impact of mobility on the overall throughput.
Therefore, we varied the waypoint wait times for both scenarios by additional
experiments for times between 0-10 s and 10-20 s. The results, listed in Ta-
ble 3, show that the algorithm always significantly outperforms the baseline.
However, for the case with the highest mobility (and lowest wait times), the
baseline performs significantly better, than in the other cases. We believe this
to be due to the higher number of handovers, triggered by the mobility and its
more reactive nature. Furthermore, the heuristic also outperforms the random
algorithm across all scenarios.

5.4 Impact of network load and scalability

To investigate the scalability of the algorithm in terms of traffic and execution
time, the following scenario was created: a set of devices was randomly gen-
erated, each with a uniform randomly assigned flow with a randomly chosen
type and rate. The total desired rate of all flows equals a certain percentage
of total theoretical network capacity. Experiments were performed for loads of
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Fig. 6: Throughput as a function of network load, error bars depict the stan-
dard error

10, 20, 30, 40, 50, and 60 % of the theoretical network capacity. Moreover, the
presence of 3 APs was assumed in a space of 20 by 15 m with a waypoint wait
time of 5-15 s.

From Figure 6 it is clear that our heuristic approach offers a significant im-
provement towards both the baseline and the random algorithm. This improve-
ment grows when the percentage of network traffic increases. For instance, for
a load of 60 % there is an increase from 135.57 Mbps(±2.50) for the baseline
and 226.45 Mbps(±1.79) for the random approach, to 267.60 Mbps(±3.04) for
the heuristic. This is an increase of, respectively, 97.39 % and 30.36 %. More
importantly, we see that the heuristic allows, in general, to satisfy the traf-
fic demands of all flows. Only at 60 %, there is a difference of 35.58 Mbps
(or 11.74 % of the total demand) between the desired rates and the achieved
throughput. However, this is largely due to reaching the limits of the wireless
technologies as our network loads are based on the theoretical capacities, which
can not be met in reality due to capacity loss at higher layers (e.g., back-off
timers, retransmissions, etc). Furthermore, we can also point out that there is
nearly no difference between the optimal (MIQP) solution and the heuristic
one, in terms of achieved network-wide throughput. For instance, at a load of
30 % there is only a difference of 0.37 Mbps (respectively, 151.42 Mbps(±0.51)
and 151.05 Mbps(±0.21)). Note that there are no throughput results depicted
for the MIQP formulation for the network loads of 40, 50, and 60 % due to the
high computation time. This is similar to the Office scenario in the previous
section.

We measured for both approaches the time it takes to calculate a solution.
Table 4 shows the averages of the measured values across the different network
loads. It is clear that the computation time for the MIQP scales exponentially.
For instance, for only 14 flows (i.e., load of 30 %) it takes already 478.36 s
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Table 4: Comparison of the execution time for the MIQP and heuristic solu-
tions, under increasing network load

Load Flows Exec. time MIQP Exec. time heuristic
10 6 8.17 s (± 1.08) 4.17× 10−5s (±1.62× 10−5)
20 10 29.75 s (± 6.84) 1.25× 10−4s (±7.21× 10−5)
30 14 478.36 s (± 36.39) 1.85× 10−4s (±8.81× 10−5)
40 19 N/A 2.16× 10−4s (±1.81× 10−4)
50 24 N/A 4.29× 10−4s (±2.06× 10−4)
60 29 N/A 5.90× 10−4s (±2.86× 10−4)

(±36.39) to compute the configuration. For higher loads, it was infeasible to
calculate a solution within the time limit of 900 s. This clearly indicates that
the MIQP solution cannot be used in very dynamic real-life wireless networks.
The computation times reported when using the heuristic is drastically lower.
For instance, for 14 flows it takes only 1.85 × 10−4s (±8.81 × 10−5) to find a
solution.

To further investigate the scalability of the heuristic approach, we per-
formed a separate experiment, with our Python setup, emulating larger net-
works. We artificially provide the necessary inputs to the heuristic, thereby
varying the number of stations between 100 and 10000 and the number of APs
between 10 and 1000. Furthermore, we assume the presence of 4 technologies
(e.g., IEEE 802.11n, IEEE 802.11ac, IEEE 802.11ad, and LTE). For each pair
of the number of stations and APs, we take the average of 20 executions, each
with a randomly generated topology. Figure 7 shows the resulting heatmap,
where every colored cell indicates the average time to solve the heuristic for
a specific pair. We can see that the execution time mainly depends on the
number of stations (and thus flows), and less on the number of APs. While
the time increases when the number of stations grows, it stays under 3 s for all
configurations. In particular, it takes on average 2.95 s (± 0.07) to calculate
a solution for the largest configuration. This means that the heuristic algo-
rithm allows reacting to dynamic network changes and allows us to perform
optimizations in real-time. In detail, at a second granularity for very large
networks.

5.5 Dynamic scenarios

Up to now, we have only considered scenarios with static flow rates and ar-
rival times, as this helped in determining the impact of mobility and the use
of real-time monitoring. We will now consider a more dynamic scenario, as
this is more realistic and the adaptability to dynamic conditions is also key for
our approach. All download flows thus act as in reality and consume as much
bandwidth as possible until the desired number of data has been downloaded
(or the maximum flow length has been reached). Moreover, flows arrive ac-
cording to a Poisson distribution and the flow length is uniformly at randomly
chosen between 5 and 15 s and 10 and 30 s, respectively for the first and second
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Fig. 7: Scalability of heuristic in terms of stations and APs
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Fig. 8: Throughput as a function of poisson parameters, error bars depict the
standard error, for a short flow length

scenario. Furthermore, the impact of different values for the Poisson arrival
rate (λ) is evaluated.

Figures 8 and 9 shows that for all different arrival rates the heuristic ap-
proach significantly outperforms the distributed baseline and the random ap-
proach, across both scenarios. For the first scenario we see that for 0.1 as Pois-
son interval, the baseline achieves a throughput of 100.60 Mbps (±9.23) and
156.65 Mbps (±9.91), while the heuristic allows for a network-wide throughput
of 197.87 Mbps (±21.48). When using a parameter value of 0.25, throughputs
of 151.07 Mbps (±2.94), 246.18 Mbps (±12.73), and 328.77 Mbps (±9.35) are
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Fig. 9: Throughput as a function of poisson parameters, error bars depict the
standard error, for a long flow length

achieved, respectively for the baseline, random algorithm, and heuristic ap-
proach.

Equivalently, for the second scenario we see that for 0.1 as parameter value,
the baseline achieves a throughput of 104.43 Mbps (±9.23), the random al-
gorithm attains 152.61 Mbps (±17.13), while with the heuristic 183.58 Mbps
(±19.94) is achieved. For 0.25 as parameter value, the baseline and ran-
dom approach achieve, respectively, a throughput of 152.30 Mbps (±2.86) and
241.87 Mbps (±13.51). In contrast, the algorithm allows for a throughput of
351.02 Mbps (±9.58). This is a gain of, respectively, 130.48 % and 71.67 %.
Similarly to the experiments with varying network loads, the throughput of
the heuristics does not further grow for the last parameter value (of 0.3), as
the total network capacity has been reached. Finally, note that we have also
repeated this experiment for other ranges of flow lengths, but the results were
nearly identical and are therefore omitted.

6 Conclusions

This article addresses the need for intelligent management of heterogeneous
wireless networks. We introduce a multi-technology load balancing approach
that can balance devices across different APs and steer traffic across differ-
ent paths through the network, on top of existing management frameworks
and standards (like MPTCP). Our approach focuses on the dynamic and chal-
lenging environment of wireless networks and takes into account specific pa-
rameters such as the mobility of users and coexistence of multiple APs. This
allows us to optimize the performance of the network in terms of network-wide
throughput. We present both a mathematical problem formulation, through
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a MIQP, and a heuristic algorithm to ensure practical usability. A thorough
evaluation, through a combination of extensive simulations, shows that the
presented approach can indeed offer a significant improvement in terms of
throughput. This throughput increase is more than twice as high for multiple
scenarios compared to a state of the art baseline. Furthermore, we also show
that the heuristic approach scales well (up to at least 10000 devices in a single
network) and that the heuristic can be used to adapt the network configura-
tion to dynamic behavior at a second granularity. Future work includes, among
others, the evaluation of the load balancing approach in real-life testbeds and
investigating the applicability towards IoT networks (e.g., in terms of energy
consumption) or VANETs (i.e., coping with a highly dynamic environment).
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