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CHAPTER

T gy,
Introduction

Over the past decades, the amounts of data being processed on computers
have skyrocketed to astronomic proportions. Factors such as cheaper stor-
age and increased connectivity have contributed to this data deluge. At the
same time, this data has taken a central role in business, science, and soci-
ety. The number of employees involved in the collection and processing of
data has similarly increased, with data scientist being dubbed the sexiest job
of this century [97]. Of course, only a small percentage of these employees
are experts in computer science, and user-friendliness towards non-expert
users is a key concern for data science tools.

While all this data is being generated, scraped and integrated at unprece-
dented rates, the quality control is often unable to keep up. Indeed, much
of the data comes from unreliable sources, such as possibly faulty sensors
and overworked humans. It is not possible to manually verify readings from
thousands of sensors, or copy thousands of entries from one data source
to another. Consequently, these massive amounts of data are becoming in-
creasingly dirty, making it necessary to clean this data.

Clearly, if this dirtiness accumulates, then the data becomes unreliable
for practical purposes. This is a huge problem for many businesses, with
dirty data being estimated to cost the US economy hundreds of millions to
trillions of dollars every year [61, 42, 62]. As such, there is a strong incentive
to invest in solutions for cleaning the data. Apart from businesses suffering
financial losses, the dirtiness of data also has a severe impact on areas such
as data analytics, knowledge discovery from databases, and machine learn-
ing. These applications traditionally rely on large amounts of data, and if the
data is typically dirty, then this may lead to wrong conclusions, faulty mod-
els, or spurious patterns. As the old adage goes, “garbage in equals garbage
out”. If the application is mostly harmless, for example playing Go, then this

1
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Constraints
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N v —
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Dirty Data Clean Data

Figure 1.1: Schematic overview of constraint-based data cleaning.

might not be catastrophic. However, when the models are used for medical
predictions, self-driving cars, or to assist decision-making for judges, then it
is of paramount importance that the underlying data is reliable.

It is clear, then, that data quality has become a major problem in data
management. The sheer volume of data makes it impossible for anyone to
manually clean their data, and hence the demand for effective, semi or fully
automatic methods to clean the dirty data is high. Dirtiness can come in
many forms, including but not limited to incomplete data, duplicate data,
obsolete data, and inconsistent data. In this dissertation, we focus on the lat-
ter problem of data inconsistency. In short, we are concerned with datasets
in which combinations of values violate certain logical rules to which the
data should adhere. This constraint-based paradigm is a focal point in data
cleaning research, and is overviewed in the next section. Throughout this dis-
sertation, we address the problem of discovering such constraints, or their
violations, using methods akin to data mining. The field of data mining is
briefly overviewed in Section 1.2. To conclude this chapter, the outline of the
thesis is discussed.

1.1 Constraint-based Cleaning

In order to clean data in a principled way, a strong formal foundation for
data cleaning is needed. In current data cleaning research, most methods
are geared towards a constraint-based model. In such a model, constraints
are provided in some logical formalism, and the data is either clean if all
constraints are satisfied, or dirty if one or more constraints are violated. This
isvisualized in Figure 1.1. Examples of such constraints include, for example,
demain restrictions or illegal value combinations. Given a set of constraints,
the goal of data cleaning is then to modify the data such that all constraints
are satisfied.
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Many constraint formalisms have been introduced, and repair algo-
rithms are in place to enforce these constraints. However, a frequently asked
question is, “where do these constraints come from?”. Indeed, in real-world
situations, constraints are not readily available. The common answer to the
question is that they are either supplied by experts, or automatically discov-
ered from the data [44, 61]. In most real-world scenarios, however, experts
are not available. Consequently, one has to rely on the automatic discovery
of constraints from data. The discovery problem has received considerable
research attention in recent years. Current discovery algorithms can infer
which constraints currently hold on the data, and even apply statistical tests
to validate these constraints. Still, it is not guaranteed that the discovered
constraints make sense for the data. More importantly, clean data is typi-
cally not available, and hence constraints have to be discovered on precisely
the data that one wants to clean. If the input is dirty, then this raises even
more questions about the reliability of the discovered constraints. It boils
down to the question: “which constraints are semantically valid?”.

In this dissertation, we address the constraint discovery problem from
three different angles. In Chapter 3, we generalize and improve existing con-
straint discovery algorithms. In Chapter 4, we involve the user in the con-
straint discovery process in order to ensure the discovered constraints are
valid. In Chapters 5 and 6, we consider fully automatic repairing using a like-
liness function to indicate which values are inconsistent.

1.2 Data Mining

Given large amounts of data, a user will naturally be interested in harvest-
ing meaningful information from this data. This information can take the
form of, for example, unexpected or insightful patterns, as well as predictive
or descriptive models. The field of data mining, or more generally, knowl-
edge discovery from data, is a research field concerned with extracting inter-
esting information from (large) databases. Data mining methods combine
techniques from machine learning, statistics, artificial intelligence and data-
base systems. Data mining techniques have important applications in fields
such as business analysis and fraud detection, as well as being used for the
purpose of scientific discovery, such as in bio-informatics.

Within this dissertation, we make extensive use of a subfield of data min-
ing called pattern mining. Pattern mining aims to discover interesting co-
occurences or “items”, or events, in a dataset. Typically, patterns are rep-
resented as itemsets or association rules. The quintessential application of
pattern mining is supermarket customer data, such as in the example in
Table 1.1. In this example, itemsets such as {Whisky, Bitters, Oranges}, and
{Beer, Chips}, appear two times in this small dataset and are thus relatively
frequent. Moreover, from these itemsets, rules can be derived such as “peo-
ple who buy whisky and bitters, also buy oranges” (in order to make an Old
Fashioned). The discovery of such rules and patterns can then be used by su-
permarkets to decide product pricing, promotions, store layout, and more.

Clearly, such techniques need to be tailored to the data on which they
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Table 1.1: Example of a market basket database.

Transaction ID Items

t {Oranges, Beer, Chips}

h {Whisky, Bitters, Oranges}
f3 {Beer, Chips}

I {Whisky, Bitters, Oranges}
t5 {Whisky, Beer}

operate. In the example above, if the item “Whisky” was replaced with the
names of specific brands, the association may not hold or be sufficiently fre-
quent. This can be addressed by using, for example, ontological informa-
tion. Moreover, instead of using supermarket basket data, we might also look
for patterns in other types of data such as sequential data, episodic data or
graph data. Specialized techniques exist for each of these types of data. In
the context of this dissertation, we focus on data in a tabular format, also
record data, where each row corresponds to a data object, and each column
to an attribute.

In Chapters 4 and 5, we discover constraints using techniques based on
association rule mining. In Chapters 6 and 7, we instead focus on mining
itemsets, encoding unexpected co-occurences.

1.3 Organisation

In Chapter 2 we introduce basic concepts such as (conditional) func-
tional dependencies and association rules, as well as notations used through-
out the thesis, and discusses the various datasets used for experiments in the
later chapters.

In Chapter 3 we discuss the most import related work within the general
area of data cleaning. We focus mostly on overviewing the proposed con-
straint formalisms and cleaning systems.

In Chapter 4 we address the discovery problem for approximate con-
ditional functional dependencies (CFDs). Within this chapter, we recast
CFDs as a general form of association rules. Next, we present three distinct
methodologies for discovering approximate CFDs, each combining func-
tional dependency discovery and pattern mining in a different fashion. We
show that the right choice of methodology, as well as search strategy, can
have a substantial influence on the runtime of the discovery process. This
chapter is based on Rammelaere and Geerts [93].

In Chapter 5 we present the XPLODE system, which discovers CFDs that
explain modifications made manually by a user. Since the full set of discov-
ered constraints is typically too large for inspection by a user, such hybrid
discovery methods, where the user is somehow involved in the discovery
process, have garnered research interest recently. Our XPLODE approach
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employs user interaction only at the start of the algorithm: a user manu-
ally cleans a small set of dirty tuples, and we infer the constraint underlying
those repairs, called an explanation. Guided by this explanation, data can
then be cleaned using state-of-the-art CFD-based cleaning algorithms. We
show that our method can typically infer the best explanation using a limited
number of modifications, is efficient, and is robust to noise in the modifica-
tions. This chapter is based on Rammelaere and Geerts [94].

In Chapter 6 we introduce forbidden itemsets, which form the core of a
fully automatic method for discovering and repairing errors. In this chap-
ter, we introduce a dynamic notion of data quality, in which the data is clean
if an error discovery algorithm, with set parameters, does not find any er-
rors. Forbidden itemsets capture unlikely value co-occurrences in dirty data,
which are often prime candidates for being errors. We provide an efficient al-
gorithm for mining low lift forbidden itemsets, and derive properties of the
lift measure to provide strong pruning. Our experiments show that the dis-
covery of forbidden itemsets is efficient, and that such itemsets are adept at
discovering errors. This chapter is based on a part of Rammelaere et al. [95].

In Chapter 7 we present the repair method for forbidden itemsets, dis-
cussing and proving how data can be repaired automatically such that no
forbidden itemsets can be found. The efficiency of the repair method is con-
tingent on the concept of almost forbidden itemsets, which are itemsets than
can possibly become forbidden after a set number of modifications to the
data. The repair algorithm modifies the dirty parts of the data by taking sug-
gestions from the most similar clean parts of the data. Our algorithm is flex-
ible in how such similarity is computed. Experiments show that mining al-
most forbidden itemsets is feasible, whereas repairs can be performed effi-
ciently in parallel, and bring the dirty data closer to the ground truth. This
chapter is based on the remaining parts of Rammelaere et al. [95].

In Chapter 8 we offer a retrospective on the work presented in this thesis,
and a discussion on directions for future work.

1.4 Source Code

The source code of our algorithms, which are presented in chapters 4-7, has
been made available on the CodeOcean platform for reproducible research:

¢ Joeri Rammelaere. Revisiting conditional functional dependency dis-
covery [source code], June 2018. URL https://codeocean.com/2018/
06/20/discovering-conditional-functional-dependencies

e Joeri Rammelaere. Xplode: Explaining repaired data with cfds [source
code], June 2018. URL https://codeocean.com/2018/06/10/xplode-
colon-explaining-repaired-data-with-cfds

e Joeri Rammelaere. Cleaning data with forbidden itemsets [source
code], September 2018. URL https://codeocean.com/2018/09/13/
cleaning-data-with-forbidden-itemsets


https://codeocean.com/2018/06/20/discovering-conditional-functional-dependencies
https://codeocean.com/2018/06/20/discovering-conditional-functional-dependencies
https://codeocean.com/2018/06/10/xplode-colon-explaining-repaired-data-with-cfds
https://codeocean.com/2018/06/10/xplode-colon-explaining-repaired-data-with-cfds
https://codeocean.com/2018/09/13/cleaning-data-with-forbidden-itemsets
https://codeocean.com/2018/09/13/cleaning-data-with-forbidden-itemsets
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Preliminaries

In the introductory chapter, we have already mentioned that we consider
tabular datasets, and introduced the concepts of constraints, itemsets, and
association rules. In this chapter, we formalize these concepts. At the end of
the chapter, we discuss the various datasets used for experiments in the later
chapters.

2.1 Concepts

Tabular Datasets

Formally, we consider relation schemas R defined over a set .A of k attributes,
where each attribute A; € A is associated with a domain dom(A;). A tuple ¢
over R is simply an element of dom(A;) x --- x dom(A). A (database) instance
D of R is a finite set of tuples over R. We denote by |D| the number of tuples
in the instance D.

Given a set of attributes X in A and a tuple ¢ € D, we denote by ¢[X] the
projection of that tuple on the attributes in X. Furthermore, we assume that
each tuple+ € D has a unique identifier tid, e.g., a natural number. We denote
by D[tid] the tuple ¢ in D with identifier tid.

Transaction Datasets

In the context of data mining, we consider instead fransaction datasets D
consisting of a finite collection of objects. An object o is a pair (tid,I) where tid
is an object identifier, e.g., a natural number, and / is an itemset. An itemset
is a set of co-occuring items. An item takes the form (A,v), where A comes
from the set A of attributes and v is a value from the domain dom(A) of A. An
itemset contains at most one item for each attribute in 4. As such, a tuple ¢

7
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corresponds simply to an object of maximal size |.4|, where each item (A,v)
corresponds to the value ¢[A], and hence every tabular dataset can readily
be converted into a transaction dataset. We make use of tabular datasets
throughout Chapter 5, and utilize transactions datasets in Chapters 4, 6, and
7.

We define the value of an object o = (tid, /) in attribute A, denoted by o[A],
as the value v when (A,v) € I, and let o[A] be undefined otherwise. We denote
by |D| the total number of objects in D, and by 7 the set of all attribute/value
pairs (A,v) in D. Similar to tabular datasets, we denote by DJtid] the object o
with identier tid in D, i.e., o = (tid, ).

It is common in itemset algorithms to consider, at certain points during
the algorithm, only a subset of the dataset D, namely those objects that sup-
port a given itemset 1. We call this set of objects the projection of D on I,
denoted as D':

D' ={o=(tid,J) € D|ICJ}

Measures of Itemsets

An object o = (tid,I) is said to support an itemset J if J C [, i.e., J is contained
in I. The cover of an itemset J in D, denoted by cov(J, D), is the set of tid’s of
objects in D that support J. As such, it is also called the tidlist of J.

cov(J,D) = {tid | Dtid] = (tid,I)s.t.J C I}

The support of J in D, denoted by supp(J, D), is defined as the number of
tid’s in its cover in D:
supp(/,D) = |cov(J, D)

Similarly, the frequency of an itemset J in D is defined as the fraction of
tid’s in its cover:

freq(J,D) = supp(J,D)|/|D|

(
Moreover, we define attrs(7) as the set of attributes of all items in I:
attrs(l) = {A| Jvs.t.(A,v) €I}

The union 7UJ of two itemsets I and J is only defined over compatible
itemsets, whose items cover a disjunct set of attributes. Formally, I and J are
compatible if attrs(7) Nattrs(J) = 0.

Association Rules

As association rule between two itemsets 7 and J, denoted as I — J, indicates
that the occurrence of itemset X implies the occurrence of itemset ¥ within
the same object. This implication is typically quantified using an interesting-
ness measure. Through this dissertation, we make use of two such measures,
confidence and lift.

The confidence of an association rule between itemsets 7 and J, is the
fraction of objects in I's cover that support J:

conf(I = J,D) = supp(IUJ, D) /supp(I,D)
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The lift between two itemsets 7 and J compares the actual number of co-
occurences of 7 and J with the expected number of co-occurences if I and J
are independent of each other. A lift higher than 1 indicates a positive corre-
lation, while a left less than 1 indicates a negative correlation. More formally,
the lift of the association rule I — J is defined as:

. B freq(IUJ,D)
lift(I — J,D) := freq(I, D) x freq(J, D)

We note that the lift measure is symmetrical, unlike confidence, and
hence lift( — J,D) = lift(/ — I, D).

Vertical Data Layout

We sometimes represent a transaction dataset D in a vertical data layout, de-
noted by D|. More formally, we define:

D]={(i,cov({i},D)) | i € Z,cov({i},D) # 0}

Clearly, one can freely go from D to D, and vice versa.

Conditional Functional Dependencies

Conditional functional dependencies (CFDs) [45] are constraints which are
frequently used in the field of data cleaning. A CFD ¢ over a schema R is a
pair (X — A,1,), where:

(i) Xisasetofattributes in .4, and A is a single attribute in 4;

(ii) X — Ais astandard functional dependency (FD), called the embedded
FD of ¢; and

(iii) ¢, is a pattern tuple with attributes in X and A, where for each B in XU
{A}, 1,[B] is either a constant ‘0’ in dom(B), or an unnamed variable ‘_".

A CFD ¢ = (X — A,1,,) is called variable if 7,[A] = ‘_’, otherwise it is called
constant. For constant CFDs, the pattern tuple 7, [X] is assumed to consist of
constants only. On the other hand, a regular FD is then a (variable) CFD with
t, consisting solely of variables ‘_’. As such, constant CFDs enforce consis-
tency within individual tuples, whereas variable CFDs enforce consistency
among two or more tuples.

Semantics of CFDs

The semantics of a CFD ¢ = (X — A,z,) on an instance D are defined as fol-
lows. A tuple r € D is said to match a pattern tuple 7, in attributes X, denoted
by t[X] =< 1,[X], if for all B € X, either,[B] =_, or t[B] =1,[B]. In other words,
the tuple r needs to have the same value as the pattern r, for all attributes in
B, except if 7, contains a wildcard for the attribute.

The tuple violates a variable CFD ¢ = (X — A,1,,) ifit matches the pattern,
i.e., 1[X] < 1,[X], and there exists another tuple 1" in D such that 7[X] = ¢'[X],
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while 7[A] # ¢'[A]. In other words, there exist multiple tuples matching ¢, with
identical values on the attributes X, yet distinct values for the attribute A.

A tuple 7 violates a constant CFD ¢ = (X — A,1,,) if t[X] =1,[X] and 1[A] #
1,[A]. In other words, the tuple has identical values to the pattern tuple on
the attributes X, but different values on the attribute A.

The set of all tids of tuples in D that violate a CFD ¢ is denoted by
VIO(¢,D). If VIO(¢@,D) = 0, then D satisfies ¢, denoted by D |= ¢.

Measures of CFDs

The support of a CFD ¢ = (X — A,1,) in D, denoted by supp(¢,D), is defined
as the number of tuples in D that match the pattern 7, of ¢ on the set of
attributes X:

supp(@, D) = [{r € D : 1[X] < 1,[X]}|

The CFD ¢ is then called frequent in D, if supp(¢,D) > §, where J is a
user-specified support threshold.

In line with the commonly used notion of confidence for approximate
FDs [60], we define the confidence of a CFD ¢ = (X — A,1,) in D as:

__ T
supp(¢,D)

Here, D' C D denotes a minimal subset, in terms of cardinality, such that
D\ D' = ¢. This definition is well-suited to variable CFDs, where the set
VIO(¢,D) contains all tuples that fogether violate the CFD, since variable
CFDs apply to two or more tuples. However, the individual tuples in the vio-
lation set are not (necessarily) violations by themselves. For instance, if a vio-
lation set for a variable CFD contains two tuples with different A-values, the
CFD can be made to hold by altering just one of the tuples. In other words,
|D'| is the minimum number of tuples that need to be altered or removed for
¢ to be satisfied. For a constant CFD, |D’| = |VIO(¢, D)|, and hence this defini-
tion of confidence reduces to the standard confidence of an association rule.
This confidence measure is also called g3 in Kivinen and Mannila [66]. We
observe that confrp(¢@,D) = 1 means that D = ¢ and confrp(¢,D) = 0 means
that all tuples matching 7,[X] need to be altered. Note that this can only oc-
cur for constant CFDs, since a variable CFD is trivially satisfied if it applies
to a single tuple.

The CFD ¢ is called exact if confep(@,D) = 1, and approximate other-
wise. Given a user-supplied threshold €, we say a CFD is confident in D if
confep(@,D) > 1 — €. Throughout this dissertation, we consider CFDs that
are both frequent and confident, which we call (g, §)-CFDs.

COanD((P7D) =1

Definition 1 ((¢,5)-CFD). A CFD ¢ on a tabular database instance D is an
(g,06)-CFD if confep(¢,D) > 1 — € and supp(¢p,D) > 6. O
CFDs as Association Rules

In Chapter 4, we will present CFD discovery algorithms using concepts from
association rule mining. We now formalize the relationship between CFDs
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and association rules. A CFD ¢ = (X — A,1,) over a tabular dataset D can be
written compactly in the form of an association rule over the corresponding
transaction dataset D. To incorporate the semantics of a CFD into this for-
mat, we consider an extension of itemsets, where an item i can also take the
form (A,‘_"). In other words, we model CFD semantics by including wildcard-
items as a special type of item. We can now write ¢ asI — j, between an item-
set/ and a single item j, where the itemset/ is of the form 7 = Ugx {(B,?,[B])},
and the single item j = (A,1,[A]).

The CFD discovery algorithms considered in chapters 4 and 5 are based
on the concept of equivalence partitions, as introduced in Cosmadakis et al.
[36], and used in the Tane [60] and CTane [46] algorithms. More specifically,
given an itemset / consisting of attribute-value pairs, we say that two tuples
s and ¢ in D are equivalent relative to I if, for all (B,v) € I, s[B] =¢[B] < v. Fora
tuple s € D, [s]; denotes the equivalence class consisting of the tids of all tuples
t € D that are equivalent with s relative to I. The (equivalence) partition of I,
denoted by II(1), is the collection of [s]; for s € D !. For a single constant
item, ITI((A,v)) = {cov((A,v),D)}, i.e., it consists of (A,v)’s tidlist. For a single
variable item, II((A,_)) = {cov((A,v),D) | v € dom(A)}, i.e., it consists of all
tidlists grouped together with regards to the A-values of the corresponding
tuples. For an itemset I, II(1) = N;;I1({) in which equivalence classes are
pairwise intersected. The size of I1(1), denoted by |II(7)|, is the number of
equivalence classes in I1(7). We use ||TI(/)|| to denote the number of tids in
I1(I), equal to the support of /. Finally, we note that the CFD 7 — j holds if
and only if |TI(Z)| = |[TI(TU {j})|-

2.2 Example

We illustrate the concepts defined above using the “play tennis” ex-
ample dataset from [89], shown in Table 2.1. This dataset contains,
for instance, the items (Windy,false), and (Play,play). The itemset
{(Windy,false), (Play, play)} is supported by objects 13,14,s5,19,119, and 13.
Hence, it has a support of 6, and a frequency of 6/14 ~ 0.43. The superset
{(Windy, false), (Play, play), (Humidity,normal) } has a support of 4. As such,
we can obtain the association rule

{(Windy, false), (Play, play) } — (Humidity,normal)
This association rule has a confidence of 4/6 =~ 0.67, and a lift of

4/14
———— ~1.33
6/14 x7/14 ’
indicating a positive correlation between the occurrence of the itemsets
{(Windy, false), (Play, play) } and {(Humidity,normal)}.

Let us now turn our attention to CFDs. A possible approximate CFD ¢
on this dataset is {(Windy,false), (Outlook,_)} — (Play,_). For brevity of no-

IStrictly speaking this is only a partition of D when I contains variable items (A, ).
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tation, let / = {(Windy, false), (Outlook,__), (Play,_)} and j = (Play,_). The rel-
evant equivalence partitions are then

H(I\{J}) = {{17&9}3{37 13}7{4757 10}}’ and

H(I) = {{17 8}7 {9}7 {37 13}3 {4757 10}}

The sizes of these equivalence partitions are |[II(7\ {;j})| = 3 and |TII(1)| = 4,
and both partitions have support |[II(7\ {;})|| = ||II({)|| = 8. The supported
tuples ¢, i.e., where ¢[Windy| = false, are shown in Table 2.1, with different
colors corresponding to the different equivalence classes in I1(7).

The CFD can be made to hold exactly by removing the tuple with tid 8,
such that I1(7\ {j}) = I1(). Hence, the minimal subset D’ contains only the
tuple with tid 8, and |D’| = 1. We now have that

confep(I — j,D) = 1—(|D'|/||TI(1)]|) = 1—(1/8) = 0.875
Finally, the set of violations VIO(¢, D) contains the tuples {7,#3,7}.

Table 2.1: Play tennis dataset [89].

tid Outlook Temperature Humidity Windy Play

123 sunny hot high true dont

t6 rain cool normal true dont
t7 overcast cool normal true play

1 sunny mild normal true play
o overcast mild high true play

t4 rain mild high true dont

2.3 Datasets

To conclude this chapter, we present an overview of the datasets used
throughout the dissertation. Most of these were taken from the UCI Ma-
chine Learning Repository [39]. The statistics of the datasets are shown in
Table 2.2.

Abalone is a UCI dataset containing measurements of abalones, a kind of
marine snail, with the goal of predicting their age.
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Table 2.2: Statistics of datasets used throughout the dissertation.

Dataset Nr. Tuples Nr. Attributes  Nr. Distinct Items
Abalone 8354 9 6077
Adult 48842 11 202
Censusincome 199523 12 234
CreditCard 30000 12 216
Ipums 70187 32 364
Mushroom 8124 23 119
Nursery 12960 9 32
Soccer 200000 10 767
SP500 245148 7 136718

Adult is a UCI dataset containing census data, with the goal of predicting
a person’s income. Some discretization was performed on the Age at-
tribute.

Censusincome is a UCI dataset containing weighted census data extracted
from the 1994 and 1995 current population surveys conducted by the
U.S. Census Bureau, with the goal of predicting household income. We
have retained 12 categorical attributes.

CreditCard is a UCI dataset containing information about credit card users
in Taiwan, with the goal of predicting payment defaults. We have re-
tained 12 categorical attributes [113], since the numerical attributes
are mostly unique and hence not imperative for the techniques used
throughout this dissertation.

Ipums is a UCI dataset containing unweighted PUMS census data from the
Los Angeles and Long Beach areas [99].

Mushroom is a UCI dataset describing various mushrooms, with the goal of
predicting whether they are edible.

Nursery is a UCI dataset containing applications for nursery schools in
Slovenia, with the goal of predicting the evaluation of the application.

Soccer is a synthetic dataset from Arocena et al. [8] containing details about

soccer players in various seasons 2.

SP500 is a dataset from Chu et al. [32] containing information about stock
trading, from Standard & Poor’s.

2http://www.db.unibas.it/projects/bart/
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Related Work

In this chapter, we discuss the most relevant work related to our general
problem setting of constraint discovery for declarative data quality. For re-
cent overviews of the research field of data cleaning, we refer to Fan and
Geerts [44] and Ilyas and Chu [61]. Current challenges and are discussed
in Abedjan et al. [2], Chu et al. [35], and Meduri and Papotti [81], among oth-
ers. In the subsequent chapters, we discuss additional related work, specifi-
cally related to the contents of that chapter.

3.1 Constraint Discovery

Within the field of constraint-based data quality, a variety of formalisms have
been proposed. We briefly overview those types of constraints and cleaning
rules that are most related to our work. Some of these are further discussed
in Liu et al. [72].

B Functional Dependencies (FDs) [3] are a staple in database theory, and
are traditionally used for database design and normalization. Clearly,
an FD can also detect inconsistencies between tuples, and as such, FDs
are also used for data cleaning [44]. However, the applicability of FDs
to data cleaning is limited since they need to hold on the entire dataset.

B Conditional Functional Dependencies (CFDs) were introduced in Fan
et al. [45] as an extension of FDs, relaxing the aforementioned limita-
tion of FDs. CFDs add a conditional pattern to a standard FD, stating
that the FD only holds on the subset of the data that matches this condi-
tional pattern. Moreover, using these patterns, CFDs can also be used
to detect inconsistencies between values in a single tuple. Extensions
of CFDs are discussed in Bravo et al. [22].

15
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B Denial Constraints (DCs) are a universally quantified first order logic

formalism, and more expressive than FDs and CFDs, supporting oper-
ators such as inequalities as well as normal equalities. In the context
of data cleaning [31], a DC specifies combinations of logical predicates
that are illegal, either within a single tuple or across multiple tuples.
However, the expressiveness of DCs comes at the price of a slow discov-
ery process [32]. While the recently proposed Hydra algorithm by Blei-
ful’ et al. [17] is orders of magnitude faster than previous work for dis-
covering exact DCs, it has not yet been applied to approximate DCs,
which are typically required in a cleaning context. It is still unclear how
an extension to approximate DCs would impact the reported runtimes.

Matching Dependencies (MDs), introduced in Fan [43], are constraints
that involve a similarity function. In other words, the constraint does
not only apply to data entries which exactly match a given pattern, put
also those that are within a certain similarity. Likewise, a violation of
the rule ensues when a certain value in the data is not similar enough
to the specified target value for the constraint. As with FDs, MDs have
been extended with conditional patterns in Wang et al. [106]. Similar to
MDs are Metric Dependencies, proposed in Koudas et al. [68], which
also consider a similarity metric, but only on the consequent of a rule,
i.e., data must still exactly match the pattern of the rule in order for the
rule to apply.

Differential Dependencies (DDs) were introduced in Song and Chen
[100], as a generalization of matching and metric dependencies.
Instead of requiring a certain similarity between values, DDs use dis-
tances (defined using differential functions). As such, DDs can also
express orderings on values, or specify a required distance between
values (as opposed to a required similarity), for instance. DDs have
also been extended with constant patterns, in Kwashie et al. [70].

Fixing Rules were proposed in Wang and Tang [104] to not only de-
tect inconsistencies between different values in data, but also provide
a principled way of detecting which of the inconsistent values should
be update, and how this update should be done. Since fixing rules en-
code expert knowledge, they are provided up front by a user; it is un-
clear how such rules could be discovered automatically. In a similar
vein, Interlandi and Tang [63] introduces Sherlock Rules.

Editing Rules, used in Fan et al. [47], take a different approach by mak-
ing use of master data for repairing. By leveraging this master data,
which is guaranteed to be correct, editing rules aim to generate repairs
that are also guaranteed to be correct. However, master data is not al-
ways available, and in this dissertation we consider rule discover with-
out the use of master data.

In certain contexts, data values might be syntactically different yet se-
mantically equivalent, possible at a higher level of abstraction. Ontol-
ogy Functional Dependencies (OFDs), introduced in Baskaran et al.
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[11], handle this situation by adding ontological information into the
rule discovery process. More specifically, distances between values are
computed at the ontological level, instead of purely on the values them-
selves. OFDs are an enhancement of Roll-up Dependencies, proposed
in Wijsen et al. [109].

B Instead of considering tabular datasets, recent work by Arioua and
Bonifati (7] and Ortona et al. [83] concerns data quality rules over
knowledge bases (KBs). An important challenge when considering
rules over KBs, is the open world assumption: in contrast to traditional
databases, KBs are typically not assumed to be complete, and hence
facts that are missing from the data are not necessarily wrong. Arioua
and Bonifati [7] presents a method for repairing KBs under contradic-
tion detecting dependencies, a subset of DCs similar to the Forbidden
Itemsets presented in Chapter 6. The goal is to remove all contradi-
tions from the KB by asking a minimal number of questions to a user.
In Ortona et al. [83], the KB is used to generate sets of positive and
negative examples (where negative examples correspond to errors).
Rules are then discovered that cover many positive examples, and few
negative examples.

3.2 Data Repairing

In the data repairing step, it is typically assumed that the constraints are
known and fixed, and hence, the errors in the data are known. Various sys-
tems exist that modify data in such a way to remove the errors. Many of the
repair algorithms are based on a chase algorithm [13, 74] or a cost minimiza-
tion approach as in Bohannon et al. [18]. We overview some of the most
important cleaning systems:

B Llunatic, presented in Geerts et al. [51], is a cleaning framework. In-
stead of hardcoding a repair strategy, Llunatic makes use of customiz-
able strategies for selecting preferred values, which in turn specify how
inconsistencies are to be repaired. Consequently, Llunatic offers a uni-
form framework for repairing in the presence of different kinds of con-
straints.

B Nadeef, discussed in Ebaid et al. [41] and Dallachiesa et al. [38], is an ex-
tensible framework for cleaning, intended to semi-automate the entire
process. It contains a core functionality for detecting errors, combin-
ing various rule types, and subsequently cleaning these errors. At each
part of the cleaning pipeline, users can insert custom code to tailor the
process.

B Holistic Data Cleaning is presented in Chu et al. [31] as a repair
method based on Denial Constraints. Based on these given DCs, the
Holistic method computes a conflict hypergraph, capable of han-
dling different types of constraints, possibly with numeric operators.
A holistic repair algorithm is given, which is based on heuristics and
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optimizes an arbitrary objective function. The conflict hypergraph
is used to reduce the number of cells that needs to be looked at to
guarantee a successful repair.

HoloClean, introduced in Rekatsinas et al. [96], is a probabilistic clean-
ing framework. It takes again a set of constraints as given, and builds a
probabilistic model to repair the violations of these constraints. These
repairs are thus based on the statistical properties of the data. Holo-
Clean can also optionally incorporate external data, such as master
data.

Dance, introduced in Assadi et al. [9], makes use of domain experts dur-
ing the cleaning process. Dance takes a set of constraints as input, and
builds a graph of the violations in order to discover the “most suspi-
cious” tuples. These tuples are then presented to the expert, in order to
clean the data with limited user interaction.

GDR, or Guided Data Repair, was introduced in Yakout et al. [110]. Sim-
ilar to Dance, GDR also assumes a given set of constraints, and employs
user interaction in order to perform correct repairs. To minimize the
number of required user interactions, GDR uses the user’s feedback as
input to an active learning algorithm, which then ranks the possible
updates before presenting them to the user again.

BigDansing, presented in Khayyat et al. [65], is focused on the scala-
bility of the actual repair process. Constraints are given, and both the
violation detection phase and the repairing phase are performed on a
distributed platform to improve performance.

SCARE, introduced in Yakout et al. [111], uses statistical machine learn-
ing techniques to automatically clean a dirty dataset. By using avail-
able master data or constraints, SCARE selects a subset of the data that
is, with a very high likelihood, clean. A statistical model is then trained
on this clean subset, learning the distribution of “clean data”. Subse-
quently, the remaining part of the data is minimally adjusted so as to
maximally align with the learned model of the data distribution.

Katara, presented in Chu et al. [34], takes a different approach to tradi-
tional rule-based cleaning systems. Instead of relying on heuristics or
input from a single user, Katara employs knowledge bases and crowd-
sourcing. By using these as known facts, Katara then discovers the er-
rors in a given dirty dataset, and automatically repairs them.
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Revisiting Conditional Functional
Dependency Discovery

4.1 Introduction

In the introduction, we have outlined the constraint-based approach to data
quality. Among the variety of proposed formalisms, a popular type of con-
straint are conditional functional dependencies (CFDs).

In this chapter, we consider CFDs recast as an extension of association
rules, as formalized in Section 2.1. We discuss CFD discovery from a more
general perspective, and distinguish three general methodologies for discov-
ering confident CFDs!, as typically used for data cleaning, based on distinct
ways of combining FD discovery with itemset mining. The first methodology
is used by the CTane algorithm [46], and performs an integrated traversal of
the lattice containing all possible CFDs. Additionally, we introduce two new
methodologies, which explicitly consider CFD discovery as a combination of
FD discovery and pattern mining. We introduce an itemset-centric approach,
where patterns are mined at the top level, and FDs are subsequently discov-
ered on the corresponding subsets of the data; and an FD-centric approach,
which at the top level traverses the search space of FDs, and then mines
those patterns for which the FD holds, generalizing the approach taken in
FindCFD [29]. Moreover, in the FD-centric approach, we identify techniques
for speeding up the pattern mining process, using information from the FD
discovery process at the top level. A high-level overview of the three method-
ologies is shown in Figure 4.1.

10ther interestingness measures can be plugged in, if they can be computed from equiva-
lence partitions. This is the case for most popular measures.
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CFD Discovery Methodologies

Integrated Itemset-First FD-First

- Discover all CFDs | - Discover all - Discover all
Frequent Itemsets FDs

- Foreach itemset: - Foreach FD:
-- Discover FDs -- Discover frequent
patterns

Figure 4.1: High-level overview of the three methodologies for the discovery
of CFDs.

Both new methodologies are described in a flexible way, enabling the use

of any FD discovery method based on equivalence partitions, and any item-
set mining method based on fidlists, for each of the separate steps. As such,
the methodologies we describe, represent in fact a family of algorithms. This
has as a direct advantage that CFD discovery can benefit directly from ad-
vances in FD and itemset discovery.

4.1.1 Summary of Contributions

1. We introduce three general methodologies for discovering frequent,

approximate CFDs. Each of these methodologies can be thought of as
a family of concrete algorithms. (Section 4.3)

2. We derive the worst-case time complexity of our CFD discovery algo-

rithms. (Section 4.3.5)

3. We present a general pruning strategy for CFDs, such that each

methodology can use an arbitrary strategy for traversing the search
space of CFDs, e.g., breadth-first or depth-first. Note that both CTane
and FindCFD were originally presented using a breadth-first strategy,
because of pruning. (Section 4.3.6)

4. We show experimentally that both of our proposed methods typically

outperform the integrated approach to CFD discovery, which is used by
CTane. The FD-centric approach performs substantially better in most
cases, especially on data with a higher number of attributes. We also
identify situations in which the itemset-centric approach provides the
best performance, namely when using a very low minimum support
threshold. Moreover, the appropriate use of depth-first search strate-
gies further improve runtime for the different methodologies. (Sec-
tion 4.5)
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4.2 Problem Statement

In this chapter, we address the problem of discovering approximate CFDs
with high support:

PROBLEM: Approximate, Frequent CFD Discovery

INPUT: Instance D of a schema R,
confidence threshold ¢ and support threshold §.

OUTPUT: All CFDs ¢ over R with:
supp(¢,D) > 6 and confgp(9,D) > 1 —¢.

Since this chapter is based on techniques from association rule mining, we
convert the tabular database instance D into a transaction dataset D. In the
remainder of this chapter, we make use of D.

4.3 Three approaches for CFD Discovery

We present three general approaches for the discovery of approximate CFDs
with high supports. All of the approach are based on a lattice traversal, as
commonly used in itemset and association rule discovery algorithms. The
approaches differ in the way that this (itemset) search lattice is explored.
First, we generalize the integrated approach, used in the existing CTane
algorithm [46], in which a combined search lattice of constant and vari-
able (‘_’) patterns is traversed at once. For the other two, new approaches,
we decouple the lattices for constant and variable patterns. We present
the Itemset-First approach, followed by the FD-First approach. Both of
these approaches consist of two separate algorithms, which either explore
a lattice containing only constant patterns, or containing only variable pat-
terns. After discussing the three methodologies, we derive the general time
complexity of CFD discovery.

As mentioned in the introduction, to add further flexibility to each of
the three methods, we describe our algorithms independent from the search
strategy (breadth or depth-first) used. To achieve uniform pruning across all
approaches and search strategies, we present pruning strategies based on a
generalization of free itemsets [21] and a lookup table.

4.3.1 Integrated CFD Discovery

We start by describing the integrated approach MINE-INTEGRATED for dis-
covering CFDs, as implemented by CTane [46]. Its pseudocode is shown in
Algorithm 1.

For each of our approaches, we represent the search space of all itemsets
can be a power set lattice, with the empty itemset at the bottom and the set
containing all items at the top. We call the elements of the lattice nodes, and
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Algorithm 1 Integrated CFD discovery algorithm

1: procedure MINE-INTEGRATED(D, §, €)

2: LINT LA v)|Ac A,vedom(A)U{_},supp((A,v),D) > 8}
3 Compute I1({i},D) forall i € LN

4: Initialize fringe with £L'™NT depending on search strategy
5: X0

6 while fringe not empty do

7 I < Pop(fringe)

8 forall jeIdo

9: if confrp(I\ {j} — j,D) > 1 —¢e then

10: L ZU{I\{j} —Jj}

11: insert children of 7 into fringe if supp(1,D) > 6

12: return X

for a given itemset 7, we denote all nodes in the lattice corresponding to item-
setsJ DI as the children of I. Conversely, all nodes corresponding to itemsets
K C I are called the parents of I. A level of the lattice consists of the set of all
nodes of a given size, e.g., the first level contains all itemsets of length 1.
Algorithms based on the integrated methodology traverse the entire
search lattice for CFDs, consisting of both constant and variable patterns:

Definition 2 (Integrated Search Lattice). Consider a database instance D.
The search lattice £ for the integrated methodology consists of all item-
sets I in the powerset P(ZU{(A,’_’) | A € A}), such that I contains at most
one item per attribute, i.e., |attrs(I)| = |I|. O

The first level LINT of this lattice is initialized on line 2 of the pseudocode.
For each singleton item, its equivalence partition is computed from the data;
only sufficiently frequent constant items are retained.

The lattice is subsequently traversed, on lines 6-11, typically in either a
breadth-first or depth-first manner 2. Regardless of the choice of traversal,
we refer to the set of current lattice elements considered as the fringe.

Whenever an itemset / in the fringe is visited (line 7), all CFDs of the form
I\{j} — j, for j € I, are generated, and their confidence is computed from
the equivalence partitions I1(7 \ {j}) and I1(Z). If the confidence exceeds the
threshold, then the CFD is added to the result . An efficient algorithm for
computing confidence is presented in Tane [60], and is based on the error of
an equivalence class.

Definition 3 (Refinement of an Equivalence Partition). Given an itemset /
and a single item j, for all eq € II(7\ {j}), we define the refinement of eq in
I1(7), denoted by I1(1)®, as {eq’ € II(I) | eq’ C eq}. O

In other words, I1(7)* contains all equivalence classes over I that match
the same (constant) pattern as eq on the attributes 7\ {;}. This concept is
used to define the error:

2The CTane algorithm as presented in [46] employs a breadth-first traversal.
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Definition 4 (Error of an Equivalence Partition). Given an itemset / and a
single item j, we define

error(eq, (7)) = [[T1(7)*9]| — L. led|. H

Generalizing the argument given in [60] for variable patterns to arbitrary
(constant and variable) patterns, the confidence can then be computed as:

Definition 5 (Computational formula for the confidence of a CFD).

Yeqer(1\{j}) error(eq,I1(1))
supp(Z\ {/j})

Example 1. We consider the CFD {(Windy,false), (Outlook,_)} — (Play,_)
from the Tennis dataset in Table 2.1. To simplify notation, we let
I = {(Windy,false), (Outlook,_),(Play,_)} and j = (Play,_). We compute the
error for each of the 3 equivalence classes in ITI(7\ {j}): {1,8,9},{3,13}, and
{4,5,10}. For eq = {3,13} and eq = {4,5,10}, we have |I1(1)*9| = 1, since the
objects within these equivalence classes have the same values for attribute
Play. Hence, there is only one eq’ € I1(7)*?, and |[TI(1)*|| = maXeq/cri(r)ea leq'],
leading to an error of 0. This leaves us with eq = {1,8,9}, for which
I1(7)*0 = {{1,8},{9}}. Indeed, this is the equivalence class containing the
violations of the CFD. We compute the error as

error = ||{{1,8}, {9} }[| - max(|{1,8}|, {9}) = 1,
resulting in a confidence of 1 — (error/||II(1)||) =1 —(1/8) = 0.875. &

confrp(I\{j} —j)=1— O

Finally, if I is sufficiently frequent, the children of 7 in the lattice are gen-
erated and inserted into the fringe (line 11). This is done by joining 7 with all
itemsets J in the fringe that are (i) at the same level in the lattice, i.e., |J| = |I|;
and (ii) such that J and  differ in only one item. A child M is then obtained
as IUJ, and I1(M) is computed by intersecting I1(7) with I1(J). The Tane algo-
rithm provides a linear algorithm for computing such an intersection, mak-
ing use of a lookup table. Using a similar technique, confidence can be com-
puted in linear time. The algorithm for intersection is briefly recapped in
Section 4.3.4.

4.3.2 Itemset-First Discovery

The second, and new, approach to CFD discovery starts with an itemset min-
ing step. The pseudocode of algorithm MINE-ITEMSET-FIRST is shown in Al-
gorithm 2.

For the Itemset-First approach, we consider a search lattice containing
only items with constant values:

Definition 6 (Itemset-First Search Lattice). Consider a database instance D.
The search lattice £!""F for the Itemset-First methodology consists of all item-
sets / in the powerset P(Z), such that / contains at most one item per at-
tribute, i.e., |attrs(I)| = |1]. O



24 CHAPTER 4. REVISITING CFD DISCOVERY

The first level of the search lattice £!'F is initialized on line 2. Since
we consider only items with constant values, we only require the cover of
eachitemin £ (recall that the equivalence partition of a constant item corre-
sponds to its cover). The lattice is again traversed using an arbitrary search
strategy and generated itemsets are inserted into the fringe.

When visiting an itemset 7 in this approach, we initialize a separate FD
searching algorithm (line 8). The item lattice for this FD search (£L5F) now
consists only of those items in D with a variable pattern (‘_’), and whose at-

tribute is not already present in attrs(/):

Definition 7 (Itemset-First Sublattice for FD-search). Consider a database
instance D and an itemset I being processed in the Itemset-First methodol-
ogy. The sublattice £L5F for the FD-search on itemset 7 consists of all item-
sets J in the powerset P({(A,‘_") | A € (A\ attrs(I))}), such that J contains at
most one item per attribute, i.e., |attrs(J)| = |J]. O

In other words, we wish to extend the constant pattern I with variable pat-
terns to obtain approximate CFDs. Moreover, during the traversal of £15F
the equivalence partition of each item is computed on D/, the dataset D pro-
jected on 1, i.e., using only those objects with a tid in cov(Z,D). The algo-
rithm FIND-FDs is then invoked on line 10, which can be any FD-discovery
algorithm using equivalence partitions, to discover all FDs with confidence
> 1—eonD’. Theresulting FDs are augmented with the pattern 7, and added
to the set X of CFDs. Note that FIND-FDs is oblivious to the support thresh-
old 6, since an FD is supported by all objects in D/, and |D'| > § is already
ensured by enforcing the support threshold on 7.

Pseudocode for the FIND-FDs algorithm, is shown in Algorithm 3. The al-
gorithm takes as input the first level in the lattice £15F, the constant pattern
P that is currently being processed by MINE-ITEMSET-FIRST, the projected
database D”, and the confidence threshold €. The lattice contains all vari-
able items, except those with an attribute in attrs(P), with their equivalence
partitions computed on D”. As in the other algorithms, a fringe is initialized
using an arbitrary search strategy, and then traversed. For each FD I\ {j} — j
encountered, the confidence of the FD I\ {j} — j on D’ is validated. If the
FD is found to be confident, the corresponding CFD PU (I\ {j}) — J, joined
with the pattern, is added to the result.

Example 2. In the Tennis example, the itemset step of the algorithm
will, for instance, visit the item (Windy,false), with cov((Windy,false),D) =
{1,3,4,5,8,9,10,13}. Subsequently, an FD search is performed using
only those tids in cov((Windy,false),D). Hence, within the FD search,
the fringe is initialized with all variable items except for (Windy,_), and
the equivalence partitions of these single items are computed only
over the tids {1,3,4,5,8,9,10,13}. The FD (Outlook,_) — (Play,_) is then
found to hold, with sufficient confidence, and the CFD {(Windy,false),
(Outlook,_)} — (Play,_) is added to the result. After exhausting the FD
lattice for (Windy, false), the itemset mining step is resumed. <

Similar to the integrated approach, the final step when visiting an itemset
I is to insert its children into the fringe, if they are sufficiently frequent. The
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Algorithm 2 Itemset-First CFD discovery algorithm

1: procedure MINE-ITEMSET-FIRST(D, §, €)

2 LITF « L(Av) | A€ A,y € dom(A),supp((A,v),D) > 8}

3 Compute cov({i},D) for all i € £!-F

4:  [Initialize fringe with £'T"F depending on search strategy
5: X+0

6 while fringe not empty do

7 I < Pop(fringe)

8 LIEF — {(A,_) | A€ A\ attrs(I)}

9 Compute II({k},D') for all k € £ILF

10: L« LUFIND-FDs(LIEF 1, D! ¢)
11: insert children of 7 into fringe if their support > 6
12: return X

Algorithm 3 FD-discovery subroutine for Itemset-First algorithm

1: procedure FIND-FDs(LESF, P DP ¢)

2 Initialize fringe with £I5F depending on search strategy
3 YX+0

4 while fringe not empty do
5: I < Pop(fringe)
6

7

8

9

forall j € Ido
CFD < (PUI\{j}) —Jj
if confep (CED, D) > 1 — ¢ then
L+ XU{CFD}
10: insert children of I into fringe

11: return X

only difference, similar to the initialization of £, is that we again only con-
sider constant items, with equivalence partitions boiling down to the cover
of the items. The cover of each child itemset M can then be computed using
a straightforward intersection of cov(/, D) and cov(J, D), for the itemsets J in
the fringe with |J| = |/, and such that J and 7 differ in only one item.

4.3.3 FD-First Discovery

The third and final approach to CFD discovery, MINE-FD-FIRST, is shown in
pseudocode in Algorithm 4. This approach is a generalization of the Find-
CFD algorithm [29], which starts with FD discovery. The search lattice £P-F
is thus initialized (line 2) using only variable items:

Definition 8 (FD-First Search Lattice). Consider a database instance D. The
search lattice £LFP-F for the FD-First methodology consists of all itemsets 7 in
the powerset P({(A,_) | A € A}). O

As before, equivalence partitions are computed at the beginning of the
algorithm, after which a fringe is created and a breadth-first or depth-first
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traversal of the lattice follows.

For every item I in the lattice, we now consider all FDs of the form 7\
{j} — jfor j €I (line 8). If the FD is found to be sufficiently confident, it is
added to the result X. However, if the FD does not fully hold on the data, we
additionally run an itemset mining algorithm to find all constant patterns for
which the FD is sufficiently confident. During this itemset mining step, the
lattice £EP-F is explored, containing all constant patterns over the attributes

PAT
in attrs(7\ {j}). The first level of this lattice is initialized on line 12.

Definition 9 (FD-First Sublattice for pattern search). Consider a database
instance D and an FD ¢ : 7'\ {j} — j being processed in the FD-First method-
ology. The sublattice £52-F for the pattern search on the FD ¢ consists of all
itemsets J in the powerset P({(A,v) € Z | A € attrs(I\ {/j}), such thatJ contains

at most one item per attribute, i.e., |attrs(J)| = |J]|. O

The key to the MINE-FD-FIRST method’s efficiency is that the support
and confidence of a considered CFD I\ {j} — j can be computed based on
the information contained in II(/). Indeed, each equivalence class eq € I1([)
corresponds to a unique constant pattern over the attributes attrs(7). By as-
signing a unique identifier to each class, we define the cover of an item(set) J
w.r.t. the equivalence partition of 7, denoted as cov(J,II(1)), as the set of iden-
tifiers of equivalence classes in which the item occurs. We call such a cover a
pidlist (for partition id). Since typically |cov(J,II(I))| < |cov(J, D)|, efficiency
is increased.

Example 3. Consider the FD {(Windy,_),(Outlook,_)} — (Play,_) cor-
responding to the itemset / = {(Windy,_),(Outlook,_),(Play,_)}, with
equivalence class TII(I) = {{1,8},{2},{3,13},{4,5,10},{6,14},{7,12},
{9},{11}}. We assign pids to the partitions sequentially, starting from
1,e.g., pid({1,8}) =1 and pid({11}) = 8. The item (Windy, false) occurs in the
partitions {1,8},{3,13},{4,5,10}, and {9}, and hence we can now represent
the constant pattern (Windy, false) by its pidlist:

cov((Windy, false), IT(7)) = {1,3,4,7}.

Since supp((Windy,false),D) = 8, we have reduced the size of its cover by
half. <

The subprocedure MINE-PATTERNS now starts by initializing a fringe con-
taining all frequent single (constant) items over the attributes in 7\ {;}. For
each item, its pidlist has been computed from II(/) (line 13). Procedure
MINE-PATTERNS then traverses the constant itemset lattice, generating the
pidlists of new itemsets by intersecting the pidlists of two of their parents
in the lattice. The support of an itemset M can be easily computed from its
pidlist as follows,

supp(M,I1(1)) = )y [TX(1) [pid]],

pid € cov(M I1(I))

where I1(7)[pid] denotes the equivalence class with identifier pid. Only item-
sets M with supp(M,II(I)) > 6 are considered as possible patterns for a CFD.
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Algorithm 4 FD-First CFD discovery algorithm

1: procedure MINE-FD-FIRST(D, §, €)

2 LFDF L {(A_)|Ac A

3 Compute H({ i}, D) for all i € LFP-F

4:  [Initialize fringe with £FP-F depending on search strategy
5: YX+0
6
7
8
9

while fringe not empty do
I < Pop(fringe)
forall j € Ido
: if confrp(I\ {j} — j,D) > 1 — € then

10: L ZU{I\{j} —Jj}
11: if confep (I\ {j} — j,D) < 1 then
12 LEDF « {(Av) | A€ attrs(I),v € dom(A)}
13: Compute cov({i},II(I)) for all i € LED-F
14: ¥ < LUMINE- PATTERNS(ﬁEETF,I\{j} — j,II(I),8,€)
15: insert children of I into fringe
16: return X

In order to form a CFD from the FD (7\ {j}) — j and the constant pattern M,
where the itemset in 7 and M contain overlapping attributes, we need to take
a set union which replaces those variable items in (7\ {j}) which have a con-
stant counterpart in M. For this purpose, we define operator @ as the union
with constant replacement:

Definition 10 (Union with constant replacement (¢)). Consider two itemset
I'and J, with J consisting only of items without variable. We define

IoJ=JU{(A,v)el|v#£‘_ or A¢attrs(J)}. O

Whenever an itemset M is processed in MINE-PATTERNS, we thus validate
the CFD (1\ {j}) @M — j. If this CFD is sufficiently confident, it is added to
the result.

Pseudocode for the MINE-PATTERNS algorithm is shown in Algorithm 5.
The algorithm takes as input the first level of the lattice £52-F, an FD 1\ {j} —
j which does not fully hold on the data, the equivalence partition I1(/) of
the itemset I containing the CFD, and the thresholds 6 and €. Recall that
this lattice consists of all itemsets containing only items with attributes in
attrs(I\ {/j}).

Instead of equivalence partitions or tidlists, we compute for each item the
corresponding pidlist, i.e., its cover computed over the equivalence classes
in II(Z). Next, a fringe is initialized and traversed using an arbitrary search
strategy. For every constant pattern M processed during the lattice traversal,
the confidence of the CFD (I'\ {j}) ®M — j is verified (the variable items in
I'\ {j} are replaced by @ with the constant items in M that have the same
attribute, if such an item exists). If the CFD is sufficiently confident, it is
added to the result. Both confidence and support are computed using the
pidlists over TI(1).



28 CHAPTER 4. REVISITING CFD DISCOVERY

Algorithm 5 Pattern mining subroutine for FD-First algorithm

1: procedure MINE-PATTERNS(LEDF 1\ {j} — j,1I(1), 8, ¢)

2 Initialize fringe with £EDF depending on search strategy
3 X+0

4: while fringe not empty do

5: M + PoP(fringe)

6 CFD « (I\{j}) &M —j

7 if confrp (CFD,II(1)) > 1 — € then

8 L+ XU{CFD}

9 insert children of M into fringe if their support > 6

10: return X

As before, any itemset mining algorithm based on tidlists and any search
strategy can be employed by MINE-PATTERNS. After the itemset mining step
has finished, MINE-FD-FIRST continues by processing the remaining FDs in
I, of the form (7\ {I} — ) with [ # j, one by one. Finally, after all FDs in / have
been processed, the children of 7 are added to the fringe. Since MINE-FD-
FIRST only considers FDs at this level, a support check is not necessary.

We remark that the algorithm FindCFD [29] takes a similar approach, but,
to our knowledge, does not perform an exhaustive search through the pat-
tern lattice, i.e., the entire power set lattice L5D-F. Indeed, if an FD does not
hold, this algorithm examines the equivalence partitions to obtain a constant
CFD, without any variable patterns. As such, FindCFD discovers only FDs
and constant CFDs, whereas MINE-FD-FIRST discovers general CFDs con-
taining variables and constants. The fact that FindCFD does not discover all
CFDs is also noted in [28].

4.3.4 Intersecting Equivalence classes

Each of the methodologies presented above makes use of equivalence parti-
tions, and during the lattice traversals, these equivalence partitions of nodes
in the lattice are intersected to obtain equivalence partitions of their chil-
dren in the lattice. The algorithm for computing the intersection of two
equivalence partitions, I1(/) and I1(J), as presented in Huhtala et al. [60], is
shown using our terminology in Algorithm 6. The algorithm works as fol-
lows, a lookup table is created mapping every item in I1(J) to the index of
its equivalence class eq’ € I1(J). Then, every equivalence class eq € I1(I) gets
“split” according to the partition I1(J): for each of the items in eq, its equiva-
lence class index in I1(J) is looked up, in order to partition eq into separate
classes, grouping those items which are in the same class in I1(J). Finally, all
partitions in eq are added to I1(/UJ), and the next eq € I1(]) is processed.

4.3.5 Time Complexity

With our three general methodologies in place, we now discuss the time com-
plexity of CFD discovery based on equivalence partitions and tidlists. Most
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Algorithm 6 Intersection algorithm for equivalence partitions

1: procedure INTERSECTION(I1(/),TI(J))
2 plndex <+ 0
3 Lookup + [ _]
4 forall eq’ € I1(J) do
5: for all item € eq’ do
6 Lookuplitem] + pIndex
7 pIndex + plndex+1
8 H(IUJ) <0
9: plndex < 0
10: for all eq € I1(Z) do
11: Hp]ndex — [—]
12: for all item € eq do
13: [ pndex[ Lookuplitem]] < I, g0 [ Lookuplitem]] U { item}
14: plndex + plndex+ 1
15: for all eq” € 1,0, dO
16: HIUJ) + DIuJ)U{eq"}

17: return I[1(7UJ)

of the computation concerns two operations: computing equivalence parti-
tions (or tidlists), and validating CFDs. Both operations can be performed in
O(|D|) time. For every element 7 in the lattice, the equivalence partition is
computed once, and || CFDs are validated. We simplify this as |/| operations
per lattice element. Given that there are |.4] attributes in the dataset, a total
of 24 combinations of attributes exist: at level i in the lattice, there are (I“?l)
attribute combinations of size i. Let d denote the average size of dom(A), for
A € A. Including variable patterns, there are at most (d + 1)’ itemsets contain-
ing an attribute combination of size i. The number of operations performed
by the algorithms is then:

Computing this expression gives a total of |A|(d 4 1)(d +2)AI~! operations,
each of which is O(|D|). Hence, the time complexity of the algorithms is:

O(|A| x d x |DI).

While each of our three methods performs roughly the same number of oper-
ations, the difference between them is in the time required to perform these
operations. Indeed, a tidlist intersection and an equivalence partition inter-
section are both O(|D|), but in practice the tidlist intersection is faster. The
Itemset-First method most efficiently computes the projected databases on
which it then performs an FD-search, while the FD-First method performs
much of its intersections and validation on the pidlists, which are on average
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much smaller than |D|. These differences account for the improved perfor-
mance of Itemset-First and FD-First over the Integrated approach, as exper-
imentally shown in Section 4.5.

4.3.6 Pruning

We conclude by discussing pruning. Clearly, any CFD discovery algorithm
can exploit the anti-monotonicity of support, to prune away all infrequent
itemsets and their supersets. However, existing CFD discovery algorithms
also provide pruning based on redundancy with respect to the antecedent of
CFDs. Redundancy is defined using the concept of a preceding set:

Definition 11 (Preceding set). Consider a database instance D and an item-
set I containing attribute-value pairs. An itemset J is a preceding set of I,
denoted J < I, if J # I and for all (A,v) € J, it holds that either (A,v) € I, or
v="_"and (A,a) € I, where a is a constant value in dom(A). O

Example 4. In the Tennis example, the itemsets { (Windy, false), (Outlook,_)}
and {(Windy,_), (Outlook,_),(Play,_)}, among others, are preceding sets of
the itemset {(Windy, false), (Outlook,_), (Play,_)}. ¢

Definition 12 (CFD Redundancy). Consider a database instance D and a
CFD ¢ : I — j with conf(¢,D) > 1 —e. Then, ¢ is redundant if there exists
aCFD ¢': M — nwith M < I and {n} < {,}, and conf(¢’,D) = conf(@,D). O

Example 5. In the example, CFD (Temperature,Cool) — (Humidity, Normal)
holds exactly. This implies the redundancy of, for example, the CFDs

{(Temperature, Cool), (Humidity, Normal), (Windy, _)} — (Play,_)

{ (Temperature,Cool), (Windy,_)} — (Humidity,_). ¢

Such redundancy can be eliminated efficiently in CTane (and Tane), since
itemploys a breadth-first traversal of the integrated search lattice, and hence
all immediately preceding sets of an itemset are directly available in the level
above the current one in the lattice. Pruning is then performed by associat-
ing with every itemset / in the lattice a set C* (1) of candidate consequents for
I and its supersets. Initially, we set C* (1) = {(A,v) e Z | if (A,v') e thenv=V'},
i.e., all items except those for which 7 already contains a different item with
the same attribute. Whenever a CFD is found to hold, the relevant C* sets
are updated, removing candidate consequents which will lead to redundant
CFDs. Clearly, if C*(I) = 0, then I and all its supersets can be removed from
the search space. Updating the sets C* is performed as follows in CTane:

1. fDEIT— j,setCt(M)=Ct(M)NIforall M with j € M and M < I;

2. When generating a new itemset X in the lattice, set the set of candidate
consequents C*(X) =C*T(X)NC*(I) forall I < X with |(X \I)| = 1.



4.4. RELATED WORK 31

To generalize this strategy across our different approaches and search
strategies, where not all preceding sets may be readily available in the search
lattice, we introduce two techniques. Firstly, we use a lookup table indexed
by the consequent of a rule 3, and store a list of all CFDs with that consequent
that hold exactly on D. When a confident CFD I — j is found, it then suffices
to verify whether a preceding set of I is present in the table at index j. Ifa
preceding set M is found, the CFD is redundant, and pruning is performed
by setting C*(1U{j}) =CT(IU{j})NM.

Our second pruning technique is based on a generalization of the con-
cept of free itemsets [21] (also called generators [86]). An itemset M is called
free if, for all J C M, it holds that supp(J,D) # supp(M,D). Moreover, it is
known that all subsets of a free set are also free. We extend this concept to
equivalence classes:

Definition 13 (Eq-Free Itemset). An itemset / is Eq-Free in an instance D if,
forallJ C I, |TII(1,D)| # |T1(J,D)| or |TI(Z,D)|| # ||TI(J,D)]|. O

We now observe that, if a CFD ¢ : I — j holds on D, then the itemset
IU{j} is not Eq-Free. Indeed, it must necessarily hold that |I1({,D)| = |II(({U
{j}),D)| and ||II(1,D)|| = |TI((IU{,}),D)|. Hence, in order to obtain non-
redundant CFDs, we additionally need to verify the Eq-Freeness of the an-
tecedent of every considered CFD. To implement this check efficiently, we
use a lookup table as in the Talky-G algorithm for mining free itemsets [101].

4.4 Related Work

Since the introduction of CFDs in Fan et al. [45], three discovery algorithms
have been proposed. CTane and FastCFD were introduced in [46], and Chi-
ang and Miller [29] presents an unnamed algorithm, which we will call Find-
CFED. It is important to note that FastCFD does not readily lend itself to the
discovery of approximate CFDs, and is hence less relevant to our work. Other
work on CFD discovery, such as Diallo et al. [40] and Li et al. [71], only con-
sider constant CFDs, as opposed to general CFDs with possible variable pat-
terns. CFD discovery can also be viewed as the discovery of a special class
of conjunctive queries, as in Goethals et al. [54], but at the cost of a more
time-consuming discovery process.

4.4.1 Functional Dependencies

Each of the three CFD discovery methods discussed above is rooted in
the discovery of regular functional dependencies. An overview and experi-
mental evaluation of various functional dependency discovery algorithms
is presented in Papenbrock et al. [85]. The three general approaches to
CFD discovery presented in this chapter can incorporate any FD discov-
ery method making use of equivalence partitions, e.g., Tane [60], FUN [82],
FD_Mine [112], and DFD [1]. Such methods support the discovery of ap-
proximate dependencies, and are well suited for integration with pattern

3We store constant CFDs I — (A,v) both at indices (A, v) and (A, _).
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mining, due to the close relation between equivalence partitions and tidlists.
We have based our implementations on the Tane algorithm, which was
shown in Papenbrock et al. [85] to be the fastest algorithm on a considerable
range of data sizes. The most recent work on FD discovery, Kruse and Nau-
mann [69], makes use of a combination of equivalence partitions (called
position list indexes (PLIs) in their paper), and so-called agree sets as in
FastCFD, to improve the efficiency of the method. However, equivalence
partitions are still required to compute the confidence of their approximate
FDs, and hence it can be integrated into our methods.

The discovery of FDs has also been addressed from the perspective of
Formal Concept Analysis (FCA). Lopes et al. [73] presents an SQL based al-
gorithm for FD discovery, and Baixeries et al. [10] presents a method based
on pattern structures, but does not discuss the discovery of approximate FDs.
The link between FCA and CFDs is characterized theoretically in Medina and
Nourine [80]. For an overview of FCA, we refer to Ganter and Wille [50].

Although interestingness measures for FDs based on statistical tests have
been proposed in Mandros et al. [75], we consider approximate CFDs de-
fined in terms of support and confidence as these are most widely used in
the data quality context. In a similar vein, Berti-Equille et al. [15] discovers
FDs over data with missing values based on a measure of genuineness, which
corresponds to the likeliness that the FD would hold after imputation of the
missing values. In contrast, we treat values such as NULL or “?” simply as
another value in the domain, which is called the NULL-EQ strategy in Berti-
Equille et al. [15]. Such alternative interestingness measures could option-
ally be integrated into our methods, but are orthogonal to the content of this
chapter.

4.4.2 Association Rules

Association rules (ARs) were first introduced in Agrawal et al. [5] for super-
market basket analysis. The discovery of ARs is based on mining frequent
patterns, which started with the APriori algorithm in Agrawal et al. [6], and
has received much attention since. Of particular interest to our approaches
for CFD discovery are so-called vertical itemset mining algorithms, which
employ a vertical data layout for efficient frequency computation, such as
Eclat [116]. Such algorithms are well-suited for integration with FD discov-
ery, since the vertical data layout relates naturally to the equivalence parti-
tions used in FD discovery. Our implementations are based on Eclat. Other
important algorithms for AR mining include FP-Growth, presented in Han
et al. [57], and Opus, presented in Webb [107]. For overviews of itemset and
association rule mining, we refer to Goethals [53] and Zaki and Meira Jr [115].

Throughout this chapter, we have viewed CFDs as a kind of ARs. An in-
depth discussion of the relationships between FDs, CFDs, and ARs can be
found in Medina and Nourine [79].
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Table 4.1: Statistics of the UCI datasets used in the experiments. We report
the number of tuples, distinct constant items, and attributes.

Dataset |D| Izl  |A]
Adult 48842 202 11
CreditCard 30000 216 12
Mushroom 8124 119 15
Nursery 12960 32 9
Adult CreditCard
1501 A Integrated @ FD-First 150—A Integrated @ FD-First
[ Itemset-First B Itemset-First
Guo\ A4 AL Bo A, Laa
S S
GE) 58— g
= 501 iZ 50
58— 5-m|
e— 0 90 0o e— 0 —0 00
0+ 0
06 07 08 009 06 07 08 09 10
Confidence Confidence
Mushroom Nursery
100 1 A Integrated @ FD-First 357‘ Integrated @ FD-First
[ Itemset-First 301 @ Itemset-First
80 25 |
0 0
< 60 ‘<:>M > 20 ‘;ﬁﬁ:
£ £ 15
~ 40 =
10 4
201 .\.\./._. 5 o — o %o
0+ 0

Confidence

06 07 08 09

06 07 08 09 10
Confidence

Figure 4.2: Influence of confidence threshold on runtime of three CFD dis-

covery algorithms.

4.5 Experiments

We experimentally validate the proposed techniques on real-life datasets
from the UCI repository [39], described in Table 4.1. The mushroom dataset
was restricted to its first 15 attributes, as runtimes became too high when
considering more attributes. The algorithms have been implemented in C++,
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Figure 4.3: Scalability of three CFD discovery algorithms in number of tuples.

the source code and used datasets are available for research purposes [90].
The program was tested on an Intel Xeon Processor (3.8GHZ) with 32GB of
memory running Ubuntu. Our algorithms run entirely in main memory. All
runtimes were obtained as an average over 3 independent runs.

In Section 4.3, we have described the three approaches to CFD discovery
in full generality, i.e., using any FD discovery algorithm based on equivalence
partitions, any itemset mining algorithm using tidlists, and any search strat-
egy. We begin the experimental section by describing specific instantiations
of our approaches, which were used in the experiments:

Integrated uses a depth-first implementation of the CTane algorithm

Itemset-First uses a breadth-first version of Eclat for the itemset mining
step, and a depth-first Tane implementation for the FD discovery step

FD-First uses both a depth-first Tane step and depth-first itemset mining

All our depth-first implementations use a reverse pre-order traversal. We
selected these three instantiations as the best ones — in terms of efficiency —
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Figure 4.4: Scalability of three CFD discovery algorithms in number of at-
tributes.

out of a total of 18 different combinations. The runtime results of all instan-
tiations are available in appendix A.1. The above choices did not impact the
relative ordering between the different methodologies. Since the Integrated
approach is similar to the CTane algorithm, we consider this as the bench-
mark, i.e., state-of-the-art in CFD discovery.

Since CFD (and FD) discovery is inherently exponential in the number
of attributes of a dataset, we sometimes reduce the overall runtimes of the
algorithms by enforcing a limit on the size of rules, called the maximum an-
tecedent size. We compare the runtime of the three methodologies in func-
tion of the number of tuples and attributes of the data, the minimum sup-
port threshold, and the maximum antecedent size. We emphasize that all
methods return the exact same result in every experiment.

4.5.1 Confidence Threshold

First, we investige the influence of the confidence threshold on the runtime
of the algorithms. Runtime results in function of confidence are shown in
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Figure 4.5: Scalability of three CFD discovery algorithms in minimum sup-
port threshold.

Figure 4.2. These results were obtained with a minimum support of 10%,
and a maximum antecedent size of 6. As stated at the beginning of the exper-
imental section, the confidence threshold has a negligible impact the run-
time of CFD discovery. This makes sense: since no pruning occurs based on
confidence, all these CFDs are validated regardless of the threshold, and the
only difference is whether they are added to the result. As a result, we only
mine exact CFDs in the remainder of this experimental section.

4.5.2 Number of Tuples

We next investigate the scalability of each approach in terms of the num-
ber of tuples. For this experiment, we take each dataset, and consider only
the first X% tuples. We consider the values 10%,25%,50%,75%, and 100% for
X. The minimum support threshold was fixed at 10% of the number of tu-
ples considered, and thus grows as the size of the considered subset of the
database increases. The maximum antecedent size was fixed at 6. The ob-
tained runtimes are displayed in Figure 4.3. The three methodologies exhibit
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Figure 4.6: Scalability of Itemset-First and FD-First discovery algorithms for
very low minimum support thresholds.

a linear increase in runtime as the number of tuples increases. We see that
the FD-First approach scales better than the other approaches, and is faster
overall, followed by the Itemset-First approach, and then the Integrated ap-
proach.

4.5.3 Number of Attributes

Similar to the previous experiment, we now investigate the performance of
the three algorithms in terms of the number of attributes in the dataset. We
consider only the first X attributes, with X increasing in increments of two.
In Figure 4.4, the runtimes are shown on each dataset for increasing values
of X. The minimum support threshold and maximum antecedent size were
again fixed at 10% and 6, respectively. As expected, the CFD discovery prob-
lem is inherently exponential in the number of attributes. This rise in run-
time is clearly visible for each of the three methodologies. However, while all
methods are exponential, the FD-First method clearly outperforms the other
approaches. The Integrated method is the slowest overall, and suffers most
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Figure 4.7: Scalability of three CFD discovery algorithms in maximal size of
antecedent.

of all from the increasing number of attributes.

4.5.4 Minimum Support

We next fix the dimensionality of the data, using all tuples and attributes,
and study the influence of the minimum support threshold on runtime. The
results for the three datasets are shown in Figure 4.5, for minimum support
thresholds of 5%, 10%, and 15% of the total number of tuples. Overall, we
see that the runtime decreases slightly as the support threshold increases.
Clearly, support has less impact on the runtime of the methods than the
number of tuples and attributes. The FD-First method shows the lowest in-
crease in runtime as support decreases, and is clearly the fastest method,
while the other two methods show a similar increase for lower supports.
However, this situation changes when considering very low support
thresholds. In Figure 4.6, we show runtimes for the Itemset-First and
FD-First methods for minimum supports ranging of 0.1%, 0.5%, and 1%. We
do not display the Integrated approach, since it is much slower in this sup-
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Table 4.2: Number of (approximate) cfds discovered for various support and
confidence thresholds.

Dataset Minsup Conf=1.0 Conf=0.99 Conf=0.95
15% 3 8028 11426

Adult 10% 7 11841 19342
5% 32 22256 44962

15% 0 1970 21802

CreditCard 10% 5 3429 32266
5% 24 8711 62244

15% 3739 219344 877583

Mushroom 10% 5842 314259 1240933
5% 11117 438325 1969904

15% 2 2 80

Nursery 10% 7 7 225
5% 25 57 836

port range, distorting the plot. As support becomes very low, the FD-First
method shows a strong increase in runtime, whereas the Itemset-First
method is much less impacted. Indeed, for such low supports, the pat-
tern mining step becomes the most expensive part of CFD discovery, which
is handled most efficiently by the Itemset-First approach. This clearly
indicates that both methodologies have their merit, in different contexts.

4.5.5 Maximal Antecedent Size

We conclude our runtime experiments by investigating the impact of the
maximal antecedent size threshold on the runtime of the algorithms. Recall
that this threshold limits the size of the discovered CFDs, and thus, the depth
of the search tree. The minimum support threshold was again fixed at 10%.
The results are shown in Figure 4.7. We see an exponential increase in run-
time, similar to that observed when the number of attributes was increased.
This makes sense, since both parameters directly correspond to the depth of
the search tree. The FD-First approach again performs best on every dataset,
and shows the lowest increase in runtime as antecedent size increases. As
before, the Itemset-First approach is faster than the Integrated approach.

4.5.6 Number of CFDs

As additional information, we show the number of CFDs found for various
support and confidence thresholds in Table 4.2. We only use very high con-
fidence thresholds, as such CFDs are typically used for data cleaning. The
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number of CFDs increases quickly as the number of attributes increases, as
is the case on the Mushroom dataset. Moreover, while the number of CFDs is
manageable for high confidence thresholds, CFD discovery also suffers from
pattern explosion when considering low confidence thresholds. As noted in
the beginning of this experimental section, all algorithms returned the exact
same set CFDs.

4.6 Conclusion

In this chapter, we have presented the discovery of Conditional functional
dependencies (CFDs) as a form of association rule mining, and classified the
possible discovery approaches into three categories. These categories are
based on how the different approaches combine pattern mining and func-
tional dependency discovery. Two of these approaches have not been con-
sidered before. Moreover, we discuss how CFD discovery and pruning can be
performed independent of methodology and search strategy, either breadth-
first or depth-first.

We show experimentally that both our new approaches, FD-First and
Itemset-First, outperform the baseline Integrated method, which was based
on the existing CTane algorithm. In most cases, the FD-First methodology
performs best, and is considerably faster than the baseline. We further iden-
tify situations in which either FD-First or [temset-First achieves the best per-
formance, indicating that both methodologies have individual merit.

Most crucially, we have shown that the field of CFD discovery still offers
opportunities for improvement. This is highly relevant in view of the pop-
ularity of CFDs in data cleaning. While CFDs are frequently used for data
cleaning, their efficient discovery has not received much attention in recent
years.
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Explaining Repaired Data with
CFDs

5.1 Introduction

After addressing the discovery of constraints, in the form of CFDs, we now
turn our attention towards user involvement in the discovery of CFDs. Typi-
cally, only a human user can provide semantic knowledge of the data. Such
semantic knowledge is necessary in order to discover constraints that are se-
mantically valid and useful for repairing.

We thus wish to harness the user’s knowledge, while limiting the amount
of interaction required. We therefore consider user interaction in the form of
manual repairs. Since such repairs encode both which values are erroneous,
and how they should be corrected, they provide much useful information in
a compact format. It is natural to assume that users know how certain errors
should be repaired, based on expertise. Nevertheless, the formal constraints
underlying these repair actions may be unknown to the user or hard to for-
mulate precisely. Indeed, verifying candidate constraints may involve the
inspection of the entire dataset to ensure that their violation sets coincide
precisely with the errors in the data. The initial user effort can possibly be
guided by information provided by high-precision error detection and data
profiling methods [95, 14, 88]: even if such methods don't detect all errors,
and cannot repair them, they can bootstrap the repairing process.

We develop a method that generates constraints that are consistent with
the repairs made by a user. We refer to such constraints as explanations. In-
tuitively, when such an explanation is used for repairing, the user provided
repairs are left intact. As such, we maximally take the user input into ac-
count. The actual repairs, based on the explanations, can subsequently be

41
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Figure 5.1: Schematic overview of the proposed XPlode workflow.

performed using any state-of-the-art repair algorithm, such as those pre-
sented in Bohannon et al. [18], Dallachiesa et al. [38], Galhardas et al. [49],
Geerts et al. [52], Khayyat et al. [65], Kolahi and Lakshmanan [67], among
others. This proposed workflow is shown schematically in Figure 5.1

In this chapter, we will focus on the problem of finding the best possible
explanation for a given (partial) repair. Hence, our method should be seen as
a single, core component in a larger interactive data quality process in which
a full repair is gradually constructed — by interweaving manual repairs by
a user and automatic repairs based on explanations. As more repaired tu-
ples become available, the corresponding “best” explanations become more
likely to be the correct ones for repairing, and better assistance can be offered
to the user.

5.1.1 Methodology

As the underlying constraint formalism for our method, we use the class
of conditional functional dependencies (CFDs) [45]. Our proposed method,
called XPLODE (for eXplanation on demand), extracts a single constraint, the
best explanation, from a dirty dataset and an associated repair. To assess
the quality of an explanation, we introduce a scoring function that quanti-
fies how much of the repair is explained by a CFD. We further prove that the
outcome of XPLODE is equivalent to a “naive” method that first discovers
all CFDs, and then uses a post-processing step to find the explanation with
maximal score.

Our algorithm is “on-demand” in that it dynamically generates candidate
explanations, only if they can potentially improve on the current best expla-
nation, hereby attempting to quickly discover the best possible explanation
of the partial repair. A similar on-demand exploration was used in Golab
et al. [55] to discover constant patterns that fit a single given CFD. We gen-
eralize the theoretical foundation of their algorithm, extending it to a larger
class of evaluation functions, called loose anti-monotonic [19]. This class in-
cludes useful functions such as a minimum, maximum, or average, and our
scoring function. Moreover, we adapt the algorithm to our specific setting,
implementing various optimizations.

Underlying the XPLODE algorithm is a CFD discovery process that em-
ploys the user’s modifications to navigate the search space of constraints,
and quickly finds the best explanation. What differentiates XPLODE from
other constraint discovery methods that employ user responses to prune the
search space [58, 102] is that (i) we only require modifications as user input,
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Table 5.1: Running example: A customers dataset.

TID CC AC PN NM STR CT ZIP

1 01 908 1111111 Mike TreeAve. EA MH 07974

2 01 908 1111111 Rick TreeAve. GEA MH 07974

3 01 212 2222222 Joe 5thAve  NYC 01202

4 01 908 2222222 Jim  ElmStr. MH 07974

5 44 131 3333333 Ben HighSt. EDI EH41DT
6 44 131 4444444 Tan High St. EDI EH41DT
7 44 908 4444444 Tan Port PI MH WI1B1JH
8 44 01 131 2222222 Sean 3rd Str. UN 01202

and (ii) we consider general CFDs. In contrast to our method, He et al. [58]
uses a single modification to bootstrap a constant CFD discovery process.
This process then proceeds by asking the user to verify the validity of the ex-
plored constraints. Similarly, Thirumuruganathan et al. [102] finds FDs that
capture errors by post-processing a set of approximate FDs discovered up
front. The post-processing step again involves questions to the user about
the validity of data and constraints. The question that remains is, how should
the user assess the validity of a presented rule? As argued above, in the worst
case, this involves checking all the tuples that match the (C)FD in question.
And what happens if the user makes a wrong assessment?

Instead of frequently requiring a user to invalidate a candidate con-
straint, our method only requires positive feedback in the form of correct
modifications. Hence, our method spends little time on constraints that
are not suitable for repairing. Moreover, by considering all user feedback
together, our method becomes more robust to small mistakes, instead of
requiring every individual user interaction to be fully correct.

5.1.2 Motivating Example

For illustration, we borrow the running example from Fan et al. [46]. Ta-
ble 5.1 shows a dirty version D, and a clean version Drep of the data. In
the clean version, the three crossed out values are replaced by those next to
it. In other words, a user is to repair D, by changing the cities (CT) in# [CT]
from “LA” to “MH” and in #[CT] from “GLA” to “MH”, and the country code
(CQ) in1g[CC] from 44 to 01. We assume that a user is faced with only the dirty
data, and unable to exactly formalize the CFD that is supposed to hold. Nev-
ertheless, based on experience or real-world knowledge, a user may be able
to clean some tuples. We then wish to derive a constraint underlying the
modifications made by the user. Since the obtained repair is assumed to be
partial, a CFD discovery algorithm can only suggest a useful CFD by discov-
ering approximate CFDs, i.e., CFDs that only partially hold. However, there
are too many approximate CFDs for a user to inspect. Instead, we discover
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CFDs based on corrections made by the user.

For example, suppose that the user corrects the “error” in ¢ by restor-
ing 7[CT] back to its correct value of “MH”. Suppose that an algorithm is at
hand that only discovers CFDs that somehow “explain” this correction. In-
tuitively, this corresponds to the CFDs “becoming cleaner” in the repaired
version. Two such FDs are ([ZIP,AC] — CT) and ([AC,CC] — CT). Indeed, if
t1[CC] =“MH”, then both FDs can be made to hold by removing a single tuple
(). Before the correction, two deletions were required. That is, these FDs
have become cleaner. When considering CFDs as well, many other CFDs
become candidate explanations, such as ([CC,PN] — CT,(01,1111111, MH)),
and (NM — CT,(Mike, MH)). Previous approaches would now ask multiple
questions to the user, as to which of the candidate CFDs are (in)valid, until a
semantically valid CFD is obtained. Instead, we propose to let the user con-
tinue with repairing the dirty instance. For example, the user may decide to
correct 73[CC] back to 01. One can verify (as we did experimentally) that, for
certain thresholds on support and confidence, as will be defined later, only
one of the many candidate explanations can be related to the two modifi-
cations made by the user: the FD ¢ = (JAC,CC] — CT), saying that country
code and area code (AC) uniquely determine city, which is known to be a
semantically valid constraint on this data. Moreover, ¢ can now be used to
automatically correct ,[CT] to “MH”, using any CFD-based repair algorithm.

5.1.3 Summary of Contributions

1. We formally define what it means for a CFD to explain a set of mod-
ifications. To differentiate between different explanations, we define
a scoring function based on the number of explained modifications.
(Section 5.2)

2. We design an algorithm, XPLODE, that discovers the best explanation,
i.e., the explanation of highest score. Moreover, the XPLODE algo-
rithm is on-demand in the sense that it avoids a full exploration of the
search space, when possible. To this aim, XPLODE leverages an upper
bound of the scoring function which is loose anti-monotonic. We dis-
cuss how XPLODE can be modified to discover multiple explanations.
(Section 5.3)

3. To further increase the efficiency of XPLODE, we introduce an approx-
imate scoring function that can be computed in time linear in the
number of changes made by the user. By contrast, the actual scoring
function has an inherent exponential dependency on the number of
changes. (Section 5.4)

4. We experimentally show that our method can discover the correct CFD
for repairing from only a small number of modifications, saving consid-
erable user effort compared to manual validation of constraints ranked
by baselines such as confidence. Moreover, XPLODE is robust to noise
in the modifications, i.e., mistakes made by the user, and outperforms
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a post-processing approach that discovers all explanations and then
finds the highest scoring one. (Section 5.5)

5.2 Explaining Repairs

We here formalize the problem of discovering a single CFD that best explains
an observed, possibly partial, repair of the data. Such repairs are represented
by modifications. We describe what modifications are in Section 5.2.1. How
modifications can be explained in terms of CFDs, and how to differentiate
between different explanations based on some scoring function, is discussed
in Section 5.2.2. Our formal problem statement is given in Section 5.2.3.
Throughout this chapter, we consider only tabular datasets.

5.2.1 Modifications

We consider a setting in which no CFDs are provided alongside the (dirty)
database instance. Instead, we have at our disposal fwo tabular database
instances, Dyep and Dgirty where Dy¢p is obtained from the “dirty” instance
D giry by applying a number of modifications to tuples. We assume that these
instances have the same set of tids, such that tuples Dyepltid] and D gy [tid]
are both well-defined for every tid occurring in either instance. Every modi-
fied tuple in Dy¢p contains one or more modifications, encoding the changes
made to this tuple by the user:

Definition 14 (Modification). A modification m is a quadruple m =
(tid, A,vg4,v.), where tid is the identifier of the tuple that is being changed, A
is the attribute that is changed, v, is the dirty value which was replaced, and
ve is the new, clean value, different from v,. Given Dy, and Drep, @ modi-
fication m = (tid, A,vy,v) is consistent with D g;y, and Drep when, for tuples
s = Dgjry[tid] and 1 = Dyepltid], s[A] = vg and ¢[A] = v.. O

Given D gjy and Drep, we denote by 9(D gy, Drep) the set of all modifica-
tions that are consistent with D g;, and Drep. Observe that 9 can contain at
most one modification for each combination of tid and attribute. It should
be clear that D gjr, and Drep uniquely determine (D gjrty, Drep), s it is merely
the “diff” of these two instances. We simply write 9t whenever the dirty and
modified instances are clear from the context.

Given a set of modifications M C 9D gy, Drep), we denote by D gjry, ©@ M
the version of Dg;, on which the modifications in M are applied. Conse-
quently, Dgjry @ 0 = Dgjrey and D girey @ M(D gjrey, Drep) = Drep- We let op (D)
denote the set of tuples in D that are afflicted by the set of modifications M,
i.e., those tuples whose tids occur in a modification in M. Furthermore, we
let 6fi(D) denote the set of tids in oy (D).

Example 6. In our example, the set 9t consists of three modifications:
m; = (1,CT,LA/MH), m; = (2,CT,GLA,MH), m3 = (8,CC,44,01).

Both oy (dey) and ogp (Drep) consist of the tuples 71, 1, and g, with tids 1, 2
and 8, in D gj;y and Drep, respectively. <
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5.2.2 Explaining a Repair

Suppose that we are given a repair, represented by a set of modifications
made by a user. We do not assume that the user has any knowledge of which
CFDs may be required to hold on the data, in order to capture the semantics
of “clean data”. As explained in the introduction, we want to recommend a
CFD based on the current repair, such that this CFD may then be used to
detect further errors, and suggest modifications.

(¢,0)-CFDs. Intuitively, we relate candidate CFDs for “explaining” the
current repair to Dyep, as this database instance is regarded to be cleaner than
D girty- To narrow down the number of candidate CFDs, we will only consider
(g,8)-CFDs, which are both confident and frequent in the data. We illustrate
this choice with an example.

Example 7. Consider the partial repair in our running example correspond-
ing to the single modification m; = (1,CT,LA,MH). The CFD ¢; = (NM —
CT, (Mike,MH)) could serve as an explanation for this modification as it is
satisfied on the partial repair and relates to tuple #. It is unlikely, however,
that this CFD is useful. Indeed, ¢; is only supported by a single tuple (7;) and
does not relate at all to, for example, modification m, = (2,CT, GLA, MH) that
will be made by the user to tuple #,. Consider next CFD ¢, = (0 — CT,(MH)),
stating that all cities should be MH. It is a well-supported CFD (its support
is the entire database) and relates to m; and m,. It may not be useful, how-
ever, for further cleaning of the data. Indeed, ¢, has a very low confidence:
more than half of the data violates this CFD and hence too many tuples may
be flagged as dirty. ¢

This example illustrates the need for ensuring that explanations have suf-
ficient support, as this excludes CFDs that are only supported by remaining
errors and noise in Dyep. At the same time, since Dy, is only a partial repair,
we should focus on explanations that only hold approximately in Dep. We
are thus interested in (€, §)-CFDs, as defined in Section 2.1.

Definition 15 ((¢,6)-CFDs). Given a database instance Dyep, support thresh-
old 6 and confidence threshold €, we denote by X, 5)(Drep) the set of all (¢, 9)-
CEDs on Dyep. L]

From here on, we will use the set X, 5)(Drep) as our candidate set of CFDs
for explaining repairs. The obvious question is then, what does it mean to
“explain a repair"? We next address this question.

M-Repair Explanations. Our definition for explanations is based on the
following intuitive condition:

“A CFD explains a repair if the repair improves the cleanliness of
the data w.r.t. the CFD.”

We formalize this intuition by imposing three natural conditions on CFDs ¢
in 2(8,5) (Drep)- Let It = m(Ddirtya Drep)-
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1. The confidence of ¢ in D¢, should have increased compared to its con-
fidence in D ;¢ as the result of the modifications made to D¢y Since
a confidence of 1 means that ¢ is no longer violated, an increase in con-
fidence brings ¢ closer to being satisfied in the repair. Note that if the
confidence of ¢ increases, then ¢ was necessarily violated in D gy

2. We require that at least one of the violations of ¢ in Dy, has a tid
of a modified tuple, i.e., the intersection between the violations and
o (Ddirty) is not empty. This ensures that the increase in confidence,
as required by the first condition, is the deliberate effect of resolving
a violation of ¢. Such a condition is necessary: in the running exam-
ple, the CFD (CC — PN, (01,2222222)) is not violated on rg in the dirty
data. However, modification ms in #5 does increase the confidence of
this CFD.

3. We require that ¢ is not violated in ooy (Drep), the part of the data that
was specifically cleaned by the user (but not on all of Dyep). This en-
sures that if one uses ¢ later for further repairing, using any state-of-
the-art CFD-based repairing algorithm, the tuples in ooy (Drep) will not
be altered, i.e., they remain clean.

We next state these conditions more generally, in terms of a set of modifi-
cations M C M(D gy, Drep):

Definition 16 (M-Repair Explanation). Consider instances D gy, Drep, and
modifications M C M(Dgirry, Drep). A CFD ¢ = (X — A,1,,) is an M-repair ex-
planation if

1. confep (@, Direy & M) > confep (@, Direy);
2. VIO(9, D giry) N 04 (Direy) is not empty; and
3. VIO(@,0m(Dgirey ®M)) is empty.

We denote by Explain(&ﬁ) (Ddirty@M) the set of CFDs in 2(8,5) (Ddirty@M) which
are M-repair explanations. O

Of particular interest is the case when M = 0t and hence D gj;ty © M = Drep.
In this case, we also call CFDs in Explain( 5)(Drep) global explanations. The
set of global explanations, however, can be quite sizeable, as we will show in
the experimental section (Section 5.5). Worse still, explanations in this set
do not necessarily relate to all modifications in 1. In fact, a CFD may be an
explanation because of just one of many modifications, as is illustrated by
the following example.

Example 8. When discovering global explanations in our example dataset,
with € = 0.25 and § = 2, there are 18 candidate CFDs. Among these can-
didates, the FD ([AC,CC] — ZIP,(_,_,_)) is a global explanation, for 9t =
{my,mp,m3}, yet it is only related to one modification, namely ms;. ¢
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In order to distinguish between such “good” and “bad” explanations, we
need to strengthen the connection between explanations and modifications.
Instead of enforcing extra conditions on global explanations, we assign to
them a quality metric, in order to define the “best” explanation. Observe
that in the previous example, the CFD ([AC,CC] — ZIP,(_,_,_)) is a global
explanation, i.e., it is an M-repair explanation for the entire set of modifica-
tions M = 9, thanks to m3, but it is not an M-repair explanation for the sub-
set M = {m;,my}. We therefore introduce the concept of locally explaining
modifications, on which we will base our quality metric.

Local Repair Explanations. Example 8 indicates that good global expla-
nations should also explain the modifications involved locally. Intuitively,
this means that the three conditions stated in Definition 16 should not only
hold for the entire M, but also for subsets M’ C M. Requiring these conditions
to hold for all subsets of 91 is too strong, however, as there may not exist any
global explanations with this property. For instance, imagine a user making
a mistake in their manual repairs. We start by defining what it means for a
CFD to locally explain a set of modifications.

Definition 17 (Local Repair Explanation). Given a CFD ¢ in the set of -
explanations Explain(, 5)(Drep), we say that ¢ locally explains a set M C M if,
for every non-empty subset M’ C M, ¢ is an M’-repair explanation. O

In other words, when a global explanation ¢ locally explains M, it explains
all repairs D g;rr, ® M’ that can be obtained from applying modifications M’ C
M to Dgjrry- That is, in any order in which the modifications in M are applied,
the cleanliness of the data w.r.t. ¢ improves at every step.

This notion gives rise to the following quality metric. Let ¢ be a global
explanation in Explain 5)(Drep). Then,

score(@, M) :=max{|M||M C 9 and ¢ locally explains M}.

If ¢ has a score close to |9t], then almost all modifications in 9t are both
globally and locally explained. We are thus interested in global explanations
with a high score.

Example 9. In the running example, the CFD ([CC,AC] — ZIP,(_,_,_)) hasa
score of 1, since it only explains modification ms3. Indeed, it is easily verified
that m; and m; do notimprove the confidence of this CFD. Moreover, if a user
would only supply m; and ms3, this CFD could not be used to automatically
clean the remainder of the data (i.e., apply m,). On the other hand, the CFD
([CC,AC] — CT,(_,_,_)) can explain all 3 modifications, leading to a perfect
score of 3. Even if only m; and ms were supplied by the user, this CFD would
have the highest score of 2, and could automatically apply m,. This example
strengthens our argument that user-supplied modifications can guide the
CFD discovery process towards the CFD that is most useful for cleaning the
remainder of the data. ¢
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5.2.3 Problem Statement

We now have all ingredients for our problem statement:

PROBLEM: Repair Explanation Discovery

INPUT: Instances D gjyy and Drep, modifications 9(D gy, Drep),
thresholds € and 6.

OUTPUT: A global explanation ¢ € Explain(e s)(Drep),
such that score(¢p, ) is maximal.

In other words, we want to find the global explanation that also locally
explains the largest subset of modifications of 9t. Any solution to this prob-
lem has somehow embedded in it the problem of discovering CFDs. Lattice
traversal algorithms for CFD discovery [46, 29], exhibit an inherent exponen-
tial dependency in |.A|d, where |.A| is the number of attributes and d is the
average number of values in the domain of an attribute, as we have shown
in Section 4.3.5. We will show that testing whether or not candidate CFDs
satisfy the support and confidence thresholds and are global explanations
imposes minimal overhead on the overall CFD discovery process. The score
computation, however, has a severe impact on the performance. Indeed, for
each candidate global explanation it requires (worst case) to consider all sub-
sets of 1. Not all is lost, however. We will show in Section 5.4, that an effi-
cient and good approximation of the scoring function can be computed.

5.3 Discovering Repair Explanations

We next describe an algorithm for discovering the best repair explanation,
as defined in our problem statement. One possible solution to this prob-
lem is to first discover all CFDs which globally explain the observed repair,
and then return the CFD with the highest score in a post-processing step.
Clearly, this method does a lot of unnecessary work. Instead, we present an
on-demand algorithm XPLODE, which returns the best explanation as soon
as it is known. We begin in Section 5.3.1 with a detailed overview of XPLODE.
Correctness of XPLODE is shown in Section 5.3.2, contingent on the availabil-
ity of a loose anti-monotonic upper bound function on the scores of certain
sets of CFDs. Examples of such upper bounds are provided as well. In Sec-
tion 5.3.3, we briefly discuss how to modify XPLODE for returning multiple
CFDs. Further implementation details on the computation of support, con-
fidence, and checking for global explanations, are presented in Section 5.3.4.

5.3.1 XPlode: Explanations On-Demand

We first provide a detailed overview of algorithm XPLODE (for eXPlanations
on-demand) and refer to Algorithm 7 for its pseudo-code. At the core of
XPLODE is a traversal of a lattice, as introduced in Chapter 4. We again
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base our CFD discovery algorithm on equivalence partitions, defined in
Section 2.1. We elaborate further on this in Section 5.3.4, where we trans-
late the definitions from Section 2.1, which are based on itemsets and a
transaction dataset, to our current context of tabular datasets. For now, it
suffices to know that we can efficiently check whether or not a CFD ¢ is in
Explain ¢ ) (Direy @ M) for a given instance D g;qy, and set 9t of modifications,
and that score(,9t) can be computed easily.

The description below focuses instead on how the best explanation can
be found during the exploration of the lattice, rather than by post-processing
Explain ¢ ) (Ddirey © M). The challenge is then to quickly pinpoint a CFD in
the set Explain ¢ 5) (D girey  9) with guaranteed highest score.

To explain the workings of XPLODE, we need to introduce some concepts.
First of all, the algorithm is based on the traversal of the integrated search
lattice defined in Chapter 4 (Definition 2). In terms of a tabular dataset, we
denote the lattice elements by (X,,), where X is a set of attributes and 7, is a
pattern tuple over X. Hence, (Y,s,) is a child of (X,1,,), denoted (X,z,) C (Y,s,),
ifand only if X C Y and 1, = s,[X]. The children of (X,7,) are thus obtained by
expanding (X,7,) with all possible attribute/value pairs (A,a) where A ¢ X and
a € dom(A)U{_}. Furthermore, since we are only interested in CFDs of high
support, it suffices to only consider pairs (A,a) that have sufficient support
in Dyep. Thatis, the number of tuples ¢ € Dyep, such that#[A] < a should exceed
the threshold o.

Second, as in CTane, an element (X,#,) represents a set of candidate
CFDs, denoted by CandCFD(X,t,), consisting of all CFDs of the form
(X\{A} = A1), forAe X

Finally, let UB(X,z,) be an upper bound on score(¢, M) for any CFD ¢ €
CandCFD(X,t,). As will be explained shortly, this upper bound function is
used as a guide for the traversal through the lattice, and serves to ensure that
the highest-score global explanation can be identified without the need for
exploring the full lattice.

Algorithm XPLODE relies on a traversal of the lattice such that its ele-
ments (X,t,) are visited in descending order according to their upper bound
UB(X,t,). To this aim, we keep generated elements in a priority queue @, ini-
tially containing (0,0) with upper bound +< (line 3). During the run of the
algorithm, we also maintain the global explanation ¢,,x with highest score
seen so far, denoting its score by “max”. Initially, ¢y is set to nil and max =0
(line 4). The algorithm ensures that, at any time, the queue ® will only con-
sist of elements (X,,) such that UB(X,7,) > max. In other words, we only visit
elements if a better explanation can possibly be found among its set of can-
didate CFDs.

Suppose XPLODE is currently exploring element (X,?,), i.e., the foremost
element in the queue ® with highest upper bound (line 6). For the current
element (X,7,), a CFD ¢ in CandCFD(X,z,) is selected, that (i) is a global ex-
planation; and (ii) has highest score among all other global explanations in
CandCFD(X,1,), if such a CFD exists (line 7). The score of ¢, and the scores of
all CFDs in CandCFD(X,1,) have already been computed at an earlier stage of
the algorithm, when (X,,) was generated. We expand on this later.
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Algorithm 7 On-demand algorithm XPLODE for obtaining the best explana-
tion for a set M of modifications.

1: procedure XPLODE(Dyirty, Drep) M, €, 0, score(+), UB(+))

2: ® + PRORITYQUEUE({})

3: Insert (0,0) into ® with upper bound +oo
4: Omax < nil, max <0
5: while @ is not empty do
6: (X,t,) < POP(®)
7: Let ¢ € CandCFD(X,z,) such that ¢ is a global explanation with
highest score among all global explanations in CandCFD(X,?,)
8: if ¢ exists and score(p, M) > max then
9: Omax < @, max < score(@, )
10: Delete from ® all elements with UB-value < max
11: for all children (Y,s,) of (X,z,) do
12: for all y € CandCFD(Y,s,) do
13: Compute score(y, M)
14: if UB(Y,s,) > max then
15: Insert (Y,s,) into ® with value UB(Y,s,).
16: return Qpy.

If ¢ exists and score(¢, ) > max, then @ is a better explanation than ¢x.
In this case, @max is set to ¢ and max to score(@,9) (line 9). Furthermore,
the queue @ is updated by removing each element with an upper bound
smaller than or equal to the new max-value (line 10). This guarantees that
all elements in ® have an upper bound larger than the current max-value, as
pointed out previously.

Finally, all children (Y,s,) of (X,z,) are generated and the scores of all
candidate CFDs in CandCFD(Y,s,) are computed (lines 11-13). We can thus
indeed assume, as we did earlier, that when XPLODE considers (Y,s,) at
a later stage, all scores of its candidate CFDs are available. Furthermore,
if UB(Y,s,) > max, then (Y,s,) is inserted in ® with upper bound value
UB(Y,s,) (line 15). This guarantees that & contains only elements with a
sufficiently high upper bound.

When the queue is empty, the algorithm terminates by returning @max
(line 16). If Pmax # nil, the CFD ¢nax is guaranteed to be a global explanation.
In the next section, we identify sufficient conditions on the upper bound
function such that ¢, is a global explanation with maximal score.

Tie Breaking. We remark that multiple elements in ¢ may hold the same
maximal UB-value. We break ties by prioritizing on elements (X,7,) with the
highest-score CFD in CandCFD(X,1,). If ties persist, we pick (X,z,) contain-
ing the highest number of wildcards in #,. These choices can lead XPLODE
quicker to elements that represent the best global explanation.

One may wonder why, when generating a child (V,s,) of (X,z,), we com-
pute the scores of all its candidate CFDs (lines 11-13), and do not limit the
score computation to candidate CFDs that are in fact global explanations. In-
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deed, CFDs that do not globally explain repairs do not impact the final result
and consequently, their score could be simply set to 0. This would result in
avoiding potentially expensive score computations. However, since scores
are used for tie-breaking, experiments show that it is more efficient if we do
compute all scores. Intuitively, more scores lead more quickly towards ele-
ments with higher scores, leading to a swifter discovery of an explanation
with maximal score.

5.3.2 Correctness and Upper Bound Functions

We next show how to guarantee that when XPLODE outputs a global explana-
tion, it is a global explanation of maximal score. The correctness of XPLODE
entirely relies on the upper bound function UB(-), as this function deter-
mines which elements are in the priority queue, and in what order. We first
identify sufficient conditions on UB(-) to guarantee correctness. Examples
of “good” upper bound functions are described at the end of this section.

Correctness. XPLODE returns ¢n,x when the priority queue & is empty.
Clearly, every element that was ever generated has either been visited, or is
not in the queue because its UB-value is below the score max of @n,x. Ob-
serve that for any element (X,7,), its upper bound UB(X,1,) is larger than the
score of any candidate CFD of (X,z,). This implies that none of the elements
generated during execution, have a candidate CFD with a score higher than
max, the current highest score.

Correctness of XPLODE then requires that, when ¢, is returned as the
best global explanation, then any element (X,¢,) in the lattice whose upper
bound value is larger than max must have been added to the queue at some
prior stage. To this aim, we require that the upper bound function UB(-) is
loose anti-monotonic [19]: For any (X,t,) there exists a parent (Y,s,) = (X
{B},1,[X\ {B}]) such that UB(X,z,) < UB(Y,s,). That is, every element in the
lattice has at least one parent with a higher or equal UB-value.

Proposition 1. On input Dy, Drep, M, €, 3, score(-), and UB(:), the algo-
rithm XPLODE returns the global explanation with maximal score, if it ex-
ists, provided that UB(-) is loose anti-monotonic and for any element (X,z,),
UB(X,t,) is larger than the score of any of its candidate CFDs.

Proof. Let @ax # nil be the CFD returned by XPLODE, and let max be the score
of pmax. Assume, for the sake of contradiction, that there exists a global expla-
nation ¢ = (X — A, 1,) with max < score(¢@, ). Since UB(X,z,) > score(¢p, M) >
max, this implies that (XU {A},,) was never added to the priority queue ®.
Note, however, that since UB(-) is loose anti-monotonic, there exists a
path in the lattice from (XU {A},7,) to an attribute/value pair (B,b), at the
first level of the lattice, along which the UB-values never decrease. Clearly,
(B,b) is added to the priority queue when (0,0) was expanded. This in turn
implies that all elements on the path from (B,b) to (X,z,), all having a UB-
value greater than max, must have been added to the queue before the algo-
rithm can terminate. This contradicts our earlier observation. We may thus
indeed conclude correctness. O
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Loose Anti-monotonic Upper Bounds. The question is now whether
there exist non-trivial ! upper bound functions that satisfy the conditions in
Proposition 1. We answer this affirmatively in this section. Defining UB(X,z,)
as the maximal score of the candidate CFDs of (X,z,) does not suffice, how-
ever, as the following example illustrates.

Example 10. We return to the running example, and consider the CFD
¢ = (CC — CT,(_,_)), which locally explains all modifications {m;,m;,ms3}.
Hence, its score is 3 (but it is not sufficiently confident, for &€ = 0.25,
to be a global explanation). This is a candidate CFD for the element
({CC,CT},(_,_)) in the lattice, with parents (CC,_) and (CT,_). However, the
CFDs ¢ = (0 — CT,(_)) and ¢, = (0 — CC,(_)) only have scores of 2 and 1,
respectively. Indeed, ¢; locally explains {m;,m;} and ¢, locally explains ms.
No larger sets are locally explained by these CFDs. <

Instead, we base our upper bound on the following observation. For a
CFD ¢, we define the set ModVIO(, D i1y, M) as the set of modifications in
O that apply to tuples in VIO(¢,Dgjyy). Here, a modification m applies to
a tuple r when they share the same tid-value. It follows directly from Defi-
nition 17 that the set of modifications that a global explanation can also lo-
cally explain, consists at most of those modifications involved in violations
of that explanation in the dirty database instance. Hence, it must hold that
score(@, M) < [ModVIO(9, D gjrry, MM)|. We can now define our upper bound
function UBy.

Definition 18 (Upper bound). Let (X,#,) be a lattice element, D ;- a dirty
dataset, and 91 a set of modifications.

UBy(X,t,) := ModVIO(@, D girtv, M)|. O
O( 7p) (pECanrc}}%:XD(X,tp)| o ((pv dirty» )|

It turns out that:

Proposition 2. The upper bound function UBy(-) satisfies the conditions of
Proposition 1.

Proof. Consider an element (X,z,) in the lattice. Let ¢ = (X\ {A},7,) be the
CFD in CandCFD(X,1,) such that UBy(X,,) = [ModVIO(@, Dy, M)|. Let Y =
X\ {B} for some B € X\ {A}. We observe that for CFD y = (Y \ {A} — A,1,[Y]),
we have that VIO(¢, Dgjy) € VIO(Y, Dgjrry), and hence it must also hold that
|ModVIO(@, Dirty, M)| < [ModVIO(Y, Dgjry, )| Furthermore, CFD y is in
CandCFD(Y,1,[Y]). As a consequence, UBo(Y,,[Y]) > [ModVIO(y, D gjrry, M)
which is larger or equal than UB(X,#,) = [ModVIO(@, D girsy,, )| It suffices to
observe that (Y,z,[Y]) is a parent of (X,z,). O

We also introduce another upper bound, based on UBy(-), with the dif-
ference that it also takes into account the attributes in ModVIO covered by
explanations. More specifically, for a CFD ¢, we define AttVIO(¢, D gy, 9)

10ne can choose a constant function UB(-). XPLODE then performs an exhaustive breadth-
first lattice traversal.
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as the set of attributes occurring in ModVIO(@, D1y, 90). Furthermore, we
let 2 be a parameter such that 0 < A -|A| < 1, where | 4| is the number of
attributes in the relation R. We define UB, (X,z,,) as the maximum value of

[ModVIO(, Dirty, M)| + 1 = A XUALVIO(@, D irry, M)

where, as before, ¢ ranges over all CFDs in CandCFD(X,z,). The intuition be-
hind the additional negative term, compared to UBy(-), is to prioritize expla-
nations to more general CFDs (containing a smaller number of attributes)
during the execution of XPLODE. The additional “+1” here serves to ensure
that score(¢,91) remains smaller than UB, (X,z,) for every of its candidate
CFDs ¢, since A - |A| < 1. Hence, UB, (-) only affects the priority among those
CFDs explaining an identical number of modifications.

Proposition 3. The upper bound function UB, (+) satisfies the conditions of
Proposition 1.

Proof. We use a similar argument as in the proof of Proposition 2, showing
that UBy(+) is loose anti-monotonic. That is, consider element (X,#,) and a
candidate CFD ¢ = (Y — A 1,) for Y = X\ {A} such that UB, (X,t,) is equal to

[ModVIO(, Dirty, M)| + 1 = A[XUALVIO(@, Direy, M) |-

Let B € Y and CFD y = (Y \ B — B,1,[Y]). We have ModVIO(@,D iy, M) C
ModVIO (Y, D gjrry, ). We distinguish between the following cases:

(@) ModVIO(@, Dy, M) = ModVIO(Y, Dgjrry, M), in which case it follows
that AttVIO (@, D girry, M) = AttVIO(Y, D girry, M). Since Y = X\ A, it is triv-
ially verified that

|XUAttVIO((p7Ddirty7 mﬂ 2 |(X\A) UAttVIO(‘I/7Dd1’I‘tya m)‘v
and hence we have that
[ModVIO(@, D girty, M) | + 1 — A|XUALVIO(@, D girgy, M) |

= |MOdVIO(W7DdiIty79:n)| +1- A’|XU'A‘tt\/lo(lll7Ddirtya m)‘
< [ModVIO(W, Dyirty, )] + 1 — A|Y UALEVIO(9, D ey ).
(b) ModVIO(@,D iy, M) C ModVIO(W, Djry, M), in which case it follows

that [ModVIO(@, D gy, M)| + 1 < [ModVIO(y, Dy, 9)|. Furthermore,
AttVIO(9, D gjry, M) can be at most A. It remains to verify that

_)‘|XUAttV|O((Pdeirtyam)‘ < 1_)’|~A|7

where [ XUAttVIO(@, D gjry, M)| > 0. We obtain that 1 — A|A| > 0, which
is equivalent to our assumption that A|.4| < 1. Thus, we may infer that
also in this case

|MOdV|O((P7deny,gﬁ)| +1-— A‘XU AttV'O((P,Ddirty, 9)?)|

< [ModVIO (W, Dyirty, M)| + 1 = A[Y UAEVIO(Y, D gjrey, M) .
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Since y is a candidate CFD of (Y,,[Y]), which is a child of (X,z,), we have that
UB(Y.1,[Y]) = [ModVIO(W, D girgy, M) | + 1 — A|Y UALVIO (Y, Dy, )|, which
in turn is at least [ModVIO(@, Dy, M) + 1 — A[X U AttVIO(9, Dgirry, )/,
which was chosen to coincide with UB, (X,z,). Hence, UB, (-) is indeed loose
anti-monotonic. O

5.3.3 Discovering Multiple Explanations

As mentioned in the introduction, we have devised algorithm XPLODE to be
the core component of an interactive cleaning system. While finding the best
explanation given a set of modifications is the crucial step in this system, in
practice one might desire the algorithm to return multiple CFDs. We briefly
discuss how XPLODE can be altered to discover (a) the top-k explanations for
the current set of modifications, and (b) a sequence of i explanations that
incrementally explain the modifications. We believe a combination of these
techniques covers most real-world scenarios.

Both strategies assume that a number of modifications are consistent
with respect to a single CFD; in other words, that a part of the given repair
contains sufficient information to retrieve the CFD corresponding to that
part of the repair. Further improvements, for instance to prevent overfitting,
can easily be made and integrated into the algorithm by tweaking the scor-
ing function.

Discovering Top-k Explanations. Turning XPLODE into a top-k algorithm
requires limited changes to the pseudocode shown in Algorithm 1. On line 4,
we now initialize @, as a list of length k. On line 7, the algorithm has to be
changed such that all ¢ € CandCFD(X,?,) with score > max are processed, not
just the highest-scoring ¢. Finally, on line 9, the identified ¢ is added to (the
list) @max, and if more than k CFDs are present in ¢n,x, the lowest-scoring one
is removed. The value of max is subsequently set to the lowest score of those
CFDs in ¢ax.

Incrementally Explaining Modifications. We next discuss how to effi-
ciently discover CFDs that incrementally explain observed modifications. In
other words, the best explanation is first discovered, and then the search is
continued in order to find the best explanation for the modifications that
have not yet been explained. To do this efficiently, we first make a change to
the lattice elements: instead of associating a score with each CFD, we attach
the set of modifications the CFD explains. This allows us to efficiently recom-
pute the score of a CFD after removing already-explained modifications.

The main change to the algorithm is that we introduce a list backup to
store generated lattice elements, in addition to the priority queue. After
line 15 in the algorithm, each generated lattice element (Y,s,) is inserted
into backup if UB(Y,s,) > 0, i.e., if a CFD in the element or its children can ex-
plain some modification. When the regular XPLODE algorithm finishes, be-
cause the best explanation ¢,y is found, we now remove all modifications
explained by ¢n,x from 9. Subsequently, the list backup is examined, and the
scores of its elements are updated. All elements (Y,s,) with UB(Y,s,) =0 are
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removed, and the others are used to re-initialize the priority queue ®. The
algorithm then repeats, until all modifications are explained.

5.3.4 Implementation Details

We conclude this section by elaborating on how XPLODE checks the sup-
port and confidence thresholds and how global explanations are filtered out.
These all crucially rely on so-called equivalence partitions, commonly used
in (C)FD discovery algorithms.

Equivalence Partitions. We have previously discussed equivalence parti-
tions in Section 2.1, in terms of a transaction dataset D and itemset /. In this
section, we briefly recap the necessary concepts, and translate them into the
corresponding terms of a tabular dataset.

More specifically, given (X,z,), where X is a set of attributes and , is a
pattern tuple over X, we say that two tuples s and ¢ in Dy, are equivalent
relative to (X,t,) if s[X] = t[X] < t,. For a tuple s € Drep, [s]x,,) denotes the
equivalence class consisting of the tids of all tuples ¢ € D;¢p that are equiva-
lent with s relative to (X,7,). The (equivalence) partition of (X,t,), denoted
by I1(X,1,), is the collection of [s]x,,) for s € Drep. The size of I1(X,z,), de-
noted by |II(X,?,)|, is the number of equivalence classes in I1(X,z,). We use
ITI(X,2,)|| to denote the number of tids in I1(X,z,). In the running exam-
ple of this chapter, we then have that II({CC,CT}, (44,_)) = {{5,6},{7}} with
[TI({CC,CT},(44,_))| =2 and |[II({CC,CT}, (44, )| = 3.

Recall that the key use of equivalence partitions is to check the validity
of CFDs, since Dyep |= (X = A,t,) if and only if [TI(X,7,[X])| = [TI(XU {A},1,)].
Below, we again make use of the concept of refinement of an equivalence
partition (Definition 3): for an equivalence class eq € TI(X,1,[X]), we let II(XU
{A},1,)% be the set of equivalence classes in IT(XU {A},7,) that subsume eq.
Then, Dyep = ¢ if and only if [TI(XU {A},1,)%| = 1 for every eq € TI(X,1,[X]).

Equivalence partitions can also be used to check support and confidence
thresholds and for checking whether or not a CFD is a global explanation,
as will be explained below. For this reason, we compute equivalence par-
titions during XPLODE’s lattice traversal. More precisely, as in Chapter 4,
we start by computing equivalence partitions for attribute/value pairs (A,a)
with a € dom(A) U {_} with support at least 6. Then, when children are gen-
erated, the equivalence partition for (X,z,) is obtained by intersecting the
partitions of two parents of (X,7,). Here, intersecting means intersecting ev-
ery pair of equivalence classes from the two partitions. We implement this
intersection as in Tane by means of a linear time algorithm based on lookup
tables [60]. Only partitions of high support are retained. Since support is
anti-monotonic, neither elements with insufficient support nor their chil-
dren need to be considered.

Checking for (¢, 5)-CFDs. Consider a CFD ¢ = (X — A,1,,). Since the cor-
responding lattice element (XU {A},r,) was added to the priority queue, it
must have sufficient support. Due to the anti-monotonicity of support, the
same is true for all its subsets, and hence supp(¢,D;ep) > . Recall from the
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previous chapter that confidence computation is doing using the error of an
equivalence partition (Definition 4). We then obtain that confrp (¢, Drep) is
equal to

Yeqeri(x.,[x) error(eq, II(XU{A}))

- (X1, X)]

We note that confrp (@, Drep) is computed when element (XU {A},z,) is con-
sidered. By contrast to CTane and our algorithms from Chapter 4, element
(X,,[X]), needed to compute confrp (¢, Dep), may not have been visited yet
due to the way the lattice is traversed. In this case, we compute IT(X,?,[X])
on-the-fly from the equivalence classes I1(B,») for B € X and b =1¢,[B].

Checking for global explanations. In addition to satisfying support and
confidence thresholds, for a CFD to be a global explanation, three more con-
ditions (as stated in Definition 16) need to be verified. We next show how
these checks can be done by using equivalence partitions. As before, let
¢ = (X —A,1,). We start with condition (3), as it is the easiest one. Recall
that this condition states that we wish to discover CFDs ¢ that are not vio-
lated on repaired tuples. In other words, VIO(¢, 6ox (Drep)) should be empty.
As already mentioned, checking for violations corresponds to finding equiv-
alence classes eq € II(X,1,[X]) such that [ITI(A,z,[A])*9| > 1. Since condition
(3) only applies to tuples in ogy (Drep), it suffices to check whether there is
an equivalence class eq € I1(X,,[X]) for which there are tids in ooy (Dyep) that
belong to two different classes in II(A,z,[A])*. Such a check can be easily
integrated during the confidence computation of ¢.

Conditions (1) and (2) in Definition 16 are a bit more challenging, as they
require computations over D gj;y, Whilst we only have equivalence partitions
over D;ep. Suppose for the moment that we also have equivalence partitions
over D g;ryy, at our disposal. We denote these by I1,(X,,[X]) (with subscript “d”
for dirty). Recall that condition (2) requires that VIO(@, D gjy) N o (Ddirty)
is not empty. Given equivalence classes over Dy, this condition can be
checked along the same lines as done for condition (3). Indeed, we com-
pute confep (@, Dgjry) and along the way we check for violations involving
tids in oon (Dgirry), just as before. As a positive side-effect, condition (1) re-
quires comparing confep (¢, D girry) and confep (@, Drep), both of which are now
already computed.

Pulling back the equivalence partitions. It remains to explain how equiv-
alence partitions I,(Y,s,) are computed. Instead of recomputing them from
scratch on D iy, we “pull them back” from I1(Y,s,), the partition of the ele-
ment in Dep. We show the pseudocode of the algorithm in Algorithm 8. The
PULLBACK procedure goes as follows: For an equivalence class eq € TI(Y,s,),
let Aeq be the set of tids in eq that underwent changes in attributes in Y, con-
sistent with the pattern tuple s,. That is, Aeq contains all tids in eq such that
there is a modification m = (tid, B, vy, v.) in M such that B € Y, v, < 5,[B] and
tid € eq. We initialize IT;(Y,s,) by adding an equivalence class eq; = eq\ Aeq,
for each eq € TI(Y,s,). Since each tid in eq, corresponds to a tuple in Dy
that has not been changed in positions relevant to (Y,s,), we have that for
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any two tids, say tid and tid’, in eqy, s[Y] = s'[Y] < s, for s = Dgjny[tid] and
s' = D iry[tid]. In other words, eq, is a proper equivalence class for D gy

Those tuplest € Dy, corresponding to a tid € Aeq, for some eq € TI(Y,s,,),
still need to be assigned to their correct equivalence class in I1,(Y,s,), or
even to a new equivalence class, in case no correct class can be found. More
precisely, for each eq € TI(Y,s,) and each tid € Aeq, we look up ¢[Y] for r =
Dgiry[tid], and add tid to the equivalence class eq, corresponding to tuples
s € Dgijrry With s[Y] = #[Y], if such eq, exists. Otherwise, we create a new equiv-
alence class for tuples in Dy, agreeing with 7 on its Y-attributes.

Algorithm 8 Pulling back an equivalence class II(Y,s,) in Dyep to its counter-
part Iy (Y,s,) in Dy

1: procedure PULLBACK(II(Y,s)), Dgirty, M)

2 I;(Y,sp) < 0

3 forall eq € I1(Y,s,) do

4: Compute Aeg, the set of modified tids in eq
5: eqy < eq\ Aeq
6

7

8

9

(Y, sp) < Ta(Y,s,) U{eqq}
A< {Aeq|eqcTI(Y,s))}
for all tid € Ado
eq, < FINDEQ(tid,Hd(Y,Sp),derty)

10: ifeq, # 0 then

11: eqy < equ U {tid}

12: else

13: Create a new eqy, initially empty
14: eq, < {tid}

15: II(Y,sp) < Iu(Y,s,) U{eqy}

16: returnI1;(Y,s,)

5.4 Approximating The Score

As already observed in Section 5.2.3, the computation of score(¢,01), as de-
fined in Definition 17, is quite expensive. Indeed, it requires the traversal
of a power set lattice whose elements consist of all subsets of the modifi-
cations in 9. In this section we propose an approximate scoring function,
denoted by UC-score?, which is easy to compute. Moreover, experiments
show that UC-score(¢,90) is a good approximation of score(¢p,9t). We show
that UC-score(@,9t) < score(¢@, M) and hence, UC-score( ¢, M) < UBy(X,z,) (or
UB; (X,t,)). This implies that XPLODE can also be used for computing the
global explanation with maximal UC-score.

2The “UC” in UC-score refers to Unions of Constant CFDs.
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5.4.1 Rationale Behind UC-score

We first observe that for constant CFDs ¢, different violations are indepen-
dent of each other (after all, constant CFDs concern violations consisting of
single tuples only). Furthermore, let us call a set M C 9 valid if every modi-
fication in M refers to a unique tuple. In other words, no two modifications
in a valid set relate to the same tuple. For constant CFDs and valid sets M, if
each single modification m € M is locally explained by ¢, then also the entire
set M is locally explained by ¢. No exhaustive enumeration of subsets of M is
thus needed to check for local explainability. To obtain the best possible ap-
proximation of score(¢,90) in this way, it thus suffices to count the number
of tids that occur in a modification in 9t that is locally explained by ¢.

Definition 19 (UC-score(-), constant CFD). Let ¢ be a constant CFD and 9t a
set of modifications. We define UC-score(¢, 1) as

max{|M| | M C M is valid and each m € M is locally explained by ¢}. O

As observed earlier, the UC-score(-) is equal to the size of the largest valid
set M that is locally explained. The situation for variable CFDs is quite differ-
ent, however, due to dependencies between violations.

Example 11. Consider modification m3 = (8,CC,44,01) from the running ex-
ample. A variable CFD that locally explains this modification is ¢ = (CC —
PN, (_,_)). Now, assume a different modification, my = (3,PN,2222222 1111
111). By itself, this modification is also explained by ¢. When applying both
modifications, however, tuples #3,3 have CC = 01, but a different PN, violat-
ingthe CFD 9. ¢

To define an efficient, yet useful scoring function for variable CFDs, we
will treat a variable CFD ¢ = (X — A, (t,,_)) as a union of a finite number of
constant CFDs, say £ = {¢@y,---,9,}>. Moreover, when we allow unions of
constant CFDs to serve as the constraint language for global explanations,
they inherit the nice properties of single constant CFDs, with some restric-
tions.

Definition 20 (UC-score(-), union of constant CFDs). Let ¢ be a CFD, X, =
{¢1,--+,¢n} a union of constant CFDs, and 9t a set of modifications. We
define UC-score(Xy, M) as

max{|M| | M C M is X-valid and each m € M is locally explained by ¢}. O

It again holds that UC-score(X,901) is the size of the largest X-valid set of
modifications that is locally explained by X, and can be computed as the
number of tids that occur in a modification in 9t that is locally explained
by £. This property is crucial for the efficient computation of UC-score(X,01).
We explain the notion of X-valid set in the next section.

Consider now a variable CFD ¢ = (X — A,(t,,_)). We convert ¢ into
a union X, of constant CFDs as follows: for each equivalence class

3We represent a union of CFDs as a set of CFDs.
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Algorithm 9 Computing the UC-score of a CFD ¢.

1: procedure UC-SCORE(D gjrty,Drep, M, ¢ : (X — A1)
2 Xy < CONVERTCFD(¢)
3 ucscore < 0
4 for all tid € VIO(Zy, D gjrry) dO
5: Mtid] + {m € M | m relates to tid}
6 for all m = (tid, B,vg,v.) € Mtid, X] do
7 if7,[B] # ‘_’ then
8 Increment ucscore and go to next tid
9 else if 3¢y, t = Dyepltid], 1[X] = ¢y then
10: if7[A] = a.y then
11: Increment ucscore and go to next tid
12: for all m € Mtid,A] do
13: if 3¢eq, 5 = Djrgy[tid], s[X] = ceq then
14: if 7[A] = eq for 1 = Dyepltid] then
15: Increment ucscore and go to next tid
16: return ucscore

eq € IIy(X,1,), we denote by c.q the projection on the X-attributes of
a tuple in eq (more precisely, a tuple with a tid in eq). Furthermore,
we let a.q be the most frequent A-value in all tuples in eq. We then define
Peq = (X — A, (Ceq,teq)) and represent ¢ as the union Xy = {@eq | eq € I14(X,1,)}
of constant CFDs. Intuitively, the most frequent A-value in each equivalence
class is expected to reflect the correct value in that equivalence class. More
importantly, recall that the confidence of ¢ (see Section 5.3.4) is computed
by “removing tuples that do belong to classes in I1(A,a)*, except for those
tuples in the class of maximal size”. Thus, the most frequent A-value directly
relates to the confidence of the CFD. In conclusion, given a variable CFD ¢,
we define

Definition 21 (UC-score(-) of a CFD). Let o bea CFD, X ={¢,- -, ¢, } aunion
of constant CFDs, and 91 a set of modifications. We define

UC-score(,91) := UC-score(Zy,MN). O

In the remainder of this section we describe the crucial property under-
lying the definition of UC-score, show that UC-score(¢@, ) is indeed smaller
than or equal to score(¢,9t), and verify that UC-score(¢@, ) is easy to com-
pute. The proofs of these properties can be found in the appendix.

5.4.2 Properties of UC-score

Consider a variable CFD ¢ = (X — A, (z,,_)) and let 2y = {@eq | eq € I14(X,1,)}
be the set of constant CFDs obtained from ¢ #. We call a set M C 9, Lo-valid
ifitis valid and, in addition, for all tuples 7 € o (D gjry ® M) there either exists

4To uniformly treat variable and constant CFDs, for a constant CFD ¢ we let £, be the sin-
gleton CFD {¢}.
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a constant CFD @.q = (X = A, (Ceq,deq)) € Lo such that 1[X] = ceq, OF t[X] £ 1.
Intuitively, a set M of modifications is Xy -valid when in 6y (D gjrty © M), either
the violations of ¢ on D, are repaired in accordance with the constant
CFDs in X, or these violations are repaired by invalidating the constants in
the pattern tuple 7, of ¢. By focusing on a set £, of constant CFDs, and X,-
valid sets of modifications, we can indeed efficiently approximate score:

Proposition 4. For any X,-valid set of modifications M C 9, M is locally ex-
plained by X, if and only if each m € M is locally explained by X,. Further-
more, UC-score(Xy, M) is equal to the number of tids that occur in a modifica-
tion in 91 that is locally explained by Z,,. O

The proof of this proposition is presented in Appendix B.1. In other
words, computing the score relative to M does not require an exhaustive ex-
ploration of all subsets of M, in contrast to the computation of score(¢,9t)
defined in Section 5.2.3. An important property is that:

Proposition 5. For every global explanation ¢ and set 9t of modifications,
UC-score(¢, M) < score(p, ).

Proof. (sketch) We show that if X, locally explains a X,-valid set M, then
¢ also locally explains M. Thus, UC-score(Xy,M) < score(¢@,M) for every X,-
valid M. O

The full proof of this proposition is given in Appendix B.2. Consequently,
UC-score(p, M) < score(@,M) < UBy(X,1,) (and UB, (X,7,)) when ¢ is of the
form (X\ A — A,z1,); hence XPLODE finds the global explanation of highest
UC-score.

5.4.3 Computation of UC-score

We conclude by explaining how UC-score(¢, 1) can be efficiently computed.
Proposition 4 tells that it suffices to count the number of tids that occur in a
modification in 91 that is locally explained by X,. This is checked as follows:

Proposition 6. Let X, be the set of constant CFDs corresponding to CFD
¢ =(X—=A,). Letm = (tid,B,vy4,v.) € M, with M C 9t a £-valid set of modi-
fications, s = D gjyy[tid] and t = (Dgjry @ m)[tid]. Then E, locally explains m if
and only if there exists a constant CFD @eq = (X — A, (ceq,deq)) € Ly such that
S[X] = ceq and s[A] # aeq (s violates ¢.q), and:

1. either 1[A] = aeq (¢ satisfies @eq); OT

2. there exists another ¢ € Xy such that¢[X] = c.y and t[A] = a.y (¢ satis-
fies some other CFD in¥,); or

3. t[X] %1, ((¢ no longer applies tot). O

The proof of this proposition is presented in Appendix B.3. Of course,
for constant CFDs ¢, £, = {¢} and hence only cases (1) and (3) in the
Proposition apply. Although Definition 16 also requires checking whether



62 CHAPTER 5. EXPLAINING REPAIRED DATA WITH CFDS

confep (Zg, Ddirty) < confep (Zg, Dgiryy @ m), as part of the proof of Proposition 6
we show that this is implied by the conditions in its statement.

The pseudo-code for computing UC-score, shown in Algorithm 9, is based
on Propositions 4 and 6. We first convert the CFD ¢ into its set £, using func-
tion CONVERTCFD, as previously explained. Then, VIO(Xy, D) is com-
puted. By Proposition 6 it suffices to only consider m € 91 that relate to tids
in VIO(Zy, D girry). We partition modifications in 9t according to their tid. Let
Mtid] be the set of modifications in Mt that relate to tid. Since every modi-
fication occurs in exactly one attribute, we can further partition 9t[tid] into
Mtid, X] and M[tid, A], consisting of modifications on attributes in X and A,
respectively. For modifications m = (tid, B,v4,v.) in M[tid, X], we increment
the score on two occasions: (i) on line 7, if7,[B] is a constant for the attribute
B in which a change happens, then clearly the change makes ¢ inapplicable
to the tuple in question (condition 3 in Proposition 6); and (ii) on lines 9 and
10, if the change results in the tuple satisfying some constant CFD @,y € Z,
(condition 2 in Proposition 6). Finally, on lines 13-14, we perform a simi-
lar computation for modifications in 91tid, A]: We determine the constant
CFD ¢, that was violated in the tuple s in D g;y, and increment the score if
attribute A was modified such that tuple r satisfies ¢.q (condition 1 in Propo-
sition 6). As soon as a modification is explained for a given tid ¢, it is counted,
and the algorithm proceeds to the next tid.

5.5 Experiments

We experimentally validate our repair explanation method. All our experi-
ments were performed on an Intel Core i7 Processor (2.3GHZ) with 16GB of
memory running OS X. All algorithms are implemented in C++ and run en-
tirely in main memory. The code, datasets and CFDs used, are available for
research purposes [92].

5.5.1 Experimental Setup

Datasets. Statistics of the data are shown in Table 5.2. To ensure that
different kinds of CFD violations can occur, and we test our method on a
variety of repairs, we duplicate every tuple in each of the datasets. On the
Adult dataset we only use constants CFDs, since mining general CFDs on
this dataset was too time-consuming using the traditional CTane algorithm.
This is due to the higher number of attributes in the Adult dataset with, on
average, around 10 values in their domain. Since most of these values have
a high support, and their combinations as well, this leads to many frequent
constant patterns.

Error Generation. We make use of the BART tool [8] for introducing vio-
lations in the datasets. BART takes a dataset and a set of data quality rules
as input, and inserts a predefined percentage of violations into the data. The
used percentages are reported in the %Error column in Table 5.4. To get
the required quality rules, we used our implementation of CTane [46] to dis-
cover CFDs on the datasets, using the minimum support percentages shown
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Table 5.2: Statistics of the used datasets.

Dataset #Tuples #Attributes %MinSupp
Abalone 8354 9 10%
Adult 97684 11 1%
Soccer 200000 10 10%
SP500 245148 7 1%

Table 5.3: Position of target CFD among all approximate CFDs according to
various ranking criteria.

Dataset CFD Length (1) Conf () Conf(]) UC-score;(-) UC-scores(-)
1 907 249 4617 18 2
Abalone 2 1825 1500 3703 12 3
3 2492 305 4565 244 3
1 153006 143303 62202 256 10
Adult 2 31948 141376 64517 15 1
3 10064 191665 27548 2 1
1 3896 806 11953 49 3
Soccer 2 1505 1424 11046 3 3
3 1232 1385 12329 14 9
1 150 126 258 4 1
SP500 2 171 127 248 42 2
3 166 127 255 46 2

in Table 5.2. As a note aside, the support threshold § is then simply com-
puted as ﬁ(#Tuplesx%MinSupp). These thresholds were set empirically,
low enough to ensure that a reasonable number of 100% confident CFDs
were found on the datasets, i.e., at least 50; yet high enough for the run-
time to remain practical for experimenting. In contrast to the previous chap-
ter, no limitations were put on the antecedent size of the CFDs. Combining
the clean and dirty datasets, we generate partial repairs by starting from the
dirty dataset, and replacing a subset of the dirty tuples with their clean vari-
ants. For each dataset, we obtain 3 different dirty datasets by using 3 differ-
ent CFDs discovered on the clean data. We denote the used CFDs by CFD 1,
CFD 2, and CFD 3. When considering a dirty dataset corresponding to a CFD
i, then CFD i is the target CFD. In other words, it is the CFD that we want to
discover by repairing the corresponding dirty dataset. Obviously, CFD i is
different for each dataset.

Falcon. We compare with FALCON [58], a system which discovers a SQL
Update Statement (equivalent to a constant CFD) that explains a single mod-
ification. Since such a modification does not contain sufficient information
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to reliably discover the underlying CFD, FALCON employs user interaction to
narrow down the search space. Feedback is received in the form of a user
asserting the (in)validity of a given CFD. Using the fact that all generaliza-
tions of an invalid CFD are also invalid, and all specializations of a valid CFD
are also valid, an efficient binary search algorithm limits the amount of user
feedback required.

5.5.2 Usefulness of Explaining from Repairs

Before evaluating the performance of our method for discovering CFDs that
explain repairs, we first show that user-supplied modifications are indeed
a good instrument to guide CFD discovery towards a CFD that is useful for
repairing. For this experiment, we perform regular CFD discovery on the
dirty data, and rank the discovered approximate CFDs by confidence and
rule length. We compare these baseline approaches to a ranking of global
explanations using our scoring function UC-score(-). Since our approach re-
quires modifications, we compute this ranking on two partially cleaned ver-
sions of the data, with 2 and 5 modifications, respectively.

In Table 5.3, we show the position of the target CFD in a list of CFDs
ranked according to the different criteria (position 1 denotes the top of the
ranking, i.e., the “best explanation”). The results clearly show that, when
using confidence or rule size, the target CFD is typically quite deep in the
ranking. Of course, these uninformed baselines have no way of knowing
which data is dirty, and hence whether a CFD is useful for repairing. It is
clearly infeasible for a user to manually validate all of these CFDs one by one.
This illustrates the need for integrating user feedback into the ranking func-
tion. Indeed, using information from modifications consistently and quickly
brings the target to the front, ratifying our approach. By manually repairing
a handful of tuples, many CFDs are automatically invalidated, and hence a
large amount of user effort is saved.

5.5.3 Explaining Full Repairs

To illustrate the efficacy of our method, we first perform explanation discov-
ery on full repairs, i.e., using the fully clean data as D,¢p, as opposed to par-
tial repairs. We are thus only interested in CFDs that are not violated on
Drep, and set € = 0. The minimum support threshold is set according to the
percentages from Table 5.2. These thresholds ensure that the target CFD is
among the (g,0)-CFDs that are the candidates for global explanations. In
this experiment, we first want to get an idea about the total number of global
explanations. Therefore, we use the post-processing method: Run CTane to
find (¢, 8)-CFDs; then filter out all the global explanations. We find that the
number of (0,)-CFDs that are global explanations is typically too large for
manual inspection, ranging from around 40 on the Adult dataset up to 400
on the Soccer dataset. On partial repairs (when ¢ > 0), this number will only
increase since the number of (g, 6)-CFDs will increase considerably. We re-
port the number of candidate global explanations on the various datasets,
for different numbers of modifications, in Appendix B.4. Secondly, we want
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Figure 5.2: Comparison of UC-score(-) and score(-) on the Abalone dataset,
using 20 modifications.

to validate that the target CFD is indeed the highest scoring (for UC-score(-))
global explanation when considering full repairs. Indeed, on all datasets the
target CFD was discovered. It shows that the UC-score(+) is a good measure
for repair explanations.

5.5.4 Scoring Function

We now further evaluate whether the scoring function UC-score(-) is indeed
a suitable surrogate for score(-), the exact scoring function. Since score(-)
requires an expensive computation, which we implemented using a brute-
force approach, we perform the experiment only on the smallest dataset,
Abalone. We mined all global explanations on the data with a 1% error per-
centage, using a partial repair containing 20 modifications. Both UC-score(-)
and score(+) report values ranging from 1 to 20 for the global explanations.
Again, since we need all global explanations, we make use of the naive post-
processing method. We rank all global explanations, using both scoring func-
tions. At each point in the ranked list, we compute the Mean Spearman’s
Footrule Distance and the Mean Absolute Error of the scores, for all expla-
nations up to this point in the ranking. The results are shown in Figure 5.2.
We learn that the top positions in the ranking are unaffected by the choice of
scoring function. Moreover, the absolute error remains very small through-
out the entire ranking. The sea-saw pattern is a result of averaging: when
a difference is encountered, the error rises, and then smoothens out as ad-
ditional positions, without error, are considered. Hence, UC-score(-) offers a
good approximation for score(-), and is unlikely to change which global ex-
planation is returned by XPLODE, compared to using score(-). We therefore
use UC-score(+) in all remaining experiments.
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Table 5.4: Number and Percentage of Modifications required to retrieve the
target CFD, for 3 different CFDs.

Dataset | #Error (%) ‘%M(l) #M(1) ‘%M(Z) #M(2) %M(3) #M(3)

8 (0.1%) 100% 8 50% 4 100% 8
Abalone | 83 (1%) 10% 8 5% 4 14% 12
835 (10%) 1% 8 1% 8 2% 18
97 (0.1%) 20% 19 6% 6 30% 29
Adult 488 (0.5%) 5% 24 2% 12 0.6% 3
976 (1%) 2% 24 0.4% 4 5% 48
200 (0.1%) 9% 17 11% 22 1% 2
Soccer 2000 (1%) 0.3% 7 1% 22 0.1% 2
20000 (10%) 0.2% 30 0.1% 20 0.1% 25
245 (0.1%) 3% 7 3% 7 0.8% 2
SP500 1225 (0.5%) 0.5% 7 0.5% 7 0.1% 2
2451 (1%) 0.1% 3 0.1% 3 0.1% 3

5.5.5 Explaining Partial Repairs

Our previous experiments showed that the target CFD, the one used to dirty
the data, can be recovered from a full repair of the data, using our scoring
function UC-score(-). We now want to answer the crucial question, “how
many modifications are needed for a partial repair to recover the target
CFD?”. To answer this question, we created partial repairs using an increas-
ing number of modifications, and report the number and percentage of
modifications needed until the target CFD was returned by XPLODE. On
each dataset, we use the error percentage of the data as ¢ in the confidence
threshold 1 — ¢; the support threshold § is derived from the difference of
(i) the minimum support percentage used to mine the CFDs and (ii) the er-
ror percentage of the data. For instance, on Abalone with 1% errors, we pick
0 = (10% — 1%) x 8354 and € = 0.01. As before, these guarantee that the tar-
get CFD is among the (g,8)-CFDs that are explored. Furthermore, we use
UB,(-) as upper bound function in XPLODE. Experiments (not reported)
show that this loose anti-monotonic function guides XPLODE more quickly
towards the desired CFD than UBy(+), since the A penalty assigns a lower pri-
ority to lattice elements containing irrelevant attributes, i.e., attributes that
do not occur in AttVIO.

The results for this experiment on all four datasets and CFD 1, CFD 2,
CFD 3, are shown in Table 5.4. Here, the columns %Error and #Error con-
tain, respectively, the percentage and absolute number of violations inserted
by BART. The columns %M(i) and #M(i) display the percentage and number
of modifications required before the target CFD is returned, for CFD i.

We see that the percentage of modifications required to find the target
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CFED is typically low, and does not change much when the dirtiness of the
data increases. This implies that our method has a greater benefit when
cleaning dirtier data: if the target CFD can be found by manually cleaning
1% of the violations, then 99% of the violations may be cleaned automati-
cally. Moreover, it seems that the number of attributes has a higher impact
on the number of required modifications than the number of tuples.

5.5.6 Comparison with Falcon

We next compare XPLODE and FALCON [58], for the case where the target
CFD is a constant CFD?. The experiment was done on the Soccer dataset, us-
ing 3 constant CFDs. Only modifications that relate to the consequent of the
CFDs were considered, as FALCON supports only these. FALCON was able to
recover each of the target CFDs using a single modification and 2 user ques-
tions, taking between 1 and 4 seconds. In comparison, XPLODE recovers the
target CFD using 3 to 5 modifications, with a runtime around 4 seconds each
time. Since the runtimes were obtained on different hardware, it is hard to
compare efficiency. Nevertheless, the experiment suggests that XPLODE, al-
though not specialized only towards constant CFDs, is comparable to FAL-
CON.

We remark that this changes when considering arbitrary modifications
(not in the consequent) or variable CFDs. Indeed, this would require FAL-
CON to obtain a candidate CFD for every changed value in the antecedent, or
for every value combination relating to the variable CFD. For each such CFD,
a single modification and some user questions would be required. We con-
sider again the Soccer dataset, this time using 3 variable CFDs. XPLODE can
recover the single target CFD using, on average, 12 modifications. However,
in order to capture all the errors in these datasets using constant CFDs, on av-
erage 55 constant CFDs are needed. This implies that FALCON would require
this amount of user modifications, and outputs a large number of CFDs as
well. A similar scenario occurs when modifications involving attributes in
the antecedent of CFDs are present.

5.5.7 Robustness to Noise

So far, we have run experiments using only modifications that belong to a
single CFD, and as such, the returned CFD explains all the given modifica-
tions. However, when a user is manually cleaning data, without knowing
the target CFD, corrections may be made in positions unrelated to the target
CFD. We now verify whether XPLODE is robust to such “noise”. For this exper-
iment, we consider again a full repair, as in our first experiment. Additionally,
we add a number of random modifications throughout the data, that have
no connection to the target CFD. In Figure 5.3, we report how many random
modifications can be added without distorting the output of XPLODE, up to
50% of the total number of modifications, i.e., as many random modifica-
tions as correct modifications.

5Due to IP restrictions, we were unable to obtain the code and perform an in-depth com-
parison. One of the authors of FALCON kindly performed an experiment instead.
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Figure 5.3: Noise-robustness of XPLODE.

The results show that our method is very robust to random noise, espe-
cially as more modifications are considered. On the Adult dataset, where we
only consider constant CFDs, noise seems to have no impact. This make
sense: as variable CFDs can capture a larger variety of errors, they are also
more likely to accidentally explain a random modification, whereas constant
CFDs will not be able to connect the random modifications to each other.

5.5.8 Runtime Performance

We now turn our attention towards the performance of XPLODE. The run-
time was evaluated on full repairs. We compare XPLODE with two bench-
marks: firstly, discovering all global explanations and then computing all
the scores, and secondly, the discovery of all (g,8)-CFDs using the CTane
algorithm. Figure 5.4 shows the runtimes (in seconds) averaged over 3 inde-
pendent runs with different CFDs. Algorithm XPLODE clearly outperforms
post-processing in every case, and is typically faster than a full CTane exe-
cution. Overall, results indicate that the error percentage has little impact
on runtimes. The only exception is the Adult dataset: here, the runtime de-
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Figure 5.4: Runtime performance of XPLODE, compared to post-processing
and CTane.

teriorates with a higher percentage of errors. We suspect that, for constant
CFDs, checking for global explanations accounts for more of the total run-
time. With more modifications, computing equivalence partitions in D gj.
becomes harder, as the difference between D, and Dyep increases. More-
over, Adult shows a greater increase in the number of global explanations as
dirtiness increases.

5.5.9 Influence of Optimizations

Finally, we evaluate the impact of three optimizations discussed through-
out Section 5.3. We compare the runtimes with each of these optimizations
turned off in turn, to the runtime of XPLODE with all optimizations turned
on. The runtimes were again obtained using a full repair, as in the runtime
experiment. The results are shown in Figure 5.5. The worst runtime is ob-
tained when disabling “All scores”, which is the computation of scores for
CFDs that are not global explanations (discussed under Remarks at the end
of Section 5.3.1). Computing these scores leads to better informed tiebreak-
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Figure 5.5: Impact of optimizations on runtime.

ing among elements with equal upper bounds, at the cost of having to com-
pute the score. Clearly, computing all scores leads to a major improvement
in runtime. For this reason, we do not test without this optimization on the
larger datasets, Soccer and SP500. The other two optimizations concern the
method of obtaining equivalence partitions by XPLODE. Recall that, when
computing the confidence of a CFD, the equivalence partition of a subset
may not be available. We evaluate as “Fast Tids” the computation of these
equivalence partitions on-the-fly from the partitions of singletons, as op-
posed to computing them from the data. This optimization has a positive
impact on runtime, on all datasets except SP500. Finally, we evaluate the
use of the PULLBACK method, to convert an equivalence partition on Dy, to
its counterpart on D ;. PULLBACK offers the least benefit of our optimiza-
tions, but still leads to a clear and consistent improvement. The percentage
of errors does not seem to change the relative influence of the optimizations.
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5.6 Related Work

In this chapter, we have relied on users to make some initial repairs, after
which existing data repairing algorithms can be used for cleaning the data.
We have overviewed such repair methods in Chapter 3. Our approach is com-
plementary to any of these repairing algorithms. In this section, we discuss
the work that is specifically related to our discovery of explanations.

5.6.1 Traditional Constraint Discovery

Our algorithm XPLODE is built upon an underlying constraint discovery pro-
cess. Traditional (C)FD discovery algorithms, such as the ones presented in
the previous Chapter [93], or those presented in Chiang and Miller [29], Fan
et al. [46], Huhtala et al. [60], Papenbrock et al. [85], and Mandros et al. [75],
aim to find all constraints that approximately hold on the data. In contrast,
we aim to find only those CFDs that explain a partial repair, in order to re-
strict the output of the discovery algorithm to useful constraints for repairing.
Traditional methods do not consider our notions of explanation and scor-
ing function during the discovery process. To find explanations, these algo-
rithms therefore have to be combined with a post-processing step, which is
expensive both in time and user interaction. In our algorithm XPLODE, post-
processing is avoided by carefully integrating the notion of explanations in
the discovery process.

Our resulting on-demand algorithm is similar in spirit to the method pre-
sented in Golab et al. [55], where constants patterns for a fixed FD are found
that best describe the data. The efficiency of their algorithm is based on
the anti-monotonicity of the support and confidence measures. In contrast,
our search strategy allows for general loose anti-monotonic functions [19],
which include a much larger number of measures, such as our scoring func-
tion. In addition, we explore the entire space of CFDs instead of requiring
the embedded FD to be fixed. We leverage equivalence partitions, intro-
duced in Cosmadakis et al. [36], and commonly used in constraint discov-
ery [60, 46]. None of the traditional constraint discovery methods consider
user interaction, which is essential for our method.

Whereas the on-demand algorithm is currently based on the Tane algo-
rithm, it could readily be adapted to make use of recent advances in CFD dis-
covery such as Kruse and Naumann [69] and Rammelaere and Geerts [93].
Moreover, our method naturally lends itself to the hybrid approach taken
in Papenbrock and Naumann [84].

In Berti-Equille et al. [15], the set of constraints is further restricted by
discovering genuine FDs, based on measuring the probability that the con-
straint will be satisfied after some repair is applied. However, it is not guaran-
teed that the FDs with the highest genuineness, are also useful for repairing.

Related to our explanation, in Chalamalla et al. [26], a description of errors
by means of a small set of conjunctive queries is discovered, without consid-
ering user interaction or repairing. Moreover, our repair explanations could
also be of use to update constraints over evolving data, in line with the meth-
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ods presented in Chiang and Miller [30], Beskales et al. [16], and Mazuran
etal. [78].

5.6.2 User-guided Constraint Discovery

Other discovery methods that leverage user interaction are presented in He
et al. [58] and Thirumuruganathan et al. [102].

The FALCON system [58], described in more detail in Section 5.5.1, is most
closely related. It finds constant CFDs based on a single modification, and
afterwards relies on a “user oracle” to (in)validate the proposed rules. The
emphasis of the system is on limiting calls to this oracle. By contrast, we
only use information stemming from multiple modifications, and as such
our method has no need for a “black box” oracle. Moreover, our method
is capable of handling variable CFDs, providing more flexibility and more
compact explanations of modifications, since a variable CFD can represent
a large number of constant CFDs. In addition, our method is on-demand.

The UGUIDE system [102] aims to find a set of FDs such that their viola-
tion set overlaps maximally with the tuples holding frue errors, whilst min-
imizing the number of violations that are not true errors. We aim to explain
repairs rather than errors. UGUIDE asks users to either (in)validate FDs, or
specify whether given cells or tuples are true errors or not. It is a best effort
method given a budget on the number of user interactions. We treat both
types of user interaction uniformly through modifications: by incorporat-
ing information on how errors should be repaired, we can zoom in directly
to CFDs that are useful for repairing and not only for error detection. By con-
trast, UGUIDE initially uses all approximate FDs, which is costly and leads
to users invalidating an excessive amount of spurious dependencies. Finally,
we consider general CFDs rather than just FDs.

5.6.3 User Interaction in Data Cleaning

Other forms of user interaction in data cleaning are considered in works such
as Wang et al. [105], Volkovs et al. [103], and Yakout et al. [110]. In these works,
the set of (valid) constraints (FDs, CFDs, or other) is assumed to be available
already. User involvement is then used to determine the right repairs relative
to these constraints. In contrast, our work leverages user interaction in an
earlier phase, to find valid constraints for repairing. Once these constraints
have been found, user interaction can again be integrated into the repair
process.

5.7 Conclusion

In this chapter, we have focused on the problem of involving a non-expert
user into a constraint discovery process. More concretely, we considered
the problem of finding a CFD that best explains an observed partial re-
pair. We have presented an on-demand algorithm, XPLODE, that shows
great promise for finding such explanations. Underlying the efficacy of the
method is a scoring function and its efficient approximation, that counts
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the number of modifications explained. A search space traversal based on
loose anti-monotonic bounds on the scores, leads to an improvement in ef-
ficiency, when compared to a post-processing approach to the considered
problem.

With extensive experiments, we show that our approach is suited for dis-
covering valid CFDs that are useful for repairing. Our method shows high
precision in discovering the correct explanation, using only a small amount
of modifications. Moreover, we have verified that XPLODE is considerably
faster than the naive, post-processing approach. Additional experiments
show that our method is very nobust to noise in the observed modifications,
and that our optimizations, specific to the task of discovering explanations,
further decrease the runtime of XPLODE.

Future work includes the investigation of alternative scoring functions,
and extending XPLODE towards discovering multiple explanations. The gen-
eral concept of inferring constraints from a repair can be investigated in the
context of various other constraint formalisms. Finally, it would be interest-
ing to see how our method can be integrated with other forms of user inter-
action, for example by suggesting modifications to a user, and incorporating
their responses into our algorithm.
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Forbidden Itemsets

6.1 Introduction

So far in this dissertation, we have considered the discovery of constraints
for the purpose of cleaning data, with or without the involvement of a hu-
man user. We now consider, instead, the direct discovery of inconsistencies,
i.e., the violations of some constraint. Moreover, we now focus on auto-
matic cleaning, such that error detection and subsequent repairing can be
performed without any necessary input from the human. In this chapter, we
introduce a dynamic notion of data quality for use in such an automatic con-
text. In this chapter we first focus on the discovery of inconsistencies, before
presenting a repair method based on the dynamic notion of data quality in
the next chapter.

Consider a scenario where a user runs a constraint discovery algorithm
on a dataset, with the intent on cleaning said data. Many algorithms are
available for discovering such constraints. However, since the underlying
data is dirty, this raises concerns about the reliability of the discovered con-
straints. Assume for the moment that the constraints are reliable and are
used to repair (clean) a dirty database. For the sake of the argument, what if
one re-runs the constraint discovery algorithm on the repair and finds other
constraints? Does this imply that the repair is not clean after all, or that the
discovery algorithm may in fact find unreliable constraints? It is a typical
chicken or the egg dilemma. The problem is that constraints are considered
to be static: once found, they are treated as a gold standard. To remedy this,
we propose a dynamic notion of data quality. The idea is simple:

“We consider a given database to be clean if a constraint discov-
ery algorithm does not detect any violated constraints on that
data.”

75
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Constraints thus reflect inconsistencies which depend on the actual data.
Clearly, this dynamic notion presents a new challenge when repairing, since
the constraints may shift during repairs. Indeed, it does not suffice to only
resolve inconsistencies for constraints found on the original dirty data, one
also has to ensure that no new constraints (and thus new inconsistencies)
are found on the repaired data. Note that we focus on repairing data under
dynamic constraints, as opposed to cleaning dynamic data. To our knowl-
edge, this is a new view on data quality, raising many interesting challenges.

The main contribution of chapters 5 and 6 is to illustrate this dynamic
view on data quality for a particular class of constraints. In particular, we
consider errors that can be caught by so-called edits, which is “the” con-
straint formalism used by census bureaus worldwide [48, 59] and can be seen
as a simple class of denial constraints [31, 32]. Intuitively, an edit specifies
forbidden value combinations. For example, an age attribute cannot take a
value higher than 130, a city can only have certain zip codes, and people of
young age cannot have a driver’s license. These edits are typically designed
by domain experts and are generally accepted to be a good constraint formal-
ism for detecting errors that occur in single records. In contrast, we aim to
automatically discover such edits in an unsupervised way by using pattern
mining techniques. To make the link to pattern mining more explicit and
to differentiate from edits, we call our patterns forbidden itemsets. Although
our technique is designed such that human supervision is not compulsory,
we show that optional user interaction can be readily integrated to improve
the reliability of the methods.

Pattern mining techniques are typically used to uncover positive associ-
ations between items, measured by different interestingness measures such
as frequency, confidence, lift, and many others. Based on experience, discov-
ered patterns often reveal errors in the data in addition to interesting associa-
tions. For example, an association rule which holds for 99% of the data could
be interesting in itself, but might also represent a well-known dependency
in the data which should hold for 100%. The fact that the association does
not hold for 1% of the data is then more interesting. This 1% of the data of-
ten points to unlikely co-occurrences of values in the data, which forbidden
itemsets aim to capture. In order to reliably detect unlikely co-occurrences,
it is clear that a large body of clean data is needed. We therefore focus on
low error rate data, such as census data or data that underwent some cura-
tion [24].

The biggest challenge given our dynamic notion of data quality, however,
is to provide suggestions for how to repair the discovered errors. We discuss
this in the next chapter.

Figure 6.1 gives a schematic overview of the proposed cleaning mecha-
nism in its entirety. We capture unlikely co-occurrences by means of forbid-
den itemsets. Our algorithm FBIMINER employs pruning strategies to opti-
mize the discovery of forbidden itemsets. Linking back to the beginning of
the introduction, we will regard data to be dirty if FBIMINER finds forbid-
den itemsets in the data. Users may optionally filter out forbidden itemsets
by declaring them as valid. Furthermore, we also devise a repairing algo-
rithm that repairs a dirty dataset and ensures that no forbidden itemsets ex-
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Figure 6.1: Schematic overview of the proposed FBI cleaning mechanism.

ist in the repair, hence it is indeed clean. To achieve this, we consider almost
forbidden itemsets and present an algorithm A-FBIMINER for mining them.
Again, users can optionally filter out such itemsets. Both the discovery of al-
most forbidden itemsets, and the repair strategy, are discussed in the next
chapter.

6.1.1 Summary of Contributions

1. We formalize the dynamic notion of data quality in full generality, stat-
ing that a dataset is considered clean if a constraint discovery algo-
rithm does not detect any violations in the data. (Section 6.2)

2. We introduce the concept of forbidden itemsets, which represent illegal
value combinations found in a dataset, using a general likeliness func-
tion. We then instantiate this general framework for the specific case of
low-lift forbidden itemsets, and provide examples for the effectiveness
of this new formalism. (Sections 6.3)

3. We provide an efficient itemset mining algorithm for discovering for-
bidden itemsets. The efficiency is based on pruning properties, which
we derive from the lift measure that is used. (Section 6.4)

4. We experimentally evaluate our method on various real-world datasets,
showing that the discovered forbidden itemsets can detect errors with
high precision, and that the discovery algorithm is highly efficient.
(Section 6.7)

6.2 Problem Statement

We first phrase our problem in full generality (following Mannila and Toivo-
nen [76]) before making things more specific in the next section. Consider a
transaction dataset D and some constraint language I for expressing prop-
erties that indicate dirtiness in the data, e.g., " could consist of conditional
functional dependencies, association rules, edits, or denial constraints,
among others. Furthermore, let ¢ be a selection predicate (evaluating to true
or false) that assesses the relevance of constraints ¢ € I" in D. For example,
when ¢ is a conditional functional dependency, ¢(D, ¢) may return true if ¢
is violated in D.
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We denote by dirty(D,T,q) the set of all dirty constraints, i.e., all ¢ €T
for which ¢(D, ¢) evaluates to true. For example, dirty(D,I",q) may consist of
all violated conditional functional dependencies, all edits that apply to an
object, or all low confidence association rules.

Definition 22. A dataset D is said to be clean relative to language I and pred-
icate g if dirty(D, T, q) is empty; D is called dirty otherwise. O

With this definition we take a completely new view on data quality. In-
deed, existing work in this area typically fixes the constraints up front, re-
gardless of the data [44]. For example, edits are often designed by experts
and then compared with the data. In our definition, we only specify the class
of constraints, e.g., edits. Which edits are used for declaring the data clean or
dirty depends entirely on the underlying data. We thus introduce a dynamic
rather than a static notion of dirtiness/cleanliness of data: when the data
changes, so do the edits under consideration. With this notion at hand, we
are next interested in repairs of the data. Intuitively, a repair of a dirty dataset
is a modified dataset that is clean.

Definition 23. Given datasets D and D', language T, predicate ¢ and similar-
ity function sim between datasets, we say that D’ is an (T, q)-repair if (i) D’
has the same set of object identifiers as D; and (ii) dirty(D’,T’,q) is empty. An
(T, q)-repair D' is optimal if sim(D,D’) is maximal amongst all (I',q)-repairs
of D. O

Here, we assume that a similarity measure between objects is given, and
denote by sim(0,0’) the similarity between objects o and o’. The similarity
between two datasets D and D’ is denoted by sim(D,D’) and is defined by

1

— sim(0,0').
DI,

=(tid,/)eD,0'=(tid,J)€D’,

We observe that the sum ranges over pairs of objects in D and D’ with the
same object identifier. Furthermore, the choice of similarity function is not
crucial for our algorithms: Any similarity measure can be used in our setting.
Of course, the quality of repairs will depend on the chosen measure.

6.3 Forbidden Itemsets

To make the general setting introduced in the previous section more specific,
we let I" consist of the class of itemsets and define ¢ such that for an itemset
I, q(D,I) is true if I corresponds to a possible inconsistency in the data. In
general, we can use a likeliness function L : 27 x D — R that indicates how
likely the occurrence of an itemset is in D. Such a likeliness function can be
defined to accommodate various types of constraints on value combinations
within a single tuple. If we denote by 7 a maximum likeliness threshold, then
we define (L, 7)-forbidden itemsets as follows.
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Definition 24. Let D be a dataset, L a likeliness function, I an itemset and ©
a maximum likeliness threshold. Then, I is an (L, 7) -forbidden itemset when-
ever L(I,D) < 7. O

Phrased again in the general framework, we thus have that I is the class
of itemsets and ¢(D,I) is true if I is an (L, 7)-forbidden itemset. Hence, the
set dirty(D,T’,q) consists of all (L, 7)-forbidden itemsets in D.

To make things even more specific, we fix the likeliness function L to be
the lift measure such that dirty(D,TI', ¢) corresponds to itemsets that do occur
in the data, despite being very improbable with respect to the rest of the
data. We will illustrate the effectiveness of using lift as a likeliness function
shortly, and show examples of discovered forbidden itemsets in real datasets,
in Section 6.3.2. In the following, when L is the lift measure we refer to (L, 7)-
forbidden itemsets simply as t-forbidden itemsets. We next make this more
formal.

6.3.1 Lift Measure for Itemsets

Intuitively, the lift measure indicates how probable the co-occurrence of a
set of items is given their separate frequencies. Lift is generally used as an
interestingness measure in association rule mining, where rules with a high
lift between antecedent and consequent are considered the most interest-
ing [23]. Recall from Chapter 2 that the lift of an association rule 7 — J is
given by

. freq(1UJ,D)
liftar(I = J,D) := .
ftar(l = J,D) freq(1,D) x freq(J, D)

Following Webb and Vreeken [108], we then define the lift of an itemset as

lift(1,D) = olgjlélllftAR((l\J) —J,D).

It will be convenient to write this definition more explicitly in terms of sup-
ports of itemsets.

Definition 25. Let D be a dataset and 7 be an itemset. The lift of I, denoted
by lift(1,D), is defined as

|D| x supp(1, D)

lift(Z,D) := —
Jmin {supp(J,D) x supp(I\J, D) }

In other words, we adopt a lift measure based on “pairwise” indepen-
dence, in which freq(7, D) is compared against the product freq(J, D) x freq(I'\
J, D) for any non-empty J C I, and the maximal discrepancy ratio is taken as
the lift of I in D. As mentioned earlier, we take the lift measure as our likeli-
ness function. In accordance with Def. 24 we then have that:

Definition 26. A t-forbidden itemset is an itemset I for which lift(/,D) < t
holds. -
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We observe that when using lift, 7 will typically be small, and we assume
that 7 < 1. Setting 7 > 1 would imply positive (or neutral) correlations among
the items, which makes little sense for detecting unlikely value combina-
tions. In the next chapter of this dissertation (Section 7.7) we further restrict
7 such that 7 < 3/4. This is needed to guarantee correctness of our repair al-
gorithm. This restriction is harmless from a practical point of view, however,
since sensible forbidden itemsets have a lift measure much smaller than 3/4.

With these definitions at hand, we can now formalize the problem of dis-
covering low-lift 7-forbidden itemsets:

PROBLEM: Discovering 7-forbidden itemsets

INPUT: Dataset D, lift threshold 7
OUTPUT: Allitemsets / in D with lift(,D) < 7.

6.3.2 Effectiveness of Forbidden Itemsets

We here provide some initial motivation for considering invalid or unlikely
value combinations (formalized by forbidden itemsets) as an error detection
formalism. To illustrate that t-forbidden itemsets are an effective formalism
for capturing unlikely value combinations, we start with an example.

Example 12. Consider the example forbidden itemsets found in some UCI
datasets [39], as shown in Table 6.1. In the Adult dataset, the co-occurrence
of Female and Husband, as well as Male and Wife, are clearly erroneous.
Other examples involve a married person under the age of 18 and peo-
ple who are married, yet living in with an unrelated household. In the
Zoo dataset, the first forbidden itemset shows that the animal clam in the
dataset is neither aquatic nor breathing. To our knowledge, clams are in fact
aquatic, so these values are indeed in error. The other forbidden itemsets
detect animals that are in some way an exception in nature. For example,
the platypus is famous for being one of few existing mammal species that
lays eggs, the other species being anteaters. Similar exceptional combina-
tions are encountered in the other UCI datasets, such as the Mushroom
dataset, although the forbidden itemsets are more difficult to interpret
for this dataset. In the Students dataset, we detect instances where alco-
hol consumption is higher on weekdays than during the weekend, which
seems counter-intuitive. In the GermanCredit dataset, the forbidden item-
set (JOB=UNSKILLED, EMPLOYEDSINCE=UNEMPLOYED) is erroneous since
the Job attribute has a specific value for unemployed people. While not all
of these examples represent actual errors, they show that forbidden item-
sets are capable of detecting peculiar objects that require extra attention.
Of course, it makes little sense to repair objects such as the platypus. Typ-
ically, user validation of the discovered errors will be preferable over fully
automatic repairs. This is addressed in Section 6.5.
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Table 6.1: Example forbidden itemsets found in UCI datasets.

Forbidden Itemsets Dataset T

Sex=Female, Relation=Husband
Sex=Male, Relation=Wife

Age=<18, Marital-status=Married
Age=<18, Relationship=Husband
Relation=Not-in-family, Marital=Married

Adult 0.01

aquatic=0, breathes=0 (clam)

type=mammal, eggs=1 (platypus)

milk=1, eggs=1 (platypus)

type=mammal, toothed=0 (platypus) 700 0.1
milk=1, toothed=0 (platypus)

eggs=0, toothed=0 (scorpion)

tail=1, backbone=0 (scorpion)

bruises=t, habitat=1

population=y, cap-shape=k

cap-surface=s, odor=n, habitat=d Mushroom 0.025
cap-surface=s, gill-size=b, habitat=d

edible=e, habitat=d, cap-shape=k

Job=Unskilled,EmployedSince=Unemployed
Property=Real Estate,Housing=Free

Property=Life Insurance,Housing=Free GermanCredit 0.1
Property=Car or Other, Housing=Free

WeekAlc=1, DayAlc=2

Weekalc=1, DayAlc=3 Students 0.075

FatherEdu=High, MotherEdu=Low
FatherEdu=Low, MotherJob=Teacher

In fact, forbidden itemsets capture a considerable amount of errors com-
monly found by other formalisms. Indeed, invalid value combinations have
been used for decades to detect errors in census data starting with the sem-
inal work by Fellegi and Holt [48]. Furthermore, although more expressive
formalisms such as conditional functional dependencies (CFDs) [45] and de-
nial constraints (DCs) [31, 32] have become popular for error detection and
repairing, many constraints used in practice are very simple. As an exam-
ple, most of the constraints reported in Table 4 in Abedjan et al. [2] can be
regarded as constraints that only involve constants. This is clear for “checks”
that specify invalid domain values. However, even a functional dependency
such as (zip — state) can be regarded as a (finite) collection of constant rules
that associate specific zip codes to state names. The violations of these rules
clearly are invalid value combinations. Similarly, almost half of the DCs re-
ported in Chu et al. [32] only involve constants and concern single tuples.
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It therefore seems natural to first gain a better understanding of these sim-
ple constraints in our dynamic data quality setting. Finally, the discovery
of CFDs and DCs [46, 29, 33] in their full generality is very slow due to the
high expressiveness of these constraint languages. Indeed, experiments in
these papers show that the discovery of general CFDs and DCs may take up
to hours on a single machine. This makes general constraints infeasible in
settings such as ours, where interactivity or quick response times are needed.

Based on the above, we believe that forbidden itemsets are a suitable
method for discovering a set of errors (corresponding with rule violations [2])
with high precision. They provide a good balance between expressiveness,
efficiency of discovery, and efficacy in error detection. Furthermore, they
are often easily interpretable, allowing users to inspect and filter out false
positives, as will be discussed in Section 6.5.

6.4 Discovering forbidden Itemsets

In this section we show how to compute dirty(D,TI',q) for low lift forbidden
itemsets. Since low lift itemsets are typically infrequent, existing itemset min-
ing algorithms are not optimized for this task. We therefore derive properties
of the lift measure that allow for substantial pruning when mining forbidden
itemsets (Section 6.4.1). We conclude this section by presenting a version,
referred to as FBIMINER, of the well-known Eclat algorithm [116], enhanced
with our derived pruning strategies and optimizations specific for the task of
mining low lift forbidden itemsets (Section 6.4.2).

6.4.1 Properties of the Lift Measure

Before presenting our algorithm FBIMINER that mines t-forbidden itemsets,
we describe some properties of the lift measure that underlie the pruning
strategies of our algorithm. As we will explain shortly, FBIMINER performs
a depth-first search for forbidden itemsets. To make this search efficient,
pruning strategies should be in place that discard all supersets of a particu-
lar itemset, i.e., prune the entire search tree underneath the current node.
For this purpose, we derive properties that must hold for all subsets of a
t-forbidden itemset. If such a property does not hold for an itemset en-
countered in the search tree, then clearly none of its supersets may be z-
forbidden, and this branch of the search space may be pruned.

The development of pruning strategies for the lift measure is quite chal-
lenging. Typically, pattern mining algorithms perform pruning by leveraging
monotonicity properties of interesting measures. The lift measure, however,
is neither monotonic nor anti-monotonic. Nevertheless, since a low lift item-
set requires that an itemset occurs much less often than its subsets, we can
use the relation between the support of a 7-forbidden itemset and the sup-
port of its subsets to derive properties for pruning.

In the remainder of this section, we obtain useful bounds on the support
of either t-forbidden itemsets, or their subsets. In general, given a dataset
D and an itemset 7 occurring in D, it trivially holds that 1 < supp(Z,D) < |D|.
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However, when discovering itemsets in a specific dataset, we can obtain a
tighter upper bound on the support of itemsets, assuming that the support
of individual items is known. Indeed, supp(Z,D) < supp({i},D) for any i € J
such that 7 C J. We define 6;"%* to be the highest support of an item {i} in/ or
any of I's supersets J. Note that this can be different from the most frequent
item in the data, since an itemset can contain at most one item per attribute,
and hence we only consider supersets J such that J\ 7 and I are compatible,
i.e., have no overlapping attributes.

o™ := max{supp({i},D) | i€ J,I1 CJ}.

In other words, 6/ is the highest support of a single item in I's branch of
the search tree. Clearly, it holds that supp(Z,D) < o;"%, and 6" < o;"® for
all7cJ.

We first introduce a lower bound on the support of subsets of J, when J is
a t-forbidden itemset:

Proposition 7. For itemsets 7 and J such that7 C J, if J is a t-forbidden item-
D J1.D

set then supp(1,D) > %

Proof. We show this by contradiction. Let J be a t-forbidden itemset for

7 < 1 and assume for the sake of contradiction that there exists a I C J with

supp(1,D) < %%;D)_ Then observe the following:

D] x supp(J,D)

> lift(J,D) > .
v > iftlJ. D) supp(J\ 1, D) x supp(,D)

Using our assumption that supp(/,D) < %, we get
|D| x supp(/, D)
supp(J\ 1, D) x |D[xsupp(J,D)

o' xt
[PpsuppldD) x (0" x 1)
supp(J \ 1, D) x {{Ppsupp{HD

_ o"xr

~ supp(J\1,D)’
Since supp(J\1,D) < 0" < 0/, we thus have that v > 7, which is clearly
impossible. Hence, every strict subset I of a 7-forbidden itemset J must sat-
isfy supp(1,D) > [Dlxsupp(/.D) | O

o/t

T>

Furthermore, for any 7-forbidden itemset J in the dataset, it triv-
ially holds that supp(/,D) > 1 and thus any itemset / C J must have

supp(I,D) > GIH‘EX'X - This implies that in the depth-first search, it suffices to
D]
o' xt*

Proposition 7 can be leveraged to show that a minimum reduction in sup-
port between subsets of a t-forbidden itemset is required. The following
proposition allows us to prune the search tree when we encounter an item-
set J having a subset whose support is too close to J’s support.

expand only itemsets I for which supp(Z,D) >
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Proposition 8. For any three itemsets 7, J and K such that 7 C J C K holds, if

K is a 7-forbidden itemset, then supp(Z,D) — supp(J, D) > % — %.

Proof. We show this by contradiction. Let K be a 7-forbidden itemset for
7 < 1 and assume for the sake of contradiction that there exist subsets I C
J C K with supp(1,D) —supp(J,D) < % - G"T‘. To simplify notation, we denote
supp(Z,D) —supp(J, D) by 6. We may then rewrite supp(K, D) as

supp(K, D) = supp(K,D) +supp(l,D) —supp(J,D) — &

Let L denote the subset K \ (/\ /) of K. We have that supp(L, D) = supp(K,D) —
(supp(J, D) —supp(1,D)), or equivalently that

supp(L, D) = supp(K, D) +supp(I,D) —supp(J/, D).

Hence, supp(K,D) = supp(L,D) — 8.

Furthermore, since lift(K,D) < 1, Proposition 7 tells us that L C K must
satisfy supp(L,D) > GIH‘@‘X -. Knowing that |D| > 6;"%, we simplify the inequal-
ity to supp(L,D) > % We show that this leads to a contradiction. Indeed, by
definition we have that

|D| x supp(K, D)
supp(K \ L, D) x supp(L,D)’

T2 ift(K,D) >

Since we can replace supp(K, D) by supp(L,D) — d:

< D , Supp(L,D) —§
~ supp(K\L,D) = supp(L,D)

__ o s
~ supp(K\ L,D) x (1 SUPP(LaD)>,

and by using that supp(L,D) > - we have

1
T

B Y PR
T>supp(K\L,D)x(l 1/T)'

Since supp(K \ L, D) < o' < o/"®, we obtain that

T>ﬂx lfi
~ gpmax 1/t)"

From this, we can infer that t x 6/ > |D| — (|D| x 0 x 7), and hence, |D| x
0 x T > |D| — (1 x o). A further rearrangement of terms leads to

5> |D| Txoft™ 1 o™
“|Djxt  |D|xt t |D|’
max
Which gives a contradiction of our assumption that § < % - G"D‘ . As a conse-

quence, the proposition holds. O
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In particular, when applied to 7 C J C K = J, Proposition 8 indicates that

for J to be t-forbidden, we must have that supp(Z, D) —supp(J,D) > 1 — G"ZTX
holds for any of its subsets /. During the depth-first search, when expanding
I to J, if this condition is not satisfied, then J and all of its supersets K can be

pruned.
II'HHX

Furthermore, it holds that % — G\D| >0, since 6" < |D|and 7 < 1. Conse-
quently, the proposition implies that t-forbidden itemsets must have a sup-
port different from the supports of all their subsets, i.e., if J is 7-forbidden
then supp(Z,D) > supp(J,D) for any I C J. Itemsets J that satisfy this condi-
tion are called generators [86] or free itemsets [21]. A known property of gen-
erators is that all their subsets are generators as well; hence any subset of a
t-forbidden itemset is required to be a generator. If a non-generator itemset
is encountered during the search, the entire subtree can therefore be pruned.

Our next pruning method uses the lift of an itemset to bound the support
of its supersets. It follows from the observation that the denominator of the
lift measure is in fact anti-monotonic.

Proposition 9. For any two itemsets 7 and J such that 7 C J, it holds that

supp(J,D) x | D]

lift(J,D) > — .
(. D) min{supp(S, D) x supp(I\ S, D) }
C

Proof. We show the following: For any two itemsets / and J such that 7 C J, it
holds that:

rgliIII{SUPp(S, D) xsupp(/\S,D)} > rsnigl{supp(S,D) xsupp(J\ S, D)}
C C

Clearly, this implies the proposition. We next show that the inequality holds.
Indeed, this follows from the fact that any expression supp(S,D) x supp([ \
S,D) can be rewritten as

supp(S, D) x supp((/\ $) \ X, D),
where X = J\I. Since
supp((/\$)\X,D) = supp(J\ S, D),
we obtain that the following inequality holds for any S C I,
supp(S,D) x supp(I\ S, D) = supp(S,D) x supp(J\ S, D),
as desired. O

Clearly, this lower bound can be used to prune itemsets J that cannot
lead to t-forbidden itemsets. When considering an itemset I C J during our
depth-first traversal, we already have the supports of subsets of I at our dis-
posal. Hence, although supp(J, D) is not yet know, the value of the denomina-
tor is known when [ is considered. This implies that we need a lower bound
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on supp(J, D) to lower bound lift(/, D) using Proposition 9. We again use the
trivial lower bound supp(J,D) > 1.

Finally, since itemsets with low lift are obtained when they occur much
less often than their subsets, it is expected that such forbidden itemsets will
have a low support. In fact, one can precisely characterize the maximal fre-
quency of a t-forbidden itemset.

Proposition 10. If 7 is a 7-forbidden itemset then its frequency is bounded

by freq(1,D) < 2 -2,/ % — 1 — 1. Furthermore, for small -values this bound
T T

converges (from above) to 7.

Proof. Consider an itemset / which is 7-forbidden for a given thresh-
old T < 1. We first lower bound the lift of / by considering the maximal
value that supp(S,D) x supp(I \ S,D) can take for @ C S C I. Observe that
supp(S,D) +supp(I\ S, D) < |D|+supp(l,D). It can now be easily verified that
the maximal value of the expression supp(S,D) x supp(/\ S,D) is obtained
when supp(S,D) = W.

Since lift(1, D) < 7 we then have that

supp(/,D) x |D|
<|D\+su2pp(I,D)) % (l’DHsuzpp(I,D))

<lift(1,D) < 7.

We can use this to upper bound supp(Z, D), as follows:

supp(,D) < x (|D[* +2|D| x supp(1,D) + (supp(I, D))?).

T
4D
It is now a routine exercise to find the maximal value of supp(/,D). Indeed,
one simply needs to solve the equation

T
ap] - (ID*+2|D| x supp(1, D) + (supp(I, D))*) — supp(, D) = 0.

We obtain the following two solutions:

2|D 1 1
supp(1,D)* = 220 pjappyy [ L -1

—|D| > |D| for any 7 < 1, we see that supp(/,D)" = @ —|D| +

. 2|D
Since IT‘

2|D| 1—12 - % > |D|. This is impossible since no itemset can have a support

strictly greater than |D|. Hence, we are left with the other root supp(1,D)~ =
@ —|D|-2/D|\/% — 1. To obtain the upper bound on the frequency we
divide by |D|. This results in that the maximal frequency of a r-forbidden
itemsetis 2 -2,/ 5 —1—1.

To show the second statement in the proposition, we consider the Taylor

expansion of 2 -2, /1 — 1 — 1 given by
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Hence, for decreasing values of 7, the maximal frequency of a t-forbidden
itemset converges from above to 7/4. O

The proposition tells that for small values of 7, t-forbidden itemsets are
at most approximately t/4-frequent, and that itemsets whose frequency ex-

ceeds % —24/ # — % — 1 cannot be 7-forbidden.

This result can also be used to obtain an initial estimate for 7. Clearly,

22,/ # — 1 _ 1 should be greater than 0, or no itemsets will be forbidden.
When picking a higher 7, the bound indicates how frequent forbidden item-
sets can get. If this possible frequency gets substantially high, the chosen

value 7 is most probably too high. The actual value of % —24/ % —1—1then
gives a useful indication of how frequent the discovered forbidden itemsets

will be.

6.4.2 Mining Forbidden Itemsets

We now present an algorithm, FBIMINER, for mining t-forbidden itemsets
in a dataset D. That is, the algorithm computes dirty(D, T, ¢) for the language
I" and predicate ¢ defined earlier. The algorithm is based on the well-known
Eclat algorithm for frequent itemset mining [116]. Here, we only describe
the main differences with Eclat. The pseudo-code of FBIMINER is shown in
Algorithm 10.

The algorithm takes as input a projected dataset in vertical layout D} [P],
consisting of all objects which contain a prefix itemset P, and the lift thresh-
old . The initial call uses the entire dataset D in vertical data layout, and an
empty prefix itemset P = 0. Just like Eclat, FBIMINER employs a depth-first
search of the itemset lattice (for loop line 3 — 25, and recursive call on line 25).
When expanding an itemset / in the search tree (line 4), it is processed (line 5
- 16), before the next layer of the search tree is generated (line 17 — 24). New
itemsets are generated by extending 7 with all items in the dataset that occur
in the objects in I’s cover (line 18 - 24). To efficiently compute the support of
the new itemsets, Eclat uses set intersections of the covers of the items i and
Jj (line 19). If the size of the newly computed cover C is higher than zero, i.e.,
the new itemset J = /U {j} is supported, it is added to D] [/], the dataset D in
vertical layout projected on /. When generating new itemsets, the candidate
items j are added according to a total ordering on the items, i.e., items are
only added when they come after each item in 7 (line 18). Items are ordered
by ascending support, as this is known to improve efficiency. More details
about efficient implementation strategies for Eclat are discussed in [12].

A first challenge is to tweak the Eclat algorithm such that the lift of item-
sets can be computed. Observe that the lift of an itemset is dependent on
the support of all of its subsets. For this purpose, we use the same depth-
first traversal as Eclat, but traverse it in reverse order (line 3). Indeed, such a
reverse pre-order traversal of the search space visits all subsets of an itemset
I before visiting I itself [25]. This is exactly what is required to compute the
lift measure, provided that the support of each processed itemset is stored.
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Algorithm 10 Mining low lift z-forbidden itemsets

1: procedure FBIMINER(D|[P],P CZ,1)

2 FBI 0

3 for all i € 7 occurring in D [P] in reverse order do
4 I+ PU{i}

5: if not ISGENERATOR(I) then

6 continue

7 STOREGENERATOR(I)

8 if 7| > 1 & freq(/,D) < 2 -2,/ — 1 —1 then
9 if a subset of I has been pruned then

10: continue

11: if lift(7,D) < 7 then

12: FBI < FBIU{I}

13: if |—IT)‘ > min{supp(S,D) x supp(/\ S, D)} then

sci

14: . continue -

15: if supp(1,D) < % then

16: continue

17: DI« 0

18: forall j € 7in D such that j > ido

19: C < cov({i},D)Ncov({j},D)
20: J <+ 1U{j}
21: supp(J,D) + |C|
22: if supp(1,D) — supp(J,D) > %—% then
23: if supp(J,D) > 0 then

24: D[] < DIIU{(j.C)}

25: FBI < FBIUFBIMINER(DJ[I],I, )

26: return FBI

However, Eclat generates a candidate itemset based on only two of its sub-
sets [116]. Hence, the supports of all subsets of an itemset are not imme-
diately available in the search tree. To remedy this, we store the support of
the processed itemsets using a prefix tree, for time- and memory-efficient
lookup during lift computation.

Having integrated lift computation in the algorithm, we next turn to
our pruning and optimization strategies. We deploy four pruning strategies
(lines 9, 13, 15 and 22). The first strategy (line 9) applies to itemsets / for
which the lift cannot be computed, which happens when some of its sub-
sets are pruned away in an earlier step. The absence of subsets is detected
when the lift computation requests the support of a subset that is not stored.
Recall that we derived pruning properties of the lift measure, that must hold
for all subsets of a forbidden itemset. If a subset of 7 was pruned because of
these properties, the subset did not satisfy the required property. This im-
plies that 7 (and all its supersets J) cannot be 7-forbidden and thus can be
pruned (line 10).

The second pruning strategy (line 13) applies to supersets of itemsets / for
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which we have been able to compute their lift, and leverages Proposition 9.
Indeed, if we have that ‘%I > I;lir[l{supp(S,'D) x supp(I'\ S,D)} then Proposi-
C

tion 9 tells that / cannot be a subset of a 7-forbidden itemset. Hence, all
itemsets in the tree below I are pruned (line 14).

By contrast, the third strategy (line 15) leverages Proposition 7 and skips
supersets of itemsets I, regardless of whether their lift was computed. In-

deed, if supp(Z,D) < G"ll?"‘x - holds, then 7 cannot be part of a z-forbidden
1
itemset, resulting in a further pruning of the search space.
The fourth strategy employs Proposition 8 to prune extensions of / that
do not cause a sufficient reduction in support. When generating direct su-

persets J of I, we have immediate access to their supports. If the reduction
Glmax

in support is smaller than % -5 the proposition implies that J (and its su-
persets) cannot be 7-forbidden, hence we do not need to add it to the next
layer of the search tree. This check is performed prior to the recursive call
(line 22).

Finally, we also implement an optimization that avoids certain lift com-
putations (line 8). Only when the algorithm encounters an itemset 7 with at
least two items and a frequency lower than the bound from Proposition 10,
the lift of  is computed. All other itemsets cannot be 7-forbidden by Proposi-
tion 10. Note that this only eliminates the need for checking the lift of certain
itemsets but by itself does not lead to a pruning of its supersets.

A careful reader may have spotted the optimized pruning of non-
generators on lines 5-7. Recall that as a direct consequence of Proposition 8,
any 7-forbidden itemset must be a generator, i.e., have a support which
is strictly lower than that of all of its subsets. The Talky-G algorithm [101]
implements specific optimizations for mining such generators, using a
hash-based method that was introduced in the Charm algorithm for closed
itemset mining [114]. We use the same technique in FBIMINER to efficiently
prune non-generators.

More specifically, during the mining process, all encountered generators
are stored in a hashmap (procedure STOREGENERATOR on line 7). As hash
value we use, just like the Charm algorithm, the sum of the tid’s of all objects
in which an itemset occurs. If an itemset has the same support as one of its
subsets, it is clear that this itemset must occur in exactly the same objects,
and will map to the same hash value. Moreover, the probability of unrelated
itemsets having the same sum of oids is lower than the probability of them
having the same support. Therefore this sum is taken as hash value instead
of the support of itemsets.

Procedure ISGENERATOR on line 5 checks all stored itemsets with the
same hash value as I. If any of these itemsets are a subset of / with the same
support as I, I is discarded as a non-generator. Furthermore, since all su-
persets of a non-generator are also non-generators, the entire subtree can
be pruned. If no subset with identical support is discovered for an itemset I,
then I is either a generator, or a subset with identical support has previously
been pruned, in which case I will eventually be pruned on line 9.

We conclude this section by verifying the correctness of FBIMINER.
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Proposition 11. Let D be a dataset and v a maximum lift threshold. Algo-
rithm FBIMINER(DJ[0],0, ) returns all T-forbidden itemsets in D.

Proof. Consider FBIMINER from which all pruning steps are removed. In
this case, the algorithm will perform an exhaustive depth-first search traver-
sal of all itemsets and only (and all) t-forbidden itemsets will be added to
FBI (lines 11 and 12). In other words, the algorithm correctly computes all
7-forbidden itemsets in D.

With pruning and optimizations enabled, suppose that for the sake
of contradiction, there is a 7-forbidden itemsets I that is not returned by
FBIMINER. This implies that 7 was not added to FBI (lines 11 and 12). There

are two possible causes for this: (i) the condition freq(7,D) < 2 —2 % -1

(line 8) is not satisfied; or (ii) a subset J of I has been pruned. Clearly, case
(i) cannot happen. Indeed Proposition 10 implies that lift(/,D) > 7, a con-
tradiction. Similarly, case (ii) leads to a contradiction. When a subset J of
I is pruned, Propositions 7, 8 and 9 imply that all supersets of J, including
I, must have a lift greater than 7. We may thus conclude that FBIMINER is
correct. O

6.5 User Interaction

Our FBI cleaning method has been designed such that it can be run fully
automatically, without any user input or interaction. While it is desirable to
alleviate the user of any such obligations, of course, in practice, we wish to
allow the user to control the algorithms to a certain degree, if desired.

Filtering Forbidden Itemsets. Recall the forbidden itemsets discovered in
the Zoo dataset, from Table 6.1. The platypus may be a prime candidate for
containing illegal value combinations, and is certainly suspicious, but it is
not an actual error. An eventual user should be able to prevent the platypus
from being “repaired”. Such a mechanism of user interaction can readily be
integrated into our method. As we will explain in-depth in the next chapter,
the repairing process relies only on the set of forbidden itemsets, FBI(D, 1),
and another set A of itemsets at risk of becoming z-forbidden. Regardless
of how these sets are obtained, the repair algorithm attempts to remove
the itemsets in FBI(D, 7) from the data while guaranteeing that no sets in A
become t-forbidden. This makes it straightforward for the user to forcibly al-
low certain itemsets, that would normally be considered forbidden. Indeed,
the FBIMINER algorithm could present the user with a set FBI(D, 1) of item-
sets it deems forbidden, and before the repairing starts, the user can then
decide which of these itemsets should effectively be removed from D by the
repairing process (if not all of them). Any itemset which the user does not
want to remove, simply has to be discarded from the set FBI(D, 7). Returning
to the Zoo example, the itemsets related to the platypus and scorpion could
be filtered out of FBI(D, 1) by a user, leaving FBI(Z00,0.1) = {(AQUATIC=0,
BREATHES=0 (cLAM))}. Clearly, any itemset that the user removes from
FBI(D, ), should automatically be removed from A as well. Moreover, the
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set A can be filtered in a similar fashion, removing itemsets that the user “al-
lows to become forbidden”, i.e., their lift may drop below 7. Consequently,
the form of user interaction outlined above has an impact on the problem
statement. The output of our cleaning method is no longer a database that
is clean by our definition, but is instead clean by the standards of the user,
who has “allowed” some forbidden itemsets.

Choosing The Best Modifications. Besides filtering the itemsets to be re-
moved from the dataset, the user can also make direct decisions on the re-
pairs. Instead of simply repairing using the first safe modification encoun-
tered, our repair algorithm may find a number of possible repairs and display
them to the user, of course guaranteeing safety. The user then decides which
of the suggested modifications makes the most sense semantically, and the
algorithm performs this modification.

Iteratively Determining . Another possible advantage of user interaction

pertains to setting the maximum lift threshold z. Instead of specifying
upfront, it can also be determined empirically through iterative user inter-
action. FBIMINER can be adapted to return the top-k lowest lift forbidden
itemsets, which may then be filtered by the user, as described earlier. The
itemsets in FBlyp.«(D) are then removed from the dataset during repairing.
The entire process is then repeated, returning a new set of top-k forbidden
itemsets. This is repeated until the user filters all itemsets in FBl,4(D), i.e.,
none of the top-k lowest lift itemsets are actually considered errors.

To discover such a top-k of lowest lift itemsets, FBIMINER needs to be
initialized with a high (but allowed) value of 7, i.e., T = 3/4. During the search,
the current k lowest lift itemsets are kept in a list TOP-k. Once k itemsets have
been processed, the value 7 is continuously lowered to the highest lift value
in Top-k, in order to maintain maximal pruning capabilities. Whenever a
new itemset with lift < 7 is encountered, it replaces the itemset in Top-k with
the highest lift, and 7 is lowered again. Clearly, when no more itemsets with
lift < 7 can be found, the list TOP-k contains the k itemsets with lowest lift in
the dataset.

6.6 Related Work

We have already discussed some of the most related constraint formalisms
in Section 6.3.2, where we made the case that most real-world scenarios
only demand for formalisms that concern violations consisting of single ob-
jects. In the following section, we provide more insight into the relations
between these formalisms and forbidden itemsets. Moreover, the concept
of forbidden itemsets draws heavily upon advances made in the area of data
mining and knowledge discovery. Exploratory data mining methods are typ-
ically used to discover patterns which are somehow interesting and surpris-
ing [108]. Depending on the interestingness measure, as with low lift, those
patterns can be considered errors. We also discuss related work in these ar-
eas. There has been a vast amount of research in this field; we only consider
work related to error detection. Repairing has received little attention in the
data mining community.
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6.6.1 Edits

In terms of constraint formalisms, our notion of forbidden itemsets is clos-
est in spirit to edits, introduced in Herzog et al. [59] and Fellegi and Holt
[48], widely used by census bureaus. Edits specify sets of illegal value combi-
nations on a single object. More formally, an edit 1 over D is a Cartesian
product over subsets of all domains of A, denoted as 1 = X, . 4S; where
each S; C dom(4;). An object o is said to be dirty if 0 € n. It is readily ver-
ified that an edit can be seen as a union of forbidden itemsets, and vice
versa, a forbidden itemset corresponds to an edit. For example, the edit
dom(Sex) x {Age= < 12,Age= > 80} x {Employed=True} corresponds to the
two forbidden itemsets (AGE=< 12, EMPLOYED=TRUE) and (AGE=>80, EM-
PLOYED=TRUE). Edits thus capture the class of inconsistencies when no con-
dition on low lift is imposed. To our knowledge, no prior work has addressed
the issue of discovering edits from dirty data. Indeed, in census studies ed-
its are typically provided by domain experts. Furthermore, since they are not
discovered by algorithms, edits are typically not associated with any qual-
ity measure such as lift. However, our repairing algorithm draws inspiration
from edit-based repairing of census data. Repairs using edits often make
use of so-called hot deck imputation [59], which is very similar to the near-
est neighbour method we use to obtain candidate modification. However, in
the context of edits known up front, guaranteeing that no violations occur in
the data after repairs is a very different challenge from our dynamic notion
of cleanliness.

6.6.2 Constraint Discovery and Data Repair

In general, constraints may be expressed on the attribute level, with vio-
lations spanning across multiples objects. On the other hand, forbidden
itemsets only consider value combinations within a single object. Most rel-
evant to our work are therefore the formalisms whose violations are con-
fined to single objects, such as constant CFDs [46] and constant Denial Con-
straints [31]. Algorithms such as those presented in Chapter 4 [93], Chiang
and Miller [29], Chu et al. [33], and Fan et al. [46], can discover these con-
straints from clean or moderately dirty data. With a set of constraints in
place, the next step is to modify the data such that the constraints are sat-
isfied. Alternatively, some repair methods, such as Chiang and Miller [30],
Beskales et al. [16], and Mazuran et al. [78], consider modifying some of the
constraints in order to obtain a clean database. More recent work in Rezig
et al. [98] considers the impact of repairs on the constant patterns pertain-
ing to a given set of FDs.

The main distinction with our FBI cleaning system, is that none of the
techniques cited above consider constraint discovery and repairing in uni-
son. Indeed, after a separate constraint discovery step, the repair algorithm
judges cleanliness solely on the basis of the previously discovered con-
straints. It is then not guaranteed, and typically not the case, that re-running
the discovery algorithm after repairing yields a “clean” database, i.e., no
more violations are found. In fact, the number of violations discovered
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might be greater than before repairing. By contrast, we have adopted the
dynamic notion of dirtiness in which the considered constraints depend
on the data and vary when modifications to the data are made. As we will
show in the next chapter, our repair algorithm is closely interwoven with for-
bidden itemset mining, in order to ascertain the cleanliness of our output.
Only by considering constraint discovery and repair in unison, is it possible
for a repair method to guarantee cleanliness in terms of the discovery algo-
rithm. To our knowledge, no prior work has addressed the issue of repairing
when new constraints may arise due to the repair itself. As such, our re-
pair method, presented in the next chapter, faces new challenges that differ
substantially from existing work.

6.6.3 User Interaction

Aside from human experts providing constraints, other forms of user in-
put for data cleaning have been considered. Crowdsourced data cleaning
is mostly focused on entity resolution, as in Wang et al. [105], in contrast to
semantic errors. Since semantic errors are usually data-dependent, it is diffi-
cult to assess such errors without context. Recent work has considered user
interaction in the form of algorithms which are guided by the user, such
as Volkovs et al. [103], He et al. [58], Thirumuruganathan et al. [102], and
our method from the previous chapter Rammelaere and Geerts [94]. Such
algorithms present preliminary results to be evaluated by a user, and em-
ploy this feedback in order to obtain more preferred results. Other methods,
such as Yakout et al. [110], consider user interaction in the context of select-
ing repairs. Our method naturally lends itself for user interaction. The effect
of such interaction, however, is beyond the scope of this dissertation.

6.6.4 Association Rules

An association rule is of the form 7 — J where I and J are two (disjoint) item-
sets. Typically, association rules of interest are those with high support, and
high confidence, although many interestingness measures exist. One may re-
gard an object o to be dirty if it supports / but does not support J. We further
motivate our use of lift instead of confidence experimentally, in Section 6.7.1.
The relationship between association rules and forbidden itemsets was de-
scribed in Section 6.3.1, where we defined the lift of an itemset in terms of
the lift of its embedded rules. Indeed, an itemset K is t-forbidden if there is a
low lift rule 7 — J between every partitioning of K into disjoint subsets 7 and
J. We can thus regard a forbidden itemset as a collection of low lift rules.
However, by considering forbidden itemsets rather than rules, we prevent
ambiguity when interpreting errors due to the directionality of rules. For
example, if the rule X — A is found to be unlikely, but the rule A — X is not,
should the combination of X and A in an object really be an error?
Furthermore, while “interesting” rules are typically defined based on a
high confidence or lift, forbidden itemsets specifically demand for low lift.
This is because we are directly interested in the violations of rules, since,
there are many violations which cannot be expressed as a single, positive
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association rule. For example, if people of young age cannot have a driver’s
license, then Age = 12 is clearly an illegal value. However, there can be no as-
sociation rule stating which exact value the Age attribute should have, since
they cannot express Age > 16. Indeed, one would require a specific rule for
each value of the Age attribute > 16; and it is unlikely that any one rule
License = 1 — Age = X will have a high confidence or lift.

6.6.5 Anomaly and Outlier Detection

The detection of semantic inconsistencies in data is related to anomaly and
outlier detection (for recent surveys, see Aggarwal [4], Chandola et al. [27],
or Markou and Singh [77]). Most work in these areas focuses on continuous
data, where datapoints are considered dirty if they are distant from other
points or if they are statistical outliers. Such methods are often not applica-
ble to our setting, which is focused on categorical data, and where a dirty and
a clean object could possibly differ in only one value. Outliers found with
statistical methods for categorical outlier detection, such as dBoost from Pit-
Claudel et al. [88], can overlap with forbidden itemsets, but require careful
tuning of parameters, as noted in Abedjan et al. [2]. Finally, the repair prob-
lem has received little attention in the field of outlier detection, where dirty
data points are usually removed instead of repaired. Indeed, outliers are not
declarative, and hence it is difficult to reason about the prevention of outliers
after repairing, which is the premise of this chapter.

The anomaly detection method presented in Bertens et al. [14] uses a
measure very similar to lift, in their definition of “Class 2 Anomalies”. These
anomalies show considerable overlap with the forbidden itemsets. However,
the goal of this method differs substantially as the exploratory method fo-
cuses on efficiently discovering the most interesting patterns, whereas we
are interested in finding all forbidden itemsets that satisfy a hard threshold
in order to repair them. For the sake of efficiency, the method in Bertens et al.
[14] does not consider all subsets of an itemset I to measure the interesting-
ness of 1. Instead, a set of descriptive patterns S is computed up front, and
measures the interestingness of/ is based only on those s € Swith s C /. From
this, it is clear that the method is ill-suited to a setting of dynamic data clean-
ing, since even the patterns on which the lift is computed would change after
repairing.

6.6.6 Mining in Dirty Data

Another area of data mining research is concerned with discovering patterns
in dirty databases, often called Error-Tolerant Itemsets (ETI), as in Pei et al.
[87] and Gupta et al. [56]. Such methods discover frequent patterns, but do
not require that a pattern exactly occurs in its supporting transactions. In
an error detection context, one could interpret a frequent ETI as an itemset
which should occur in a set of transactions, althought it doesn't exactly occur
in all of them. This is conceptually inverse to the forbidden itemsets we pro-
pose. As with outlier detection and exploratory data mining, repairing ETI’s
has not been thoroughly investigated.
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Table 6.2: Statistics of the UCI datasets used in the experiments. We report
the number of objects, distinct items, and attributes.

Dataset |D| IZ|  |A
Adult 48842 202 11
Censuslncome 199524 235 12
CreditCard 30000 216 12
Ipums 70187 364 32
LetterRecognition 20000 282 17
Mushroom 8124 119 23
Soccer 200000 10 767

6.7 Experiments

The experiments were conducted on real-life datasets from the UCI repos-
itory [39]. We show results for six datasets. Additionally, we evaluate the
precision of our error detection on the synthetic Soccer dataset '. The rele-
vant statistics of these datasets are given in Table 6.2. The Adult database
was preprocessed by discretizing ages and removing other continuous at-
tributes. The algorithms have been implemented in C++, the source code
and used datasets are available for research purposes [91]. The program has
been tested on an Intel Xeon Processor (2.9GHZ) with 32GB of memory run-
ning Linux. Our algorithms run in main memory. Reported runtimes are
always an average over five independent runs.

6.7.1 Likeliness Function

In sections 6.3 and 6.6, we have already provided some intuition behind the
choice for low lift itemsets as an error detection method. The low lift forbid-
den itemsets rely on two “design choices”. Firstly, we have opted to use lift
instead of, for instance, confidence, as commonly used in approximate CFDs
or association rules. Secondly, we have opted to define the lift of an itemset
using two partitions, i.e., based on the association rules that can be created
by splitting the itemset in two. We next provide examples and results to sup-
port our design choices and the general usefulness of forbidden itemsets to
detect errors.

We have opted for the lift measure as opposed to confidence, since con-
fidence does not take correlation between items into account. Here, we de-
fine confidence of an itemset as the highest confidence of any association
rule between two partitions of the itemset, similar to how we defined lift.
For example, on the Adult dataset, the itemset (MARITALSTATUS=WIDOWED,
COUNTRY=GUATEMALA) can be discovered with a confidence of 0.05. Clearly,
widowed people in Guatemala are not erroneous; this itemset is simply a
consequence of the low frequency of the item (COUNTRY=GUATEMALA) in

Thttp:/ /www.db.unibas.it/projects/bart/



96 CHAPTER 6. FORBIDDEN ITEMSETS

Table 6.3: Five least likely itemsets discovered in Adult dataset, using differ-
ent likeliness functions

Likeliness Example Itemsets

Sex=Female, Relation=Husband
Sex=Male, Relation=Wife

Pairwise Lift Relation=Not-in-family, Marital=Married
Marital-status=Married, Age=<18
Relation=Husband, Age=<18

Sex=Female, Relation=Husband
Sex=Male, Relation=Wife
Relation=Not-in-family,
Marital=Married, Educ.=College
Relation=Not-in-family,
Marital=Married,Occup.=Other
Relation=Not-in-family,
Marital=Married, Age=> 50

Full Indep.

Sex=Female, Relation=Husband

Country=Mexico, Race=Asian-Pac-Islander
Confidence Age=18-21, Education=Masters

Occupation=Protective-serv, Educ.=Prof-school

Occupation=Machine-op-inspct, Educ.=Prof-school

this dataset. In fact, a similar low-confidence itemset can be found with
other Country-values, such as Honduras. When using the lift measure, how-
ever, the lift of (MARITALSTATUS=WIDOWED, COUNTRY=GUATEMALA) now
becomes 1.46, indicating that these items in fact have a positive correlation
in the Adult dataset. As such, a co-occurence of this items is unlikely to be
an inconsistency.

Our definition of the lift on an itemset uses a bipartitional model. One
might also define the lift using an arbitrary number of partitions, up until the
number of items in the itemset. In fact, such a “full independence” assump-
tion has been used before to define lift in Zaki and Meira Jr [115, p. 310]:

. _ freq(1,D)
lift; (1,D) := freq({i1},D) x --- x freq({ix}, D)’

However, this definition introduces an undesirable bias towards larger item-
sets: many items with a slight negative correlation might have a lower lift
than two items with a strong negative correlation, as the expected frequency
does not take the number of items into account. In other words, by using
information from all subsets of the itemset, we increase the robustness and
reduce the false positive rate of our measure, with the aim of attaining a high
precision. The advantages of the bipartitional model are further supported
by the theoretical analysis performed in [37].

We illustrate the outlined issues with confidence and full independence
lift in Table 6.3. This table displays the five least-likely itemsets using the
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Table 6.4: Precision of discovered forbidden itemsets on Adult dataset.

t-value ‘ 0.01 0.026 0.043 0.067 0.084 0.1
Nr. FBI 5 12 24 49 69 92
Precision 100% 67% 71% 61% 55% 45%
Error Recall (Soccer) Error Precision (Soccer)
@ FBI(1) @ cCFD (1) @ FBI(1) €@ cCFD (1)
A FBI(50) W cCFD (50) A FBI(50) M cCFD (50)
1 1
c
‘=3 0.8 :% 0.8
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a
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Figure 6.2: Precision and recall of dirty objects found by Forbidden Itemsets
and approximate cCFDs, for errors generated by 1 and 50 cCFDs, in function
of threshold 7.

different measures, where “pairwise lift” is the lift measure used throughout
this chapter for forbidden itemsets. All three measures agree that the item-
set (SEXx=FEMALE, RELATION=HUSBAND) is the most probable error in the
dataset. Full independence lift’s bias towards larger itemsets shows with re-
spect to the itemset (RELATION=NOT-IN-FAMILY, MARITAL=MARRIED): pair-
wise lift detects this itemset as one of the least likely itemsets. Full inde-
pendence lift, however, ranks multiple supersets of this problematic item-
set as less likely. The addition of items, such as Age=>50, for example, does
not add much information, since the core problem is the co-occurence of
Relation=Not-in-family and Marital=Married. When considering confidence
instead of lift, we see the expected problems with items that are simply un-
common, but not necessarily correlated. For example, (AGE=18-21, EDUCA-
TION=MASTERS) would not be very unlikely according to lift, and is probably
not an error (people born at the end of the year doing a one-year masters are
21 when they finish), but scores very low in terms of confidence because of
the small number of people in the data with a Masters education.

6.7.2 Effectiveness of Forbidden Itemsets

Next, we turn our attention towards the effectiveness of our Forbidden Item-
sets formalism. An intuitive question to ask is, “Are the forbidden itemsets
actually errors?”. To provide a definitive answer to this question, a gold stan-
dard for the subjective task of data cleaning would be needed. However,
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Figure 6.3: Runtime of FBIMiner in function of maximum lift threshold .
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Figure 6.4: Number of Forbidden Itemsets in function of maximum lift
threshold 7.

such gold standard datasets are not readily available. In line with Chiang and
Miller [29], we have therefore evaluated forbidden itemsets manually for use-
fulness, obtaining only a precision score. Computing recall is impossible in
our context: we have no way to know what all the errors in these datasets
are. The precision results for the Adult dataset, which is the most readily in-
terpretable, are shown in Table 6.4. We see that the precision is very high for
small 7-values, and keeps up around 50% in the entire t-range, which is quite
high for an uninformed method. We believe such a high precision is impor-
tant to instil faith in an eventual user; if the majority of the inconsistencies
we discover are not actual errors, then a user is unlikely to believe that our
cleaning method works. On the other hand, a low recall might be less no-
ticeable, and indeed less detrimental to the outcome: successfully cleaning
a part of all the errors in a dataset is still a good result.

In order to obtain a more systematic evaluation of precision than just
manual inspection, we perform an additional experiment by generating er-
rors for the synthetic Soccer dataset. We compare our precision results to a
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Figure 6.5: Number of objects containing one or more Forbidden Itemsets in
function of maximum lift threshold .

similar constraint formalism, namely approximate constant CFDs (cCFDs).
To introduce errors in the data, we use the BART [8] error generator. How-
ever, BART requires the constraints to be known up front, and is hence not
directly applicable to our method. We have therefore first mined cCFDs on
the Soccer dataset (which is known to be clean), with a confidence of 100%
and a minimum support of 2000. Subsequently, BART was used to insert vio-
lations pertaining to a set number of randomly selected cCFDs, from this set
of 100% confident cCFDs. In Figure 6.2, we show the precision and recall of
detected dirty objects for increasing values of 7, for both forbidden itemsets
with maximum lift 7, and approximate cCFDs with confidence 1 — 7.

Here, we see that forbidden itemsets are able to detect more dirty objects
while retaining a perfect precision than cCFDs. It is important to note that
all errors were, in theory, detectable using cCFDs, since they were generated
from cCFDs. As discussed before, forbidden itemsets in general can capture
different types of errors as well. In the case of violations pertaining to a sin-
gle cCFD, forbidden itemsets can reliably discover all dirty objects on the
synthetic data, reinforcing the point that forbidden itemsets are very well-
suited for data with a low error rate.

6.7.3 Discovering Forbidden Itemsets

So far, we have focused on the usefulness of our forbidden itemsets formal-
ism. We next investigate the performance of our algorithm for discovering
forbidden itemsets, FBIMINER. For this experiment, we ran FBIMINER with
full pruning. We report the total runtime, the number of forbidden itemsets,
and the number of objects containing a forbidden itemset, for increasing val-
ues of 7. For the larger datasets, Ipums and CensusIncome, a smaller 7 range
was considered. This prevents an explosion in the number of forbidden item-
sets and the associated high runtime. The results are shown in Figure 6.3,
Figure 6.4 and Figure 6.5, respectively.

The results show that the runtime of the algorithm (Figure 6.3) scales well
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Figure 6.6: Runtime and number of itemsets processed with different prun-
ing strategies in function of maximum lift threshold 7.

with 7. As aresult of the depth-first search, the runtime is strongly influenced
by the number of distinct items. As a consequence, the algorithm runs slow-
est on the Ipums dataset. The runtime on the LetterRecognition dataset is
explained by its relatively high number of items, and the simple fact that it
contains many forbidden itemsets. Indeed, it is clear that the “regularity”
of the data also impacts our runtimes: if there are few negative correlations
between items, our pruning strategies will quickly discern the fact that no
itemsets can be forbidden.

The number of forbidden itemsets (Figure 6.4) is typically small, although
there is a stronger than linear increase as the lift threshold increases, illus-
trating that 7 should indeed be chosen very small. Especially for the Letter-
Recognition database, the number of forbidden itemsets increases exponen-
tially. This is because the dataset is very noisy, since the contained letters
were randomly distorted. In contrast, the less noisy Adult and CensusIn-
come datasets have relatively few dirty objects. The number of dirty objects
(Figure 6.5) naturally follows a similar pattern as the number of forbidden
itemsets, with an occasionally big increase if a forbidden itemset with a rela-
tively high support is discovered.
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Table 6.5: Runtime influence of maximal frequency bound in function of 7.
We show the percentage decrease/increase in runtine when using the fre-

quency bound, as opposed to the runtime without frequency bound.

t-value

Dataset 0.01 0.026  0.043 0.067 0.084 0.1
Influence on runtime

Adult -8% -18% -8% -7% -2% -2%
CensusIncome +16% +23% +25% +28% +30% +31%
CreditCard -8% -18%  -10% +1% +1% +3%
Ipums +37%  +50% +54% +58% +62% +62%
LetterRecognition -3% +1% 0% -2% +2% +1%
Mushroom -15%  -33% -28% -14% -12% -8%
Influence on number of visited nodes

Adult +4% 0% 0% 0% 0% 0%
CensusIncome +23% +33% +38% +41% +38% +37%
CreditCard +5% 0% 0% 0% 0% 0%
Ipums +38% +49% +56% +61% +63% +64%
LetterRecognition +1% +1% 0% 0% 0% 0%
Mushroom +5% +6% +1% 0% 0% 0%

6.7.4 Pruning Properties

The runtimes of FBIMINER were obtained with all pruning enabled. We now
wish to verify that each of the different strategies indeed contributes to lower
runtimes. In order to evaluate the influence of the pruning strategies, we
report the number of itemsets processed with only one type of pruning en-
abled, and contrast these with the number of itemsets processed when all
pruning is enabled. We also show the resulting runtimes. We distinguish be-
tween Min. Supp pruning, using Proposition 7 on line 15 of Algorithm 10;
Lift Denominator pruning, using Proposition 9 on line 13; and Support Diff
pruning, using Proposition 8 on line 22.

The results are shown in Figure 6.6 for the Adult and CreditCard datasets;
results for CensusIncome and LetterRecognition were similar. On the Mush-
room and Ipums datasets, which have many attributes, FBIMiner became
infeasible for larger values of T without Support Diff pruning. Clearly, Sup-
port Diff pruning is dominant in most cases. Since this strategy also entails
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non-generator pruning, it is definitely crucial for the runtime of FBIMiner.
Especially as t increases, the other strategies also improve the overall result,
indicating that all are beneficial and complementary to each other. We do
not show the results when all pruning is disabled since all itemsets are then
considered (independently of 7), leading to a high number of processed item-
sets and running time.

To conclude this experimental section, we address the bound on the max-
imal frequency of a forbidden itemset, used on line 8 of Algorithm 10. Re-
call that this is not a pruning strategy: using the frequency bound effectively
increases the number of itemsets processed, since it disables the pruning
strategies that require the lift to be computed first. On the other hand, the
frequency bound may reduce runtime by avoiding certain unnecessary lift
computations. This bound was disabled for the previous pruning results, to
prevent painting a distorted picture of the influence of each pruning strat-
egy. Table 6.5 shows the percentage influence of the frequency bound on the
runtime without this bound, and on the number of visited itemsets. Clearly,
these two statistics are highly correlated. On the larger datasets, the nega-
tive impact on pruning is high, and hence the frequency bound results in
a strong increase in runtime. On the other datasets, the impact of the fre-
quency bound on pruning is limited, resulting in improved or unaffected
runtimes. The results indicate that the maximal frequency bound is a useful
optimization on smaller datasets, especially for smaller t-values, but should
be disabled for larger datasets.

6.8 Conclusion

In this chapter, we have argued that the classical point of view on data quality
is too static, and proposed a general dynamic notion of cleanliness instead.
We believe that this notion is quite interesting on its own and hope that it
will be adopted and explored in various data quality settings.

We have then specialized the general setting for our dynamic notion of
data quality, by introducing so-called forbidden itemsets. In order to dis-
cover such low-lift forbidden itemsets, we have provided an efficient algo-
rithm, and established properties of the lift measure to use for pruning. Our
experiments show that the algorithm is efficient, and illustrate that forbid-
den itemsets capture inconsistencies with high precision, while providing a
concise representation of dirtiness in data.
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Repairing with Forbidden Itemsets

7.1 Introduction

In the previous chapter, we have introduced a dynamic notion of data quality,
stating that data is clean if a constraint discovery algorithm does not detect
violation. We have also introduced a constraint formalism, called forbidden
itemsets, for high-precision detection of violations.

In this chapter, we address the biggest challenge with respect to our dy-
namic notion of data quality, which is to repair data in such a way that the
discovery algorithm no longer detects violations. In the context of forbid-
den itemsets, this means that we have to suggest modifications to the data,
such that after these modifications, no new forbidden itemsets are found. Of
course, the number of possible modifications to the data increases exponen-
tially with the amount of dirtiness. It is therefore not feasible to rediscover
forbidden itemsets for every possible modification, to verify that no forbid-
den itemsets exist. We first introduce a general method to solve this problem,
by computing up front which itemsets are at risk of becoming dirty, which we
call almost forbidden itemsets. As such, by ensuring that a repair algorithm’s
modifications do not impact the almost forbidden itemsets, we can guaran-
tee that the cleaned data does not contain any forbidden itemsets.

We then return to the concrete case of low-lift 7-forbidden itemsets, and
present an algorithm for discovering almost forbidden itemsets with respect
to the lift measure. We also discuss how the efficiency of this method can
be improved further by repairing the dirty parts of the data in suitably sized
batches, instead of all at once. To obtain candidate modifications, we again
take inspiration from census data imputation methods that assume the pres-
ence of enough clean data [59] and take suggested modifications from sim-
ilar, clean objects. The availability of clean data is commonly assumed in
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repairing methods, either as a large part of the input data or, for example, in
the form of master data [47, 51]. Our repair method is flexible in how these
similarities are computed.

More formally, the FBIMINER algorithm from the previous chapter dis-
covers a set of 7-forbidden itemsets that describe inconsistencies in D. When
this set is non-empty, D is regarded as dirty. In this chapter, we discuss how
to clean D. Following the general framework outlined in Section 6.2 we wish
to compute a repair D’ of D such that D’ is clean, i.e., no 7-forbidden item-
sets should be found in D’. Due to the dynamic notion of data quality, this
becomes much more challenging than in a traditional repair setting. To ob-
tain repairs, we impute values from clean objects that differ minimally from
a dirty object, in line with common practice in data imputation. This heuris-
tic repair method aims to limit the difference between D’ and D.

7.1.1 Summary of Contributions

1. We introduce the concept of almost forbidden itemsets, allowing a re-
pair algorithm to compute up front enough information to verify the
validity of repair modifications. (Section 7.2)

2. We formalize a relaxed form of the lift measure, called the minimal pos-
sible lift after kK modifications. This measure allows us to compute al-
most forbidden itemsets in our context of low-lift 7-forbidden itemsets.
(Section 7.3)

3. We provide an efficient itemset mining algorithm for discovering al-
most forbidden itemsets using the minimal possible lift measure. The
efficiency of this algorithm is again based on pruning properties, which
we derive from the minimal possible lift measure. We further improve
the efficiency by repairing dirty objects in batches of a suitable size,
and derive guidelines for these sizes from our pruning properties. (Sec-
tions 7.4-7.6)

4. We introduce a flexible repair algorithm, which modifies dirty objects
by taking cues from clusters of similar but clean objects. The correct-
ness of the repair algorithm is formally proven, i.e., it is guaranteed that
the result of a repair no longer contains any forbidden itemsets. (Sec-
tion 7.7)

5. We experimentally evaluate our method on various real-world datasets,
and show that our repair algorithm brings dirty data closer to ground
truth. We additionally show that almost forbidden itemsets are neces-
sary for an efficient repair algorithm, and that the suitable choice of
batch size is crucial. Finally, we show that repairing in parallel can pro-
vide additional improvements in efficiency. (Section 7.8)

7.2 Avoiding New Unlikely Value Combinations

In this section we again temporarily consider a general likeliness function
(see Section 6.3), since the ideas developed here may be of interest to like-
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liness functions other than the lift measure. Given a dataset D, a likeliness
function L and a maximum likeliness threshold 7z, let us denote the set of
(L, t)-forbidden itemsets by FBI(D, L, 7). Let the dirty objects in D, denoted
by Dgiry, be those objects in D that appear in the cover of an itemset in
FBI(D,L, 7). In other words, D 4;1, consists of all objects that support an (L, 7)-
forbidden itemset. The remaining set of clean objects in D is denoted by D, .
The main goal of a repair algorithm is then to produce a dataset D’ such that
FBI(D',L, ) is empty, i.e., such that D’ is clean. We will consider datasets D’
obtained from D by modifying all objects in Dy, We first show by example
that this is not a trivial problem.

Example 13. People typically graduate High School in the year that they
turn 18. Depending on the timing of a census, there may be graduates
who are still only 17 years old. In the Adult Census dataset, the itemset
(AGE=<18, EDUCATION=HS-GRAD) is rare, with a lift ~ 0.072. Assume
that 7-forbidden itemsets were mined with 7 = 0.07. The itemset (AGE=
<18, EDUCATION=HS-GRAD) is thus not considered forbidden, and rightly
so. However, an object containing (AGE=<18, EDUCATION=HS-GRAD)
could, for example, contain the forbidden itemset (AGE=<18, MARITALSTA-
TUS=DIVORCED), where “MaritalStatus” is in error. If the repair algorithm
were to change “Age” instead, the lift of (AGE=<18, EDUCATION=HS-GRAD)
could drop to ~ 0.068! This itemset will then become t-forbidden in 7,
yielding again a dirty dataset. This illustrates that one has to be careful
which modifications are carried out during repairing. <

A naive approach for avoiding new inconsistencies would be to compute
FBI(D',L, ) for each candidate repair D’ of D, and reject D’ in the case that
FBI(D',L, ) is non-empty. In view of the possibly exponential number of can-
didate repairs, this approach is not feasible for all but the smallest datasets.

As an alternative, we propose to compute up front enough information
to ensure cleanliness of multiple repairs. In particular, consider repairs D’
obtained from D by only modifying the dirty objects in Dg;,. We consider
a modification of an object to refer to one or more changes in the itemset-
representation of said object, similar to a set of modifications with the same
tid in Chapter 5. This implies that any repair D’ can be obtained by at most
| Dirty| modifications. More generally, assume that D’ is obtained from D by
modifying at most k dirty objects. Furthermore, assume that we can com-
pute a lower bound L (1,D) for L(1,D’), the likeliness of the itemset / after
repairing, using only k, D, and I itself. In other words, it should hold that
Li(I,D) < L(1,D') for any D’ obtained from D by modifying at most k dirty
objects. We can then define a set A of so-called almost (L, t)-forbidden item-
sets, i.e., itemsets that could become (L, 7)-forbidden after applying at most
k modifications to D.

Definition 27. Let D be a dataset, L a likeliness function, 7 an itemset and t a
maximum likeliness threshold. Let L, (1,D) denote a lower bound on L(I,D’)
for any 7’ obtained from D by at most k modifications, i.e., by replacing items
in at most k dirty objects. Then, I is called a k-almost (L, ) -forbidden itemset
if L (I,D) < 7. O
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We emphasize that the function Z; should only depend on &, D and I,
and not on the repair D’ under consideration. Let A; denote the set of all
k-almost (L, t)-forbidden itemsets. More formally,

A;:={I|Iisanitemsetin D and L;(/,D) < 7}.

Clearly, for any D’ obtained from D by at most k modifications to dirty objects
in D, ifI € FBI(D',L,7), then we have that L(I,D’) < 7, and hence L,(I,D) < .
This leads to the following observation.

Proposition 12. Let D be a dataset and 7 a maximum likeliness threshold.
For any dataset D’ obtained from D by modifying at most k dirty objects in
D, it holds that:

FBI(D,L,7) C As. () O

This proposition implies that if A; can be computed efficiently, then we
do not need to consider all possible repairs D’ of D, obtained by at most k
modifications, in order to detect (L, 7)-forbidden itemsets in D'. It eliminates
the need for rediscovering itemsets for all possible repairs, one by one. We
next explain how to compute L; and almost forbidden itemsets when the
likeliness function L is the lift measure.

7.3 Almost Forbidden Itemsets

In order to discover Almost Forbidden Itemsets when L(/, D) is the lift mea-
sure, we need to answer the following question: Given an itemset I in D and
its lift(1,D), can I become t-forbidden after k modifications to D have been
made? We answer this question by identifying a lower bound on the lift of
an itemset / after k modifications to D. This lower bound will be referred to
as the minimal possible lift of I after k modifications and will be denoted by
mplift, (1,7, D) for some subset J C I, as will be explained below.

The crucial property of mplift,(/,J,D) is that whenever lift(/,D’) < 7
for some D’ obtained from D using at most k modifications, then
mplift,(1,J,D) < 7 as well. In other words, the set of itemsets I such
that mplift,(,J,D) < 7 consists of all 7-forbidden itemsets in any 7', and
possibly more.

To start with, we consider k = 1. That is, we want to lower bound the lift
of itemsets in any D’ obtained from D after one modification. Clearly, for all
subsets J C I, we have:

|D'| x supp(I,D’)
supp(J, D) x supp(I\J,D’)’

lift(1,D') >

We first consider the case when supp(Z,D) > 0. Recall that our goal is to pre-
vent the existence of t-forbidden itemsets in D’. Thus, we are concerned
with lower bounding lift(I,D’) in those D’ that contain /, i.e., supp({,D’) > 0.
Consider D’ obtained from D by one modification. Such a single modifi-
cation can only have as effect that either supp(1,D’") = supp(I, D), supp({,D’) =
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supp(I,D)+1orsupp(l,D') =supp(l,D) — 1. The same changes are possible for
supp(J,D’) and supp(I \ J,D’). For convenience, let us denote each of these
possible changes to the three itemsets 7, J and 7\ J by a triple (A;,A;,Ap )
such that each of the components can either be 0 (no change), +1 (an in-
crease with one) or —1 (a decrease with one). We thus have that for every
possible D', we can identify (A7,A7,Ap ;) such that

|D| x (supp(/,D) +A)
(supp(J,D) +As) x (supp(I\J, D) +Apny)

lift(1,D') >

Note that |D’| = |D|, since we do not consider insertions or deletions. The
previous inequality holds, of course, only when neither supp(J,D) + A; nor
supp(I\J,D) + Ay is zero, to rule out division by zero. Additionally, in order
to use the lower bound for pruning, we need to obtain a positive, non-zero
lower bound. We achieve this by excluding cases where supp(Z, D) + A, is zero,
e.g., when supp(1,D) = 1 and A; = —1. Indeed, this would mean that 7 does
not have a support in D’ and hence cannot be forbidden. The other cases
that may lead to division by zero or negative values concern cases when
supp(, D), supp(J, D) orsupp(I\J,D) is 0 and A;, A; or Ay is either 0 or —1. We
observe, however, that we assumed that supp(Z, D) > 0. Hence, supp(J,D) >0
and supp(/\ J,D) > 0 for any J C I. So, the nominator and the denominator
will never take a value < 0, guaranteeing a positive, non-zero lower bound.

To get a lower bound for lift(Z,D’) that is independent of D’ (or equiva-
lently the choice of (A;,A;,Ap ;) we simply consider all possibilities and take
the minimum value:

|D| x (supp(I,D) 4 Ay)

min . H
(ArArAn) (supp(4,D) +Ap) x (supp(I\J, D) +Ap ;)

As above, triples (A7,A;,Ap ;) that make either supp(/,D) + Ay, supp(J, D) + Ay
orsupp(I\J,D)+Ay; zero are excluded in the computation of (}). The crucial
property of (%) is that it is lower than lift(/,D’) for any D’ obtained from D
after one modification, for all itemsets I with supp(Z/,D’) > 0.

To define the notion of minimal possible lift, we carry out some case
analysis. To simplify notation, we let o; = supp(/,D), o; = supp(J,D) and
opg = supp(I\J,D). Assuming that (A;,A;,Ap,;) minimizes (i) and letting
ol =0;+A;, 6} =0;,+A; and G}v = supp(I/\J,D) +Ap, the expression ()
can be written as

D] of

Ty ol
o) X Oy

Up to this point, we have assumed that supp(/,D) > 0. When supp(/,D) =
0, and since we are only interested to lower bound the lift of 7 in D’ when
supp(1,D’) > 0, this implies that we may assume that supp(/,D’') = 1, and thus
A; = +1. Furthermore, this also implies that supp(J,D’) > supp(J,D) for any
J C 1, and supp(J,D’) = supp(J,D) + 1 for at least one J C I. We thus have
three possible triples to describe these changes: (+1,0,+1), (+1,+1,0) and
(+1,+1,+1). Clearly, the latter causes the greatest increase in the denomina-
tor, leading to the minimal lift. We thus have that lift(/,D’) is greater than or
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equal to

|D| x (supp(I,D)+1)
(supp(J, D) +1) x (supp(/\J,D) +1)

(1)

and there is no need to lower bound lift(/,D’) since its exact value can be
computed based on the supports of /, J and I\ J in D alone. Using the no-
tation introduced earlier, and denoting ¢! = o;+ 1, 6} = 0y + 1 and G,'\ ;=
opg+1, we have that:

D| x o}

ife(r, D) > 2101

SR

Suppose next that k > 1. We have just identified, for k = 1, those updates

to o7, o7 and oy, that lead to the worst possible decrease in lift of 7/ when

considering all possible D’ obtained from D after one modification; i.e., ol

o} and GI]\ ,» respectively. Intuitively, 6/, 6] and 0'1]\ , correspond to supports
of itemsets 7, J and I \ J in some D] obtained from D after one modification.
We can now repeat the analysis for the second modification, starting from
o}, o}, GII\ ; and Dy, instead of o7, o7 and o ;. This results again in updated

supports 67, 67 and 012\ , that lead to the worst possible decrease in lift of /

in D] after one modification, or equivalently, of the lift of 7 in D after two

modifications. Continuing in this way, we can recursively compute of, cf

and cs,k\ , such that for any D’ obtained from D by at most k modifications:
D k
ife(1, D) > (D101
o) X Oy

The previous discussion leads to our definition of mplift,(Z,J, D), the min-
imal possible lift of I after ¥ modifications. The definition formalizes the
analysis carried out earlier, and additionally includes a substantial simplifi-
cation. Indeed, as we will formally show below, we only need to consider a
limited number (at most two) possible triples (A;,A;,Ap ;) in order to com-
pute (£). In particular, it suffices to consider (—1,0,—1) and (0,+1,0), as one
of these always leads to the largest reduction in lift. We start by showing that
these two triples suffice to compute expression ().

Proposition 13. Let D be a dataset, and / and J itemsets such that
supp(J,D) < supp(Z\J,D). It then follows that:
> If supp(1,D) > 1 and supp(7\J,D) > 1, then

|D| x (supp(/,D) —1) |D| x supp(1,D)

upp(J, D) x (supp(I\J,D) — 1) (supp(J,D) + 1) x supp(I\J, D) -

() = min{ 5

> Otherwise, if supp(Z,D) = 1, or supp(/\ J,D) = 1, then

|D| x supp(1, D)

® = (supp(J, D)+ 1) x supp(I\J,D)
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Flryz) = {g(x,y,Z) y<z

g(x,z,y) y>z
(x—1,y,z—1) ifﬁjl)g (),+’1‘)XZ andx—1>0,z—1>0;
: x—1 X .
g(xvy’z): (X7y+l7z) lfm> (y+1)><z andx—1>O,Z—1>0,

orifx=1orz=1;
(x+1,y+1,z4+1) ifx=0.

Figure 7.1: Definition of the recursive function f that identifies those up-
dates to x, y and z that will lead to the largest reduction in the lift.
Proof. The idea behind the proof is to show that for all (A;,A;,Ap ),

D] x (supp(, D) +4A;)
(supp(J,D) +Ay) x (supp(I\J, D) +Ap;)

is either larger than

|D| x (supp({,D) — 1)
supp(J,D) x (supp(I\J,D)—1)’

which corresponds to the triple (—1,0,—1), or larger than

|D| x supp(/,D)
(supp(J,D) +1) x supp(I\J,D)’

which corresponds to the triple (0,+1,0).
These inequalities can be verified by a simple, yet tedious, case analysis.
We defer the details to Appendix C.1. O

Next, we formalize the recursive selection of the updates G}, G}, and G[’\ ;

of 67, oy and O respectively, fori = 1,2, ... k. To this aim we define a func-
tion f(x,y,z) from triples in N° to triples in N, as shown in Figure 7.1. Here x,
y and z correspond to oy, oy and oy, ;, respectively.

First, f(x,y,z) is defined in terms of another function g(x,y,z) which just
ensures that the second argument is smaller or equal than the third argu-
ment. This is needed to reduce the computation of expression () to the
two triples mentioned earlier. Indeed, observe that Proposition 13 requires
supp(J,D) < supp(I\ J,D) and hence we either call g(x,y,z) if y < z, or call
g(x,z,y) if y > z. The latter simply corresponds to changing the role of J and
I\ J in the analysis.

Then, g(x,y,z) captures the case analyses explained previously. For ex-
ample, when x = 0 (o; = 0) we need to update x, y and z according to ex-
pression (11). That is, g(x,y,z) = (x+ 1,y+ 1,z+ 1). Similarly, when either
x=1orz=1, letting g(x,y,z) = (x,y+ 1,z) results in the minimization of (})
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as described in Proposition 13. In all other cases, g(x,y,z) = (x—1,y,z—1) or
g(x,v,z) = (x,y+1,z) depending on which of the two updates to the supports
minimizes () as described in Proposition 13. The former case corresponds
to the triple (—1,0,—1), the latter to triple (0,+1,0). It should be clear that
f(x,y,z) correctly updates the values x, y and z. That is, it returns updated
values that compute (%) or (1) when one modification is considered. By re-
cursively applying the function f we ensure that (x',y',z/) = f(x*~!,y~ 1,77 1)
correspond to updates that maximally reduce the lift after i modifications.

Given this, we next define the notion of minimal possible lift of an itemset
after k modifications.

Definition 28. Let D be a dataset. Let I be an itemset and let J C I. De-
note by o7 = supp(I,D), 69 = supp(J, D) and GIO\J =supp(I\J,D). Let f(x,y,2)
be the function from N’ — N° as defined in Figure 7.1. Let (0},0),07 ;) =

f(a}‘l,oj‘l,c;\‘Jl), fori=1,2,...,k. Then the minimal possible lift of I after k

modifications is given by

k
D] x o7

k k

mplift, (1,J,D) := .
o) X Oy

O

Since (%) and (1) correspond to lower bounds of the lifts, Proposition 13
and the construction of the function f(x,y,z) guarantee that, for any D’ ob-
tained from D after at most k modifications:

mplift, (1,J,D) < lift(1,D’).

We observe that this holds for any subset J C I. In the rest of this chap-

ter, we always assume that J is chosen such that lift(1,D) = supp'i‘;f:ggﬁﬁg\) D)
when supp(/,D) > 0. Intuitively, picking the subset J that currently maxi-
mizes the lift of I is likely to also maximize the minimal possible lift of /
after modifications, i.e., to lead to the tightest possible bound on the lift
of I after £ modifications. If supp(Z,D) = 0, we may still identify the subset
J that minimizes supp(J,D) x supp(I \ J,D), if a J exists with supp(J,D) > 0
and supp(I\ J,D) > 0. Otherwise, we use the trivial lower bound supp(J,D) =
supp(I\J,D) = 1. Linking back to the previous section, if we consider

A :={I'|Iis anitemset in D and mplift,(,J,D) < 7},

then mplift, (1,7, D) satisfies the conditions that resulted in Proposition 12.
Hence, we have that FBI(D’, ) C A, as desired.

7.4 Repair-oblivious Pruning Properties

As explained at the beginning of this chapter, we will develop an algorithm,
called A-FBIMINER, for discovering A (or more precisely a subset of A; as
will be explained shortly). This algorithm is similar in spirit to FBIMINER,
using mplift rather than lift. However, mplift is too lenient as the basis for
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an efficient discovery algorithm, as it is based on worst-case scenarios. Af-
ter all, it accommodates for all possible repairs obtained by at most £ mod-
ifications. As a consequence, A; may contain too many itemsets. Since the
A-FBIMINER algorithm also deploys a depth-first search strategy, we next ex-
plore how A; can be reduced by pruning itemsets that cannot be t-forbidden
in any repair D’. We will design the A-FBIMINER algorithm based on such
repair-oblivious pruning properties and hence, A-FBIMINER will return a
subset A of A;, yet without violating property (f). That is, it still holds that
FBI(D',t) C A forany D'.

Recall that algorithm A-FBIMINER is to mine almost forbidden itemsets
without looking at specific modifications, i.e., only D and an upper bound k&
on the number of modified objects is available. Clearly & is at most |Dgy|-
Additionally, the set Dy, is known up front, and may be used to refine the
mplift measure. We next adapt the pruning strategies from FBIMINER, by re-
vising the underlying properties to take possible modifications into account.
Since clean objects are never modified, a tight bound on the support of an
itemset in any D', obtained from D by at most k modifications, can be ob-
tained. Indeed, we observe that for any itemset /, the following holds:

supp(1, D) < supp(L,D') < supp(l,D,) +k. )

An immediate consequence is that A-FBIMINER must also consider item-
sets I with supp(I,D,) = 0 as these can become supported in repairs. Further-
more, we can now modify Propositions 7 and 8. In the following, D’ denotes
a dataset obtained from D by at most k modifications to objects in D gy

Proposition 14. For any two itemsets / and J such that 7 C J, if J is a -

forbidden itemset in D', then we have that supp(I,D,) > % —k.
1,D'

Proof. We show this by contradiction. Let J be a t-forbidden itemset in D’
for 7 < 1 and assume for th;e sake of contradiction that there existsal C J
with supp(1,D,) < % — k. From the inequalities (§) it follows that:
1,D/
|D| x supp(J,D’)

GI’T’D%X X T

supp(1,D') < —k+k

And hence supp(/,D’) < [Dlxsupp(/.D') According to Proposition 7, this implies

omax, r

1D/
that J cannot be a t-forbidden itemset in D’, which contradicts our initial
assumption. Hence, every subset / of a 7-forbidden itemset J in D’ must

satisfy supp(, D) > PxsueelD) O

111,
o X T

Proposition 15. For any three itemsets I, J and K such that/ C J C K, if K is

max

a t-forbidden itemset in D', then supp(1, D;) — supp(J, D;) > % — % —k.

Proof. We show this by contradiction. Let K be a t-forbidden itemset in D’
for 7 < 1 and assume for the sake of contradiction that there exist subsets
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max
O pl
D

1 CJ C K with supp(I,D,) —supp(J, D) < 1 —
(§) it follows that

— k. From the inequalities

k < supp(1,D") —supp(l,D;)

By substituting this inequality for &, we obtain:

1 o
5H'Pﬁ('1a—pr—)*5UPP(J7Dr)<;* ﬁ; —supp(I,D’) + supptPry
1 op

supp(1,D") —supp(J,D;) < = Ib\

Since supp(J,D;) < supp(J,D’), it follows that
supp(1,D'") —supp(J,D,) < supp(I,D’) —supp(J, D)

Hence, we may conclude that

max
O;pf

D

1
supp(I,D") —supp(J,D') < o

This violates Proposition 8, implying that no superset of J can be t-forbidden
in D'. This contradicts our assumption that K 2 J is 7-forbidden in D'. O

In order to use these propositions without relying on knowledge about
supports in D’ (recall that we do not know which D’ we are considering), we
need to replace supp(J,D’) and oy by quantities derived from D alone.

For Proposition 14, similarly to the pruning strategies for FBIMiner, we
again use the trivial lower bound supp(J,D’) > 1. Also, note that o;%5* can be
computed, and it holds that 0,5 < 0,5 + k. Hence, Proposition 14 is used
to prune supersets of / whenever

D|

—_— k. P1
(GI{nDaj‘—&—k) X T (P1)

supp(Z, D) <

Similarly, Proposition 15 prunes itemsets J if there is a subset 7 of J such
that

D D,) < 120
1,D,) —supp(J,D,) < — — —22— k.
supp( ) supp( ) o |D|

Since it holds that 6;3* < |D|, we may avoid the approximation of o, alto-
gether, and instead simplify the expression to:

1
supp(1,D;) —supp(J,D,) < P 1—k. (P2)

Proposition 9 also needs to be modified to account for possible modifi-
cations. Recall that this proposition was based on the anti-monotonicity of
the lift denominator. In order to preserve this property under modifications,
we need to compute the worst case increase in the denominator of the lift
measure. Since this denominator consists of a product of supports, we apply
upper bounds on both supports:
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Proposition 16. For any two itemsets 7 and J such that 7 C J, it holds that

supp(J,D') x |D|
min{ (supp(S, Dy) +k)x(supp(I\ S, Dy) + )}

lift(J,D') >

Proof. This is a straightforward extension of Proposition 9. Indeed, observe
that
supp(/,D') x |D|

lift(J,D') > )
it ) min {supp(S,D’) X supp(I\S,D’)}
ocScl

By applying the inequalities supp(S,D’) < supp(S,D,) +k and supp(/\ S,D’) <
supp(I\ S, D,) +k, if follows that lift(J,D’) >

supp(/, D) x | D|
min{ (supp(S, Dy) +) x (supp(I'\ S, Dy) + )}

O

To make use of this proposition for pruning, without knowing D’, we set
supp(J,D’) = 1 and hence prune I’s supersets whenever

D|

Z P3
min{(supp(S.D,) 1 K) x (supp(1\S.D,) 1 0)] ~ e

Finally, we update Proposition 10 to obtain the maximal support in D, of
a 7-forbidden itemset in any D’ obtained by modifying D. Recall that this is
not really a pruning strategy, but provides a way of avoiding certain unnec-
essary lift computations.

Proposition 17. For any itemset / that is 7-forbidden in D’ it holds that
supp(1,D;) < D[ x (3 -2¢/5 — 1 — 1)

2 T

Proof. Proposition 10 states that, for I to be t-forbidden in 7, it must hold

that:
2 1 1
freq(I, D)) < = =24/ = — - — 1
red( ) T 2 1

In terms of support, this implies that

2 1 1
supp(I,D') < |D| x (; *2\/ Z 7 1)

From the inequalities in (§), we use the fact that supp(I,D’) > supp(l,D,) to

obtain that:
2 1 1
1,D,) <|D ——24/—=—-———1). O
supp(Z,D,) ||><(T V% )
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The three pruning strategies (P1), (P2) and (P3) allow substantial prun-
ing when mining almost forbidden itemsets, similarly as their counterparts
for FBIMINER. We will denote by A the set of almost forbidden itemsets re-
turned by A-FBIMINER with these pruning strategies enabled. However, ob-
serve that k impacts the pruning power of (P1) and (P2). Indeed, when k
is “chosen” such that the upper bounds in (P1) and (P2) do not impose any
constraints on the supports of the itemsets involved, these pruning strate-
gies are of no use. For example, suppose that k takes the maximal value, i.e.,
k= |Dd,~rty|. Then, it is likely that (P1) and (P2) do not allow for any prun-
ing. Worse still, the minimal possible lift, which also depends on &, will de-
clare many itemsets to be almost forbidden, since the accuracy of this lower
bound wanes as k increases. Although A-FBIMINER will need to be run only
once to obtain the set A and all dirty objects can be repaired based on A, this
set will be big and inefficient to compute (due to lack of pruning). On the
other hand, when k = 1, strong pruning will be possible and A will be of rea-
sonable size. However, to clean all dirty objects, we need to deal with them
one-at-a-time, re-running A-FBIMINER for k = 1 after a single dirty object is
repaired. To attain maximal efficiency for algorithm A-FBIMINER we there-
fore propose, in the following section, to repair dirty objects in batches of
limited size k.

7.5 Repairing In Batches

Instead of repairing all k objects at once, we now consider a partitioning of
Dyirty into blocks of a size r. We want to optimize the trade-off between the
runtime of A-FBIMINER and the number of runs of A-FBIMINER. The ques-
tion, of course, is what block size to select. We already described block sizes
r=1and r = |Dgjrl, i.€., one-by-one and all-at-once. The question we next
wish to answer is, how do the intermediate block sizes influence our pruning
capabilities, and hence our runtime? We therefore analyze Proposition 14
and Proposition 15, replacing k with r, in order to identify the ranges for r in
which pruning will still be possible.

We first turn our attention to Proposition 14. Let I be the itemset under
consideration. Pruning strategy (P1) states that I's supersets can be pruned

if supp(1,D,) < o " This is useful only if (et > 0, since

it trivially holds that supp(Z,D,) > 0. In order to perform any pruning with

strategy (P1), we thus need to choose r < %.
1,Dy

From Proposition 15, we derived pruning strategy (P2), stating that
I’s supersets may be pruned if supp(1,D,) — supp(J,D;,) < % —1—r. Again,
supp(I,D,) — supp(J,D,) > 0 holds trivially, and hence this strategy is only
useful if % —1—r> 0. We thus require a block size r < % — 1 to perform any

pruning using strategy (P2).
Moreover, it holds that D]

(o +r) > 1, since GII.,nDa:( <Dy, IDy| + | Dainy| = |DJ,
and r < |Dginy|. It is then easy to see that ("%‘l’f’%

that pruning with (P1) is always possible if pruning with (P2) is possible, but

> 1 — 1. This implies
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not vice versa. To have any pruning with these strategies, a block size r <

D s .
(c,";gl’fﬁ is thus required.
s Pr

The pruning strategy (P3) makes use of the number of dirty objects r in
computing the values (supp(S,D,) +r) and (supp(I\ S,D,) +r), i.e., in bound-
ing the support of Is subsets. Since the applicability of (P3) depends on the
actual values of supp(S, D,) and supp('\ S, D,), relative to each other, it is hard
to gauge the impact of the block size r on this pruning strategy, and we can-
not derive a maximal block size for which this strategy is useful. Of course,
the general idea that a lower r improves pruning power holds for this strategy
as well.

As a consequence, there is no universally optimal block size r, and it is
difficult to decide up front. The specifics of the data and even the choice
of which objects to include in a partition of r objects all impact the pruning
power. It is also important to note that the block sizes derived above guar-
antee that the associated propositions are applicable, but they will still offer
reduced pruning power in comparison to smaller block sizes. In the experi-
mental section, we show that r = %, half of the maximal size for which (P2)
is applicable, provides a sensible default value of . On the other hands, us-

ingr= (G,’?%"f%‘r)” — 1, the maximal size for any pruning with (P1), improves

the runtime on datasets with a small number of attributes.

7.6 Mining Almost Forbidden Itemsets

The algorithm A-FBIMINER for mining almost 7-forbidden itemsets is iden-
tical in structure to FBIMINER, as shown in Algorithm 11. Itemsets are again
discovered in a depth-first way, using a reverse pre-order traversal. The algo-
rithm takes as input arguments a projected dataset in vertical layout D|[P],
consisting of all objects which contain a prefix itemset P, and the lift thresh-
old 7. Additionally, we pass the number k of dirty objects under considera-
tion as a fourth argument. We next discuss the difference between the algo-
rithms in terms of lift computation and pruning, and conclude this section
with a proof of A-FBIMINER’s correctness.

The most important difference between A-FBIMINER and FBIMINER is
that, for every processed itemset I, we now compute the mplift measure in-
stead of regular lift. Just like the lift measure, the mplift measure requires
access to all subsets of I, which we store during the traversal using a prefix
tree. The procedure for computing mplift is invoked on line 12. If the itemset
I under consideration cannot be z-forbidden in any D’ according to Propo-
sition 17, because it is too frequent in D,, we avoid computing its mplift on
line 9.

The procedure for mplift first computes the actual lift of the itemset /7, in
order to identify a subset S C I such that

lift(/, D) = |D| x supp(/, D)/ (supp(S, D) x supp(/\ S, D)).

In other words, we first find the partition that currently maximizes the lift, as
explained earlier (just after Definition 28). Using the supports of 7, Sand 7\ S,
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the function f from Figure 7.1 in Section 7.3 computes the worst case config-
uration of these supports after k modifications. This configuration then gives
us mplift, (I). If mplift is lower than 7, then 7 is added to the set A consisting of
almost FBIs (lines 12-13).

The pruning strategies employed by A-FBIMINER are equivalent to those
in FBIMINER, except that the revised pruning strategies presented in Sec-
tion 7.4 are used. First, Proposition 15 implies that non-generator itemsets
can be pruned only when k < % — 1 (line 5). If this condition is satisfied, then
procedures ISGENERATOR and STOREGENERATOR are used for pruning, ex-
actly as before.

Similarly to the pruning strategies in FBIMINER, the pruning conditions
for A-FBIMINER are used to prune all supersets of the current itemset /. On
line 10, we detect whether a subset of I has previously been pruned. If this is
the case, then 7 and all of its supersets may be pruned as well. If no subsets
have been pruned, we are able to compute the mplift and lift measures of I.
Using the denominators considered during lift computation, we can invoke
pruning (line 15) based on the anti-monotonicity of the lift denominator as
stated in Proposition 16. The minimum support in D, of subsets of itemsets
which are 7-forbidden in D’ (Proposition 14) is verified on line 17, after pro-
cessing I itself. If supp(Z,D,) does not satisfy this condition, then all subsets
of J are pruned from the search tree. Finally, extensions J of / that do not sat-
isfy the minimum reduction in lift, based on Proposition 15, are discarded
on line 25, when computing their supports, similar to FBIMINER.

The computation of supports in A-FBIMINER again makes use of set in-
tersections of the covers of the items. These supports are computed in D.
Note, however, that A-FBIMINER also needs to consider itemsets / for which
supp(/,D) = 0. Indeed, the check supp(J,D) > 0 on line 23 of FBIMINER has
disappeared. For our pruning strategies, we also require the support of the
itemsets in D,. We compute these by mining the supports of the itemsets in
Dyirty» since this set is typically much smaller than D,. Supports in Dy, are
also computed using set intersections of the covers of the items. The value
supp(/, D;) is eventually obtained as supp(/,D) — supp(I, Dgjryy) (line 24).

Proposition 18. Let D be a dataset and v a maximum lift threshold. Algo-
rithm A-FBIMINER(D/[0],0,k, ) returns a set A such that, if lift(/,D’) < 7 for
some D’ obtained from D by at most k modifications, then J € A.

Proof. Consider the core of algorithm A-FBIMINER in which all pruning is
disabled. Then, A-FBIMINER mines all itemsets and returns the set A; con-
sisting of all J with |J| > 1 and mplift,(J,D) < 7. Since FBI(D',7) C A, the
proposition follows.

We next argue that the property holds, even when pruning is enabled. As-
sume, for the sake of contradiction, that there exists an itemset 7 with |7] > 1
and lift(I,D’) < t, where 7’ is a dataset obtained from D by at most k£ modi-
fications, yet I is not returned by A-FBIMINER(D/[0],0,k, 7). There are only
two possibilities why 7 could not have been returned: Either (i) mplift,(1,D) >
7 or (ii) one of I's subsets was pruned.
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Algorithm 11 Mining Almost Forbidden Itemsets

1: procedure A-FBIMINER(D/)[P],P C Z,1,k)
2 A0
3 for all i € 7 occuring in D|[P] in reverse order do
4 I+ PU{i}
5: ifk <1—1then
6 if not ISGENERATOR(I) then
7 continue
8 STOREGENERATOR(I)
9 if 7| > 1 & freq(1,D,) < 2—24/ 5 —1 — 1 then
10: if a subset of I has been pruned then
11 continue
12: if mplift, (I,D) < 7 then
13: A=AUl
14 if [D/7 > min{ (supp(S, Dr) + [ Datnyl) %
15: (supp(I\ S, D;) + |Dairry|) } then
16: continue
17: if supp(1,D,) < %ﬁ% —k then
18: continue
19: DI+ 0
20: forall j € 7 in D such that j > ido
21: C + cov({i},D)Ncov({j},D)
22: J+—TU{j}
23: supp(J,D) « |C]
24: supp(J, D) < supp(J, D) —supp(J, Dirry)
25: if supp(1,D) — supp(J,D) > %flfkthen
26: DI« DLITU{(j,C)}
27: A < AUA-FBIMINER(D][1],1,7,k)
28: return A

However, (i) is impossibly since lift({,D’) < 7 implies mplift,(I,D) < 7.
Similarly, (ii) is impossible. Indeed, when a subset of 7 is pruned, Propo-
sitions 14-16 imply that / and all its supersets have lift(/,D’) > 1, again
contradicting the initial assumption that 7 was t-forbidden.

We may thus conclude that A-FBIMINER returns (at least) all 7 such that
[I| > 1 and lift(1,D’) < 7 for all D’ obtained from D by at most k modifica-
tion. In other words, the set A returned by A-FBIMINER satisfies property (+)
stated in Proposition 12 when L is taken to be the lift measure. O

7.7 Repair Algorithm

We are finally ready to describe our algorithm REPAIR, shown in Algorithm 12.
It takes as input the dirty and clean objects, D4;, and D,, respectively, a sim-
ilarity function sim, a linkage scheme ¢, the lift threshold 7, and block size r.
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The dirty objects D;yy, are (arbitrarily) partitioned in blocks R; of size r (line
3). For reasons that will become clear later on, we assume that 7 < 3/4.

First, two sets, D’ and D", are initalized to 0 (line 2). The set D’ will con-
sist of the repaired objects while the set D” will consist of objects in Dy
for which no repair can be found. We denote by D & D’ the set of objects
obtained by replacing the objects in Dy, by their repairs in D’. By default,
the set D, is not altered during the entire repair process, ensuring that sub-
sequent repairs are not based on previously imputed values, to avoid the
propagation of undesirable repair choices. It would, however, require only a
minor change if the user wishes to update D, every time an object is repaired.

The algorithm iteratively processes each block R;. When considering R;,
the set of almost forbidden itemsets A; is computed using A-FBIMINER(D &
D', 7,r) (line 4), where D’ contains the repaired objects for all previous blocks
R, j < i. After that, the repair process for objects in R; depends only on R;
and A;.

The core of the repair algorithm is the processing of each dirty object o
in R;, separately. The algorithm consecutively processes the clean objects o,
and computed a modified version of the dirty object o by means of the proce-
dure MODIFY(0,0.) (line 8). The resulting object is denoted by oep. The goal
of this is to cluster all the clean objects o, together which lead to the same
modification orep. In our implementation, MODIFY(o,0.) replaces items (A, v)
in o by (A4, 0.[A]) that occur in the z-forbidden itemsets covered by o. In other
words, those items in o that are part of forbidden itemsets are replaced with
the corresponding values from o, i.e., only the items that are part of incon-
sistencies are modified.

After the clusters are computed, we now process each cluster in order of
their similarity to the dirty object o (for loop lines 11-15). To compute the
similarity between an object and a cluster of objects, our implementation
supports three linkage schemes ¢ inspired by hierarchical clustering:

(i) Single Linkage!, equal to the highest similarity of o with any object in
the cluster;

(i) Complete Linkage, equal to the lowest similarity of o with any object in
the cluster; and

(iii) Mean Linkage, equal to the mean over the similarity of o to all objects
in the cluster.

By using the most similar objects to produce candidate repairs, we heuristi-
cally attempt to minimize the difference between D’ and D. This approach
is in line with the commonly used hot deck imputation in statistical survey
editing [59]. Additionally, the use of different linkage models allows us to
take into account information about all objects that suggest the same mod-
ification. Our experiments show that Mean Linkage is typically more robust
to the presence of dirtyness/noise in D;.

I This is equivalent to the nearest neighbour method we initially used in Rammelaere et al.
[95].



7.7. REPAIR ALGORITHM 119

Algorithm 12 Repairing dirty objects

1: procedure REPAIR(D iy, Dy,sim, (T, 1)

2 D=0;D"=0

3 for all R; € BLOCKS(Dyjyyy, ) do

4: A;=A-FBIMINER(D® D', 1,r)

5: Clust < [ _]

6 forallo € R; do

7 for all o, € D, in sim(o,,0) desc. order do
8 Orep = MODIFY(0,0.)

9 Clust[0rep) < Clust [0rep] U {0 }

10: success := False

11: for all (0ep,cl) € Clust in £(cl,0,sim) desc. order do
12: if SAFE(0,0rep, A;) then

13: success := True

14: D' :=D'Uorep

15: break

16: if not success then D" = D" U {0}

17: return (D', D")

It remains to ensure that if we augment D’ with the candidate repair oyep
associated with the most similar cluster (line 14) , then D @ D’ is “cleaner”
than D. That is, no new forbidden itemsets are introduced. Furthermore, if
all objects in D+, are successfully repaired, then no forbidden itemsets are
found in D@ D'. Thatis, D® D’ is clean. This is guaranteed by the safety
check (procedure SAFE, line 12) in the algorithm. If the candidate repair is
safe with respect to the almost forbidden itemsets in A;, then it is added to
the set D’ (line 14). Otherwise, the next candidate cluster is considered (for
loop lines 11-15) until a repair is found (line 13) or all candidate repairs have
been rejected. In this case, o is added to the set of unrepaired objects D” (line
16) for user inspection.

In the remainder of this section we describe the procedure SAFE in de-
tail. Consider a run of the algorithm in which objects in Dy, are repaired.
Assume that the dirty objects in Dy, are considered in the following order:
01,02,...,0r. Let D = D, and denote by D; the modified instance D]_; ® orep,
in which o; € Dginty is repaired. In case all dirty objects can be repaired, the fi-
nal set D, is to be a repair of D, i.e., FBI(D,, t) = 0. Similarly, we let Dy =D,
D; = Di_1 ® Drep, to denote the repair obtained after processing i blocks in
the partitioning of Dgirny. If there are ¢ blocks, then Dy is a repair of D.

Suppose that the algorithm just finished processing block R;, re-
sulting in the partial repair D; and almost forbidden itemsets A; =
A-FBIMINER(D;, 7,r). Suppose that objects oj,...,0;1,—1 constitute the
next block R;; of dirty objects, where j =r-i+1.

The procedure SAFE is based on four conditions that together ensure that
for each k € [ir+1,(i+ 1)r], FBI(D;, t) C FBI(D}_,,t) and thus D}, can be re-
garded as being cleaner than or as clean as D;_,. We next describe these
conditions. To begin with, let P; := {J € A; | lift(J,D;) > 7}. We first guaran-
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tee that r successive and succesful modifications to D; can never decrease
the lift of itemsets in P;. Consider object o, = (tid,/) in D;_, and its candi-
date modification oep = (tid,I’) in D,. Define covitems(/,X) for an itemset
I and set of itemsets X to be those itemsets J € X such that J C 1. Similarly,
itemscov(/,X) is the set of itemsets J in X such that7 C J.

Proposition 19. Consider object o = (tid,I) in D;_, and its candidate mod-
ification orep = (tid,I’) in D;. Let t < 3/4. If the following conditions are
satisfied

(@) covitems(I,IP;) C covitems(I’,?;); and
(b) foreachael’\1,
itemscov({a},P;) C covitems(I',[;),
then for each J € IP;, we have that lift(J,D;_,) > 7 implies lift(/,D;) > 1.

Proof. We only have to consider the case when lift(J,D,_,) > lift(J,D;). By
assumption and by the definition of lift, we have that
|D| x supp(J,D;_,)

T < lift(J, D! =
R Pit) = Sipp(S. D) x suppl\ S, D)

for some S C J. If J is supported by neither o; (in D,’cfl) NOr 0ep,; (in D,/(), then
supp(J,D;_,) = supp(J,D;). Otherwise, condition (a) implies that if J is sup-
ported by o;, and hence J € covitems(I,P;), then also J € covitems(I’,IP;). Hence,
J is also supported by oyep,;. From this we may conclude that supp(/,D}_,) <
supp(J, Dy).

Assume that lift(J,D;_,) > lift(J,D}).  Given that supp(J,D;_,) <
supp(J,D), it must be the case that supp(S,D;) x supp(J \ §,D;) >
supp(S,D,_,) x supp(J \ S,D,_,). Since only one modification is consid-
ered at a time, the maximal value of supp(S,D,) x supp(J\ S,D,) is given by
(supp(S,D;_;)+1) x (supp(J\ S, D;_;)+1).

This in turn can only occur when S and J\ S contain items in I’ \ I (other-
wise, their supports would be the same as in D,’ﬁl). For example, leta € I' \ I
such that a € S. Then, a € J and hence J € itemscov({a},P;). Hence, condi-
tion (b) implies that J is supported by orep;. In addition, since S and J\ S
contain items in I’ \ I, o; cannot support S and J \ S. Hence, o; also did not
support J. This implies that supp(/,D;) = supp(J,D;_,) + 1. The proposition
now follows from the following implication, whose proof is deferred to Ap-
pendix C.2: For 7 < 3/4,

|D| x supp(J,D;_,)
supp(S,D;_,) x supp(J\S,D;_,)

implies that
ID| x (supp(J,D;_;)+1)
(supp(S,D;_ ) +1) x (supp(J\ S, D} _ ) + 1)’

which in turn is smaller than or equal to lift(/,D;). This concludes the proof
of the proposition. O
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As shown in Algorithm 13, the procedure SAFE will reject the candidate
modification orepx when conditions (a) and (b) are not satisfied (lines 3-7).
In addition, the procedure SAFE performs two additional checks. In particu-
lar, let SO; be the set of itemsets in A; that do not have support in D;. Then,
orep, 18 rejected by procedure SAFE (lines 8, 9) when the following condition
is not satisfied:

(c) covitems(I',S0;) = 0.

That is, for oepx = (tid,I’) to be a good repair, I’ is not allowed to contain
almost forbidden itemsets in A; that do not have support in D;. Similarly, if
we let O; be the set of itemsets in A; that are not forbidden in D;, then oep x is
rejected by procedure SAFE (lines 10,11) when the following condition is not
satisfied:

(d) covitems(I',Q;) = 0.

That is, for oepx = (tid,I’) to be a good repair, I’ is not allowed to contain
almost forbidden itemsets in A; that were forbidden in D;.

We next show correctness of the procedure SAFE. Let D;, A, D;{, D,/H, Ok
and oyep . as before.

Proposition 20. If the procedure SAFE(ok,0rep,A;) returns True, then
FBI(Dy, 1) C FBI(D,_;,7)

Proof. We show this by contradiction. Suppose that there exists an itemset
J € FBI(D}, 7) which is notin FBI(D,_,, ). Since D, is at most » modifications
removed from D;, we have that J € A;. There are only two possible reasons
why J & FBI(D,_,,7). The first reason might be that supp(/,D;_,) = 0. We
show that this implies that also supp(/,D;) = 0. This in turn implies that J €
S0;. Together with the assumptions that J € FBI(D,,t) and supp(J,D;_,) =0,
we can infer that J € covitems(I’,S0;). This contradicts that condition (c) is sat-
isfied for orepx (recall that SAFE(ox,0repi, A;) returns True, by assumption).
We still need to show that supp(J,D;_,) = 0 implies supp(J,D;) = 0. Suppose
that supp(J,D;) > 0. If lift(J,D;) < 7, then J € O; and hence J € covitems(I’, Q;).
We again reach a contradiction, because condition (d) is satisfied for osep .
Hence, lift(/,D;) > t. However, since conditions (a) and (b) are satisfied,
Proposition 19 implies that lift(/,D;) > 7. This contradicts our assumption
thatJ € FBI(D, 7).

Hence, J ¢ FBI(D;_,,7) implies that lift(/,D,_,) > 7. Indeed, this is the
second reason why J might not belong to FBI(D}_,, ). Again, since condi-
tions (a) and (b) are satisfied, Proposition 19 implies that lift(J, D;{) > 7. This
again contradicts our assumption that J € FBI(Dj, 7).

In other words, if J € FBI(D}, 7) then we must have that J € FBI(D,_,,1),
as desired. O

We observe that procedure SAFE may reject candidate modifications for
which FBI(D}, 7) C FBI(D}_,, t) holds. Indeed, the conditions (a)-(d) are only
sufficient conditions. The reason for allowing such wrong rejections is effi-
ciency. Indeed, each condition only requires information about dirty objects
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Algorithm 13 Checking whether a repair is safe

1: procedure SAFE(o; = (tid,I),0pep = (tid,I'), A))
2 Compute P;, O; and S0;

3 if covitems(1,P;) Z covitems(l’,P;) then

4 return False

5: forallacl'\/do

6 if itemscov({a},P;)  covitems(I’,IP;) then
7 return False

8 if covitems(I’,S0;) # 0 then

9: return False
10: if covitems(1’,0;) # 0 then
11: return False
12: return True

and candidate modifications, and the set A; of almost forbidden itemsets,
which is already in place. More exact versions of the procedure SAFE could
be considered, at the cost of time-consuming lift computations.

A direct consequence of Proposition 20 is that when a dirty object o, is re-
paired into object orep «, then oepx does not contain any forbidden itemsets
from FBI(D;, 7). Indeed, suppose that o, supports an itemset J € FBI(Dj, 7).
Then the proposition implies that J € FBI(D, 7). Condition (d), however, en-
sures that orep  is rejected whenever an “old” forbidden itemset is supported.

Given this, we conclude this section by showing the correctness of the
REPAIR algorithm.

Proposition 21. Let D be a dataset, T a maximum lift threshold, sim a simi-
larity function, and let Dj;yy and Djeq, denote the dirty and clean parts of D,
respectively. Algorithm REPATR(D girty, Dejean, Sim, T) returns sets D’ and D” of
repaired and unrepairable objects. If the repair was successful, i.e., D" = 0,
then FBI(Dgjean UD', T) = 0.

Proof. For the sake of contradiction, suppose that there exists a 7-forbidden
itemset J in FBI(Djean U D', 7).

Observe that no object in D, supports a t-forbidden itemset in FBI(D, 7).
By Proposition 20, no modification made by algorithm REPAIR can create
new forbidden itemsets. Since REPAIR does not make modifications to clean
objects, no object in D p,, supports a t-forbidden itemset in FBI(Djean U
D', 1) either.

Suppose that J is supported by an object o; € D'. Then, Proposition 20 im-
plies that J € FBI(D;, ). We have just observed that accepted repairs cannot
support such forbidden itemsets. Consequently, no z-forbidden itemset J in
FBI(Djean U D', 7) can exist and therefore D e, UD' is indeed clean. O

As a final remark, we would like to point out that the assumption that
T < 3/4 is not a restriction in practice. As we will see in the experiments,
reasonable values for 7 are typically around 0.1 or less.
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Table 7.1: Statistics of the UCI datasets used in the experiments. We report
the number of objects, distinct items, and attributes.

Dataset |D| |Z| |A
Adult 48842 202 11
Censuslncome 199524 235 12
CreditCard 30000 216 12
Ipums 70187 364 32
LetterRecognition 20000 282 17
Mushroom 8124 119 23

7.8 Experiments

The experiments were conducted on the same datasets as in the previous
chapter, six datasets from the UCI repository [39] and the synthetic Soccer
dataset 2. The statistics of these datasets are repeated in Table 7.1. The al-
gorithms have been implemented in C++, the source code and used datasets
are available for research purposes [91]. The program has been tested on
an Intel Xeon Processor (2.9GHZ) with 32GB of memory running Linux. Our
algorithms run in main memory. Reported runtimes are always an average
over five independent runs.

7.8.1 Performance of A-FBIMiner

We first investigate the discovery of almost forbidden itemsets, which is the
most computationally expensive part in our methodology. Recall that the
runtime of A-FBIMINER depends both on the lift threshold 7 and the num-
ber of dirty objects as discovered by FBIMiner. Since a larger T automatically
entails a higher number of dirty objects, clearly scalability in 7 is an issue.

For each dataset and each 7, we first run algorithm FBI-MINER to obtain
the forbidden itemsets. Let k denote the number of dirty objects found. We
then run algorithm A-FBIMINER a number of times with block size r, indi-
cating the number of dirty objects to be repaired at once, until all k£ objects
have been repaired. We first consider only the extreme cases of the block
size, i.e., r = 1 and r = k. Experiments with other blocksizes are discussed in
the next section. The obtained runtimes are shown in Figure 7.2.

The difference between both block sizes is clear. For = k, runtimes start
out reasonably low, but quickly explode as the algorithm loses its pruning
power and computation becomes infeasible. This is the most problematic
for Mushroom, which has a larger number of attributes, and LetterRecogni-
tion, which has a very high number of dirty objects k. Block size r = 1 remains
feasible throughout the 7 range, but is slower overall.

Similar to FBIMINER, we are also interested in the number of itemsets
returned by A-FBIMINER, and the number of objects containing such sets.

2http://www.db.unibas.it/projects/bart/
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Figure 7.2: Runtime of A-FBIMINER in function of maximum lift threshold 7,
for block sizes r = kand r = 1.

We perform this analysis, and compare between block sizes r = 1 and r =k,
on the Adult and CreditCard datasets. These datasets permit us to investigate
the entire 7-range, unlike the Mushroom and LetterRecognition datasets on
which the mining of almost forbidden itemsets quickly becomes infeasible.
For block size r = 1, the obtained runtime is then a total over k runs. Results
are shown in Figure 7.3.

The obtained results show that the block size has a considerable impact
on the number of almost forbidden itemsets, which in turn affect repairabil-
ity. Indeed, when using block size r = k, we see that eventually every object in
the CreditCard dataset contains at least one almost forbidden itemset, simi-
larly for the Adult dataset. The number of almost forbidden itemsets is very
large. When using block size r = 1, the number of almost forbidden itemsets
is reduced by approximately a factor 100, and the number of objects contain-
ing an almost forbidden itemset is a moderate percentage of the dataset.
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Figure 7.3: Number of discovered Almost Forbidden Itemsets and number of
objects with an Almost Forbidden Itemset, for block sizes r =k and r = 1.

Block Size

Next, we focus on the optimal block size r. As outlined in Section 7.6, we can

identify the quantities 1 — 1 and % — 1 as the maximal block sizes
1,Dy

for which Proposition 14 and Proposition 15, respectively, are still applica-
ble. For block sizes less than k, we compute the runtime as a total over
a number of consecutive runs of A-FBIMINER, until all k£ dirty objects are
“covered” by the algorithm. Figures 7.4a-7.4d display the obtained runtimes
using these block sizes. Note that the chosen values for r are 7-dependent.
Consequently, for every 7-value, a different number of dirty objects is ob-
tained and partitioned into blocks of a different absolute size. As expected,
the runtimes are lower than for k£ = 1, while feasibility is better than for r =%,
proving that the right block size indeed improves the overall performance of
the algorithm. Runtime on the LetterRecognition dataset naturally suffers
from the exponential increase in the number of dirty objects on that dataset.
The Mushroom and Ipums datasets are still problematic: the number of at-
tributes leads to a deep search tree, and pruning power is too limited.
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As an alternative, we consider the block size r = 5, the halfway point
between r =1and r = % — 1. Figure 7.4e-7.4f shows that this block size pro-
vides sufficient pruning power for the Mushroom dataset, and indeed out-
performs all other considered sizes over the entire t-range. For higher -
values, the algorithm still struggles on the Ipums dataset, its high number
of items proving problematic. On the other datasets, A-FBIMINER is fast for
low values of 7, and feasible across the considered 7-range.

7.8.2 Quality of Repairs

We now turn our attention towards the quality of the repairs made by our al-
gorithm. We first examine whether cleaning the forbidden itemsets brings
the dirty data closer to the ground truth. For this, we again make use of
the Soccer dataset with inserted violations, since this is the only dataset on
which we have the ground truth. Indeed, since the other datasets are already
dirty to start with, the repair algorithm is affected. For instance, the forbid-
den itemsets already present in the data (before inserting violations) mark
certain objects as dirty, removing them from consideration as donors in the
repair algorithm. As such, we cannot evaluate repairs fairly on such datasets.
At the end of this section, we detail the similarity function used; the distance
between two objects is computed as 1 —sim.

In Figure 7.5, we display the results on the Soccer dataset, with errors
from 1 and 50 CFDs. The block size r = % was chosen, as described in the pre-
vious section. As the value of 7 increases, the repaired data becomes similar
to the ground truth. Clearly, this is contingent on the discovered forbidden
itemsets having a high precision; therefore, we only consider the 7 values
0.05, 0,10, and 0.15, as it was shown in the previous chapter that our preci-
sion drops significantly for higher values of 7. For a 7-value of 0.05, the Sin-
gle Linkage scheme performs worse on the version of the dataset with errors
from 1 CFD, while Complete Linkage performs slightly worse on the version
with errors from 50 CFDs. The Mean Linkage scheme performs well in ev-
ery situation. For higher 7, the repair schemes obtain similar results. This
happens because, for smaller 7, certain erroneous objects are not detected
as such. Consequently, these objects are part of the different clusters for re-
pairing, and influence the distances to the object to be repaired. In other
words, for lower 7, there is a higher risk of making a modification based on
an object which is in fact erroneous, but not detected as such by our method.
We conclude that the Mean Linkage scheme is generally the most robust, but
the differences in performance are limited.

For the other datasets, on which we cannot evaluate closeness to the
ground truth, we instead investigate the minimality of the repairs we obtain.
In Table 7.2, the minimal and maximal similarity between a dirty object and
its repair given by algorithm REPAIR (within a given t range). Here, a simi-
larity value of 1 indicates identical objects. Again, the block size r = zif was
chosen. The obtained repairs consistently have a high similarity in the given
t-range, indicating that our repair method makes very limited alterations to
the dirty objects in order to make them clean. Obviously, it is not desirable
for a repair algorithm to substantially distort the input database, especially
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Figure 7.5: Distance between repaired dataset and ground truth, using three
different repair schemes, in function of threshold 7. Results were obtained
on the Soccer dataset with errors generated by 1 and 50 cCFDs.

Table 7.2: Average quality of repairs.

Dataset T-range  Min-Max Sim.  |D/|
Adult 0.01-0.1 0.94-0.95

CensusIncome 0.001-0.01 0.90-0.95 0
CreditCard 0.01-0.1 0.94-0.96 10
Ipums 0.001-0.01 0.95-0.98 94
LetterRecognition 0.01-0.1 0.96-0.98 33
Mushroom 0.01-0.1 0.94-0.99 238

as we consider low error rate data. We conclude that our repairs are of high
quality.

We also report the number of objects that could not be repaired at the
highest 7-value, denoted by |D”|. For Adult, CensusIncome, CreditCard and
LetterRecognition, only a few objects are unrepairable and this occurs only
for high values of 7. A higher number of unrepairable objects is encountered
for the Ipums and Mushroom datasets. This seems to suggest that a higher
number of attributes causes problems for repairing.

To illustrate the effects of our repair algorithm, we show example repairs
obtained on the Adult dataset in Figure 7.6, for t = 0.01 and using Single Link-
age. The five dirty objects shown contain the forbidden itemsets (SEX=MALE,
RELATION=WIFE), (RELATION=NOT-IN-FAMILY, MARITAL=MARRIED), (RELA-
TION=HUSBAND, MARITAL=MARRIED), and/or (MARITAL-STATUS=MARRIED,
AGE=<18). In the first dirty object, we see that our repair algorithm effec-
tively manages to remove both forbidden itemsets from this object by chang-
ing only the Age value. Moreover, all modifications seem sensible.

As a final comment on the topic of repair quality, we detail the similar-
ity measure sim used in the REPAIR algorithm. While similarity and distance
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. Age Marital Status Relationship Sex

<18 Married-Civ. Husband
>50 Husband
<18 Married-Civ. Own Child Female
N[ SBVETRUELEE Own Child
Married-Civ. Not in Family

Never Married Own Child
Married-Civ. Wife Male
22-30 |Married-Civ. Female
31-50 |Married-Civ. Wife Male
31-50 |Married-Civ. Husband

Figure 7.6: Example repairs on Adult dataset.

measures are well-studied for numerical data, it is often more challenging to
measure similarity of categorical data. Boriah et al. [20] give an overview of
similarity and distance measures for categorical data, and distinguish three
types of measures, based on whether they assign different weights to either
matches or mismatches between values, or to both. For our algorithm, we
make use of the lin-similarity measure which weights both matches and mis-
matches based on the frequency of the actual values. For example in the
context of census data, a match or mismatch in gender would be more in-
fluential than a match or mismatch in the age category, since the domain of
the Gender attribute is much smaller. Of course, any other similarity measure
could be used instead.

Definition 29 (Lin-similarity measure).

linsim(0,0') = YacaS(o[A],0'[A])
’ Yacalog(freq({(A,0[A])}, D)) +log(freq({(A,0'[A]) }, D))

where S(0[A],0'[A]) is given by

2log(freq({(A,0[A])},D)) if o[A] = 0'|A]; and
2log(freq({(A,0[A])}, D)) + log(freq({(A,0'[A])},D)) otherwise. O

7.8.3 Repair Runtime

To conclude the experimental evaluation of our method, we investigate the
runtime of the repair algorithm. We also make a comparison between se-
quential repairing and a parallel implementation using OpenMP. The results
are shown in Figure 7.7. The time required to repair is mostly dependent on
the number of dirty objects, while the time per object depends on the num-
ber of clean objects, i.e., objects for which the similarity to the dirty object
needs to be computed. As such, the runtime plots are similar in shape to the
plots in Figure 6.5 of the previous chapter, i.e., the number of dirty objects.
We see that repairing in parallel provides a considerable speedup. Note that
the repair algorithm itself is independent of 7, which only affects FBIMINER
and A-FBIMINER.



130 CHAPTER 7. REPAIRING WITH FORBIDDEN ITEMSETS

Repair Time (Soccer50) Repair Time (Adult)
40
@ Sequential 1001 @ Sequential
—_ B Parallel B Parallel
& 30+ 80+
o 0
X © 60
o 204 E
£ S 40
5 101 x
x 201
0+ 01
001 0.5 01 0.15 001 005 01 0.15
Lift Lift

Figure 7.7: Comparison of sequential and paraller Repair runtime, on Soccer
dataset with errors for 50 cCFDs and Adult.
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In the previous experiment, the runtime for algorithm REPAIR was shown
in isolation. However, in order to perform correct repairs, it is also neces-
sary to compute almost forbidden itemsets for every block of dirty objects.
In Figure 7.8, we report runtimes which include the runtime of A-FBIMINER.
While the runtimes increase noticeably, the overall scalability of repairing on
the various datasets is still retained. Only on the LetterRecognition dataset,
the runtimes of A-FBIMINER rise very strongly for larger values of 7, as al-
ready evidenced by the A-FBIMINER runtime experiments.

7.9 Conclusion

In this chapter, we have address the problem of repairing data under the dy-
namic notion of cleanliness, introduced in the previous chapter. We have
developed a flexible repair algorithm based on imputating values from sim-
ilar, but clean, objects. Formal proofs guarantee that after repairs, no new
inconsistencies can be found.

Furthermore, we have introduced the concept of almost forbidden item-
sets, which are necessary for the efficiency of our method. By first mining
almost forbidden itemsets, we can assure that no itemsets become forbid-
den during a repair. This is an essential ingredient in our dynamic notion of
data quality. Crucial here are our pruning strategies for mining almost for-
bidden itemsets, and our guidelines for repairing in batches of suitable size.

We have shown experimentally that our repairs are of high quality, and
bring dirty data close to the ground truth. Moreover, the use of almost forbid-
den itemsets enables repairs to be performed in parallel, further improving
runtimes.






CHAPTER

7\&

Conclusion

Dirty data is a significant problem for companies and analysts alike. Within
the field of data cleaning research, many techniques focus on a constraint-
based paradigm: rules in some logical formalism indicate which parts of the
data are dirty, and repair algorithms subsequently modify the data such that
all constraints are satisfied. Throughout this dissertation, we have consid-
ered the problem of constraint discovery from different angles, leveraging
work in the area of pattern mining. To conclude the dissertation, we sum-
marize the contributions made in the presented work, and discuss possible
avenues for future research in the area of constraint discovery for data clean-
ing.

8.1 Main Contributions

o In Chapter 4, we revisited the discovery of conditional functional de-
pendencies (CFDs). These constraints are widely used in data clean-
ing, since they are easy to understand, yet more expressive than stan-
dard functional dependencies (FD) or association rules. We have recast
CFD discovery as an explicit combination of FD discovery and item-
set mining, and identified three different ways in which these can be
combined. As such, CFD discovery can benefit from advances in both
disciplines. We further generalized the pruning of redundant CFDs, al-
lowing different search strategies to be used instead of the traditional
breadth-first search. Experiments show that our new methodologies,
as well as the correct choice of search strategy, can provide a substan-
tial performance increase when compared to the state of the art CFD
discovery algorithm CTane.

133
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¢ In Chapter 5, we considered the problem of finding CFDs that are valid
and useful for repairing, based on user interaction. Instead of rely-
ing on the user to (in)validate rules, we presented a method where
only positive feedback is required: The user manually repairs a small
part of the data, and our algorithm discovers a CFD that explains this
partial repair. We introduce a scoring function for such explanations,
and present an efficient on-demand algorithm, XPLODE, for discov-
ering the best explanation given a set of modifications. Our experi-
ments show that our method can discover the correct CFD for repairing
from only a small number of modifications, saving considerable user
effort compared to manual validation of constraints ranked by base-
lines such as confidence. Moreover, XPLODE is robust to noise in the
modifications, i.e., mistakes made by the user, and outperforms a post-
processing approach that discovers all explanations and then finds the
highest scoring one.

¢ In Chapter 6, we introduced a dynamic notion of data quality, where
we consider a given database to be clean if a constraint discovery al-
gorithm does not detect any violated constraints on that data. We
phrased this notion in full generality, before studying the problem con-
cretely for an easy to understand constraint language, which we call
forbidden itemsets. Such itemsets have low lift, and we extensively mo-
tivated their use for detecting erroneous values in data. To discover
forbidden itemsets, we have introduced an algorithm called FBIMiner,
and derived properties of the lift measure to provide strong pruning.
In the experiments, we showed that forbidden itemsets can discover
errors with high precision, and FBIMiner obtains a good runtime.

e In Chapter 7, we presented a method for repairing data in the context
of forbidden itemsets, under our dynamic notion of data quality. To
avoid having to recompute forbidden itemsets for every candidate re-
pair, we introduced almost forbidden itemsets, which are itemsets that
could become forbidden after a set number of modifications by the re-
pair algorithm. As such, we can compute up front enough information
to guarantee the cleanliness of repairs. To further improve runtime, we
proposed repairing in batches of suitable size. The repair algorithm it-
self modifies dirty objects by taking suggestions from clean parts of the
data, which are clustered together, and similarity to the clusters is com-
puted flexibly using linkage schemes from hierarchical clustering. We
formally proved the correctness of the entire repair method. In the ex-
periments, we evaluated the runtime of mining almost forbidden item-
sets. We further showed that the runtime of repairing can be improved
by repairing in parallel, and that our repairs bring the dirty data closer
to the ground truth.
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8.2 Outlook

In the conclusions of Chapters 4-7, we have discussed very specific direc-
tions for extending the work presented in those sections. As we have come
to the end of this dissertation, we now take the time to outline some general
paths in which data mining and machine learning techniques can further
push the field of constraint-based data quality.

Cleaning other types of data. Throughout the dissertation, we have fo-
cused mostly on categorical data in a tabular format. Numerical data can
be incorporated into these methods by discretization. However, many other
types of data exist, such as multi-table relational data, sequential data, graph
data, or live data in a streaming format. Constraint-based cleaning on such
data has received comparably little attention. It would be interesting to see
how our methods, or similar approaches, could be adapted to scenarios with
such data types. For example, the forbidden itemsets formalism could be ap-
plied to other data, by devising a suitable interestingness measure for detect-
ing errors in such data.

Leveraging recommendation systems for interactive error discovery. In
Chapter 5, we considered user interaction in the form of manual repairs
made by a user. Based on these interactions, the XPLODE algorithm discov-
ered constraints that align with those repairs. Conceptually, this is similar to
the problem setting in recommendation systems, where the quintessential
example is a user buying items, and an algorithm recommending items that
are “also interesting” to the user. When translated to a data cleaning setting,
this could be interpreted as a user marking errors, and the algorithm suggest-
ing items that are “also errors”. In the field of recommendation systems, user
friendliness has been considered extensively, and such systems are designed
for rapid and flexible interaction, two considerations which are also crucial
in user interactive data cleaning. Furthermore, by considering a constraint
in general as “a rule that indicated errors”, error detection based on recom-
mendation systems can be agnostic to the specific type of rule, and possibly
incorporate different kinds of rules simultaneously.

Generalizing constraints across databases. In each method presented
in this dissertation, we have discovered constraints on a given, dirty dataset.
While various optimizations allow our algorithms to run efficiently on each
dataset, the fact still remains that discovery has to be run from scratch, in-
dividually on each dataset. If a system is to combine different types of rules,
it is clearly problematic to run each discovery algorithm on a large dataset,
for every single cleaning session. Moreover, constraints might require vali-
dation. One possible avenue to address this situation would be to generalize
constraints across multiple databases using a machine learning approach.
As such, valuable time might be saved when having to discover constraints
on a new dirty dataset. The GOLDRUSH system presented in Jarovsky et al.
[64] implements a similar idea in order to map fraud detection rules from
one dataset to another.
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Nederlandse Samenvatting

Doorheen de voorbije decennia, is de hoeveelheid aan data die door com-
puters wordt verwerkt omhoog geschoten tot astronomische proporties.
Factoren zoals goedkopere opslag en toegenomen connectiviteit hebben
bijgedragen tot deze stortvloed aan data. Terwijl data wordt gegenereerd,
bij elkaar geschraapt, en geintegreerd tegen nooit eerder geziene snelhe-
den, blijkt de kwaliteitscontrole op deze data niet in staat om bij te blijven.
Veel van deze data komt voort uit onbetrouwbare bronnen, zoals mogelijk
gebrekkige sensoren en overwerkte mensen. Bijgevolg wordt deze enorme
massa aan data steeds meer dirty.

De onbetrouwbaarheid van data is problematisch voor iedere grote orga-
nizatie. Dirty data kost de economie van de VS naar schatting honderden
millioenen tot miljarden dollars op jaarbasis [61, 42, 62]. Behalve bedrijven
die financiéle verliezen lijden, heeft de dirtiness van data ook een serieuze
impact op gebieden zoals data analyse, kennisextractie uit databases, en ma-
chine learning. Dergelijke applicaties steunen traditioneel op grote hoeveel-
heden data, en indien de data gewoonlijk dirty is, kan dit leiden tot foute
conclusies, gebrekkige modellen, of valse patronen. Zoals het gezegde gaat,
“garbage in equals garbage out”.

Het is duidelijk dat datakwaliteit een groot probleem is geworden in data-
management. Het hoge volume aan data maakt het onmogelijk voor iemand
om manueel zijn of haar data op te schonen, en bijgevolg is er een grote
vraag naar effectieve methoden om dirty data te corrigeren. Er bestaan ver-
scheidene soorten dirtiness, zoals incomplete data, gedupliceerde data, ver-
ouderde data, en inconsistente data. In dit proefschrift ligt de focus op deze
laatste categorie: data waarin combinaties van waarden een overtreding vor-
men van bepaalde logische regels die de data zou moeten volgen. Zulke
regels noemen we kwaliteitsregels.
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Doorheen dit proefschrift hebben we vanuit verschillende invalshoeken
het probleem bekeken om deze kwaliteitsregels te vinden, binnen dit para-
digma van datakwaliteit op basis van kwaliteitsregels. Het voornaamste
probleem hierbij is dat, in een typische situatie, de correcte regels niet gek-
end zijn. We benaderen dit probleem in dit proefschrift door een gebruiker
in te schakelen om kwaliteitsregels te valideren, en door een geschikte inter-
essemaat te gebruiken voor het vinden van regels. De gebruikte technieken
zijn veelal geworteld in het gebied van pattern mining, een deelgebied van
kennisextractie uit databases, dat vooral is gericht op het ontdekken van
interessante associaties tussen zaken of gebeurtenissen.

Overzicht van het Proefschrift

Dit proefschrift bestaat uit zeven hoofdstukken. Hoofdstuk 1 bevat de inlei-
ding, gevolgd door een overzicht van notaties, basisconcepten en gebruikte
datasets in hoofdstuk 2. In hoofdstuk 3 hebben we het belangrijkste gere-
lateerde werk besproken binnen het algemene gebied van datakwaliteit op
basis van kwaliteitsregels, en in hoofdstuk 8 vatten we het geleverde werk
samen, in combinatie met een conclusie en een perspectief op toekomstmo-
gelijkheden binnen het gebied van kwaliteitsregels voor datakwaliteit. De
concrete bijdragen bevinden zich in hoofdstukken 4, 5, 6, en 7, en kunnen
als volgt worden samengevat:

¢ In Hoofdstuk 4 hebben we bestaande technieken voor het ontdekken
van conditional functional dependencies (CFDs) herbekeken en veral-
gemeend. Deze CFDs worden veelvuldig gebruikt in data cleaning, om-
dat ze eenvoudig te begrijpen zijn, en meer expressieve kracht hebben
dan standaard functional dependencies (FDs) of associatieregels. We
hebben het ontdekken van CFDs herbeschouwd als een expliciete com-
binatie van FD ontdekking en itemset mining, en drie verschillende
manieren geidentificeerd waarop deze twee technieken met elkaar ge-
combineerd kunnen worden. Bijgevolg hebben we aangetoond hoe
CFD ontdekking kan profiteren van vooruitgang in beide disciplines.
Daarnaast hebben we de de facto pruning strategie voor redundante
CFDs veralgemeend, zodat deze ook gebruikt kunnen worden in com-
binatie met andere zoekstrategieén dan de traditionele breadth-first
strategie. In de experimentele sectie hebben we aangetoond dat onze
nieuwe methoden, en een correcte keuze van zoekstrategie, een aan-
zienlijke verbetering in performantie teweeg kan brengen, in vergelijk-
ing met het state of the art algoritme CTane voor het vinden van CFDs.

e In Hoofdstuk 5 hebben we het probleem beschouwd om CFDs te
ontdekken die geldig zijn en nuttig om te corrigeren, gebaseerd op
interactie met een gebruiker. In plaats van deze gebruiker in te schake-
len om mogelijke kwaliteitsregels te (in)valideren, hebben we een
methode gepresenteerd die enkel gebruik maakt van positieve feed-
back: de gebruiker corrigeert handmatig een klein deel van de data,
en ons algoritme ontdekt vervolgens een CFD die deze partiéle correc-
tie verklaart. We hebben een scorefunctie geintroduceerd voor zulke
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verklaringen, die aan de grondslag ligt van een efficient “on-demand”
algoritme, XPLODE genaamd, dat de beste verklaring vindt voor een
gegeven verzameling modificaties. Onze experimenten toonden aan
dat onze methode de correcte CFD vindt om data te corrigeren op
basis van slechts een klein aantal modificaties, wat leidt tot een noe-
menswaardige vermindering van de inspanning die van de gebruiker
verwacht wordt, in vergelijking met basislijnen zoals confidence.
Bovendien is XPLODE robuust tegenover ruis in de modificaties, d.w.z,
foutjes die de gebruiker maakt, en beduidend sneller dan een naieve
methode op basis van post-processing, waarbij eerst alle verklarin-
gen worden gevonden en achteraf degene met de hoogste score wordt
bepaald.

In Hoofdstuk 6 hebben we een dynamische notie van data kwaliteit
geintroduceerd, waarbij we een gegeven database als clean beschouwen
indien een ontdekkingsalgoritme voor kwaliteitsregels geen overtredin-
gen van deze regels vindt. We hebben deze notie eerst in zijn volledige
algemeenheid verwoord, alvorens het probleem concreet te bestud-
eren voor een eenvoudig te begrijpen taal van kwaliteitsregels, die
we forbidden itemsets hebben gedoopt. Deze itemsets worden geken-
merkt door het feit dat ze een lage lift hebben, en we hebben uitgebreid
gemotiveerd waarom zulke itemsets geschikt zijn voor het ontdekken
van foutieve waarden in data. Om forbidden itemsets te ontdekken,
hebben we een algoritme geintroduceerd genaamd FBIMiner, en
eigenschappen van de lift-maat afgeleid die sterke pruning toelaten.
In de experimenten hebben we aangetoond dat forbidden itemsets
met een hoge precisie in staat zijn om foutieve waarden te vinden, en
dat FBIMiner een goede runtime verwezenlijkt.

In Hoofdstuk 7 hebben we een methode voorgelegd voor het cor-
rigeren van data in de context van forbidden itemsets, gegeven onze
dynamische notie van datakwaliteit. Om te vermijden dat we for-
bidden itemsets telkens opnieuw moeten berekenen voor iedere
kandidaat correctie, introduceren we almost forbidden itemsets, wat
itemsets zijn die forbidden kunnen worden nadat een zeker aan-
tal correcties zijn toegepast door een correctie-algoritme. Om de
runtime nog verder te verbeteren, hebben we voorgesteld om cor-
recties uit te voeren in groepen van een geschikte grootte. Het
correctie-algoritme zelf past de dirty objecten aan door suggesties
te nemen van de “cleane” gedeelten van de data, die samen worden
gegroepeerd, waarna de mate van gelijkenis wordt bepaald op een
flexibele wijze, gebruik makend van linkage schema’s die in hiérarchis-
che clustering worden gebruikt. We bewijzen formeel dat de volledige
correctiemethode klopt. In de experimentele sectie hebben we de run-
time geévalueerd van het vinden van almost forbidden itemsets. We
hebben verder aangetoond dat de runtime van het correctie-algoritme
verbeterd kan worden door correcties in parallel uit te voeren, en dat
onze correcties de dirty data dichter brengen bij de grondwaarheid.
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Appendix to Chapter 4

A.1 Search Strategy

We have compared the traditional breadth-first approach to CFD discovery
with a depth-first version of the three algorithms. We show the obtained run-
times, in function of minimum support, in Figures A.1- A.4. The experiments
were run with a maximum antecedent size of 6. For the Itemset-first and FD-
First methodologies, we denote the strategy for the first level in capitals and
the strategy for the second level in lowercase, e.g., BESdfs on FD-First stands
for a breadth-first FD mining step and a depth-first itemset mining step.

For the Integrated method, the depth-first version is more efficient in all
cases, especially for lower support thresholds. The differences are smaller for
Itemset-First, but the combination breadth-first itemset mining and depth-
first FD mining generally performs slightly better than the others. In the FD-
first case, the different search strategies seem to have very little influence,
but the depth-first strategy for both steps is typically marginally faster than
the others. This leads to the implementation choices discussed at the begin-
ning of the experimental section.
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Figure A.1: Comparison of different search strategies for each of the three
methodologies (Mushroom).
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Figure A.2: Comparison of different search strategies for each of the three
methodologies (Nursery).
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Figure A.3: Comparison of different search strategies for each of the three
methodologies (Adult).



A.1. SEARCH STRATEGY

CreditCard: Integrated

CreditCard: Integrated

25 A 60
A BFS A BFS
201 B DFS| _ 50 B DFS
—~ [%]
3 8 40
S 151 g
= S 30
L 10 b
g .\.\. g 20 -
F =
51 10
07 T T T 07 T T T
5 10 15 0.1 0.5 1.0
Min. Support (%) Min. Support (%)
CreditCard: Itemset—First CreditCard: Itemset—First
80 -
A BFSbfs W DFSbfs 150 A BFSbfs W DFSbfs
@® BFSdfs B DFSdfs © BFSdfs B DFSdfs
_e0 M -
é \*\* 8100,
% —
< 401 RaY
(]
£ E 5]
20 =
01 01
5 10 15 0.1 05 1.0
Min. Support (%) Min. Support (%)
CreditCard: FD—First CreditCard: FD-First
50 - 200 1
A BFSbfs Wy DFSbfs A BFSbfs W DFSbfs
401 @ BFSdfs W DFSdfs @ BFSdfs W DFSdfs
)
S 30+
Re
g 20
E
10 A
O,

Min. Support (%)

01 05 1.0
Min. Support (%)

145

Figure A.4: Comparison of different search strategies for each of the three

methodologies (CreditCard).
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Appendix to Chapter 5

B.1 Proof of Proposition 4

We start by showing that X, locally explains a X, -valid set of modifications M
if and only if £, locally explains each m € M. Clearly, if £, locally explains M,
then, by definition, £, is locally explain m for every m € M. Suppose next that
¥, locally explains each m € M. We need to show that X, is an M’-repair expla-
nation for every subset M’ of M. We start by showing some useful properties.
First, by the definition of cfi¢(-), we have

o1 (Dairty) = | 059 (Datirey), (B.1)
meM’

Similarly, by the definition of o), (-) and the validity of M’, we have that

oy (Dairty ®M') = | Om(Dairey ©m). (B.2)
meM’

Furthermore, for a constant CFD ¢eq € Z¢, VIO(@eq, Dgirey © M') consists of
all tids corresponding to tuples ¢ in Dy, © M’ such that 7 [~ @eq. Since M’
contains at most one modification per tuple, this implies that either 7 is un-
affected by the modifications in M’, or ¢ is a tuple in D g;y, @ m for a (unique)
modification m € M’. Hence, in both cases, ¢ € VIO((peq,Ddirty@ m) for some
m € M'. In other words,

Vlo(q)eqdeirtyeB]V[/)g U VIO((Peq,Ddirty@m)-

meM’
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From this, we can infer that

V|O(E¢,dey@M/): U Vlo((Pedeirty@M/)
Peq€Lg

U VIO(@eq, Dyiry ®m)
Qeq€Lp,meM’

= |J VIO(Z¢,Dgiry @ m), (B.3)

meM’

N

where the first equality follows from the definition of VIO(-,-), the second
from our previous observation, and the third equality follows again from the
definition of VIO(-,-). We also note that

|supp(Z¢, Direy ®M')| = |supp(Zg, Dirry )|
+ Z (Supp(Z(PaDdirty@ m) —su pp(Z(PaDdil‘ty))a (B.4)
meM’
where each supp(Zg, D gjry ©m) — supp(Zg, Dyjrry) is simply —1 if the modifica-

tion reduces the support of X, and 0 otherwise. In a similar fashion, we have
that:

IVIO(Zg, Dairty & M')] = [VIO(Ep, D)
+ Y (IVIO(Zg, Dairty &m)| — IVIO(Eg: Detiry ). (B5)

meM’

Both Equations (B.4) and (B.5) follow again from the fact that £, consists
of constant CFDs and M’ contains at most one modification per tuple.

Given Equations (B.1), (B.2), (B.3), (B.4) and (B.5), we next verify the three
conditions of Def. 16 for M’.

> Condition (1). We need to verify that confep (£¢, Dirry) < confen (Zg, D giry

M'). Let o and v denote supp(Zy, Dgiry) and [VIO(Xg,Dgiry)|, Tespectively;
and let oy, and vy, denote supp(Zg, Dgiry @ m) and [VIO(Zy, D gjrry, & m)|, TE-
spectively. From Equations B.4 and B.5, we can infer that the confidence
confep (Zg, Dgirty © M') is equal to

c—v+2m€M/((0'm — Vi) — (0'+v))

O+ Ymem (Gm - G)

By assumption, confep (Z¢, Dgirty) < confen (Z¢, Dgirry ®m) for each m € M’. As-
sume thatm = (tid, B, v4,v.) and let s = D gjqy[tid] and ¢ = (D gy, © m) [tid].

Note that it is not possible that s = X, because by assumption,
VIO(Z¢, Dgirty) N Om(Dgirty) is non-empty and the only tuple correspond-
ing to om(Dgirry) is 5. We thus have that s [# Xy, which implies that there
exists a @eq € Ly such that s[X] = ceq. Due to the fact that the CFDs in X, have
mutually exclusive patterns ceq, @oq is unique. We next distinguish two cases,
depending on m:
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(a)

(b)

t[X] = ceq. In this case, for the confidence of X, to increase after modifi-
cation m is applied, the modification must be m = (tid, A, s[A],aeq). This
modification does not affect the support of ¢, brings down the num-
ber of violations of X, by one, and also does not affect supports of any
other CFD in £, (due to mutual exclusive c.q patterns). In other words,
in this case

Om =0
Vm =V —1.

1[X] # ceq. In this case, 1[X] and s[X] can only differ in a single attribute,
say B € X. Hence, m necessarily must be of the form (tid, B, ceq[B],[B]).
Furthermore, by assuming Z,-validity the set M" of modifications, we
again have two distinct options:

(b1) ¢[X] = coy for some eq’ # eq. Since L, is not violated, i.e., the set
VIO(Z, 6w (Dgirey @ m)) is empty, it must hold that ¢[A] = a.y. In
other words, tuple r no longer violated X, and hence the number
of violations is reduced by one. Moreover, the support of c.q is re-
duced by one while the support of ¢,y increases by one, meaning
that the support of £, remains identical. We thus have that:

Om =0
V=V —1.

(b2) There exist no c.y in Xy such that ¢[X] = c.y. By definition of Z,-
validity, this is only allowed if #[X] % r,, where 1, is the pattern of
the CFD ¢. In other words, the CFD no longer applies to the tuple.
Clearly, this reduces both the support of £, and the number of
violations by one:

Om=0—1
Vm=V—1.

In each of the cases (a), (b1) and (b2), the number of violations decreases
with 1. Hence,

Vlo(z(vadirtyEBM/) = VIO(Z(p,Ddirty) - IM/|

Let A(oy) denote the reduction in support of X, i.e., the number of modi-
fications belonging to case (b2), with A(oy) < |M’|. We can then write the
confidence confep (Xg, Direy & M') as:

supp(Z¢, Ddirey) — [VIO(Zg, Dairey) |+ |M'| — A(ohr)

(B.6)
supp(Z¢, Ddirty) — A(Owr)

For A(oy,) = 0, expression B.6 is equal to

supp(Xg; Dirty) — [VIO(Zg, Direy) | + M|
SUPP(EgoaDdirty) ’
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and for any A(oy,) > 0, expression B.6 is greater than or equal to

supp(Zg, Dirty) — [VIO(Zg, Dirty)|
su PP(ZanDdirty) —A(oyr)

)

both of which are obviously strictly greater than

su pp(zgo ) Ddirty) - |V|O(E§07Ddirty) |
supp(Ze, Ddirty)

confp (27 Ddirty) =

for any M’ consisting of at least one element. It follows that condition (1) is
satisfied.

> Condition (2). We need to verify that
VIO(Z¢, D girey) N Gzt/ilc’l (Ddirty)

is non-empty. From Equation B.1, this is equivalent to requiring

U VIO (Z(p D dirty) n O-;E:id (D dirty)
meM’

to be non-empty. This follows from the fact that £, satisfied condition (2) for
everyme M’

> Condition (3). We need to verify that
VIO(Zg, o (Ddirty ®M'))
is empty. Note that for constant CFDs this is equivalent to checking whether
VIO(Zg, D irty ®M") N Opyr (D giry @ M)
is empty. Using Equations B.1 and B.3, we know that this set is included in

U (VIO(Zq)deirty@m) N Gm(Ddirty@m)a
meM’

which is known to be empty, due the fact that X, satisfies condition (3) for
each m € M'. It follows that

VIO(ZanDdirty@M/) Non (Ddirty@M/)

is empty, and hence condition (3) is satisfied.

B.2 Proof of Proposition 5

We prove this by showing for any set of modifications M C 9, if X, is an M-
repair explanation then ¢ is also an M-repair explanation.

> Condition 2: VIO(¢, D gjry) N ojid (Dgirty) is not empty:
This follows from the fact that any violation of X, is also a violation of ¢.
Indeed, let Peq = (X — A, (ceq,deq)) be a constant CFD violated in a tuple ¢ €
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Dgirty- Then ¢[X] = ceq and ¢[A] # aeq. By construction of £, it must hold that
there exists a tuple 1" € D iy such that #'[X] = ceq and #'[A] = aeq. Clearly, ¢
and ¢’ together violate the CFD ¢. It follows that VIO(Zg, D gijrsy) N ol (Ddirty)
is included in VIO(@, D gjrry) N 04 (Direy)- Since the former is non-empty, so
is the latter.

> Condition 3: VIO(¢, oy (D gjry © M)) is empty

We show this by contradiction. Assume there exist two tuples ¢,/ €
oum(Dgirry © M) that violate ¢ : (X — A, (15,_)), i.e., t[X] = ¢'[X] and t[A] # ¢'[A].
By construction X, there must exist some @eq : (X — A, (Ceq,eq)) such that
Ceq = t[X] = 1'[X]. Since @, is not violated in oy (D girry S M), it must therefore
also hold that 1[A] = 1'[A] = aeq, contradicting the assumption that t[A] # ¢'[A],
and hence no such ¢ and ' violating ¢ can exist in 6y(Dgirr, © M). It follows
that VIO(Zy, om (Dgirty © M)) is empty implies that VIO(¢, oy (Dgirty © M)) is
empty.

> Condition 1: conf,:D((p7Dd1~Hy69M) > coanD((p,Ddirty)
In the proof of Proposition 4 (expression B.6), it was shown that the confi-
dence X in Dgjry @ M is equal to:
SUPP(Z(paDdirty) - |V|O(Z¢7Ddirty)| + [M| —A(om)
SUPP(ZgoaDdirty) —A(om)

Where A(oy) denotes the reduction in the support of X, as a result of the
modifications M, with A(cy) < |M|.

Recall that the confidence of a CFD is defined based on a set D/dirty’ con-
taining the minimum amount of tuples that need to be altered or removed
from Dy, for ¢ to be satisfied. Since the union of constants is constructed
based on the most frequent value in each equivalence class, |D/;, . | is equal

irty‘
to [VIO(Z¢, Dgirry)|- Indeed, such a minimal set D’dl.rty contains exactly those

tuples that violate the constant CFDs in X,,. We thus have that:

supp(@, Direy) — [VIO(Zg, Dyirey )|
supp(@, Direy)

Moreover, since every modification m that is locally explained by X, must
occur in a tuple violated by X, it follows that every such modification per-
tains to the set D’dmy. Clearly, when the tuple is modified to satisfy some ceq €
Xy, it now belongs to the most frequent value in its equivalence class, and is
no longer a part of Dﬁﬁny. It follows that |(D giryy ® M)'| = [VIO(Z¢, D girry) | — |M|.

The support of the CFD X, is reduced in only one case, namely when the
modification is such that 7, no longer applies, i.e., t[X] % 7,, where ¢ is the
modified tuple. It is clear that such a modification also reduces the support
of ¢. Hence, supp(@, D gjrty ® M) = supp(@, Dirry) — A(Om)-

We thus have that:

CoanD((PaDdirty) =

CoanD((PaDdirty@M) =
supp(@, Ddirty) — A(om) — [VIO(Zg, Direy)| + M|
supp(@, Dirry) — A(Om)
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Analogous to the proof of Proposition 4, it follows that

confep (@, Dirty ® M) > confep (@, Diry). U

B.3 Proof of Proposition 6

Let m = (tid, B, vg,v:) € M, let s = D gjyytid] and t = (D gjry ©m)[tid]. Let £y be

the union of constant CFDs constructed from ¢ = (X — A, (z,,_)). We only

deal with the variable CFD case here, the constant CFD case is similar (and
in fact easier).

We first show that the conditions in Proposition 6 are sufficient for
X, to locally explain m. To this aim we verify that conditions (1), (2) and (3)
in Definition 16 are satisfied.

If there exists a constant CFD @, = (X — A,(Ceq,leq)) € Ly such
that s[X] = ceq and s[A] # aeq, then clearly X, is violated on s, and
VIO(Zg, Dirty) N 0 (Dgirry) is not empty, satisfying condition (2).

We now verify that conditions (1) and (3) are satisfied for each of the 3
cases in which X, is defined to explain m:

Case 1. Assume t[A] = a.q, i.€., m changes s into the tuple 7 such that ¢ |= @cq.
Since @ is the only CFD in X, that applies to tuple ¢, by construction
of Xy, it follows that X, is satisfied in the modified tuple, and hence
VIO(@, 0m (D gjrey ®m)) is empty, satisfying condition (3) in Definition 16.
Moreover, a violation has been resolved, while the support of X, re-
mains unchanged. Indeed, s supported ceq in Dy and ¢ remains to
do so in D gjr, ©m. We thus have that

confrp (Zg, Dgjrey B m)
~ supp(Zg, Dirty D m) — [VIO(Eg, Dgirey ©m)|
B supp(Zg, Dgiry Bm)
. SUPP(E¢aDdirty) - (‘VIO(Eﬁv’Ddirty)‘ -1)
B Supp(z(vadirty) .

Hence, also condition (1) in Definition 16, namely
confep (Zg, Dirty ®m) > confep (Eg, Dgiry)

is satisfied.

Case 2. Assume that there exists another ¢, € X, such that ¢[X] = ¢,y and
t[A] = aey, i.e., t satisfies some other CFD in X,. Again, ¢,y is by def-
inition the only CFD in X, that applies to tuple 7, implying that X, is
satisfied in the modified tuple. Hence, VIO(@, 6w (Dgijry ® m)) is empty,
satisfying condition (3). We have that

SUPP(Peq; Ddirey M) = supp(Qeq; Ddirey) — 1,

and
SUpp((Peq’aderty@m) = SUpp(q)edeirty) +1,
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meaning that the support of £, again remains unchanged. Since one
violation has been resolved, the analysis of confidence is identical to
the previous case, and hence condition (1) in Definition 16 is also satis-
fied.

Case 3. Finally, assume that¢[X] %1, i.e., ¢ no longer applies to r. It trivially
follows that VIO(¢, 6w (Dgirty ® m)) is empty, satisfying condition (3).
The modification has resolved a violation, while the support of X, has
been reduced by one. We thus have that:

confep (Zg, Dirty & m)
SUPP(Zq),derty@m) - |V|O(Z<P7Dd1’rty@m)‘
supp(Ze, Dgiry D)
supp(Zg, Dairy) + 1 — ([VIO(Zg, Dyirey)| — 1)
supp(Zg, Dairey) + 1
supp(Zg, Dairy) — (|[VIO(Zg, Dairey)|) +2
supp(Zg, Ddirty) + 1 ‘

And hence, it holds that
confep (Zg, Dirty ®m) > confep (Eg, Dirry)-

From the above, we conclude that if the conditions in Proposition 6 are sat-
isfied, then the three conditions in Definition 16 are satisfied, and thus X,
is a m-repair explanation, or equivalently for single modifications, X, locally
explains the modification m.

We next verify that the conditions in Proposition 6 are also necessary
for X, to explain a modification m.

If there does not exist a constant CFD @eq = (X — A, (Ceq;teq)) € Ly sSuch
that s[X] = ceq and s[A] # aeq, then by construction of Xy, the tuple s does not
violate any CFD in Z,. It follows that VIO(Zy, D gjry) N otid (Dgirty) is empty,
and hence condition (2) is not satisfied. Therefore, £, cannot locally explain
m.

Alternatively, assume that there does exist a constant CFD ¢.q = (X —
A, (Ceqsleq)) € Xy such that s[X] = ceq and s[A] # a.q. We show that, if none of
the three cases in Proposition 6 hold in which X, is defined to explain m, then
condition (3) in Definition 16 cannot be satisfied. We distinguish between
two cases, depending on the attribute B which was modified:

e Assume B = A, i.e., the modification relates to the consequent of the

CFD ¢. In this case, only case (1) is relevant. If this does not hold, then
t[A] # a.q. However, no changes were made to the other values in ¢,
meaning that ¢, still applies to ¢, and is thus still violated. It follows
that X, is violated after the modification, and VIO(@, 6w (D giry, © m)) is
not empty. Hence, X, does not locally explain m.

e Assume B € X, i.e., the modification relates to the antecedent of the
CFD ¢. Both scenarios (2) and (3) are relevant. If neither scenario
applies, then 7[X] < ,, and thus the CFD ¢ still applies. It remains to
show that the modified tuple r necessarily violates X,. Note that, since
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mis assumed to be X-valid, there must exist exactly one CFD @,y = (X —
A, (Ceq',teq')) € Ly such that t[X] = c.y. However, since scenario (2) does
nothold, t[A] # ay. Clearly, t violates ¢/, and hence VIO(, 6w (D gjry ©
m)) is again not empty, violating condition (3).
From the above, it follows that if the conditions in Proposition 6 do not apply,
then X, does not locally explain m. This proves the proposition. O

B.4 Number of Global Explanations

In Table B.2, we show the number of candidate global explanations found on
the various datasets. These numbers were obtained for 1 modification, 50%
of modifications, and all modifications. We see that the numbers are high,
showing the need for a scoring function to determine the best explanation.
Note that the 0 on SP500 for 1 modification is because the target explanation
(and many others) did not meet the support/confidence thresholds.

B.5 Additional Details On Experiments

We show the CFDs used in the experiments in Table B.1.

Dataset CFDs

(viscera, whole, rings=10) — height
Abalone (whucked, whole, height, diameter) — rings

(shell, whole, length, rings=9) — height

(maritalstatus=Never-married, race=White,
sex=Male, relationship=Own-child,
age=18-21) — income=LessThan50K

Adult (maritalstatus=Never-married, age=18-21,
education=HS-grad) — income=LessThan50K

(education=Some-college,
relationship=Husband) — sex=Male

(season, position, surname,
stadium=King Power Stadium) — team

Soccer (city, birthplace, season=2013) — position
(position, surname, city=Solna) — season
(g ed —f
SP500 (g f,b)—~d
(g f,c)—d

Table B.1: CFDs used in the experiments.



B.5. ADDITIONAL DETAILS ON EXPERIMENTS 155

Table B.2: Number of candidate global explanations for various numbers of
modifications.

Dataset CFD Nr. Modifications Nr. Global Explanations

1 144
1 41 1237
83 1141
1 120
Abalone 2 41 1078
83 1289
1 153
3 41 775
83 774
1 349
1 244 2625
488 1578
1 650
Adult 2 244 2602
488 1686
1 455
2 244 5753
488 2571
1 218
1 1000 2542
2000 594
1 212
Soccer 2 1000 2266
2000 868
1 337
3 1000 2643
2000 723
1 0
1 612 89
1225 82
1 0
SP500 2 612 121
1225 102
1 0
3 612 118
1225 101
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Appendix to Chapter 7

C.1 Continuation of the Proof of Proposition 13

We present the full case analysis underlying Proposition 13. Let (A7,A;,Ap ;)
be such that A; is either —1 (decrement), 0 (no change), or +1 (increment),
and similarly for A; and A\ ;. We need to show that for all triples (A;,A7,Ap ),

|D| x (supp(I,D) +Ay)
(supp(4,D) +Ay) x (supp(I\J, D) +Ap ;)

is either larger than

|D| x (supp(1,D) —1)
supp(J,D) x (supp(I\J,D) —1)’

which corresponds to the triple (—1,0,—1); or larger than

|D| x supp(1,D)
(supp(4,D) +1) x supp(I\J, D)’

which corresponds to the triple (0,+1,0).

Although there are 3° = 27 different triples (A1,A7,Ap ) we can immedi-
ately rule out certain combinations which are impossible in practice.

Firstly, if A; =“+17, then neither A; nor Aj; can be “~1”. Clearly, if a single
modification reduces the support of J or I'\ /, the modified object no longer
contains these itemsets, and hence cannot contain a new instance of their
superset /. Moreover, at least one of A; or Ap; must be “+1” for the sup-
port of / to increase. This rules out 6 cases: (+1,0,0), (+1,0,—1), (+1,—1,0),
(+1,+1,-1), (+1,—1,+1) and (+1,—1,-1).

157
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A similar argument can be made when A; =“—1", in which case neither
Ay nor Ap; can be “+1% and at least one of A; or Ay ; must be “—1” for the
support of I to decrease. This again rules out 6 cases: (—1,0,0), (—1,0,+1),
(=1,+1,0), (=1,—1,41), (=1,+1,—1) and (=1,+1,+1).

Furthermore, if A; =“0" then A; and A, cannot both be “+1” or “~1”.
Indeed, if a modification were to introduce (resp. remove) an occurence of
both J and 7'\ J, then clearly it must also introduce (resp. remove) an occur-
rence of their union, JU (I\J) = I, which contradicts the fact that A; = 0”. This
rules out 2 more cases, (0,+1,+1) and (0,—1,—1).

Finally, the case when (A;,A;,Ap ;) = (0,0,0) is not very interesting since
it does not change the lift, and will always end up being higher than any
modification that reduces the lift. We can therefore ignore this in our case
analysis.

This leaves us with the following 12 cases:

(1) (0,0,+1) (2) (0,+1,0)
(3)  (0,0,-1) 4)  (0,-1,0)
(5) (0,—1,+1) (6) (0,+1,—1)
(7) (+1,0,+1) (8) (+1,+1,0)
9) (+1,4+1,41) (10) (—1,0,—1)
(11) (—1,—1,1) (12) (—1,—1,-1)

We will show that cases (2) and (10) lead to a maximum possible decrease
in lift. Furthermore (2) and (10) are incomparable, i.e., depending on the
instance and itemsets under consideration, (2) may lead more decrease in
lift than (10), or vice versa, after one modification is made to D. In fact, we
will show that cases (1)-(12) form two distinct partial orderings. Let (i) < (j)
denote that (i) leads to more (or equal) decrease in lift than (j):

@ S <0 <9 <@ <™
<6 <06 (%)
(10) <11 €(12) €38 <@

We will now prove the inequalities that underlie the orderings of the cases.
Recall that we assumed that supp(/\ J,D) = supp(J, D) + a for some constant
a>0.
> Consider cases (2) and (1). To show that (2) < (1), we verify that

|D'| x supp(I,D) o |D'| x supp(I,D)
(supp(J,D)+1) x (supp(J,D)+a) supp(J,D) x (supp(J,D) +a+1)

holds. It is a straightforward exercise to check that this inequality always
holds. Indeed, it boils down to verifying that

(supp(J,D) + 1) x (supp(J,D) + a) = supp(J,D) X (supp(J,D) +a + 1),

which in turn is equivalent to checking that

(supp(J,D))2 + (a+ 1)supp(J,D) +a > (supp(J,D))2 + (a+ 1)supp(J, D).
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This always holds since a > 0. Hence, it holds that (2) < (1).
> Cases (1) and (9): To show that (1) < (9) we verify that

|D'| x supp(1,D) o |D'| x (supp(1,D) +1)
supp(J,D) x (supp(J,D)+a-+1) ~ (supp(J,D)+1) x (supp(J,D) +a+1)

holds. This is equivalent to checking whether

supp(l,D) o supp(l,D) + 1
supp(/,D) ~ supp(J,D)+1’

or
supp(/,D) x (supp(J, D) +1) < supp(J,D) x (supp(I,D) +1)

is true. This holds since supp(7,D) < supp(J, D).
> Cases (9) and (8): To show that (9) < (8) we verify that

|D'| x (supp(I,D)+1) o |D'| x (supp(1,D) +1)
(supp(J,D) + 1) x (supp(J, D) +a-+1) ~ (supp(J,D)+1) x (supp(J,D) +a)

holds. This follows immediately from the fact that

1 1
< .
supp(J,D)+a+1 ~ supp(J,D)+a

> Cases (8) and (7): To show that (9) < (8) we verify that

|D'| x (supp(Z, D) +1) < |D'| x (supp(Z, D) +1)
(supp(J,D) +1) x (supp(/,D)+a) supp(J,D) x (supp(J,D)+a+1)’

holds. This pours down to verifying that
(supp(/,D) + 1) x (supp(J, D) + a) = (supp(J,D) x (supp(/,D) +a + 1),
which in turn is equivalent to checking that

(supp(J,D))2 + (a + 1)supp(J,D) +a > (supp(J,D))2 + (a + 1)supp(J,D)

holds. This follows again from the fact thata > 0.
> Cases (2) and (6): To show that (2) < (6) we verify that

D' x supp(/, D) o D' x supp(/, D)
(supp(J,D) + 1) x (supp(J,D) +a) ~ (supp(J,D)+1) x (supp(J,D) +a—1)

holds. This is equivalent to checking
(supp(/, D) + 1) x (supp(J,D) +a) = (supp(J,D) + 1) x (supp(J,D) +a—1),
or, in other words, whether

(supp(J,D))2 + (a+ 1)supp(J,D) +a > (supp(J,D))2 +asupp(J,D) +a— 1,
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holds. Clearly, a+ 1 > a and @ > a — 1 and hence this inequality is trivially
satisfied.
> Cases (6) and (5): To show that (6) < (5) we verify that

|D'| x supp(/, D) o |D'| x supp(, D)
(supp(J,D) +1) x (supp(J,D) +a—1) ~ (supp(J,D) — 1) x (supp(J,D) +a+1)

holds. This pours down to checking

(supp(J, D) +1) x (supp(J, D) +a—1) > (supp(J,D) — 1) x (supp(J, D) +-a+1),
or equivalently, whether

(supp(],D))2 +asupp(J,D)+a—12= (supp(J,D))2 +asupp(J,D) —a—1

holds. This inequality is satisfied because a > 0 and hence a > —a.
> Cases (10) and (11): To show that (10) < (11) we verify that

|D'| x (supp(Z,D) — 1) o D] x (supp(Z,D) — 1)
supp(J, D) x (supp(/,D)+a—1) ~  (supp(J,D)—1) x (supp(J,D) +a)

holds. This is equivalent to checking

supp(J,D) x (supp(J,D) +a — 1) > (supp(J,D) — 1) x (supp(J,D) + a)
or, whether

(supp(J,D))* + (a — 1)supp(J,D) > (supp(J,D))> + (a — 1)supp(J, D) — a

is true. Again, this follows from a > 0 and hence 0 > —a.
> Cases (11) and (12): To show that (11) < (12) we verify that

D x(supp(LD) = 1) _ D x(supp(LD)~ 1)
(supp(J,D) — 1) x (supp(J,D) +a) ~ (supp(J,D)—1) x (supp(J,D) +a—1)

holds. We can equivalently check

(SUpp(J,D) - 1) X (SUpp(J,D) +a) = (SUpp(J,D) - 1) X (SUpp(J,D) +a— 1)7

or whether

(supp(],D))2 + (a—1)supp(J,D) > (supp(J,D))2 +(a—2)supp(J,D)—a—+1

is true. This inequality holds since supp(J,D) > 1 and a > 0. Indeed, from
these we have that (a —2)supp(J,D) —a+1 < (a — 1)supp(J, D), from which
the inequality follows.

> Cases (12) and (3): To show that (12) < (3) we verify that
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D' x (supp(/,D) — 1) < |D'| x (supp(/, D))
(supp(J,D) — 1) x (supp(J,D) +a—1) ~ supp(J,D) x (supp(J,D) +a—1)

holds. It suffices to show that

supp(/,D) —1 _ supp(/,D)
supp(J,D) —1 ~ supp(J, D)

which holds since supp(Z,D) < supp(J, D).
> Cases (3) and (4): To show that (3) < (4) we verify that

|D'| x supp(1,D) 3 |D’| x supp(I, D)
supp(/,D) x (supp(J,D)+a—1) ~  (supp(J,D)—1) X (supp(/,D) +a)

holds. This is equivalent to checking

supp(J,D) x (supp(J,D) +a — 1) = (supp(J,D) — 1) x (supp(J,D) + a)

or

(supp(J,D))* + (a — 1)supp(J, D) > (supp(J,D))* + (a — 1)supp(J,D) — a

holds. This follows immediately from a > 0 and hence 0 > —a.

The previous case comparisons prove the partial orderings (&). It re-
mains to show that (2) and (10) are not comparable in general. We show
this by providing counter examples. Assume first that (2) > (10). However,
when choosing supp(Z,D) =2, supp(J,D) = 2 and a = 1, we have that:

ID'|x2 |D|x1
3x3 2x2

Which contradicts the assumption. Hence, (2) # (10).
Assume next that (2) < (10). However, when choosing supp(/,D) = 2,
supp(J,D) =2 and a = 3, we have that:

|D'| x 2 - |D'| x 1
3x5 2x4

Which again contradicts the assumption. Hence, (2) £ (10), which proves
that (2) and (10) are not comparable. This concludes our proof that (2) and
(10) are indeed the two cases that cause a maximum reduction in lift.

C.2 Continuation of the Proof of Proposition 19

We expand on the proof given for Proposition 19, showing that

|D| x supp(J,D;_,)
supp(S,D;_,) x supp(J\S,D;_,)
_ |D| x supp(J,D;_;) +1
(supp(S,D;_;)+1) x (supp(J\S,D;_,)+1)’
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holds for all 7 < 3 /4.
The implication is trivially satisfied if
|D| x (supp(J,D_,) +1)
(supp(S,D,_,)+1) x (supp(J\S,D}_,)+1)
D] x supp(J, D}_,)
~ supp(S,D;_,) xsupp(J\ S, D, )’

We therefore consider the case when the previous inequality is not sat-
isfied. In other words, we only need to consider the case where the lift
drops after a modification. To simplify notation, we let o; = supp(J,D;_,),
os = supp(S,D;_;) and oy g = supp(J \ S,D;_;). We therefore consider the
case when

D|(os+1) |D| x oy
(os+1)x(ops+1)  osxopg

(C.1)

holds. We now proof the proposition by contradiction. That is, suppose that

there exists a 7 < 3/4 such that 7 < C‘,IS) LXG‘;\JS <Gs‘fl);(f(’;: \IS) ST

We start by eliminating o; from the latter expression. To this aim, observe
that (C.1) implies that

D _Iplxo
Os+ops+1 ~oOsxopg’

or, equivalently, that
Og X O, J\S

—— <oy C.2
ost+ops+1 / (©2)

Now, observe the following:

> |D|(o;+1)
~ (os+1)x (ops+1)

ID| x (mﬂ)

N GS+6]\S+1
(os+1)x (ops+1)

Oy X0\ g+0s+0)g+1
|D| X J\S J\S
05+GJ\S+1

(os+1)x (ops+1)

(os+1)x(aps+1)
|D| x 65+GJ\S+I

(os+1)x (ops+1)
o
Os+0ops+1

(Using (C.2))

From this, we may infer that @ —1 < o5+ opg. Furthermore, due to the
inclusion-exclusion principle, it holds that

os+ops—|D[ <oy
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And thus, we can lower bound oy in terms of 7:

Dl

—-1-D|<o
T

On the other hand, Proposition 10 gives us an upper bound on the sup-
port of any forbidden itemset. If itemset J/ becomes t-forbidden in Dj, then
it must hold that:

2 I 1

We can now use both the upper and lower bound on oy to derive a lower
bound on 7:

D 2 11
D1 DX (D=2 5 - o)
- Dl D] % ( 2

_2p| 1

22Dy - - 1D| -1
or,
D 2|D 1 1
Pl 2Pl [T T
T T T T

which in turn holds when

D) 1
0< = -2/D - 7—2 ——).
|\v Va7

Hence, we may infer that 2,/ % 1 <1 Squaring both sides and multiplying
by 72, we obtain that4(1 —7) < 1 and thus 3/4 < 7. This contradicts our earlier
assumption that 7 < 3/4. Hence, no J, S and J \ § exist such that 7 < 12X

GsXGJ\S
|Dl(oy+1) ;
but (cs+1>x(JoJ\5+1) < 7 hold, for 7 < 3/4, as desired.
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