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An effective tight-binding (TB) Hamiltonian for monolayer GeSnH, is constructed which has an inversion-
asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous
ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial
tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV,
suitable for room temperature applications. It is shown that an external applied magnetic field produces a special
phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical
magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition
is confirmed from: (1) the calculation of the Z, topological invariant, and (2) quantum transport properties
of disordered GeSnH, nanoribbons which allows us to determine the universality class of the conductance
fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a

factor of \/E
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I. INTRODUCTION

Topological insulators (TIs) have attracted a lot of attention
in condensed matter physics and from the materials science
community during the past decade [1-5]. TIs are fascinating
states of quantum matter with insulating bulk and topolog-
ically protected edge or surface states. In two-dimensional
(2D) TIs, also known as quantum spin Hall (QSH) insulators
[4], the gapless edge states are topologically protected by time
reversal symmetry (TRS) and are spin-polarized conduction
channels that are robust against nonmagnetic scattering. They
are more robust against backscattering than three-dimensional
(3D) TIs, making them better suited for coherent transport re-
lated applications, low-power electronics, and quantum com-
puting applications [6].

There are currently only a few 3D TI compounds that are
experimentally realized such as Bi;Ses, BiyTes, and SbyTes
[7]; and only HgTe/CdTe [8] and InAs/GaSb [9] quantum
wells have been realized as 2D TIs. Also, due to the very small
bulk band gaps (on the order of meV), these 2D exhibit TI
only at ultralow temperatures. Therefore, there is a great need
to find new 2D TIs with large energy band gaps. Following
the advancements in graphene and similar materials, intensive
efforts have been devoted to explore 2D group-IV and V
honeycomb systems, which can harbor 2D topological phases.

In terms of crystal structure, TIs can be generally di-
vided into inversion-symmetric TIs (ISTIs) and inversion-
asymmetric TIs (IATIs). In a previous work we have
studied GeCH3 which is an inversion symmetric TI un-
der strain [10]. Inversion asymmetry introduces many
additional intriguing properties in TIs such as pyroelectricity,
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crystalline-surface-dependent topological electronic states,
natural topological p-n junctions, and topological magneto-
electric effects [11-13]. Therefore, 2D IATI materials that
are stable at room temperature would be highly promising
candidates for future spintronics and quantum computing
applications.

Also, it would be interesting if we could implement such
features in group-IV honeycomb systems for the integration
of devices that use other carbon-IV honeycomb elements.
This would avoid issues such as contact resistances and their
integration within the traditional Si or Ge based devices.

An efficient method for the synthesis of suitable 2D nano-
materials with honeycomb structure is chemical functional-
ization. Hydrogenation and halogenation of the above systems
for the realization of topological phases have been extensively
explored.

Here we consider GeSnHj, which is an inversion asymmet-
ric hydrogenated bipartite honeycomb system. Ab initio cal-
culations have shown that monolayers (ML) of GeSn halides
(GeSnX,, X =F, Cl, Br, 1) are large band gap 2D TIs with
protected edge states forming QSH systems [11]. On the other
hand, hydrogenated ML GeSn (GeSnH;) is a normal band
insulator which can be transformed into a large band gap
topological insulator via appropriate biaxial tensile strain [11].

Here we propose a tight-binding (TB) model for a better
understanding of the electronic band structure of GeSnH, near
the Fermi level. The band structure of our TB model is fitted
to the ab initio results, where we consider both cases with
spin-orbit coupling (SOC) and without SOC. Within the linear
regime of strain the band gap of our TB model agrees very
well with the DFT results [11]. This TB model when including
SOC predicts a band inversion at 7.5% biaxial tensile strain in
agreement with DFT calculations [11]. We show the topolog-
ical nature of the phase transition from a calculation of the Z,
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FIG. 1. Top (a) and side (b) views of the ML GeSnH, structure.
a, and a, are the lattice vectors, a is the lattice constant, and % is
the buckling height. (c) First Brillouin zone of the system with three
symmetry points I', K, and M and the reciprocal lattice vectors b,
and b,.

topological invariant. When we apply an external magnetic
field normal to the plane of the system a QH plus QSH phase
appears up to a critical magnetic field strength beyond which
the QSH phase completely disappears. Quantum transport of
this system is calculated in order to examine the protection
of the edge states against nonmagnetic scattering. It is shown
that the conductance fluctuations of disordered nanoribbons
for energies near the band gap belong to the universality class
of the circular unitary ensemble (CUE, B = 2), while for
high energies and strong disorder the fluctuations follow the
circular orthogonal ensemble (COE, 8 = 1). We found that an
applied magnetic field reduces the conductance fluctuations
by a factor of v/2.

This paper is organized as follows. In Sec. II we intro-
duce the crystal structure and lattice constants of monolayer
GeSnH;. Our proposed TB model is introduced in the Ap-
pendix, and the effect of strain on the electronic properties of
GeSnHj; is examined. In Sec. III the topological phase tran-
sition under strain is examined by looking at the nanoribbon
band structure and by determining the Z, topological invari-
ant. The effect of an applied magnetic field is presented in
Sec. IV. In Sec. V electronic transport in disordered GeSnH,
nanoribbons is examined and the protection of the chiral edge
states against nonmagnetic scatterings is verified. Also, we
discuss the universality class of the conductance fluctuations
with and without an applied magnetic field. Our results are
summarized in Sec. V1.

II. LATTICE STRUCTURE AND TIGHT-BINDING MODEL

The ML GeSnH, prefers a buckled honeycomb lattice,
analogous to its homogeneous counterparts germanene [14]
and stanene [15]. Figures 1(a) and 1(b) show the atomic
structure of ML GeSnH, and its geometrical parameters. The
2D honeycomb lattice consists of two inequivalent sublat-
tices made of Ge and Sn atoms, which are named A and B
sublattices, respectively. Both Ge and Sn atoms exhibit sp?
hybridization. One sp® orbital is passivated by a hydrogen
atom and the other three are bonded to three neighboring
Ge or Sn atoms. Thus, the unit cell of GeSnH, consists of

four atoms: one Ge, one Sn, and two hydrogen atoms that are
right above (below) the Ge (Sn) atoms. The lattice translation
vectors are @ , = a(+/3/29 + 1/2%) with the lattice constant
a = 4.41 A and the buckling height (&) is 0.76 A [11,12]. Note
that the x and y axes are taken to be along the armchair and
zigzag directions, respectively; and the z axis is in the normal
direction to the plane of the GeSnH, film.

Figure 1(c) shows the hexagonal Brillouin zone of ML
GeSnH, with primitive reciprocal lattice vectors b, =
27 /a(+/3/39 £ %) and three high symmetry points T', K,
M. The dynamical stability of ML GeSnH, was previously
confirmed by the DFT calculated phonon spectrum [11].

The electronic structure and topological properties of 2D
honeycomb ML GeSnH, were studied in Ref. [11] using first-
principle calculations based on DFT. The DFT calculations
including spin-orbit interaction predicted that a topological
phase transition is induced in ML GeSnH, through the appli-
cation of biaxial in-plane tensile strain. It was shown that the
low-energy electronic structure of ML GeSnH, is determined
exclusively by using s, py, and p, atomic orbitals of Ge and
Sn atoms [11,12]. However, in order to examine the effect of
random disorder on the electronic properties of this system
and to confirm the topological nature of the phase transition,
large system sizes are required. A limitation of the DFT
calculations is that only small system sizes are manageable.
Therefore, we need to construct a TB model for ML GeSnH,
that is able to describe the low-energy electronic structure of
large system sizes.

In the Appendix we derive a low-energy TB model includ-
ing SOC and we show that the results of the proposed TB
model even in the presence of biaxial strain is in very good
agreement with previous DFT calculations.

III. TOPOLOGICAL PHASE TRANSITION
OF MONOLAYER GeSnH, UNDER STRAIN

Using our TB model including spin-orbit interaction, we
showed that ML GeSnH, is a NI with a direct band gap
of 0.977 eV. We showed that applying biaxial tensile strain
modifies its electronic spectrum and a band inversion is taking
place at € = 7.5%.

One way to show that there is a topological phase transition
at the critical strain of € = 7.5%), is to perform calculations of
the 1D band structure of nanoribbons with zigzag edges in
the presence of biaxial tensile strain, and verify the existence
of gapless helical edge states. Here we study the edge state
energy bands by cutting a 2D film of ML GeSnH, into
nanoribbons. In our calculations, the Sn and Ge atoms at the
edges of the nanoribbon are passivated by hydrogen atoms.

The width of a zigzag GeSnH, nanoribbon (z-GeSnH,-
NR) is defined by N, which is the number of zigzag chains
across the ribbon width. In order to reduce the interaction
between the two edges, the width of the nanoribbons is taken
to be at least 10 nm.

We calculated the band structure of the corresponding
nanoribbons. Note that the change of the hopping parameters
and the on-site energies of the edge Ge or Sn atoms caused
by the passivation procedure is negligible. Therefore, we can
use the results in Tables II and III of the Appendix for the
on-site energies of Ge and Sn atoms and also for the hopping
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TABLE I. Numerical values of the on-site energy of hydrogen
atoms and the hopping parameters related to the H-Ge and H-Sn
bonds. The energy is in units of eV.

s sp s sp s s
VH,Ge VH,Ge VH,Sn VH,Sn EHO EH]

—4.87 2.05 —4.21 3.63 —1.84 —2.40

parameters corresponding to Ge-Sn bonds in unstrained or
strained systems. We have two different on-site energies of
hydrogen atoms Ej and Ep, which are pertinent to the
hydrogen atoms that are introduced to passivate the Ge and
Sn atoms on each edge, respectively. We can write the hopping
parameters related to the H-Ge and H-Sn bonds as

fiix = Vit tix = £Viix (X = Ge, Sn), (1)
where + (—) denotes the lower (upper) H-X edge bonds. The
numerical value of the mentioned hopping parameters and
on-site energies of the hydrogen atoms can be obtained by a
fitting procedure. The results are shown in Table 1.

Figures 2(a) and 2(b) show the energy bands of
z-GeSnH,-NR with N = 26 in the presence of 5% and 8.5%
biaxial tensile strains, respectively. Gapless conducting edge
bands are seen for strain of € = 8.5%. This is consistent with
our proposal for the topological phase transition at € = 7.5%.

It is now well established that for all time reversal invariant
2D band insulators a change in the Z, topological invariant
from zero to one, indicates a topological phase transition
from a NI phase to TI. In our previous works [10,16] we
successfully used the algorithm of Fukui and Hatsugai [17]
to calculate the Z, number to characterize the topology of
the energy bands. In this work we implemented the same
procedure to confirm the existence of two distinct topological
phases in ML GeSnH,. We found that the value of Z, switches
from zero to one at the critical strain of 7.5%, which confirms
the topological nature of the phase transition in the electronic
properties of ML GeSnHj.
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FIG. 2. The 1D energy bands and the total conductance (in units
of Gy =e?/h) of z-GeSnH,-NR for N = 26 in the presence of
(a) and (c) 5%, (b) and (d) 8.5% biaxial tensile strain.
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FIG. 3. Landau fan diagrams for a z-GeSnH,-NR of 34 nm width
with 8.5% biaxial strain. @ is the magnetic flux through a honeycomb
cell and @ is the magnetic quantum flux. The band structure of the
nanoribbon for the applied magnetic fields at the dashed lines are
plotted in Fig. 4. The blue and red bands correspond to opposite spin-
polarized states.

IV. THE EFFECT OF AN APPLIED
PERPENDICULAR MAGNETIC FIELD

We showed the topological phase transition of ML GeSnH,
under strain using our proposed TB model. Also we confirmed
the QSH phase in this system in the presence of biaxial strain
by computing the Z, invariant and we verified the existence
of gapless helical edge states in the z-GeSnH,-NR. These
edge states are expected to be protected by TRS. An external
magnetic field breaks TRS resulting in the breakdown of the
QSH phase [18,19]. In this section we show that the edge
states remain robust when an applied magnetic field is turned
on and counterpropagating spin-polarized currents exist at
both edges (a combination of QSH and QH phases) until a
critical field above which the QSH phase completely collapses
and there is only one QH phase present.

Here the external magnetic field is modeled by changing
the hopping integrals of Eq. (A1) as tiy jp —> iy, jp € 2" Dieit
where ;o jp = [ A - dl /Dy, ®g = h/e denotes the quan-
tum flux, and A = (—By, 0, 0) is the vector potential. Due
to the small g factor for topological insulators we neglect the
Zeeman splitting.

The Landau fan diagram for a zigzag nanoribbon in the
presence of strain is plotted in Fig. 3. Here the magnetic flux
® measures the flux through a honeycomb cell. In Fig. 3 the
first crossing point for the edge states at small magnetic fields
(®/Py ~ 0.0001) is a finite size effect corresponding to the
overlap of the opposite edge states when the magnetic length
approaches the width of the nanoribbon. Therefore, by in-
creasing the ribbon width it moves to zero magnetic field. For
higher magnetic fields, as long as the electronlike band (lowest
conduction Landau level) is below the holelike band (up-
permost valence Landau level), there are counterpropagating
spin-polarized states at both edges. In this region the applied
magnetic field breaks the balance of the counterpropagating
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FIG. 4. Landau level band structures of a 34 nm wide zigzag
nanoribbon of GeSnH, with 8.5% biaxial strain for applied perpen-
dicular magnetic fields of (a) ®/Py = 0.0025, (b) ®/Py = 0.0047,
and (c¢) ®/P, = 0.006.

spin-polarized currents at each edge and we have a com-
bination of the QSH and QH phase in the system. For a
strong critical magnetic field (the second crossing point for
/Py ~ 0.0047 is shown in Fig. 3), where the electronlike
and holelike bands no longer cross. Now at each edge we have
unidirectional currents corresponding to the pure QH phase.
After this point the QSH phase is completely removed. In
Fig. 4 the Landau level band structure of the system is plotted
for three magnetic fields, before, after, and at the critical point.
The different colors in this figure correspond to opposite spin
polarizations.

V. UNIVERSAL CONDUCTANCE FLUCTUATIONS
IN DISORDERED GeSnH, NANORIBBONS

Transport measurement is a different approach to confirm
the existence of helical gapless edge states, which is an
important signature of the TI phase. Therefore, we next study
the transport properties of ML GeSnH; nanoribbons in the
presence of strain. To this end, we calculate the conductance
of z-GeSnH,-NR using the Landauer formalism [20,21]. As
is standard the z-GeSnH,-NR is divided into three regions;
the left and right leads and the middle scattering region. We
initially assume the ribbon to be perfect in order to satisfy the
condition of ballistic transport. In the Landauer approach, the
total conductance G.(E) per spin of a nanoscopic device at
the Fermi energy (Er) is given by

2
G.(E) = (%)Tr[mE)G,’S(E)FR(E)Gg(E)], 2)

where FL(R) = i[EL(R)(E) — ZZ(R)(E)]’ with EL(R)(E) being
the self-energy of the left (right) lead. GX(E) is the retarded

Green’s function of the device and GH(E) = GﬁT(E ). The
retarded Green’s function of the device is given by

GR(E) = [E — Hp — SFE) - =RE)] . 3)

Here Hp is the Hamiltonian for the device region. The nu-
merically calculated total conductance, in units of Gy = &2 /h,

for N = 26 as a function of energy is shown in Figs. 2(c)
and 2(d) in the presence of 5% and 8.5% biaxial tensile
strain, respectively. For strains less than 7.5% (e < 7.5%),
the z-GeSnH,-NR has nonzero conductivity only above a
threshold energy corresponding to the minimum energy of
the conduction band, which opens a conducting channel with
conductance in steps of 2Gy. As shown in Fig. 2(b), the
total conductance at zero energy changes from 0 to 2 by
applying biaxial tensile strains larger than 7.5% (¢ > 7.5%).
The nonzero conductance in the gap originates from the zero
energy edge states and also indicates a topological phase
transition from NI to TI in ML GeSnH,. These conducting
edge states are protected by TRS leading to the robustness of
the electronic quantized conductance against backscattering
by disorder and therefore holds great promise for spintronics
applications [22,23].

It would be helpful to further consider the effect of disorder
on the electronic transport properties of this system. The
disorder may originate from unwanted dislocations or other
defects. Such calculations are another proof for our found
strain-induced TI transition. In TIs, the edge states are robust
against weak disorder, and only strong disorder can affect the
electronic properties.

Here we introduce the disorder in our TB Hamiltonian
model Hrg = Hy + Hsoc using the so-called Anderson dis-
ordered model [24] as

Hp = " Wic] Cia: )
where W; is a random number uniformly distributed over the
range [—%, %]. We assume a disordered z-GeSnH,-NR with
N =34 (~13 nm width) and 51 nm length as the middle
region which is sandwiched between two semi-infinite per-
fect leads and calculate the conductance averaged over 100
different realizations. The width of the ribbon is chosen large
enough in order to avoid finite-size effects. Figure 5(a) shows
the average conductance of z-GeSnH,-NR as a function of
disorder strength W in the presence of biaxial strain € = 8.5%
for three different values of the Fermi energy. The energy
Er = 0.1 eV corresponds to the energy in the middle of the
band gap, while Er = 0.35 eV and Er = 1.4 eV are two
energies in the bulk. It can be seen that the averaged quan-
tized conductance at Er = 0.1 eV, which originates from the
gapless edge states, is insensitive to weak disorder. The mean
conductance decreases only for strong disorder of strength
W > 1.5 eV which is a signature of a topological insulator.

The universal conductance fluctuations (UCF) [25] are a
mesoscopic phenomena, which is caused by the quantum
interference of electrons. The UCF are of order ¢*/h and
correspond to the deviation of the conductance from its bal-
listic value G = nGy. The standard deviation of conductance
in the diffusive regime and zero temperature depends only
on the dimensionality and universality class of the disordered
mesoscopic system and is independent of the details of the
system such as the disorder strength W, the conductance G,
and the sample size. The UCF takes universal values for three
types of symmetry classes corresponding to § = 1, 2, and 4,
respectively. In systems that preserve TRS and spin rotational
symmetry (SRS), the symmetry index is 8 = 1 (orthogonal
ensemble); and B = 2 corresponds to the case that TRS is
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FIG. 5. (a) The mean conductance (G.) and (b) the standard
deviation of conductance §G, of z-GeSnH,-NR with N = 34 (13 nm
width) and 51 nm length as a function of disorder strength W.

broken (unitary ensemble); while 8 = 4 is for systems that
preserve TRS but with broken SRS (symplectic ensemble)
[26,27].

We study numerically the conductance fluctuations in the
disordered z-GeSnH,-NR in the presence of biaxial tensile
strain. The standard deviation of the conductance §G, =

(G, — (GC))Z)I/ * of disordered z-GeSnH,-NR is plotted as
a function of disorder strength W at three different Fermi
energies in Fig. 5(b). There are no conductance fluctuations
for energy Er = 0.1 eV in case of weak disorder strength,
revealing the robustness of the helical edge states against
disorder in the QSH phase. The 6G,. approach the value
~0.52 €2 /h, which corresponds to the UCF for the symmetry
class B = 2. Our total model Hamiltonian preserves TRS and
the reason that the UCF shows the symmetry class g =2
is the following: since there are no spin-flip terms (Rashba
SOC term) in our model Hamiltonian, we can block diagonal
the Hamiltonian matrix with respect to the spin degrees of
freedom with zero off-diagonal terms. Then we are dealing
with two isolated and identical Hamiltonians corresponding
to spin up and spin down states (H; and H ). Each of these
blocks lack TRS due to the intrinsic SOC terms, and con-
sequently the total UCF follows the 8 = 2 symmetry class.
A similar discussion can be found in Refs. [27,28], except
that in Ref. [27] spin is not a good quantum number and
the Hamiltonian was block diagonalized with respect to the
sublattice degrees of freedom.

For high energies and strong disorder strengths, the stan-
dard deviation approaches the value ~0.73 e?/h, which be-
longs to the symmetry class 8 = 1. This value can be ex-
plained by comparing the localization length with the spin
relaxation length (spin relaxation length originates from the
intrinsic SOC terms) [29]. As long as the disorder is weak and
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FIG. 6. The standard deviation of conductance &G, of

z-GeSnH,-NR with N =34 and 51 nm length as a function
of Fermi energy for three different disorder strengths W = 1.5, 3.5,
and 4.0 eV.

the localization length is much larger than the spin relaxation
length the SOC is significant and the system lacks SRS. But
when disorder is strong enough and the localization length
is much smaller than the spin relaxation length and when
the kinetic energy is much larger than the SOC term (for
E = 1.4 ¢V far in the bulk), we can ignore the SOC terms and
SRS is preserved and the system follows the § = 1 symmetry
class. Finally, beyond W ~ 6 eV, where (G,.) approaches the
value of 0.3 ¢?/h the conductance fluctuations decreases and
approaches the superuniversal curve [30] that is independent
of dimensionality and symmetry. The superuniversal curve is
beyond W = 7 eV, which is not shown in Fig. 5.

In Fig. 6 the conductance fluctuations are plotted as a
function of the Fermi energy for three disorder strengths.
For strong disorder (W = 3.5, 4.0 eV), the standard deviation
8G. is around 0.52 €?/h indicating the unitary ensemble for
the conductance fluctuations. The fluctuations approach the
value of ~0.73 €2 /h by increasing the Fermi energy as long
as the disorder is sufficiently strong and the SOC effects
become negligible. The system now follows the orthogonal
ensemble. When disorder strength is weak, there is no con-
ductance fluctuations for energies in the gap, confirming the
robustness of the helical edge states. The fluctuations increase
with increasing disorder. Similarly, they approach the unitary
ensemble at the intermediate energies and for higher energies
where SOC is negligible and they approach the orthogonal
ensemble.

We have also examined the effect of applying an external
magnetic field along the Z direction on the UCF for the
disordered z-GeSnH,-NR in the presence of biaxial tensile
strain. By applying an external magnetic field to a disordered
metal with very weak SOC or without SOC, the universality
class changes from COE (8 = 1) to CUE (8 = 2) due to the
breaking of TRS.

Figure 7 shows the gradual reduction of the §G, value from
0.73t00.52 ¢?/hfor Er = 1.4 eV and from 0.52 to 0.365 €% /h
for Er = 0.35 eV by increasing magnetic field. It is shown
that by increasing magnetic field which breaks the TRS, the
UCEF value decreases by a factor of \/5 in both cases, and it is
converged to the reduced value for ®/d, > 1073,
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FIG. 7. The standard deviation of conductance G, of disordered
z-GeSnH,-NR with N =34 and 51 nm length as a function of
magnetic flux ®/d.

The standard deviation of the conductance 5G. of the
nanoribbon is also plotted as a function of disorder strength
W at three different Fermi energies in Figs. 8(a)-8(c) for three
cases of applied magnetic fields (®/®y =0, 5 x 107>, and
25 x 107*). In the presence of very weak magnetic fields,
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FIG. 8. The standard deviation of conductance &G, of
z-GeSnH,-NR with N =34 and 51 nm length as a function
of disorder strength W for three different Fermi energies (a)
Er =0.1¢eV,(b) Er =0.35¢eV,and (c) Er = 1.4¢V.

® /Py =0 to 5 x 107>, the UCF values remain unchanged.
Therefore, the universality class for Fermi energies Ep =
0.1 eV and Ep = 0.35 eV [Figs. 8(a) and 8(b)] belong to the
CUE (B = 2), while for high energies and strong disorder
[Fig. 8(c)] the fluctuations follow the COE (8 = 1). When
d/Py =25 x 10~*, which is greater than a certain threshold
®/dg = 1073, the TRS is fully broken and the UCF value
decreases by a factor of /2. For weak disorder in Fig. 8(a) the
fluctuations are shown to be near zero due to the robustness of
the edge states up to ®/dy =25 x 10~* where the overlap
of a pair of spin-polarized edge states gradually increases
and this overlap develops fluctuations in the conductance. By
applying large enough magnetic fields, the Kramer degener-
acy is lifted and the two blocks of the Hamiltonian H; and
H)| contribute independently to §G,, resulting in conductance
fluctuations of §G,. = 0.365 as shown in Figs. 8(a) and 8(b).
Note that in this situation the system belongs to the CUE and
B =2

For high energies and strong disorder strengths, where
SOC is negligible, the magnetic field breaks the TRS and
changes the symmetry class of the system. As shown in
Fig. 8(c) for ®/®g = 25 x 10~* the conductance fluctuations
3G, is around 0.52 indicating that the system belongs to CUE

(B =2).

VI. SUMMARY AND CONCLUSIONS

In summary, we constructed an effective TB model without
and with SOC for ML GeSnH,, which is able to reproduce
the electronic spectrum in excellent agreement with the DFT
results near the Fermi level. Including SOC decreases the band
gap from 1.155 to 0.977 eV. In the presence of biaxial tensile
strain, our proposed TB model predicts correctly the evolution
of the band spectrum and also predicts a topological phase
transition from NI to TI phase in ML GeSnH, at 7.5% biaxial
tensile strain. The global bulk gap, which is topologically
protected, is 134 meV at a reasonable strain of 8.5%. This
bulk gap exceeds the thermal energy at room temperature
and is large enough to make ML GeSnH, suitable for room-
temperature spintronics applications.

The strong SOC and the applied mechanical strain are two
essential factors that induce the topological phase transition
from NI to QSH phase in ML GeSnH,. More interestingly,
ML GeSnHj is a strain-induced TI with inversion asymmetry
which makes it a promising candidate for the understanding
of intriguing topological phenomena like magnetoelectric ef-
fects. The TI nature of ML GeSnH, for strain € > 7.5% was
confirmed by calculating the Z, topological invariant. Also
we showed the existence of topologically protected gapless
edge states in a typical z-GeSnH,-NR in the presence of
biaxial strain € > 7.5%.

An applied external magnetic field produces a QH phase
in addition to the QSH phase. These two phases coexist up
to a critical strength of the magnetic field at which the QSH
phase completely disappears and the system becomes a pure
QH insulator.

In addition we found topologically protected gapless edge
states in a typical z-GeSnH,-NR for a biaxial strain of € =
8.5% in the presence of disorder by calculating electronic
transport. The conductance fluctuations reach the universal
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TABLE II. The first column are the matrix elements for the nearest-neighbor hopping between s and the different
p orbitals. The hopping integrals as a function of direction-dependent quantities and SK parameters are listed in the
second column. The third column represents the hopping parameters with inclusion of applied strain.

Hopping parameters Without strain

‘With biaxial strain

lss Viso

lip Wspo

Top, Vo

Tspy mVspe

Lop, mv o

pipe IPVpps + (1 =PV
Lpypy mZVp,,,, +d - m2)VPI’7T
Lpepy lm(Vpprr —Vopr)

1811 — 2¢ cos? ¢]

19, [1 = 2€ cos® ¢y + ne tan ¢y
f?px [1 — 2€ cos? ¢y + ne tan ¢y ]
tsopy [1 — 2€ cos? ¢y + ne tan ¢y ]
f?pv[l — 2€ cos? ¢ + ne tan ¢y
t;?xpx[] — 2€ cos? ¢y + 2n¢€ tan ¢ ] — 2n€ tan GoVppr
19 [1 — 2€cos? ¢ + 2ne tan o] — 21n€ tan ¢oV,,pm

PyPy
19, [1 = 2€ cos® ¢y + 2ne tan ¢y]

value of the unitary class § = 2. For high Fermi energies
and strong disorder the conductance fluctuations follow the
orthogonal ensemble 8 = 1. The application of an external
magnetic field gradually decreases the UCF by a factor of /2.
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APPENDIX: LOW-ENERGY EFFECTIVE TB
HAMILTONIAN FOR MONOLAYER GeSnH,

1. Tight-binding model Hamiltonian without SOC

To describe the low-energy spectrum and the electronic
properties of ML GeSnH,, we construct a TB model Hamil-
tonian involving the three outer shells s, p,, and p, atomic
orbitals of Ge and Sn atoms. The effective TB Hamiltonian
without SOC can be written in the second quantized represen-
tation as

Hy = ZEiaCLciot
i,a

+ Z t,'a,j/g(CLCjﬂ + H.c.).
(i, j)e. B

(AD)

Here a, B € (s, px, py) are the orbital indices and (i, j) de-
notes the nearest-neighboring ith and jth atoms. Ej, is the
on-site energy of the ath orbital of the ith atom, cL(c,-D,)
is the creation (annihilation) operator of an electron in the
ath orbital of the ith atom, and #;, ;4 is the nearest-neighbor
hopping parameter between the ath orbital of the ith atom
and the Sth orbital of the jth atom. The hopping parameters
of Eq. (Al) are determined by the Slater-Koster (SK) [31]
integrals as shown in the second column of Table II, where
I = cos 6 cos ¢y and m = sin 6 cos ¢ are direction cosines of

TABLE III. Numerical values of the SK parameters obtained
from a fitting to the ab initio results. The energy units are eV.

Vs.w VY[)O' pra ‘/pp(r Vpprr EGe,s EGe,p ESn,s ESn,p

—1.51 333 235 369 —-1.03 —-547 523 -226 1091

the angles of the vector connecting two nearest-neighboring
atoms with respect to x and y axes, respectively.

We calculated the hopping parameters and on-site en-
ergies of the above Hamiltonian using the method of
minimization of the least square difference between the
DFT obtained band structure based on the Heyd-Scuseria-
Ernzerhof (HSE) approximation [11] and the band struc-
ture of our TB model. Our TB model Hamiltonian has
nine fitting parameters; namely, four on-site orbital energies
(EGe,s> Ege,ps Esn,s, Esn,p) and five SK parameters related to
the hopping energies (Viso, Vipo Vx,,a, Vppo» Vppr ). Note that
Vipo (VS,,J) is the hopping integral between the s orbitals of
atoms in sublattice A (B) and p orbitals of atoms in sublattice
B (A).

Table III presents the obtained numerical values of the SK
parameters. Using the optimized parameters, we can repro-
duce the three low-energy bands near the Fermi level (s and
Dxy bands). Figure 9(a) shows the TB low-energy bands of
ML GeSnH, that is in good agreement with the DFT results.
The band structure has a direct band gap of 1.155 eV at the I"
point.

Energy (eV)

KM

FIG. 9. The TB band structure of ML GeSnH, (a) without SOC
and (b) with SOC. Symbols represent the DFT-HSE data taken from
Ref. [11].

115421-7



ZAHRA ASLANI et al.

PHYSICAL REVIEW B 99, 115421 (2019)

2. Spin-orbit coupling in ML GeSnH,

In general, spin-orbit interaction can be written as [32]

(VV x p) -0, (A2)

thoe = gz

where 7 is Planks constant, my is the rest mass of an electron,
c is the velocity of light, V' is the potential energy, p is mo-
mentum, and o is the vector of Pauli matrices. The major part
of SOC in systems that consist of heavy atoms comes from the
orbital motion of electrons close to the atomic nuclei. In such
systems and within the central field approximation, the crystal
potential V(r) can be considered as an effective spherical
atomic potential V;(r) located at the ith atom. Therefore, by
substituting VV;(r) = (dV;/dr)r/r and s = (/i/2)o terms into
Eq. (A2) the SOC term takes the form [32]

HSOC = )\(I’)L - S. (AS)
The above equation can also be expressed in the form
Lis_+L_s
Hsoc = A(r)(% + Lzsz), (Ad)

—_

Energy (eV)

Energy (eV)

A

FIG. 10. The TB band structure of ML GeSnH, without (upper
panels) and with (lower panels) SOC in the presence of (a) and
(d) 0%, (b) and (e) 4%, and (c) and (f) 8% biaxial tensile strain. Red
dots refer to the DFT-HSE data taken from Ref. [11].

1
I
1
1
I
1
]
I
1
;
r

where A(r) = 1/2m2c*(1/r)(dV /dr) is the effective atomic
SOC constant whose value depends on the specific atom. L,
s+ are the operators for angular momentum and spin, respec-
tively. In the basis set of [sa, pxa, Pya, SB, PxB> PyB) @ 11, 1),
the matrix elements of the on-site SOC Hamiltonian for ML
GeSnH,; are given by

LJ,»Sf + L7S+

> (AS5)

(a;|HsoclBi) = )»i< + Lz5z>

of

Here «; and B; are the atomic orbitals and A; is the on-site
SOC strength of the ith atom. Note that since the two atoms in
the unit cell of ML GeSnH, are different, we have two distinct
SOC strengths A4 and A for atoms in sublattice A (Ge atoms)
and sublattice B (Sn atoms), respectively.

The resulting SOC Hamiltonian matrix in the above basis
is given by

(A6)

1t 1l
H. _ Hgoe  Hgoe
SOC= \ gt gL )

soc SOC

1.2

e
%

Band gap (eV)
=) =
~ o

e
)

0 1 2 3 4 5 6 7 8 9 10

1 L B B T T

oo E (DFT) i

0.8 44 EB) .
—

S L J

2 0.6 _

g | NI TI |
on

Fg 04 -

s | i
m

021 -

U o T T R T T I

0 1 2 3 4 5 6 7 8 9 10
Strain (€ %)

FIG. 11. The calculated band gaps of ML GeSnH, as a function
of biaxial strain (a) without SOC, and (b) with SOC. The DFT data
are taken from [11].
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where the elements are 6 x 6 matrices

0 0 0 0 0 0

0 0 —ixa O 0 0

1o ix 0 0 0 0

Mo - A
Hgoe = 5o o 0 0 0 o | (AT)
0 0 0 0 0 —ir

0 0 0 0 iip 0

W ™ N gt
Hgoe = —Hgoor  Hgoe = Hgpe = 0. (A8)

The value of the on-site effective SOC strength X is de-
termined by fitting the TB energy bands to the DFT results.
Here we fitted the energy bands obtained from our TB model
to the one from the DFT+HSE approach [11]. The optimized
numerical results using the hopping parameters from Table II1
are Ay = 0.296 eV, Ag = 0.326 eV for Ge and Sn atoms,
respectively. The TB energy bands of ML GeSnH, in the
presence of spin-orbit interaction using the mentioned values
of SOC strengths are in good agreement with the ab initio
results as shown in Fig. 9(b).

Notice from Fig. 9(b) the spin splitting in the doubly
degenerate bands. The splitting is more clear for the upper
valence band close to the K symmetry point which is 92 meV.
For the conduction band the spin splitting is 241 meV at
the K symmetry point. All the energy states of a system
with inversion symmetry will be spin degenerate in case of
TRS. The degeneracy can be lifted by breaking the inversion
symmetry in such a system. The band gap of the system is
reduced to 0.977 eV, demonstrating that ML GeSnHj, is still a
normal semiconductor.

3. The effect of strain

The electronic properties of a 2D system is affected signif-
icantly by applying strain [33,34]. This is due to the fact that
strain changes both the bond lengths and the bond angles. This

in turn changes the SK parameters and hopping integrals that
further affect the electronic band structure.

Based on our knowledge from previous works, we expect
a topological phase transition upon the application of biaxial
tensile strain [11]. Furthermore, since the electronic band
structure of this system under strain is available from ab initio
calculations, the comparison of our TB band structure with
DFT results will be another verification for the correctness of
our TB model Hamiltonian. To this end, using the approach
of Ref. [10] we obtain the effect of strain on the hopping
parameters which we list in Table II. Note that 77, ;p indicates
the unstrained hopping parameters, € is the strength of the
applied biaxial strain, and ¢ is the initial buckling angle.

The Hamiltonian for the strained system can be obtained
by substituting the new hopping parameters (last column of
Table II) in the original Hamiltonian Eq. (A1). The calculated
TB energy spectrum of ML GeSnH) are shown in Figs. 10(a)—
10(c) without SOC and Figs. 10(d)-10(f) with SOC in the
presence of 0%, 4%, and 8% biaxial tensile strains. As shown,
these results are in good agreement with the DFT calculations
[11].

In Figs. 11(a) and 11(b) we show the variation of the energy
gap of ML GeSnH, as a function of biaxial tensile strain
without and with SOC, respectively. As shown in Fig. 11(b),
with increasing biaxial tensile strain in the presence of SOC,
the band gap decreases and eventually a band inversion occurs
at the critical value of 7.5% strain. By increasing the strain the
band gap reaches ~134 meV at a reasonable strain of 8.5%.

Remarkably, the value of the band gap is significantly
larger than kgT at room temperature (~25 meV), and there-
fore large enough to realize the QSH effect in ML GeSnH,
even at room temperature. The excellent agreement between
the results of our TB model and the DFT calculations in
predicting the band inversion in this system upon biaxial
tensile strain, implicitly confirms the validity of our proposed
TB model.
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