
This item is the archived peer-reviewed author-version of:

An architecture-based framework for managing adaptive real-time applications

Reference:
Gui Ning, Sun Hong, De Florio Vincenzo, Blondia Christian.- An architecture-based framework for
managing adaptive real-time applications
Proceedings of the 35th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA),
2009 - S.l., 2009
Handle: http://hdl.handle.net/10067/794250151162165141

Institutional repository IRUA

http://hdl.handle.net/10067/794250151162165141
http://anet.uantwerpen.be/irua

An Architecture-based Framework for Managing Adaptive Real-time
Applications

Ning Gui, Vincenzo De Florio, Hong Sun, Chris Blondia
PATS group, University of Antwerp, Belgium,

and IBBT, Ghent-Ledeberg, Belgium
{ning.gui, vincenzo.deflorio, hong.sun, chris.blondia}@ua.ac.be

Abstract—Real-time systems are increasingly used in
dynamic changing environments with variable user needs,
hosting real-time applications ranging in number and nature.
This paper proposes an architecture-based framework for
managing components’ dependence and lifecycle in an
effective and uniform way. A real-time component runtime
service is proposed here to maintain the global view, control
the whole lifecycle of the components and keep existing real-
time components' promised contracts in the face of run-time
changes. This framework is designed to be easily extended
with other constraint resolving policies as well as dependence
descriptions languages. At end of this paper, the framework
is tested by a simulated control application via adaptation
and performance aspects.

Keywords-component; adaptive software; run-time adaptation,
architecture-based adapatation

I. INTRODUCTION
Traditional real-time systems such as process control

systems typically work in closed and highly predictable
environments. As long as those assumptions hold, this
approach allows real-time requirements to be met with
very high assurance. However, some soft real-time
systems, such as smart devices, However, some soft real-
time systems, such as smart devices, gains more and more
popularity and increasingly operate in changing
environments and with diverse user needs. In coping with
dynamic and diverse requirements, such devices normally
are equipped with open software system that able to host
applications ranging in number and nature over time. In
such system, the traditional waterflow approach for real-
time application development: design, verify, map, and
deploy could not work effectively as the system
configuration will evolve during the whole system
lifecycle.

This open and evolving execution environment
requires new approaches in building and manages real-
time applications. Thorough off-line system analysis is
forbidden by such dynamicity. However these installed
applications are, to a certain extent, inter-dependent with
one another, as one application may competing with other
applications for the CPU, memory, networks or other
system resources. Failed to deal with such dependence
may lead to breaking applications’ real-time contracts
which the system designer has supported to satisfy.

Traditional RTOS and real-time schedulers based
approach could not effectively cope with such complexity
in dependence, as the scheduler itself has no way to get
and could not understand that high level application
dependences. This dependence can only be interpreted
according to current context knowledge which involves
many facts in the whole system – hardware, software and

human. The RTOS is in a sense too “far away” from the
application-level concerns to be able to take the right
decisions on which components to select and which
resources to dispatch.

In order to support the dynamic changing set of real-
time applications, from our experience in designing
adaptive real-time systems, any effective solution should
have the following three important aspects. First, those
resource requirements across the currently hosted
applications must be obtained and managed during run-
time. Second, those component dependences, including
the explicit functional dependencies and the implicit
dependencies due to competing for the limited available
resources, need to be explicitly modeled into architectural
model across application domains. Third, the architectural
model should be used to drive the lower-level
managements of the corresponding real-time tasks.

Our framework tackles these problems from different
perspectives. In this paper, we introduce an architecture-
based management framework - the Declarative Real-time
Component (DRCom) Framework, spanning through
installed application domains. By eliciting each real-time
component’ distinguishes attributes from its meta-data
and its component management interface, an accurate
global architecture model for current real-time system can
be built, then this model is mapped to adjust low-level
real-time task’s attributes and states according to plug-
able adaptation policies. Benefited from the Service
oriented architecture, this framework can be easily
extended with other dependence resolving policies to deal
with diverse system requirement. The effectiveness of our
architecture is demonstrated both from qualitative and a
quantitative point of view.

The rest of this paper is structured as follows: in
Section 2, a scenario shows the importance for inter real-
time application dependence managements. Following
section 3 gives a general overview of our architecture.
Section 4 describes the component’s declarative real-time
meta-data format design. Then in section 5, the
component’s dependence resolving process is discussed.
Then, our framework is evaluated from two aspects in
Section 6. Section 7 provides a comparison with related
works. The future work and our conclusions are introduced
at the end of this paper.

II. SCENARIO DESCRIPTIONS
To better illustrate all the complexities in introducing

the context knowledge into the application composition
process, we introduce an example scenario that will be
revisited several times through the course of this paper.

Figure 1. Adaptation across application domains

As a typical multi-task system, if a user starts those
two applications, a Set-top may try to execute the two
applications simultaneously no matter the Set-top device
has enough resources. If not, it may eventually lead to
possibly transient timing problems including missing
frame, data overflows etc. These time breaches can results
in the poor video quality and bad user experience. The
typical schedulers in the RTOS itself has no way to
determine which actions to be taken as it only support
very primitive attributes for scheduling, e.g. Priority or
Deadline. Such conflict can only be solved with context
knowledge.

III. ARCHITECTURAL FRAMEWORK
The above case study shows that, without the

architectural-based adaptation supports, it is very hard to
effectively deal with higher level conflicts across
application domains. In order to deal with these
challenges, a framework based on declarative realtime
component is proposed to build the adaptive real-time
application. Firstly, the system design goal is analyzed.

A. System design Goal
To deal with highly dynamic environments while

providing explicit real-time support, we describe an
integrated architecture that provides support for the
following.

1) dynamicity support: The dynamicity of real-time
component is supported by taking control of all requests
for creation, configuration, reconfiguration and un-
initialization – that is, the whole of the components’
lifecycle – from underlining system. This allows having a
complete picture of all the lifecycle requests taking place
in the system as a whole, as well as a snapshot of current
system configuration.

2) dependence support: Another problem we have to
tackle is the intrinsic dependencies that each component
has on other components – both in hardware and software.
We distinguish two types of dependences, functional
(structural) dependencies regarding the business logic and
non-functional dependences regarding the QoS
requirements.

3) customizable global adaptation support : Given a
description of the current system configuration and of the
functional and non-functional dependencies between
components, rather than using a general adaptation
scheme, here we make use these descriptions to support
the definition of custom adaptation strategies. Depending

upon the dynamic availability of resources and adaptation
policy (for instance, performance first, safety first or
mission duration first …) different algorithms for
constraint resolution may be desired. The following
section describes the system architecture design of our
solution.

B. System Requirements Analysis
In our model, the distinguishing real-time aspect of

DRCom is declared in a meta-data file. Intensive studies
have been carried out on how non-functional properties of
a component implementation are specified, ranging from
simple name-value pair based SPDF (Simple prerequisite
Description Format) [17] to modern QoS specification
languages such as CQML+ [15] etc. According to specific
domains, different ways of specifying real-time
components’ prerequisites and dependence may be used.

The same is true for the adaptation logic. Due to the
fact that real-time application adaptation logics are
domain-specific and/or application specific, rather than try
to propose a silver bullet general adaptation logic, which
is rather unlikely, instead, this architecture is designed to
be flexible and easy to be tailored to different contexts.

Our framework is designed in a ways that different
kinds of description languages and adaptation logics could
be used. Three key modules were designed to fulfill
different aspects requirements – the Description,
Reasoning and Action modules. Dependencies and
configurations are represented in the description modules
and reasoned upon in the reasoning module while the
corresponding actions are taken in the Action module.
Contrary to [15] and most of the state-of-art studies, in
which the execution runtime statically integrates these
three modules, our framework implemented them as
service providers by employing the Service-oriented
model. They are loosely coupled by their service
interfaces. Future more sophisticated QoS descriptions as
well as those adaptation algorithms to be easily plugged
into our framework as long as they implemented the same
service interface.

C. Architectural Framework
Figure 2 presents a schematic view of the major

elements of our architecture. This framework is composed
of three main parts corresponding to the modules
described in the previous section plus other ancillary
services, such as resource management for monitoring
system resource changes.

1. A mechanism (Custom language parsing Service,
working as Description module) for resource dependence
representation lets developers specify component
dependencies in their own custom language.

2. A constraint resolving service (working as
reasoning module) for QoS constraints resolving policy
lets users or administrators specify the domain-specific
system adaptation policy.

3. The Declarative Real-time Component Run-time
(DRCR) execution environment (action module) works at
the core of the framework. It manages the DRCom
instances and performs the actions reasoned by resolving
service. It also takes the responsibilities to monitoring the
change events sent by Resource Management Service and
OSGi system. A DRCom instance registry is designed to

keep the installed real-time component instances’
information and it is maintained by DRCR.

Figure 2. Architectural Framework

Based on the decisions made by the constraint
resolving service, DRCR takes full control of the
component lifecycle. In this framework, a complete
component’s lifecycle model and a correspondent real-
time component management interface is designed. The
adaptation process will be triggered by component state
changes and the notification from external event sources
such as Resource Manager or a simple periodic time. In
the following sections, we provide a more in-depth
description of key elements and processes of this
architecture.

IV. COMPONENT DESCRIPTION
Real Time Component description is defined in meta-

data files attached with component implementation. This
document specifies the distinguished characteristics of the
specific real-time component. Here we use the hybrid
real-time component model introduced in our previous
work [9], while an important feature is added to support
more complex description languages.

A. Meta-data description design
In our implementation of DRCom, a real-time

component configuration represents a component
instance’s functional contracts as well as non-functional
requirements. As discussed in section 3, the framework
should support different kinds of component prerequisite
languages. However, from an implementation point of
view, a purely separated approach means little or no pre-
knowledge of the component’s meta-data format. This
will introduce considerable implementation complexity
and bring unnecessary performance overhead. Compared
to the complex non-functional requirements, component’s
functional part is comparably well structured and stable.
In order to strike a balance between performance and
complexity, we use a two phase mode in describing and
processing the component’s functional and non-functional
dependences.

The functional part is defined by XML schema and
parsed by DRCR.

For the component’s resource prerequisite description
(non-functional part), the job of parsing this information is
delegated to an external custom parsing service. The

custom resolving service will process the parsed data and
send results to the DRCR.

Figure 3 shows a fragment of meta-data file which
contains the functional and non-functional contract of a
smart camera component that can return regions of
interests (subsets from a frame image data) on demand.

<? xml version="1.0" encoding="UTF-8"?>
<drt:component name="camera" desc="this is a smart camera

controller" enabled=”true”>
<implementation bincode="ua.pats.demo.

smartcamera.RTComponent"/>
 <outport name="images" interface="RTAI.SHM"

type="Byte" size="400"/>
<inport name="windposition" interface="RTAI.SHM"

type="Integer" size ="1" optional=”false”/>
 <property name="windowsize" type="Integer" value="40" />

</drt:component>

Figure 3. Component sample configuration

B. Functional Description
The functional description of component meta-data

contains mainly about component functional attributes
and requirements. It normally contains, for realtime
application, the exposed and required port for data
transmission, the component’s properties for
configuration. The functional description mainly based on
our previous work in Hybrid real-time component model.
Due to page limit, please refer our previous work [5] for
details.

C. Non-functional Prerequisite Description
The non- functional prerequisite description is

described in the service-specific element. This element
has only one attribute – language, which designates which
language is employed in describing the resource
prerequisites. The DRCR itself will not try to parse the
value of this element. It will just parse the language
attribute and store the value of service-specific element as
a normal string in the component instance registry and
delegate it to the custom parser service to parse. To
demonstrate the validation of our framework, we designed
the Simple Task Description Format (STDF) for
describing DRCom real-time task’s characteristics.

Figure 3 shows an STDF meta-data for real-time task
characteristics in the service-specific element. The
Machine-type specifies that this component ‘s real-time
execution parts is a periodic task, running on CPU 1,
priority 1 with period 10000ns (at rate 100Hz) and
execution time for each round of execution is 1000ns and
deadline for overrun is 2000ns.

V. CONSTRAINT RESOLVING PROCESS
One of the key processes in the declarative real-time

component framework is the constraint resolving process.
It takes responsibility to identify the relationship between
the real-time components as well as resources and to

<service-specific
language=”UA.PATS.Language.SRDF”>

<periodictask cpuid="1" ram="20MB" priority="1"
executiontime=”1000” period="10000"

deadline="2000"/> </service-specific>

Non-functional

Non-

reason about possible reactions according to the current
system context. Complying with the two phrase

When system configuration changes, e.g. because a
new real-time component arrives, or the resource
management service prompts that there is a noticeable
resource change, DRCR will be activated. Firstly it will
check existing DRCom’s constraints and dependences.
After the functional part was successfully checked and
satisfied, the DRCR will determine whether the
component’s non-functional requirements could be
guaranteed without jeopardizing the validity of other
components’ real-time contracts. If this is indeed the case,
this new coming component is now ready to be activated.

Complying with two phase DRCom configuration,
two phase constraint resolving was used. One is the
Functional dependence resolving phase, which checks the
functional dependence for any real-time component when
system change occurs. In current prototype, the DRCR
integrate the Function dependence resolving modules to
achieve better performance and reduce implementation
complexity. The other phase is the customized constraints
resolving process. As the framework uses the OSGi’s
service-oriented model, system administrators can change
the system resolving behavior by registering their own
customized resolving service to fit specific system
configurations.

A. Functional Dependence Resolving
1) Circular Check:

 Real-time components in applications can be modeled
as a component graph, which normally form a directed
acyclic graph. In a task route, a task at a component has a
certain set of outputs, which is a set of inputs for the task
at next component along the task route. It’s possible for a
set of component descriptions to create a circular
dependency. In this case at least one component
configuration should not be satisfied.

2) Port Compatibility Check
In order to satisfy the functional dependency, all

enabled and activated component’s input ports should have
corresponding output ports. It mean that the installed
components dependence need to be checked when system
structure ongoing a change. This guarantees that a
component can only be initialized when all its dependences
are satisfied. For instance, Figure 3 shows that the smart
camera port needs an input port called “windowsposition”.
In order to satisfy the port compatibility check, one
activated component instance with name =
“ua.pats.trajectory.windows” and outport defined as
follows
<outport name="windposition" interface="RTAI.SHM" type="Integer" size
="1"/>

B. Custom Resolving process
In practical environments, according to dynamic

availability of resources and system’s specific
requirements, different algorithms for the resource
allocation resolution may be desired. Thus the Custom
Resolving service is designed aligning with service
oriented mode to give customable support.

By using different customized resolving service
providers, system behavior can be easily altered without
the need to change the application main functional logic.
This eased the need to recompile and re-load the whole

application. The traditional admission service normal
enables a component only when all the basic resource
prerequisites are fulfilled. However, with context- specific
knowledge, more flexible and complex resolving
processes can be employed. One example can be: to stop
low priority tasks or those tasks with optional port
requirements to release their resource for incoming high
priority real-time components.

In our system, several custom resolving service
providers may co-exist in one system. DRCR will choose
one candidate service provider which matches current
system context. In current implementation, the system
context is a global property managed by administrator.
Our ongoing work is to employ the context reasoning
scheme to get more accurate and flexible context
information so as to make use of a more appropriate
custom resolving service.

Figure 4. Sequence diagram for adaptation

C. Adaptation Process
Figure 4 shows a sequence diagram for adaptation. In

this scenario, component B needs component A’s output
to satisfy its functional constraints. As an instance
(ComAInstance) of component A configuration already
exists, the DRCR will successfully solve B’s functional
constraints. Then, the internal resolving service and the
external customized service will be consulted for real-time
resolving process. When both services return positive
results, the DRCR will create and activate the component
B‘s instance (ComBInstance) according to its
configuration. If ComAInstance is stopped, the DRCR
gets notified about this event and consults its internal and
external custom service again to check for newly
(un)satisfied component instances. When it gets the
results, the DRCR will find the ComBInstance is now
unsatisfied and should be disabled.

VI. IMPLEMENTATION & SIMULATION RESULTS
In this section, we will use a scenario-based simulation

to evaluate our adaptation approach across different
application domains. Our framework has been validated
both from a qualitative and a quantitative point of view.
Firstly, we will discuss the system implementation.

A. System implementation
We use the OSGi framework as our management-layer

implementation platform. OSGi technology serves as the

platform for universal middleware ranging from
embedded devices to server environments. The open
standard simplifies the introduction of new capabilities
and services. Equinox, is used as our basic development
platform. In the real-time component implementation, we
use our hybrid model proposed in our previous work [5].

This component model runs component management
functions, management and lifecycle, in non-realtime
environment and the small, predictable (functional) parts
in a real-time environment. Here the real-time
environment we used is Real-Time Application Interface
(RTAI) –an open source real-time Linux kernel extension.

The DRCom model provides a basic management
interface that enables uniform and coherent control for
component’s lifecycle and attributes. Each component is
associated with a meta-data file which enlists its
abstractions – for instance, interface for communication,
attributes as well as reference constraints. Then, the
component’s functions are mapped to the RTAi real-time
tasks. The real-time parts are controlled /configured via its
non realtime peer to keep their state coherent via a clear
designed asynchronized control interface [5].

Here, we have to point out that currently our
framework focuses on providing a general adaptation
framework for real-time systems rather than providing the
guaranteed real-time reconfiguration. As our adaptation
logic mainly operates in the non real-time domain, it
cannot guarantee to perform certain adaptation actions in
prescribed time constraint. However, guaranteed real-time
reconfiguration is often data-dependent, mode-dependent,
configuration-dependent and hardware- dependent. A
general scheme is very hard to achieve.

B. Simulation configuration
As shown from Figure 1, all six modules’ execution

parts are implemented as periodic tasks. Decoding
component of TV application is implemented with a real-
time task with period 33.37 ms with priority 2, execution
time about 8 ms and deadline is 12 ms. The execution part
of Transcoder module is implemented as with a real-time
task with period 50ms with priority 1, execution time
about 10 ms and deadline is 30ms. The schedule policy
used by underline RTAI system is FIFO. In order to show
the interference between these two components, others are
implemented with little CPU time. The transmission
methods are asynchronized (shared memory) so we can
focus on the two coding module’s performance.

As the video decoding execution time may vary
according the contents of video streams, in order to more
clearly demonstrate the mutual-influence among
applications, we substituted the decoding function into an
calculate function which use comparably constant CPU
time for each round of calculation. So the execution
influence of inter-influence can be more clearly
indentified from the results. In Figure 1, the color of
component shows state of each component after
adaptation process.

C. Custom resolving policy
As described in section 2, when TV application and

transcoding application are executed simultaneous, system
may not have enough resources to guarantee their
performance. Here, the custom resolving services will be
employed to deal with the competing requirements. The

strategy employed in our simulation is to protect the TV
application as it normally matter user’s experience most.

The custom resolving service will track the decoding
component’s overrun attribute via getproperty() defined
in the component management interface. If the overrun
increase too fast (by recording overrun values and time of
retrieving the values), it will try to disable the component
which consume most CPU time (exectutiontime/period),
the algorithm 1 describe the adaptation process.

After this custom resolving process, the Transcoder
component will be disabled. Then, due to functional
dependence constraint violation, the File Writer in the
Transcoding application will also be disabled in functional
resolving process. The different color in Figure 1 shows
the states of installed components after these adaptation
processes.

D. Simulation results
We perform 6000 observations for the execution time

of Decoding Component in TV application. Table 1 shows
the execution time in case of with and without adaptation
framework support. In order to eliminate the transitory
effects of cold start and adaptation, we collect
measurements after the system has started and renders a
steady execution. The execution time is express in micro-
second (µs).
TABLE I. EXECUTION TIME (WITH/OUT ADAPTATION)

Context/
Execution Results With Adaptation No

Adaptation
AVERAGE

Execution Time (µs) 8127.297 10647.804

AVEDEV (µs) 4.15 3410.9
MIN (µs) 8121.8 8125.3
MAX (µs) 8175.1 18296.7
Overrun (times) 0 1880

In the formal case, the execution time of decoder is
largely around 8ms, the biggest execution time is about
8.18 ms when the custom resolving service exist (it will
disable transcode module). In contrast, if no such service
available, the system will try to run these two applications
simultaneously. The jitter of decoder task’s execution
time is very big. As we can seen from Table 1, the
average deviation is 3410.9µs which is significantly worse
than 4.15µs when our framework resolving mechanism
exists. This may eventually lead to possibly transient
timing problems of TV decoding task including missing
frame, data overflows etc.

VII. RELATED WORK
Our platform follows the approach of e an

architecture-based management framework for real-time
system. That is: the real-time guarantee is not directly
implemented within components’ application code but

Algorithm 1: Guarantee TV application
Requires: Installed components’ CPU usage information
Ensure: Allocate enough CPU time to the TV application
If Decoder. getProperty(overrun) increase > Max_threshhold
for all cmp in SatisfiedComponents do
 if component not from TV application
 get CPUusage from cmp attributes
 record the cmp with highest CPU usage.
 end if
end for
put cmp to disabled component list(dcl)
return dcl

provided by the container runtime environment according
to additional component descriptors.

CIAO [10] builds a QoS-enabled CORBA Component
Model (CCM). The project adhered to existing OMG
specifications such as RT/CORBA and CCM. In contrast,
our focus is on the challenges of simultaneously
supporting real-time control and non real-time component
adaptation management while keeping the implementation
of our component model as lean as possible. The
considerable overhead of implementing or extending a
fully compliant CCM infrastructure would have been
counterproductive to our system goals.

In the real-time component designs, Stewart et al. [12]
designed a reconfigurable port-based object framework
whose real-time communication scheme is similar to ours.
Their pure real-time design philosophy makes this system
hard to develop.

In the real-time Java specification, RTSJ [2]
introduces the concepts of timeliness, schedule ability,
and real-time synchronization to Java-based applications.
It aims to enhance the Java platform with capabilities
required by real-time applications. However, dynamicity
of modules is not addressed, which would prevent an
implementation of our concepts on top of this platform.

In order to deal with component dynamicity,
Cervantes and Hall [14] propose a service-oriented
component based framework for constructing adaptive
component-based applications. The key part of the
framework is the Service Binder which automatically
controls the relationship between components. However,
the static dependence description and resolving policy
limits its application in normal OSGi applications and
could not be applied to the real-time domain.

Aleš, Loiret et al. propose a component framework [15]
for Java-based Real-time systems based on RTSJ. It
provides continuum between the design and
implementation process. By automatically generating an
execution infrastructure, it mitigates complexities of RTSJ
development and transparently manages the real-time
concerns. However, their work lacks an automatic
component dynamicity control scheme and their
component dependence support is rather static and
confined to the RTSJ domain specific knowledge.

Hartig and Zschaler designed and implemented
enforceable component-based real-time contracts [17]. It
runs large and complex parts in a classic non-realtime
environment and only small, predictable parts in a real-
time environment. However, although they propose the
concept of adaptation manager for parameter adjustment
and profile change, there is no formal design for how to
deal with the dynamicity of component’s availability
which is crucial for downtime-free systems.

VIII. CONCLUSION AND FUTURE WORK
This paper describes the experience in building a

framework that supports run-time adaptation in response
to the dynamic evolution and continuous deployments of
modern complex real-time systems. In this framework, the
real-time contract is specified in the component’s meta-
data. The component instance is managed by the system
for the dependence resolving and real-time contract.
Global view of current system configuration is managed
by the DRCR service. Such system reasons about the

changes in the system configuration and performs certain
actions while still guaranteeing the designated real-time
components’ real-time contracts. It sheds the burden for
each real-time component to monitor the system status
and maintains the reference to the other dynamically
available real-time components. Although our experience
was done based on the OSGi middleware, we believe our
findings to be general to be used in other architecture-
based management systems.

Not all resource requirements can be specified
statically. Here, resource usage is highly dependent on the
execution context, which is not known at component
deployment time. As our framework enables external
adaptation polices to be injected into reconfiguration
process, while flexibility in nature, how to verify if the
context-specific reasoner gave invalid tactics and
strategies become a big challenge.

REFERENCES
[1] OSGi Service Platform Core Specification,

http://www.osgi.org,2005
[2] The Real-Time Specification for Java, https://rtsj.dev. java.net /rtsj-

V1.0.pdf,2001
[3] A. Sangiovanni-Vincentelli and M. Di Natale, "Embedded system

design for automotive applications," Computer, vol. 40, no. 10, p.
42-+, Oct.2007.

[4] "RTAI Programming Guide," https://www.rtai.org/
[5] N. Gui, D. Florio, H. Sun, and C. Blondia, “A framework for

adaptive real-time applications: the declarative real-time OSGi
component model”, The 7th Workshop on Adaptive and Reflective
Middleware(ARM), 2008

[6] OSGi Alliance, "Declarative Service Specification," 2007.
[7] Sun Java Real-Time System,

http://java.sun.com/javase/technologies/realtime/,2008
[8] N. Gui, V. D. Florio, H. Sun, and C. Blondia, "A Hybrid real-time

component model for reconfigurable embedded systems,"
Proceedings of ACM symposium on Applied computing, Fortaleza,
Brazil, 2008

[9] D. C. Schmidt and F. Kuhns, "An overview of the real-time
CORBA specification," Computer, vol. 33, no. 6, June2000.

[10] "CORBA Component Model v.4.0," OMG document. formal /04-
01-06, 2007.

[11] D. B. Stewart, R. A. Volpe, and P. K. Khosla, "Design of
dynamically reconfigurable real-time software using port-based
objects," Ieee Transactions on Software Engineering, vol. 23, no.
12, pp. 759-776, Dec.1997.

[12] F. Kon, J. R. Marques, T. Yamane, R. H. Campbell, and M. D.
Mickunas, "Design, implementation, and performance of an
automatic configuration service for distributed component
systems," Software-Practice & Experience, vol. 35, June2005.

[13] H. Cervantes and R. S. Hall, "A framework for constructing
adaptive component-based applications: Concepts and
experiences," Component-Based Software Engineering, vol. 3054,
pp. 130-137, 2004.

[14] A. Plšek, F. Loiret, P. Merle, L. Seinturier, "A Component
Framework for Java-based Real-Time Embedded Systems,"
Proceedings of ACM/IFIP/USENIX 9th International Middleware
Conference (2008), Leuven, Belgium

[15] H. Hartig, S. Zschaler, M. Pohlack, R. Aigner, S. Gobel, C. Pohl,
and S. Rottger, "Enforceable component-based realtime contracts,"
Real-Time Systems, vol. 35, no. 1, pp. 1-31, Jan.2007.

[16] G. Coates, “Real Time OSGi”, http://www.osgi.org/
wiki/uploads/VEG/Aonix-RT-OSGI.ppt, 2007

[17] F. Kon, J. R. Marques, T. Yamane, R. H. Campbell, and M. D.
Mickunas, "Design, implementation, and performance of an
automatic configuration service for distributed component
systems," Software-Practice & Experience, vol. 35, June2005.

