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Abstract 81 
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly evolved from a 82 
research tool to a clinical application for the diagnosis and management of tuberculosis and in 83 
public health surveillance. This evolution has been facilitated by the dramatic drop in costs, 84 
advances in technology, and concerted efforts to translate sequencing data into actionable 85 
information. There is however a risk that, in the absence of a consensus and international 86 
standards, the widespread use of WGS technology may result in data and processes that lack 87 
harmonisation, comparability and validation. In this review, we outline the current landscape of 88 
WGS pipelines and applications and set out best practices for M. tuberculosis WGS, including 89 
standards for bioinformatics pipelines, curated repository of resistance-causing variants, 90 
phylogenetic analyses, quality control processes, and standardised reporting. 91 
 92 
1. Introduction 93 

Mycobacterium tuberculosis complex (Mtbc) pathogens are collectively the top infectious 94 
disease killer globally, causing 10 million new tuberculosis (TB) cases annually1. Increasingly, 95 
new TB cases are already resistant to rifampicin and isoniazid (termed multidrug resistance; 96 
MDR-TB), the key first line drugs1. Tackling the spread and drug resistance burden of this 97 
pathogen requires concerted global effort in prevention, diagnosis, treatment and surveillance. 98 



Over the past decades, research and public health practices, including contact investigation and 99 
phenotypic methods for drug susceptibility testing (DST), have been complemented by 100 
molecular approaches. These can now provide rapid diagnosis, drug susceptibility profiling, and 101 
an understanding of Mtb transmission dynamics2,3. 102 

Whole genome sequencing (WGS) approaches use DNA sequencing platforms to reconstruct 103 
the  complement of DNA found inside a cell. The small (~4.4Mb), single chromosome genome of 104 
Mtbc strains4 lends itself well to WGS approaches. . Rapid, reliable, and increasingly affordable 105 
WGS technologies, can now guide all components of TB control: diagnosis, treatment, 106 
surveillance and contact tracing5,6 (Fig. 1). Individual (sub)species of human and animal Mtbc 107 
lineages can be identified,7–9 and drug resistance profiles can be predicted, especially well for 108 
1st line drugs2, enabling prompt, appropriate initiation of treatment and monitoring the 109 
acquisition of drug resistance10. TB outbreaks can be identified with high resolution11–13, 110 
including across borders,14,15 and diseases control measures implemented. The analysis of the 111 
emergence, spread, genetic makeup, and evolution of particular outbreak strains, e.g. highly 112 
resistant or highly virulent clones, can enable the development of targeted measures16–18.  113 

WGS-based approaches are quickly moving from research-only to clinical care and public health 114 
applications. The World Health Organization (WHO) is already using WGS for drug resistance 115 
surveillance19 and is scheduled to evaluate sequencing technologies for routine genotypic drug 116 
susceptibility testing in 20191. As WGS-guided individualized treatment20 and WGS-based 117 
surveillance systems15 are being implemented in several countries (e.g. the UK and the 118 
Netherlands) with more to come, accurate methods and standardized reporting are vital. At 119 
present, multiple WGS data analysis solutions exist that vary widely in scope, pipelines, and 120 
output formats, with little standardisation amongst them21, making cross-comparisons and 121 
rigorous validation of these pipelines difficult. Because clinical decisions such as the effective 122 
drugs that can be included in a patients’ regimen may be influenced by differences in the 123 
bioinformatic analysis, robustness of the pipeline used in clinically-relevant predictions tools is 124 
critical. 125 

In this review, we present the current state of the art for the three core Mtbc WGS tasks: drug 126 
susceptibility profiling, transmission cluster detection and subspecies/lineage identification 127 
(referred to as strain typing). We highlight those places where a general agreement in the 128 
analysis parameters or interpretation of the results has been already reached by the 129 
community. Alternatively, we discuss those items where there is still open discussion about the 130 
best practices and will require more effort to reach a consensus in the future. 131 

  132 
2. State of the art 133 
The standard workflow for WGS analysis of Mtbc strains is outlined in Figure 2. It involves 134 
culturing sputum specimens on solid (Löwenstein–Jensen) or liquid (Mycobacteria Growth 135 
Indicator Tube) media, extracting DNA from Mtbc strains, library preparation, and sequencing 136 
by short read technologies (e.g. Illumina platforms)22. The complete Mtbc WGS analysis pipeline 137 
involves several key steps such as input data validation and quality control followed by mapping 138 
to a reference genome (often H37Rv) and detection of genomic variants such as single 139 
nucleotide polymorphisms (SNPs) and insertion/deletions (indels). Numerous resequencing 140 



pipelines for the Mtbc currently exist with currently no single ‘gold standard’. These pipelines 141 
typically exclude about ~10% of the genome because erroneous mapping in certain regions 142 
result in false variant calls (PE/PPE gene families, other repetitive genes, mobile elements4) and 143 
apply various criteria, such as read depth, base quality, and strand bias to filter out false 144 
positive variants. Finally, based on the detected variants, several tasks can be performed 145 
including (but not limited to) prediction of drug resistance and susceptibility profiles, strain 146 
typing, and identification of transmission clusters. 147 
 148 
Due to the clonality of their genomes and their inability to undergo lateral gene transfer, Mtbc 149 
strains acquire drug resistance primarily through variants in core genes or promoters23,24. Drug 150 
resistance and susceptibility profiles can be determined with high accuracy for many drugs used 151 
for the treatment of TB by comparing variant calls to lists of high-confidence resistance 152 
conferring variants. These lists have been established primarily using genotype-phenotype 153 
associations identified from statistical analyses of large sets of clinical WGS data25,26 (Fig. 3). A 154 
prime effort in the construction of these lists is the Relational Sequencing Tuberculosis Data 155 
Platform (ReSeqTB, http://www.reseqtb.org), where researchers from around the world can 156 
contribute data27. This database contains curated, aggregated genotypic and phenotypic 157 
information on global Mtbc isolates accompanied by metadata including clinical outcome. 158 
Another important initiative is the Comprehensive Resistance Prediction for Tuberculosis: an 159 
International Consortium (CRyPTIC) project. CRyPTIC aims to better understand the relationship 160 
between genetic variants and minimum inhibitory concentrations (MIC) for most drugs used for 161 
TB treatment2. By comparing the SNPs present in a sequenced isolate to these lists, WGS can 162 
not only predict resistance but also 1st line pan-susceptibility under specific conditions2, 163 
replacing the need for phenotypic testing.  164 
 165 
Similarly, strain classification of the seven major human-associated lineages, many of the 166 
animal-associated lineages, and their sub-lineages, can be derived directly from variant calls 167 
using lists of lineage-defining SNPs7–9. This is important for understanding population structure 168 
and potential phenotypic differences between lineages28 and comparing isolates on the global 169 
level18,29.  170 
The genomic data for a set of isolates can also be used for surveillance and transmission 171 
investigations. For this, the most common approach is to use a SNP cut-off-based clustering 172 
although genome-based multi locus sequence typing (MLST) has shown comparable results30,31. 173 
The SNP cut-off approach starts by constructing a list of high-confidence, unambiguous SNPs 174 
found in each isolate, often excluding indels and drug resistance related sites. This filtering is 175 
important when predefined SNP distance thresholds are used to cluster strains and define 176 
recent transmission chains. Given the very low genetic diversity of the Mtbc, thresholds of 5 or 177 
12 SNPs are frequently used to suggest epidemiological links, although these thresholds were 178 
calibrated in low incidence settings with a diverse strain population32. It is not yet clear if a 179 
single threshold can be employed to detect epidemiologically linked cases in all timeframes and 180 
contexts. The MLST approach employs a predefined set of shared genes and assigns a number 181 
to each allele sequence identified for each gene. Coded allele combinations can be compared 182 
between strains to detect potential transmission clusters. Two schema exist for this approach: 183 
the core genome (termed cgMLST; 2891 genes covering 2.86 million bases31) and an extended 184 



pan-genome including 1141 accessory loci11 (termed wgMLST). These WGS-based approaches 185 
have been shown to perform better than contact tracing and with higher resolution than 186 
classical approaches such as MIRU-VNTR12,13,30,31,33. 187 
 188 
This currently recommended data processing workflow (Fig. 2) leading to SNP-based drug 189 
resistance profiling, transmission clustering at a given SNP cut-off and strain profiling using 190 
lineage-defining SNPs is often robust and reliable. However, steps towards standardisation and 191 
validation of this workflow are required to ease integration into current clinical and public 192 
health initiatives. 193 
 194 
Currently, two Mtbc-specific pipelines are available, which perform multiple core tasks in single 195 
install set-up to produce genetic variant calls from raw Illumina sequence data (MTBseq34 and 196 
UVP-ReSeqTB35). Other pathogen-agnostic pipelines can be used with an Mtbc-specific 197 
reference genome and drug resistance database to achieve similar results33,36–38. Numerous 198 
custom-built pipelines also exist8,39–46, often incorporating similar tools for mapping and variant 199 
calling with additional accessory tools and in-house scripts to parse and refine outputs. A non-200 
exhaustive list of such pipelines is given in supplementary table 1 to demonstrate the range of 201 
tools and settings routinely implemented. Lastly, pipelines specific for a single task such as drug 202 
resistance prediction25,47–51 or strain typing7,50 are available and have been comprehensively 203 
compared elsewhere52–55.  204 
 205 
3. Mtbc WGS validation and standardisation  206 
Before a workflow can become a gold standard, the validity of that workflow needs to be 207 
ensured for its intended uses. For Mtbc WGS workflows, this essentially means ensuring 208 
virtually every variant that is reported is truly present in the isolate (validation) and each 209 
pipeline calls the same variants (standardisation). Ideally, all steps of the workflow, from DNA 210 
extraction to sequencing, data analysis and reporting, should be standardised (or at least 211 
comparable) and well documented, and an external quality assessment (EQA) program should 212 
be in place. Efforts to standardise and validate the upstream (pre-bioinformatics pipeline) steps 213 
have been undertaken to great effect22,54. Pipeline standardisation could be achieved through 214 
the use of a single pipeline in all settings or through validation with rigorous testing and 215 
convergence on a defined outcome for all pipelines developed. Since multiple pipelines have 216 
already been implemented (e.g. MTBseq34 for the EUSeqMyTB consortium and the Unified 217 
Variant Pipeline35 for ReSeqTB) (supplementary table 1), agreement on validation criteria seems 218 
more realistic. Since WGS-based diagnostics present a potential paradigm shift for regulatory 219 
approvals, there is an urgent need to understand how to validate and standardise these 220 
multiple pipelines for clinical use56. In 2016, the US Food and Drug Administration (FDA) 221 
released draft guidelines on sequencing-based infectious disease diagnostics and bodies such as 222 
the WHO and ECDC are taking steps towards international standardisations of Mtbc WGS15,22,57. 223 
 224 

a. Technical validation and external quality control of Mtbc WGS  225 
First, the extraction of DNA needs to meet minimal standards as defined for a given WGS 226 
instrument22. Next, the pipeline to convert the raw sequencing reads into accurate variant calls 227 
should be technically valid, i.e. call the correct variantss. While there is much debate about the 228 



reference standard to be used for technical validation of WGS pipelines, currently this is best 229 
undertaken by using short read datasets derived from isolates with known complete genomes 230 
(e.g. from long read sequencing)58. Mapping these read sets to  their respective assembled 231 
genomes allows to calculate the rate of false positive and negative SNPs called by the pipeline 232 
under consideration. Ideally, to promote interoperability and ease the verification of 233 
bioinformatics protocols, a standard reporting format such as a BioCompute Object (BCO) to 234 
record all thresholds, steps and implementation arguments for a given pipeline is utilised59. 235 
Comparisons of BCOs from different pipelines can then be used to set acceptable lower limits 236 
for the assessed parameters, refining technical validation criteria across pipelines60. 237 
A prime example of external quality control of bioinformatics pipelines is the efforts by the 238 
National Institute for Public Health and the Environment (RIVM) to standardize the use of WGS 239 
for Mtbc genotyping across the European Reference Laboratory Network for TB (ERLTB-Net)21. 240 
Panels of DNA extracted from selected Mtbc isolates are sent annually by RIVM to reference 241 
laboratories to assess intra- and inter laboratory reproducibility of WGS. Similar efforts in high 242 
burden settings are needed to monitor the reliability of Mtbc WGS outputs when used in these 243 
settings.  244 
 245 

b. Validation for core tasks: transmission, phylogeny and drug resistance 246 
Task validation is used to demonstrate that a given pipeline is verified for a specific analysis, 247 
e.g. drug resistance profiling. For task validation, Mtbc bioinformatics pipelines should use 248 
defined validation datasets, ideally with hundreds or thousands of well characterized clinical 249 
Mtbc strains representing the diversity of a specific core task (e.g. different drug susceptibility 250 
profiles for resistance detection, representatives of all Mtbc lineages and (sub)-species for 251 
typing, or varying degrees of clustering for transmission analyses). The number of readily 252 
available, well-curated validation datasets is currently limited.  253 
 254 
Validation of transmission clustering. The national public health institute of the Netherlands 255 
(RIVM) has provided laboratories with sequenced reads from 535 Mtbc isolates for which 256 
epidemiological links were known. Using this dataset, the EUSeqMyTB consortium showed that 257 
existing pipelines could confidently distinguish linked from unlinked cases, especially when the 258 
SNP distances are high, as is often the case in low burden settings12. This comparison was 259 
undertaken as part of an effort to standardise WGS for monitoring MDR-TB cross border 260 
transmission in Europe15.  261 
 262 
Validation of classification systems. The clonality of Mtbc strains means that lineage and strain 263 
typing can be performed using only a handful of SNPs that are specific for strains of a particular 264 
lineage. Several studies have demonstrated the reliability of specific SNPs to determine the 265 
Mtbc (sub)lineage8,9,61. However, sub-lineage classifications are often less resolved, and parallel 266 
nomenclatures for lineage 2 are being used18,62,63. As the diversity of the Mtbc is further 267 
explored, especially for animal-associated and zoonotic TB, these under-described lineages can 268 
also easily be typed using the same SNP-based approach7.  269 
 270 
Validation of drug resistance profiling. Validation of WGS for TB resistance is the most 271 
advanced of all the core tasks. Phelan et al showed high concordance between phenotypic and 272 



genotypic predictions, no matter the sequencing platform used19,54. In the past two years, 273 
major progress has been made in the linkage between genotype and resistance phenotype by 274 
employing a standardized statistical approach25,26. The task of incrementally improving our 275 
knowledge base on genetic resistance profiling is primarily being addressed by the two global 276 
consortia outlined above: ReSeqTB’s single platform for genotype-phenotype investigation of 277 
drug resistance27,35 and CRyPTIC’s genotypic-phenotypic linking of over 10,000 isolates 278 
demonstrating susceptibility prediction for rifampicin and isoniazid with 99% sensitivity and 93-279 
96% for ethambutol and pyrazinamide2. These results have led to some low burden countries 280 
(Netherlands, UK) replacing phenotypic DST with WGS-based DST for first line drugs. Resistance 281 
predictions for 2nd line drugs can also be undertaken with sensitivity often around 90%25. Large 282 
comparative studies using phenotype-genotype associations are expanding the catalogues64,65 283 
and will help to increase the sensitivity for drugs used to treat MDR-TB. Efforts are now 284 
directed towards increasing the diversity of isolates and including accompanying high quality 285 
phenotypic and clinical data, especially for new anti-TB drugs.  286 
 287 

a. Standardization of communication of Mtbc WGS results and data sharing  288 
Communication to end users: Effective communication of WGS-based results to a diverse 289 
audience of end-users is key to positively impacting patient care and TB control programs. 290 
While the need for plain language reporting of genomic results has been recognized52,66, there 291 
are no international standards yet. Reporting standards should be flexible enough to address 292 
the varying levels of familiarity of end-users with genomic data interpretation and allow 293 
customization to region-specific treatment guidelines and formatting requirements. For 294 
example, the ISO15189:2012 standard mandates information such as patient identifiers, assay 295 
details, and the testing laboratory be reported. Recommendations from Mtbc WGS report 296 
design validation studies included the use of complete terms instead of abbreviations, drawing 297 
attention to important elements with shading, bolding, and other types of emphasis, and 298 
incorporating summary statements to rapidly communicate key results67,68.  299 
 300 
Communication to the research community. In peer-reviewed publications, the parameters 301 
used at each step of a bioinformatics pipeline must be stated in a way that makes it 302 
reproducible and understandable to non-bioinformaticians (e.g. using a BCO as outlined above). 303 
Custom code used in the analysis should be made available through a public repository 304 
(e.g.GitHub), ensuring ease of installation elsewhere. Pipelines should report the outcome of 305 
technical validations, at least for the core tasks they aim to address (e.g. lineage-defining SNPs 306 
for a typing pipeline). Examples of standard reporting include the MIABi (Minimum Information 307 
About a Bioinformatics investigation)69 and the STROME-ID (Strengthening the Reporting of 308 
Molecular Epidemiology for Infectious Diseases)70 guidelines. In supplementary table 2, we 309 
suggest data elements to include according to intended use, but note that a report may need to 310 
include elements from more than one use case. 311 

Data sharing will be crucial as incremental knowledge improves drug resistance predictions and 312 
strain tracking relies on the number and diversity of strain genome data available. This can 313 
come in the form of sharing coded strain identifiers such as MLST patterns or raw sequence 314 
data not yet processed by a pipeline. Indeed data sharing has been shown already to be 315 



invaluable for detecting cross-Europe transmission clusters14. Data sharing should encompass 316 
data produced by research and collected in public health laboratories and surveillance efforts71, 317 
similar to the GenomeTrakr network for foodborne pathogens72, while still safeguarding patient 318 
data and appropriately acknowledging contributions. This setup would be of great value for 319 
moving the field of Mtbc WGS forward.  320 
 321 
The crucial next step for fully utilising Mtbc WGS data is implementation of validations, both 322 
technical and task oriented, for all pipelines. Once undertaken, the agreed upon pipeline(s) can 323 
then be widely implemented, once infrastructure and usability is accounted for. 324 
 325 
2. Implementation of WGS in routine clinical practice 326 
While the use of WGS is rapidly expanding in research, minimal progress has been made in 327 
programmatic use of WGS. Some reasons include the lack of standardised end-to-end solutions, 328 
the required wet-lab and computing infrastructure, need for sufficient internet connectivity and 329 
bandwidth, and training deficits in genomics and bioinformatics73–75. Efforts are thus needed to 330 
expand accessibility to perform analysis by non-experts. How these factors are addressed will 331 
depend a country’s income and public health sector strength. 332 
 333 
High-income countries will probably use a mixture of closed (end-to-end) solutions and more 334 
complex pipelines as they likely will have on-site bioinformatics support. Ideally, routine 335 
analysis of WGS will require little to no bioinformatics knowledge by the end user. 336 
Implementation of these pipelines can be undertaken by either local set-ups with supporting 337 
infrastructure or a cloud/web-based approach with easy, affordable access76. Many large 338 
healthcare facilities such as referral hospitals are already incorporating bioinformatics units into 339 
their support services as part of the push towards personalized medicine, something TB 340 
treatment can take advantage of. These services should mediate the implementation of 341 
complex pipelines and make all required software readily available without a requirement to 342 
install additional software tools, as is done with certain existing pipelines34,77. 343 
 344 
Giving the heterogeneity of pipelines already in place (e.g. supplementary table 1) it is 345 
conceivable that something similar will happen when implementation is done in hundreds of 346 
care services. Some will opt-in for end-to-end solutions, perhaps integrated with the 347 
sequencing platform, or others for task-specific, such as resistance prediction only. Those 348 
implementing their own pipeline should be aware of the limitations, cautions and 349 
recommendations detailed by expert consensus here and elsewhere6,76. In order to evaluate 350 
new pipelines it is preferable to develop inside ‘containers’, such as Docker or Singularity78,79, or 351 
one-command installation wrappers like Bioconda or Homebrew80,81. Creating a container for 352 
each step (Figure 2) also allows for easy updating of a specific step without the need to install a 353 
whole new pipeline and allows for tasks (e.g. resistance profiling) to be added to the pipeline as 354 
needed. To allow usability by a range of end-users, fine-grained access to the individual steps 355 
should be available for advanced users with functionality layers abstracted away for users with 356 
limited bioinformatics expertise. The pipelines should be open source and user-friendly, by 357 
employing intuitive and well-documented command line and graphical user interfaces with 358 
relevant and validated default parameters.  359 



 360 
The situation in LMIC countries, especially those with a high burden of TB is currently totally 361 
different. End-to-end solutions based on cloud computing are the most logical step forward 362 
similar to the roll-out of qPCR systems (Box 1). Centralized web-based analysis platforms have 363 
recently emerged and promise to aid in computational efficiency, access and usability47,51. Roll-364 
out of such initiatives to more countries would greatly improve the potential for large-scale 365 
WGS implementation. The primary barrier to this is usually unstable internet connectivity with 366 
limited bandwidth, although using methods that can effectively handle connection 367 
interruptions, such as BioTorrents82, or direct transfer from sequencing centres to cloud storage 368 
and/or web-based pipelines may help circumvent these issues. 369 
 370 
The use of end-to-end, cloud-based solutions is likely to play an important role in LMICs. It is, 371 
however, advisable to build in those countries human capacity for WGS of Mtbc strains83,84. 372 
While standardised, immutable pipelines are optimal for global implementation of WGS, there 373 
are several reasons why local bioinformatics knowledge is required, such as the necessity to 374 
adapt analyses to the country-specific epidemiological profiles and public health ecosystems or 375 
regulatory laws that do not allow storage beyond country borders. Such customised, yet 376 
reproducible solutions are being supported by capacity building initiatives (e.g. the Human, 377 
Heredity and Health in Africa Consortium (https://h3abionet.org) and the TORCH consortium 378 
(https://torch-consortium.com/vliruos)). TB supranational reference laboratories should also 379 
play an important coordinating role, as is currently done for phenotypic workflows19,85. 380 
Ultimately, expanding education curricula to include bioinformatics are needed to generate 381 
sufficient capacity86.  382 
 383 
Finally, supportive policy and political commitment will be essential for sustainable 384 
implementation of WGS, especially in TB endemic LMICs74,83,87. This implementation will benefit 385 
from the lessons learned during the step-wise approach used to roll-out line probe assays and 386 
GeneXpert (Box 1)88.  387 
 388 
 389 
3. Extensions of the current standard 390 
 391 
While current pipelines (Fig. 2) appear to be highly accurate for many aspects of the three core 392 
tasks, multiple important issues remain open and should be part of future research and 393 
evaluation.  394 
 395 
a. Input data validation and quality control 396 

Most current pipelines do not routinely filter out reads that do not come from the sequenced 397 
Mtbc strains. However, sequencing files can contain reads from other organisms and these 398 
contaminants can introduce errors during the variant calling process, modifying both the 399 
variants identified and their respective frequencies89. Additionally, any host DNA sequencing 400 
reads should be removed especially if the data is shared online for legal/ethical reasons. 401 
Computationally removing non-Mtbc strain reads prior to mapping is an efficient strategy to 402 



implement contamination-proof analysis pipelines40, but requires a taxonomic classification of 403 
individual reads. Using taxonomic classification methods, where reads are assigned to the 404 
closest matched species, allows for quick and efficient removal of contaminating reads but 405 
requires comprehensive genome databases, often making their implementation extremely 406 
memory consuming90,91. Additionally, elimination of reads from highly conserved core bacterial 407 
genes of heterologous sources still remains a problem. Proposed alternatives include masking 408 
genomic regions known to accumulate artefactual polymorphisms89, filtering the alignments 409 
produced by contaminant reads, or fine-tuning the read aligners such that only the Mtbc strains 410 
sequences are mapped to the reference genome. Any methodology will require thorough 411 
technical validation to ensure that contaminant reads are removed without eliminating true 412 
Mtbc sequences, e.g. through in silico generation of datasets with varying levels of reads from 413 
other organisms. 414 
 415 
b. Sequence read mapping and reference genomes 416 

The use of a single reference genome for mapping all Mtbc strains is the ideal approach for 417 
comparable and standard variant calling. While most pipelines use the H37Rv genome4,92 as the 418 
reference genome, several alternative approaches should be explored. Since H37Rv is a lineage 419 
4 strain, its use as a reference for other lineages may be insufficient due to gene content 420 
differences between lineages93–96. Additionally, H37Rv contains many variants not found in any 421 
other strain97, including in genes related to drug resistance (e.g. gyrAS95T), creating confusion 422 
in SNP interpretations. Any replacement of H37Rv as the reference genome should be assessed 423 
by in-silico studies across datasets and clinical settings. An example of such a study tested seven 424 
different references against sequence reads from lineage 4 isolates showing that very limited 425 
variation occurred, and that reference choice should be based on criteria other than matching 426 
lineage98.  427 

One alternative to the H37Rv genome is a pan-genome which incorporates the entire gene pool 428 
of Mtbc lineages. Previous studies have found small but notable differences in gene content 429 
between lineages, often affecting genes involved in pathogenesis93–96. While these differences 430 
are unlikely to affect drug resistance profiling (since associated mutations are in the core 431 
genome), they may impact delineation of transmission clusters if additional SNPs are found in 432 
these genes that would push strain comparisons over the predetermined thresholds. Building a 433 
Mtbc pan-genome should be straightforward due to the close relationship between different 434 
strains (average nucleotide identity between any two strains ≥ 99.8%) and the lack of horizontal 435 
gene transfers events. So far this approach has not been effectively explored.  436 

A second alternative is the use of an inferred ancestral genome representative of the Mtbc 437 
population and diversity29,40. From an evolutionary perspective, this approach addresses the 438 
H37Rv-specific variants outlined above. In addition, because all extant strains are equidistant to 439 
a common ancestor, the number SNPs called for any Mtbc strain will be similar (normalized) 440 
regardless of its lineage. This expected SNP range is useful for quality control, as deviations may 441 
indicate poor quality sequencing, co/super-infections and contaminations40.  442 

A third approach is to use ad-hoc reference genomes, depending on the study being conducted. 443 
For instance, lineage-specific ancestral genomes or high-quality, closed, outbreak-specific 444 



reference genome99–101 could be used as reference to reduce mapping errors10. A disadvantage 445 
of this approach is that it hampers comparison of results between pipelines and standardized 446 
reporting of results.  447 

A completely different alternative involves de-novo assembly, using a reference-free approach, 448 
which has been successfully applied for human population genomics data102.  449 
 450 
Independent of the selection of the reference genome, other steps such as mapping and 451 
filtering are not consistent between different pipelines, yet might greatly affect the analysis 452 
outcome. For instance, removal of duplicates, both PCR and optical, may have a large impact in 453 
the variants identified and the allele frequencies. Similarly, local assembly/realignment around 454 
indels, reducing false positive SNPs derived from mapping artefacts, is rarely used in Mtbc WGS 455 
pipelines58 but is known to affect variant calling47. The question of whether these steps have a 456 
relevant effect on the final outcome should be incorporated into future technical validations. 457 

 458 
c. Interpretation of drug resistance results and predictions 459 

Currently, the bulk of routine drug resistance testing is undertaken using pDST. While this 460 
approach will still be required for a subset of difficult to interpret drug resistance patterns, the 461 
overarching goal is to detect all variants associated with resistance for comprehensive genome-462 
based resistance profiling. While the current statistical approach to calling resistance-463 
associated variants using WGS data is an important step forward for clinical use, a weakness is 464 
that phenotype predictions of rare and/or novel genetic variants cannot be assessed (Fig. 3). 465 
This problem is especially relevant for new and repurposed drugs, or drugs such as 466 
pyrazinamide and ethionamide for which mutations are not limited to hotspots but appear 467 
across genes (pncA and ethA) and in promoter regions. For these drugs, the standard statistical 468 
approach could be complemented by experimental data, comprehensive single nucleotide 469 
mutagenesis103 followed by systematic phenotypic screening, multi-omics studies, and machine 470 
learning approaches to predict the resistance phenotype of uncommon or novel genomic 471 
variants104,105. With the final aim of replacing the majority of phenotypic DST by sequence-472 
based testing, it will also be essential to catalogue “benign” variants that are not associated to 473 
resistance, i.e. phylogenetic markers or other neutral variants2. New statistical approaches like 474 
large-scale GWAS64,65, protein structure modelling44,106 and machine learning104,105,107 will likely 475 
play a key role identifying causative versus benign variants. Comprehensive databases of WGS 476 
data linked with phenotypic and clinical outcome data (e.g. CRyPTIC or ReSeqTB) are key to 477 
moving towards this goal. 478 
 479 
Once established, endorsement of a single standardised variant list by the WHO or other 480 
regulating bodies, with regular updating should be favoured.  481 
 482 
d. Variant calling for other purposes 483 
 484 
Accurate variant calling has major implications on downstream interpretation of the results for 485 
evolutionary, epidemiological and clinical applications. Because of the low level diversity and 486 
the slow substitution rate of Mtbc genomes32,42,100,108, a few falsely called SNPs can affect the 487 



interpretation of transmission events, impact the classification of a second episode of TB as 488 
relapse versus re-infection, or influence the interpretation of sub-populations within a patient 489 
(Fig. 4).  490 

A primary use of Mtbc WGS is the identification of recent transmission chains and its direction 491 
at high resolution. While some studies have used thresholds from 0 to <50 SNPs109–111, a 492 
threshold of 5- or 12-SNP genetic distances is most frequently used to identify possible 493 
epidemiological links and recent transmission30,32. For WGS-based distinction of relapse versus 494 
reinfection, studies have used often arbitrary thresholds of < 6 or <10 SNPs to define 495 
reactivation, and >100 to >1306 to define re-infection46,112,113. Any threshold selection can be 496 
problematic as inferences based on relatedness must include possible underlying 497 
methodological bias (culture, sampling and pipeline). In addition, genetic distances may be 498 
impacted by biological factors such as potential mutational bursts42,114, clonal variants in 499 
different lesions10,115, the impact of strain type (lineage or subspecies) or drug resistance on 500 
substitution rates108,116, and genome stability/instability during latency116,117. For example, 501 
identifying transmission from unrelated cases or distinguishing relapse and reinfection in low 502 
burden countries is relatively easy, where the distribution of SNP distances is bimodal, 503 
separating linked from unlinked cases12,14. Conversely, inferring transmission clusters within the 504 
context of institutional- or household settings or in high TB-incidence scenarios where the SNP 505 
distance distribution is continuous remains difficult especially if epidemiological links in large 506 
clusters of patients with seemingly identical strains are lacking118–120. 507 

 508 
Other approaches have meanwhile been developed to improve the identification of 509 
epidemiological links and outbreak reconstruction beyond SNP-based clustering. These either 510 
use transmission event thresholds121 and/or often combine genomic and epidemiological data 511 
to identify the most probable transmission trees for infectious diseases122,123. Of particular 512 
importance when reconstructing Mtbc outbreaks is that phylogeny and transmission events do 513 
not necessarily coincide as a results of genetic diversification during latency and long 514 
generation times124; it is thus necessary to model the within-host genetic dynamics125–127. 515 
Besides transmission reconstruction, phylodynamic approaches also allow for the inference of 516 
epidemiological relevant parameters  such as the effective reproduction number as well as the 517 
timing and geographic origin of an outbreak128,129.  518 

 519 

Unravelling within-host dynamics in terms of subpopulation detection remains even more 520 
challenging. Low frequency variants that are not due to technical artefacts can indicate the 521 
presence of mixed infections (two distinct Mtbc strains co-circulating in a host), or 522 
microevolution leading to closely related subpopulations or heteroresistance (subpopulations 523 
that differ in drug resistance-related variants)10,115,130. Proposed sub-population detection limits 524 
in different pipelines vary considerably from 10% to <75% (supplementary table 1) and are 525 
strongly influenced by factors such as read depth. While the presence of a subpopulation of at 526 
least 1% resistant bacilli is considered clinically relevant131 , the chain reaction of selection bias 527 
means that what is observed in sequencing data may not be representative of what is present 528 
in the culture isolate, which in turn is likely not representative of the diversity in the sputum 529 



sample, which is known to not represent the entirety of the within-patient diversity115,132. 530 
Mathematical modelling approaches have been developed to identify mixed infections133,134. 531 
However with the current approaches the detection of mixed infections is limited by the 532 
relative ratio of the two strains and the number of differing SNPs between both. Future 533 
research and methodological improvements are needed to better understand and interpret this 534 
within-host diversity.  535 

 536 
4. Beyond the current standards 537 
 538 
As current culture-based approaches require time for Mtbc strain growth, culture-free WGS, 539 
directly from clinical samples (e.g.sputum), would be transformative for clinical and public 540 
health applications of WGS. This approach would not only eliminate the culture delay but also 541 
remove culture selection biases. While studies have shown some success, this approach is still 542 
mired with problems such as contamination by human and commensal microbial reads, 543 
preventing sufficient coverage depth of the Mtbc genomes and thus reliable variant calling, 544 
even in samples with high bacterial loads135–137. Improvements in cell lysis or capture coupled 545 
with selective DNA enrichment or depletion could reduce this technical complexity and cost. 546 
Additionally, downstream bioinformatic filtering could be used to control for and remove 547 
possible remaining false variants. 548 
 549 
Much is expected from the development of highly portable sequencing devices (e.g. the 550 
MinION). Such technology offers the capacity to detect variants in real-time during sample 551 
acquisition, potentially giving results from sputum within hours if mycobacterial loads are high. 552 
Their portability and ability to work in resource limited settings also favours direct sequencing 553 
of clinical samples, even in LMICs. Moreover, although progress has been made in analysis of 554 
variants in repeat-rich genome regions (e.g. PE/PPE family genes) or structural changes 555 
(duplications, large indels, etc.) by short read mapping112,138, long read sequencing will make 556 
this more robust101,135. Unfortunately, application of this technology is currently limited by high 557 
error rates (although new dual sequence reading systems promise substantial improvement) 558 
and, specifically for mycobacteria, difficulty in cell lysis without over-shearing DNA. 559 
 560 
5. Conclusion  561 
A decade after first proof-of-principle studies, the community consensus is that Mtbc WGS is 562 
now mature enough to inform clinical decisions and public health. This is evident as WGS has 563 
already replaced phenotypic testing for first line drugs in some settings, has become the basis 564 
of drug resistance surveillance surveys supported by the WHO, and has become the standard 565 
for Mtbc molecular epidemiology and strain typing studies. Before its full-scale implementation, 566 
we call for extensive standardisation and validation efforts. This will require political 567 
commitment, and involvement of supranational laboratories and regulatory authorities. There 568 
also remains an important role for the research community at large to continue to improve the 569 
technical and analytical aspects of WGS. Consideration is also needed towards the ethical 570 
implications and consequences of routine WGS sequencing and the information it provides. 571 
There is thus a need now to commit resources to ensure access to standardized and validated 572 
WGS approaches, especially in high burden countries where WGS will have the greatest impact.  573 
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 596 
Box 1 : Primary Mtbc diagnostics 597 
Solid or liquid culture (e.g. MGIT, Beckton Dickinson, USA139) are the conventional diagnostics 598 
for Mtbc identification and drug susceptibility testing. However such phenotypic tests can take 599 
weeks to months to obtain results, require high-level biosafety infrastructure, and are 600 
considered unreliable for certain drugs (e.g. pyrazinamide). Therefore, several molecular tests 601 
(besides WGS) directly applicable on clinical samples have been developed. Line probe assays 602 
rely on hybridization of amplified mycobacterial DNA with nucleotide probes on strips to detect 603 
selected drug resistance-associated mutations or their wild-type alleles. MTBDRplus140,141, TB 604 
NTM+MDR141,142 and MTBDRsl143,144 were endorsed by WHO. The two former assays target 605 
mutations associated with resistance to rifampicin (in rpoB) and isoniazid (katG, inhA), i.e. 606 
detect MDR-TB. The MTBDRsl143,144 assay targets mutations associated with resistance to 607 
fluoroquinolones (gyrA, gyrB) and injectables (rrs, eis), i.e. detect XDR-TB. Other tests use 608 
cartridge-based real-time PCR (GeneXpert MTB-Rif88,145 (and updated Ultra146,147); Anyplex II 609 
MDR/XDR148; FluoroType MTBDR149, Hain) or PCR melt-curve (Meltpro150) for mutation 610 
detection. The FluoroType as well as the WHO-endorsed and globally deployed GeneXpert both 611 
detect rifampicin-associated mutations in rpoB, plus in the first case, isoniazid resistance 612 
mutations (katG, inhA, ahpC). Because all aforementioned molecular tests use indirect 613 
sequencing technologies, they are intrinsically limited to the detection of common pre-selected 614 
mutations and are prone to false positive results due to indiscriminate detection of unrelated 615 
mutations151,152. To circumvent these limitations, newer assays use targeted amplicon 616 
sequencing. The Next Gen-RDST153,154 and Deeplex-MycTB155,156 assays are directly applicable 617 



on clinical samples and sequences (some with promoter regions) of 6 or 18 genes associated 618 
with resistance to 7 or 13 anti-tuberculosis drugs, respectively. Deeplex-MycTB additionally 619 
includes mycobacterial species and spoligotyping. The large coverage depths that can be 620 
achieved enables high confidence mutation calls, including those born by minor subpopulations 621 
in case of heteroresistance. Nevertheless, accessible targets are inherently fewer than with 622 
WGS. 623 
 624 
Glossary terms 625 
Mycobacterium tuberculosis complex (Mtbc): the genetically related group of organisms 626 
within the mycobacterium genus that cause tuberculosis in humans or animals.  627 
Spoligotyping: a PCR-based approach based on the amplification of spacers in the CRISPR 628 
region of Mycobacterium tuberculosis complex. It is used for genotyping Mtbc strains. 629 
MIRU-VNTR: Mtbc-specific variable tandem repeats loci used to genotype Mtbc strains 630 
cgMLST: core genome multi-locus sequence typing; a scheme that converts genome-wide SNP 631 
data into an allele-numbering system using a pre-selected set of core genes 632 
wgMLST: whole genome multi-locus sequence typing; a scheme that converts genome-wide 633 
SNP data into an allele-numbering system using a pre-selected set of core genes and 634 
additional accessory genes 635 
Löwenstein-Jensen: is a selective culture media in Mycobacteria and commonly used to 636 
isolate Mtbc strains 637 
MGIT: the Mycobacteria Growth Indicator Tube is tube that contains mycobacteria selective 638 
culture media and which is usually coupled to automated instrument to read the results 639 
Drug susceptibility testing: a procedure to determine if clinical isolates are resistant to 640 
antibiotics either by testing the inhibition in culture or by identifying drug resistance 641 
associated mutations 642 
SNPs: Single nucleotide polymorphisms; differences in the nucleotide composition of a strain, 643 
often compared to a reference (e.g. H37Rv). 644 
WGS workflow: all steps involved (from culturing to SNP calling and analyses) for whole 645 
genome sequencing of an isolate 646 
WGS pipeline: the bioinformatics section of the WGS workflow, starting from fastQ files 647 
through to SNP calling and analyses 648 
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 1074 
Display item legends 1075 
Figure 1: The primary tasks for whole genome sequencing in public health. Assessing the 1076 
epidemiology (surveillance and clustering/outbreaks) and determining the strain type or 1077 
resistance profile to specific drugs can all be undertaken using the genomic variant calls derived 1078 
from Mtbc WGS pipelines. 1079 
Figure 2: Common workflow for whole genome sequencing for Mtbc isolates. A clinical sample 1080 
(often sputum) is first cultured for up to 6 weeks followed by gDNA extraction and sequencing. 1081 
The resulting sequencing output (fastq files) can be deposited online to public repositories and 1082 
also run through standard SNP-calling pipelines which will undertake read mapping and variant 1083 
calling. The resulting SNP lists can then be used for a variety of analyses, each which then can 1084 
be reported to the end user. 1085 
Figure 3: Current and potential future approach for determining resistance-related 1086 
polymorphisms. In the current approach (green box),  lists of resistance-related SNPs are 1087 
primarily built using a statistical approach, often a likelihood ratio. This uses linked 1088 
phenotypic/genotypic data derived from a variety of strains across the diversity of the Mtbc to 1089 
create lists of known SNPs that cause drug resistance. The suggested extension (blue box) 1090 
would complement this procedure with additional information from targeted mutagenesis etc. 1091 
to detect drug resistance causing SNPs too rare to be detected using a statistical approach. 1092 
Figure 4: Epidemiological and within-host applications of SNP-based comparisons between 1093 
Mtbc isolates. At a population level, SNP-based phylogenetics can be used to recreate local 1094 
diversity. These phylogenies are then sub-divided into transmission clusters using pre-defined 1095 
SNP or allele cut-offs. At the individual level, within-host diversity can be generated either 1096 
through sub-population divergence or infection with multiple concurrent strains. 1097 
Supplementary table 1: A non-exhaustive list of common bioinformatics pipelines and their 1098 
settings for SNP calling of Mtbc isolates. This list contains only a small portion of the available 1099 
pipelines but demonstrates the variability and breadth of the field. 1100 
Supplementary table 2: Suggested elements and attributes for standardised reporting of Mtbc 1101 
WGS result 1102 
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