
This item is the archived peer-reviewed author-version of:

An architecture-based framework for managing adaptive real-time applications

Reference:
Gui Ning, Sun Hong, De Florio Vincenzo, Blondia Christian.- An architecture-based framework for
managing adaptive real-time applications
Proceedings of the 35th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA),
2009 - S.l., 2009 
Handle: http://hdl.handle.net/10067/794250151162165141 

Institutional repository IRUA

http://hdl.handle.net/10067/794250151162165141
http://anet.uantwerpen.be/irua


An Architecture-based Framework for Managing Adaptive Real-time 
Applications  

Ning Gui, Vincenzo De Florio, Hong Sun, Chris Blondia 
PATS group, University of Antwerp, Belgium, 

and IBBT, Ghent-Ledeberg, Belgium 
{ning.gui, vincenzo.deflorio, hong.sun, chris.blondia}@ua.ac.be 

 
 

Abstract—Real-time systems are increasingly used in 
dynamic changing environments with variable user needs, 
hosting real-time applications ranging in number and nature. 
This paper proposes an architecture-based framework for 
managing components’ dependence and lifecycle in an 
effective and uniform way. A real-time component runtime 
service is proposed here to maintain the global view, control 
the whole lifecycle of the components and keep existing real-
time components' promised contracts in the face of run-time 
changes. This framework is designed to be easily extended 
with other constraint resolving policies as well as dependence 
descriptions languages. At end of this paper, the framework 
is tested by a simulated control application via adaptation 
and performance aspects. 

Keywords-component; adaptive software; run-time adaptation, 
architecture-based adapatation 

I. INTRODUCTION 
Traditional real-time systems such as process control 

systems typically work in closed and highly predictable 
environments. As long as those assumptions hold, this 
approach allows real-time requirements to be met with 
very high assurance. However, some soft real-time 
systems, such as smart devices, However, some soft real-
time systems, such as smart devices, gains more and more 
popularity and increasingly operate in changing 
environments and with diverse user needs. In coping with 
dynamic and diverse requirements, such devices normally 
are equipped with open software system that able to host 
applications ranging in number and nature over time. In 
such system, the traditional waterflow approach for real-
time application development: design, verify, map, and 
deploy could not work effectively as the system 
configuration will evolve during the whole system 
lifecycle.   

This open and evolving execution environment 
requires new approaches in building and manages real-
time applications. Thorough off-line system analysis is 
forbidden by such dynamicity. However these installed 
applications are, to a certain extent, inter-dependent with 
one another, as one application may competing with other 
applications for the CPU, memory, networks or other 
system resources. Failed to deal with such dependence 
may lead to breaking applications’ real-time contracts 
which the system designer has supported to satisfy. 

Traditional RTOS and real-time schedulers based 
approach could not effectively cope with such complexity 
in dependence, as the scheduler itself has no way to get 
and could not understand that high level application 
dependences. This dependence can only be interpreted 
according to current context knowledge which involves 
many facts in the whole system – hardware, software and 

human. The RTOS is in a sense too “far away” from the 
application-level concerns to be able to take the right 
decisions on which components to select and which 
resources to dispatch. 

In order to support the dynamic changing set of real-
time applications, from our experience in designing 
adaptive real-time systems, any effective solution should 
have the following three important aspects.  First, those 
resource requirements across the currently hosted 
applications must be obtained and managed during run-
time. Second, those component dependences, including 
the explicit functional dependencies and the implicit 
dependencies due to competing for the limited available 
resources, need to be explicitly modeled into architectural 
model across application domains. Third, the architectural 
model should be used to drive the lower-level 
managements of the corresponding real-time tasks. 

Our framework tackles these problems from different 
perspectives. In this paper, we introduce an architecture-
based management framework - the Declarative Real-time 
Component (DRCom) Framework, spanning through 
installed application domains. By eliciting each real-time 
component’ distinguishes attributes from its meta-data 
and its component management interface, an accurate 
global architecture model for current real-time system can 
be built, then this model is mapped to adjust low-level 
real-time task’s attributes and states according to plug-
able adaptation policies. Benefited from the Service 
oriented architecture, this framework can be easily 
extended with other dependence resolving policies to deal 
with diverse system requirement. The effectiveness of our 
architecture is demonstrated both from qualitative and a 
quantitative point of view. 

The rest of this paper is structured as follows: in 
Section 2, a scenario shows the importance for inter real-
time application dependence managements. Following 
section 3 gives a general overview of our architecture. 
Section 4 describes the component’s declarative real-time 
meta-data format design. Then in section 5, the 
component’s dependence resolving process is discussed. 
Then, our framework is evaluated from two aspects in 
Section 6. Section 7 provides a comparison with related 
works. The future work and our conclusions are introduced 
at the end of this paper. 

II. SCENARIO DESCRIPTIONS 
To better illustrate all the complexities in introducing 

the context knowledge into the application composition 
process, we introduce an example scenario that will be 
revisited several times through the course of this paper. 



 

Figure 1.  Adaptation across application domains 

As a typical multi-task system, if a user starts those 
two applications, a Set-top may try to execute the two 
applications simultaneously no matter the Set-top device 
has enough resources. If not, it may eventually lead to 
possibly transient timing problems including missing 
frame, data overflows etc. These time breaches can results 
in the poor video quality and bad user experience. The 
typical schedulers in the RTOS itself has no way to 
determine which actions to be taken as it only support 
very primitive attributes for scheduling, e.g. Priority or 
Deadline.  Such conflict can only be solved with context 
knowledge.  

III. ARCHITECTURAL FRAMEWORK 
The above case study shows that, without the 

architectural-based adaptation supports, it is very hard to 
effectively deal with higher level conflicts across 
application domains. In order to deal with these 
challenges, a framework based on declarative realtime 
component is proposed to build the adaptive real-time 
application. Firstly, the system design goal is analyzed. 

A. System design Goal 
To deal with highly dynamic environments while 

providing explicit real-time support, we describe an 
integrated architecture that provides support for the 
following. 

1) dynamicity support: The dynamicity of real-time 
component is supported by taking control of all requests 
for creation, configuration, reconfiguration and un-
initialization – that is, the whole of the components’ 
lifecycle – from underlining system. This allows having a 
complete picture of all the lifecycle requests taking place 
in the system as a whole, as well as a snapshot of current 
system configuration. 

2) dependence support: Another problem we have to 
tackle is the intrinsic dependencies that each component 
has on other components – both in hardware and software. 
We distinguish two types of dependences, functional 
(structural) dependencies regarding the business logic and 
non-functional dependences regarding the QoS 
requirements.  

3) customizable global adaptation support : Given a 
description of the current system configuration and of the 
functional and non-functional dependencies between 
components, rather than using a general adaptation 
scheme, here we make use these descriptions to support 
the definition of custom adaptation strategies. Depending 

upon the dynamic availability of resources and adaptation 
policy (for instance, performance first, safety first or 
mission duration first …) different algorithms for 
constraint resolution may be desired. The following 
section describes the system architecture design of our 
solution. 

B. System Requirements Analysis 
In our model, the distinguishing real-time aspect of 

DRCom is declared in a meta-data file. Intensive studies 
have been carried out on how non-functional properties of 
a component implementation are specified, ranging from 
simple name-value pair based SPDF (Simple prerequisite 
Description Format) [17] to modern QoS specification 
languages such as CQML+ [15] etc. According to specific 
domains, different ways of specifying real-time 
components’ prerequisites and dependence may be used. 

The same is true for the adaptation logic. Due to the 
fact that real-time application adaptation logics are 
domain-specific and/or application specific, rather than try 
to propose a silver bullet general adaptation logic, which 
is rather unlikely, instead, this architecture is designed to 
be flexible and easy to be tailored to different contexts. 

Our framework is designed in a ways that different 
kinds of description languages and adaptation logics could 
be used. Three key modules were designed to fulfill 
different aspects requirements – the Description, 
Reasoning and Action modules. Dependencies and 
configurations are represented in the description modules 
and reasoned upon in the reasoning module while the 
corresponding actions are taken in the Action module. 
Contrary to [15] and most of the state-of-art studies, in 
which the execution runtime statically integrates these 
three modules, our framework implemented them as 
service providers by employing the Service-oriented 
model. They are loosely coupled by their service 
interfaces. Future more sophisticated QoS descriptions as 
well as those adaptation algorithms to be easily plugged 
into our framework as long as they implemented the same 
service interface. 

C. Architectural Framework 
Figure 2 presents a schematic view of the major 

elements of our architecture. This framework is composed 
of three main parts corresponding to the modules 
described in the previous section plus other ancillary 
services, such as resource management for monitoring 
system resource changes.  

1.  A mechanism (Custom language parsing Service, 
working as Description module) for resource dependence 
representation lets developers specify component 
dependencies in their own custom language.     

2. A constraint resolving service (working as 
reasoning module) for QoS constraints resolving policy 
lets users or administrators specify the domain-specific 
system adaptation policy.   

3.  The Declarative Real-time Component Run-time 
(DRCR) execution environment (action module) works at 
the core of the framework. It manages the DRCom 
instances and performs the actions reasoned by resolving 
service. It also takes the responsibilities to monitoring the 
change events sent by Resource Management Service and 
OSGi system. A DRCom instance registry is designed to 



keep the installed real-time component instances’ 
information and it is maintained by DRCR.  

 
Figure 2.   Architectural Framework  

Based on the decisions made by the constraint 
resolving service, DRCR takes full control of the 
component lifecycle. In this framework, a complete 
component’s lifecycle model and a correspondent real-
time component management interface is designed. The 
adaptation process will be triggered by component state 
changes and the notification from external event sources 
such as Resource Manager or a simple periodic time. In 
the following sections, we provide a more in-depth 
description of key elements and processes of this 
architecture. 

IV. COMPONENT DESCRIPTION 
Real Time Component description is defined in meta-

data files attached with component implementation. This 
document specifies the distinguished characteristics of the 
specific real-time component. Here we use the hybrid 
real-time component model introduced in our previous 
work [9], while an important feature is added to support 
more complex description languages. 

A. Meta-data description design  
In our implementation of DRCom, a real-time 

component configuration represents a component 
instance’s functional contracts as well as non-functional 
requirements. As discussed in section 3, the framework 
should support different kinds of component prerequisite 
languages. However, from an implementation point of 
view, a purely separated approach means little or no pre-
knowledge of the component’s meta-data format. This 
will introduce considerable implementation complexity 
and bring unnecessary performance overhead. Compared 
to the complex non-functional requirements, component’s 
functional part is comparably well structured and stable. 
In order to strike a balance between performance and 
complexity, we use a two phase mode in describing and 
processing the component’s functional and non-functional 
dependences. 

The functional part is defined by XML schema and 
parsed by DRCR.  

For the component’s resource prerequisite description 
(non-functional part), the job of parsing this information is 
delegated to an external custom parsing service. The 

custom resolving service will process the parsed data and 
send results to the DRCR. 

Figure 3 shows a fragment of meta-data file which 
contains the functional and non-functional contract of a 
smart camera component that can return regions of 
interests (subsets from a frame image data) on demand. 

<? xml version="1.0" encoding="UTF-8"?> 
<drt:component name="camera" desc="this is a smart camera 

controller"  enabled=”true”> 
<implementation bincode="ua.pats.demo. 

smartcamera.RTComponent"/> 
   <outport name="images" interface="RTAI.SHM" 

type="Byte" size="400"/> 
<inport name="windposition" interface="RTAI.SHM" 

type="Integer" size ="1" optional=”false”/> 
  <property name="windowsize" type="Integer" value="40" /> 

  
</drt:component> 

Figure 3.  Component sample configuration 

B. Functional Description  
The functional description of component meta-data 

contains mainly about component functional attributes 
and requirements. It normally contains, for realtime 
application, the exposed and required port for data 
transmission, the component’s properties for 
configuration. The functional description mainly based on 
our previous work in Hybrid real-time component model. 
Due to page limit, please refer our previous work [5] for 
details. 

C. Non-functional Prerequisite Description  
The non- functional prerequisite description is 

described in the service-specific element. This element 
has only one attribute – language, which designates which 
language is employed in describing the resource 
prerequisites. The DRCR itself will not try to parse the 
value of this element. It will just parse the language 
attribute and store the value of service-specific element as 
a normal string in the component instance registry and 
delegate it to the custom parser service to parse. To 
demonstrate the validation of our framework, we designed 
the Simple Task Description Format (STDF) for 
describing DRCom real-time task’s characteristics. 

Figure 3 shows an STDF meta-data for real-time task 
characteristics in the service-specific element. The 
Machine-type specifies that this component ‘s real-time 
execution parts is a periodic task, running on CPU 1, 
priority 1 with period  10000ns (at rate 100Hz) and 
execution time for each round of execution is 1000ns and 
deadline for overrun is 2000ns. 

V. CONSTRAINT RESOLVING PROCESS 
One of the key processes in the declarative real-time 

component framework is the constraint resolving process. 
It takes responsibility to identify the relationship between 
the real-time components as well as resources and to 

<service-specific 
language=”UA.PATS.Language.SRDF”>  

<periodictask cpuid="1" ram="20MB" priority="1" 
executiontime=”1000” period="10000" 

deadline="2000"/> </service-specific> 
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reason about possible reactions according to the current 
system context. Complying with the two phrase  

When system configuration changes, e.g. because a 
new real-time component arrives, or the resource 
management service prompts that there is a noticeable 
resource change, DRCR will be activated. Firstly it will 
check existing DRCom’s constraints and dependences. 
After the functional part was successfully checked and 
satisfied, the DRCR will determine whether the 
component’s non-functional requirements could be 
guaranteed without jeopardizing the validity of other 
components’ real-time contracts. If this is indeed the case, 
this new coming component is now ready to be activated. 

Complying with two phase DRCom configuration, 
two phase constraint resolving was used. One is the 
Functional dependence resolving phase, which checks the 
functional dependence for any real-time component when 
system change occurs. In current prototype, the DRCR 
integrate the Function dependence resolving modules to 
achieve better performance and reduce implementation 
complexity. The other phase is the customized constraints 
resolving process. As the framework uses the OSGi’s 
service-oriented model, system administrators can change 
the system resolving behavior by registering their own 
customized resolving service to fit specific system 
configurations.  

A. Functional Dependence Resolving  
1)  Circular Check: 

 Real-time components in applications can be modeled 
as a component graph, which normally form a directed 
acyclic graph. In a task route, a task at a component has a 
certain set of outputs, which is a set of inputs for the task 
at next component along the task route. It’s possible for a 
set of component descriptions to create a circular 
dependency. In this case at least one component 
configuration should not be satisfied. 

2) Port Compatibility Check 
In order to satisfy the functional dependency, all 

enabled and activated component’s input ports should have 
corresponding output ports. It mean that the installed 
components dependence need to be checked when system 
structure ongoing a change. This guarantees that a 
component can only be initialized when all its dependences 
are satisfied. For instance, Figure 3 shows that the smart 
camera port needs an input port called “windowsposition”. 
In order to satisfy the port compatibility check, one 
activated component instance with name = 
“ua.pats.trajectory.windows” and outport defined as 
follows 
<outport name="windposition" interface="RTAI.SHM" type="Integer" size 
="1"/> 

B. Custom Resolving process 
In practical environments, according to dynamic 

availability of resources and system’s specific 
requirements, different algorithms for the resource 
allocation resolution may be desired. Thus the Custom 
Resolving service is designed aligning with service 
oriented mode to give customable support.  

By using different customized resolving service 
providers, system behavior can be easily altered without 
the need to change the application main functional logic. 
This eased the need to recompile and re-load the whole 

application. The traditional admission service normal 
enables a component only when all the basic resource 
prerequisites are fulfilled. However, with context- specific 
knowledge, more flexible and complex resolving 
processes can be employed. One example can be: to stop 
low priority tasks or those tasks with optional port 
requirements to release their resource for incoming high 
priority real-time components. 

In our system, several custom resolving service 
providers may co-exist in one system. DRCR will choose 
one candidate service provider which matches current 
system context. In current implementation, the system 
context is a global property managed by administrator. 
Our ongoing work is to employ the context reasoning 
scheme to get more accurate and flexible context 
information so as to make use of a more appropriate 
custom resolving service. 

 
Figure 4.  Sequence diagram for adaptation 

C. Adaptation Process 
Figure 4 shows a sequence diagram for adaptation. In 

this scenario, component B needs component A’s output 
to satisfy its functional constraints. As an instance 
(ComAInstance) of component A configuration already 
exists, the DRCR will successfully solve B’s functional 
constraints. Then, the internal resolving service and the 
external customized service will be consulted for real-time 
resolving process. When both services return positive 
results, the DRCR will create and activate the component 
B‘s instance (ComBInstance) according to its 
configuration. If ComAInstance is stopped, the DRCR 
gets notified about this event and consults its internal and 
external custom service again to check for newly 
(un)satisfied component instances. When it gets the 
results, the DRCR will find the ComBInstance is now 
unsatisfied and should be disabled. 

VI. IMPLEMENTATION & SIMULATION RESULTS 
In this section, we will use a scenario-based simulation 

to evaluate our adaptation approach across different 
application domains. Our framework has been validated 
both from a qualitative and a quantitative point of view. 
Firstly, we will discuss the system implementation. 

A. System implementation 
We use the OSGi framework as our management-layer 

implementation platform. OSGi technology serves as the 



platform for universal middleware ranging from 
embedded devices to server environments. The open 
standard simplifies the introduction of new capabilities 
and services. Equinox, is used as our basic development 
platform. In the real-time component implementation, we 
use our hybrid model proposed in our previous work [5]. 

This component model runs component management 
functions, management and lifecycle, in non-realtime 
environment and the small, predictable (functional) parts 
in a real-time environment. Here the real-time 
environment we used is Real-Time Application Interface 
(RTAI) –an open source real-time Linux kernel extension.   

The DRCom model provides a basic management 
interface that enables uniform and coherent control for 
component’s lifecycle and attributes. Each component is 
associated with a meta-data file which enlists its 
abstractions – for instance, interface for communication, 
attributes as well as reference constraints. Then, the 
component’s functions are mapped to the RTAi real-time 
tasks. The real-time parts are controlled /configured via its 
non realtime peer to keep their state coherent via a clear 
designed asynchronized control interface [5]. 

Here, we have to point out that currently our 
framework focuses on providing a general adaptation 
framework for real-time systems rather than providing the 
guaranteed real-time reconfiguration. As our adaptation 
logic mainly operates in the non real-time domain, it 
cannot guarantee to perform certain adaptation actions in 
prescribed time constraint. However, guaranteed real-time 
reconfiguration is often data-dependent, mode-dependent, 
configuration-dependent and hardware- dependent. A 
general scheme is very hard to achieve.  

B. Simulation configuration 
As shown from Figure 1, all six modules’ execution 

parts are implemented as periodic tasks. Decoding 
component of TV application is implemented with a real-
time task with period 33.37 ms with priority 2, execution 
time about 8 ms and deadline is 12 ms. The execution part 
of Transcoder module is implemented as with a real-time 
task with period 50ms with priority 1, execution time 
about 10 ms and deadline is 30ms. The schedule policy 
used by underline RTAI system is FIFO. In order to show 
the interference between these two components, others are 
implemented with little CPU time. The transmission 
methods are asynchronized (shared memory) so we can 
focus on the two coding module’s performance.  

As the video decoding execution time may vary 
according the contents of video streams, in order to more 
clearly demonstrate the mutual-influence among 
applications, we substituted the decoding function into an 
calculate function which use comparably constant CPU 
time for each round of calculation. So the execution 
influence of inter-influence can be more clearly 
indentified from the results. In Figure 1, the color of 
component shows state of each component after 
adaptation process. 

C. Custom resolving policy 
As described in section 2, when TV application and 

transcoding application are executed simultaneous, system 
may not have enough resources to guarantee their 
performance. Here, the custom resolving services will be 
employed to deal with the competing requirements. The 

strategy employed in our simulation is to protect the TV 
application as it normally matter user’s experience most.   

The custom resolving service will track the decoding 
component’s overrun attribute via getproperty()  defined 
in the component management interface. If the overrun 
increase too fast (by recording overrun values and time of 
retrieving the values), it will try to disable the component 
which consume most CPU time (exectutiontime/period), 
the algorithm 1 describe the adaptation process.  

After this custom resolving process, the Transcoder 
component will be disabled. Then, due to functional 
dependence constraint violation, the File Writer in the 
Transcoding application will also be disabled in functional 
resolving process. The different color in Figure 1 shows 
the states of installed components after these adaptation 
processes. 

D. Simulation results 
We perform 6000 observations for the execution time 

of Decoding Component in TV application. Table 1 shows 
the execution time in case of with and without adaptation 
framework support. In order to eliminate the transitory 
effects of cold start and adaptation, we collect 
measurements after the system has started and renders a 
steady execution. The execution time is express in micro-
second (µs).  
TABLE I.  EXECUTION TIME (WITH/OUT ADAPTATION) 

Context/ 
Execution Results With Adaptation No 

Adaptation 
AVERAGE 

Execution Time (µs) 8127.297  10647.804  

AVEDEV (µs) 4.15  3410.9 
MIN (µs) 8121.8 8125.3 
MAX (µs) 8175.1 18296.7 
Overrun (times) 0 1880 

In the formal case, the execution time of decoder is 
largely around 8ms, the biggest execution time is about 
8.18 ms when the custom resolving service exist (it will 
disable transcode module). In contrast, if no such service 
available, the system will try to run these two applications 
simultaneously. The jitter of decoder task’s execution 
time is very big. As we can seen from Table 1, the 
average deviation is 3410.9µs which is significantly worse 
than 4.15µs when our framework resolving mechanism 
exists. This may eventually lead to possibly transient 
timing problems of TV decoding task including missing 
frame, data overflows etc.  

VII. RELATED WORK 
Our platform follows the approach of e an 

architecture-based management framework for real-time 
system. That is: the real-time guarantee is not directly 
implemented within components’ application code but 

Algorithm 1: Guarantee TV application 
Requires:  Installed components’ CPU usage information 
Ensure: Allocate enough CPU time to the TV application 
If Decoder. getProperty(overrun)  increase > Max_threshhold 
for all cmp in SatisfiedComponents do 
    if component not from TV application 
     get CPUusage from cmp attributes 
      record the cmp with highest CPU usage. 
    end if 
end for 
put cmp to disabled component list(dcl)  
return dcl 



provided by the container runtime environment according 
to additional component descriptors.  

CIAO [10] builds a QoS-enabled CORBA Component 
Model (CCM). The project adhered to existing OMG 
specifications such as RT/CORBA and CCM. In contrast, 
our focus is on the challenges of simultaneously 
supporting real-time control and non real-time component 
adaptation management while keeping the implementation 
of our component model as lean as possible. The 
considerable overhead of implementing or extending a 
fully compliant CCM infrastructure would have been 
counterproductive to our system goals.  

In the real-time component designs, Stewart et al. [12] 
designed a reconfigurable port-based object framework 
whose real-time communication scheme is similar to ours. 
Their pure real-time design philosophy makes this system 
hard to develop.  

In the real-time Java specification, RTSJ [2] 
introduces the concepts of timeliness, schedule ability, 
and real-time synchronization to Java-based applications. 
It aims to enhance the Java platform with capabilities 
required by real-time applications. However, dynamicity 
of modules is not addressed, which would prevent an 
implementation of our concepts on top of this platform.  

In order to deal with component dynamicity, 
Cervantes and Hall [14] propose a service-oriented 
component based framework for constructing adaptive 
component-based applications. The key part of the 
framework is the Service Binder which automatically 
controls the relationship between components. However, 
the static dependence description and resolving policy 
limits its application in normal OSGi applications and 
could not be applied to the real-time domain.  

Aleš, Loiret et al. propose a component framework [15] 
for Java-based Real-time systems based on RTSJ. It 
provides continuum between the design and 
implementation process. By automatically generating an 
execution infrastructure, it mitigates complexities of RTSJ 
development and transparently manages the real-time 
concerns. However, their work lacks an automatic 
component dynamicity control scheme and their 
component dependence support is rather static and 
confined to the RTSJ domain specific knowledge.  

Hartig and Zschaler designed and implemented 
enforceable component-based real-time contracts [17]. It 
runs large and complex parts in a classic non-realtime 
environment and only small, predictable parts in a real-
time environment. However, although they propose the 
concept of adaptation manager for parameter adjustment 
and profile change, there is no formal design for how to 
deal with the dynamicity of component’s availability 
which is crucial for downtime-free systems. 

VIII. CONCLUSION AND FUTURE WORK 
This paper describes the experience in building a 

framework that supports run-time adaptation in response 
to the dynamic evolution and continuous deployments of 
modern complex real-time systems. In this framework, the 
real-time contract is specified in the component’s meta-
data. The component instance is managed by the system 
for the dependence resolving and real-time contract. 
Global view of current system configuration is managed 
by the DRCR service. Such system reasons about the 

changes in the system configuration and performs certain 
actions while still guaranteeing the designated real-time 
components’ real-time contracts. It sheds the burden for 
each real-time component to monitor the system status 
and maintains the reference to the other dynamically 
available real-time components. Although our experience 
was done based on the OSGi middleware, we believe our 
findings to be general to be used in other architecture-
based management systems. 

Not all resource requirements can be specified 
statically. Here, resource usage is highly dependent on the 
execution context, which is not known at component 
deployment time. As our framework enables external 
adaptation polices to be injected into reconfiguration 
process, while flexibility in nature, how to verify if the 
context-specific reasoner gave invalid tactics and 
strategies become a big challenge. 
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