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The k-dissimilar vehicle routing problem

L. Talarico∗, K. Sörensen, J. Springael
University of Antwerp Operations Research Group ANT/OR

Prinsstraat 13, 2000 Antwerp, Belgium

November 2013

In this paper we de�ne a new problem, the aim of which is to �nd a set of
k dissimilar alternative solutions for a vehicle routing problem (VRP) on a sin-
gle instance. �is problem has several practical applications in the cash-in-transit
sector and in the transportation of hazardous materials. A min-max mathematical
formulation is developed that minimizes the objective function value of the worst
solution. A distance measure is de�ned based on the edges shared between pairs
of alternative solutions. An iterative heuristic algorithm to generate k dissimilar
alternative solutions is also presented. �e solution approach is tested using large
and medium size benchmark instances for the capacitated vehicle routing problem.

Key words: Vehicle Routing Problem (VRP), Metaheuristic, Security, Similarity.

1 Introduction

In many European countries, cash-in-transit companies must by law determine several alter-
native routes for each of their vehicles when transporting cash. �e aim of this measure is to
allow the company to easily change its plans in case of unforeseen circumstances (e.g., acci-
dents, road works) and to increase security by making the vehicle routes more unpredictable. In
this paper, we de�ne a new vehicle routing problem — the k-dissimilar vehicle routing problem
or kd-VRP — to support this optimization problem.

A solution of this novel problem consists of k feasible solutions of a single capacitated vehicle
routing problem (VRP). Each of these VRP solutions (which we will consistently call alternative
solutions) must obey the traditional constraints of the VRP: all customers are visited exactly
once, all vehicles begin and end at the depot, and the capacity of the vehicle is not exceeded.
�e quality of an alternative solution is measured as the total distance traveled by all vehicles.

∗Corresponding author: University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium, Tel:+3232654177, E-
mail:luca.talarico@uantwerpen.be
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Assuming that a similarity metric can be calculated between any pair of alternative solutions, a
feasible solution to the kd-VRP is a set of k feasible alternative solutions for which the di�erence
between each pair of alternative solutions is larger than a certain threshold. �e objective of
the kd-VRP is to minimize the cost of the worst alternative solution in the set. To the best of
our knowledge, this problem has never been studied before in the literature.

�e kd-VRP is closely related to the m-peripatetic vehicle routing problem (m-PVRP) studied
in Ngueveu et al. (2010a,b). �is problem consists in �nding a set of edge-disjoint routes of
minimal total cost over m periods so that each customer is visited exactly once per period and
the edge between a pair of customers can be used at most once during the m periods. “Periods”
in the m-PVRP are essentially the same concept as “alternative solutions” in the kd-VRP. �e
di�erence between the kd-VRP and the m-PVRP is twofold: in a feasible solution of the m-
PVRP, no edge is used twice, whereas the double (or triple, . . . ) usage is not explicitly forbidden,
but rather penalized in the objective function of the kd-VRP. In other words, multiple usage of
an edge is a hard constraint in the m-PVRP and a so� constraint in the kd-VRP. Secondly, the
m-PVRP minimizes the total cost over all periods, whereas the kd-VRP minimizes the worst-
case cost over all alternative solutions. �e motivation for the kd-VRP is that for some real-life
applications (e.g., money collection), the constraint that imposes k edge-disjoint VRP solutions
in which not a single edge is shared between the alternative solutions might be too stringent.
�e min-max objective function of the kd-VRP is a design choice, that can easily be changed
to a total cost objective, in which case the kd-VRP generalizes the m-PVRP.

Figure 1 shows an example of a solution for the kd-VRP with k = 3, for which a set containing
three dissimilar, but not disjoint, alternative solutions (see sub-�gures 1(a), 1(b) and 1(c)) has
been generated.

0

(a)

0

(b)

0

(c)

Figure 1: A solution for the kd-VRP with k = 3, instance F-n45-k4

�e kd-VRP has many practical applications. A �rst application, which provided the motivation
for this work, can be found in the context of money collection and distribution, also known
as the cash-in-transit sector. In this context, a set of customers (e.g., banks, shops, casinos,
jewelers) needs to be visited to pick up valuables and cash. As mentioned, companies in the
cash-in-transit sector are o�en required by law (see SPFI (2003) for details) to determine several
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alternative solutions in advance. Additionally, the same alternative solution cannot be used
more than two consecutive times. On the other hand, the travel distance of each of these
alternative solutions should be minimized for obvious economic reasons. �e aim is thus to
decrease the predictability of the chosen alternative solution, reducing the risk to be assaulted,
while maintaining economic viability.

A second application can be found in the transportation of dangerous materials (e.g., the rout-
ing of tankers which must serve a set of petrol stations). In this case a limitation of the number
of shared edges between the routes might be required in order to be�er share and mitigate the
risk of accidents (Gopalan et al., 1990).

A third application concerns the design of patrol routes for security agents who must follow
partially di�erent routes over time (Wol�er Calvo and Cordone, 2003).

�e remainder of the paper is organized as follows. In Section 2, the literature on the peri-
patetic VRP and similar problems such as the dissimilar k paths problem and the disjoint paths
problem is presented. In Section 3, some indices used to measure the (dis)similarity between
paths and alternative solutions are also introduced. In Section 4, the k-dissimilar vehicle rout-
ing problem (kd-VRP) is described in detail and a mathematical formulation is developed. In
Section 5, an iterative metaheuristic to �nd solutions for the kd-VRP is developed. In Section 6
the solution approach is tested using 51 benchmark instances from the VRP library. Finally
Section 7 concludes and provides some suggestions for future research.

�e contributions of this paper are the following: (1) A new NP-hard combinatorial optimiza-
tion problem is proposed, the k-dissimilar vehicle routing problem or kd-VRP. �e kd-VRP
requires a similarity measure that can calculate the di�erence between alternative solutions.
We de�ne such an index, starting from the similarity index used for the dissimilar k-shortest
path problem. (2) A mathematical formulation for the kd-VRP is proposed. (3) An iterative
metaheuristic to solve medium and large instance of the kd-VRP is described, implemented
and tested.

2 Literature review

As mentioned, the kd-VRP shares several properties with a set of routing problems called peri-
patetic. A solution of the m-peripatetic vehicle routing problem (m-PVRP) consists of a set of
m di�erent VRP solutions for which it holds that each pair of alternative solutions is edge-
disjoint. In other words, each edge is used at most in one of the m VRP solution. �e m-PVRP
generalizes two well-known NP-hard problems: the vehicle routing problem (VRP) and the
m-peripatetic salesman problem (m-PSP). �e la�er is a special case of the m-PVRP with one
single vehicle of in�nite capacity.

�e m-PSP was introduced by Krarup (1975), and consists in �nding m edge-disjoint Hamilto-
nian cycles on a graph in such a way that the total distance of all Hamiltonian cycles is minimal.
Krarup (1975) proposed a two stage heuristic to �nd a feasible solution for them-PSP: �rst solve
a TSP on the initial graph (exactly or by means of a heuristic), remove from the graph all the
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edges used in the TSP solution and then solve a second TSP on the remaining graph. �e
heuristic is repeated until m Hamiltonian cycles have been obtained. More recent and e�cient
approaches to solve the m-PSP problem can be found in Wol�er Calvo and Cordone (2003);
De Kort (1993); Duchenne et al. (2007).

Recently a problem similar to them-PSP has been proposed within a competition (Kaggle, 2012)
in which a peripatetic travelling salesman problem needs to be solved to help Santa Claus de-
liver his presents. Santa’s dilemma is slightly di�erent form the traditional m-PSP. In particular
Santa likes to see new terrain every year and he does not want his route to be predictable. For
this reason, two disjoint alternatives for each TSP are required to be obtained (i.e., if one of
the solution contains an edge from A to B, the other path must not contain an edge from A to
B or from B to A). �e competition thus requires the solution of a m-PSP problem in order to
allow Santa to follow a di�erent path every year, and then, for each yearly Santa’s TSP tour, a
2 edge-disjoint TSP needs to be solved.

�e problem of �nding dissimilar solutions has received some a�ention in the literature on
shortest path problems. �e k-shortest paths problem (k-SPP) is a generalization of the shortest
path problem in which the shortest, the second shortest, until the k-th shortest path from an
origin node to a destination node are sought, in increasing order of length. In the literature the
generation of the k shortest paths has been widely studied (see, e.g., Yen (1971); Azevedo et al.
(1993); Ahuja et al. (1990); Shier (1979); Hershberger et al. (2007)) and many algorithms have
been proposed (see, e.g., Feillet et al. (2004); Go�hilf and Lewenstein (2009); Di Puglia Pugliese
and Guerriero (2013)).

�e k shortest paths are likely to share a large number of edges, and tend to be very similar
to each other. For some applications in which dissimilar alternatives are needed, a di�erent
approach is required. In Park et al. (2002) a path is considered a reasonable dissimilar alter-
native to another existing path, by evaluating multiple a�ributes (e.g., distance, travel time,
variability) associated to the edges used in both solutions from an individual’s perspective.

To �nd dissimilar paths, the disjoint-path problem (DPP) can also be used, a classical and impor-
tant combinatorial optimization problem with several applications. Di�erently from the clas-
sical k shortest paths problem, in the DPP no common edges (edge-disjoint paths) or shared
vertices (vertex-disjoint paths) are allowed between the alternative paths (see, e.g., Nguyen
(2007)).

However (as also highlighted in Kuby et al. (1997)) for many real-life applications (e.g., haz-
ardous material transportation, couriers, routing in congested network) the constraint that the
paths have no edges in common may be too stringent and, due to the impossibility to reuse
all the shortest edges employed in the previous solutions, the resulting disjoint paths may be
impractically long. In fact, in the majority of real-life transportation applications, in which a
minimum number of dissimilar solutions, not necessarily disjoint, is required, the cost of each
alternative should be as small as possible. �erefore, a valid alternative to DPP is represented
by the path dissimilarity problem (PDP) in which a set of dissimilar solutions with minimum
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cost are generated. �e PDP (see, e.g., Akgün et al. (2000) and Dell’Olmo et al. (2005)) is a bi-
objective routing problem in which a set of k paths, from an origin to a destination, must be
generated with minimum length and maximum dissimilarity.

In the PDP a set of k alternative paths from an origin to a destination node is generated, using
a speci�c index to measure the similarity between the alternative paths. Nowadays there is
also a growing need for satellite navigation services to provide multiple dissimilar alternative
paths which re�ect a variety of user preferences and a dynamic/stochastic variety of travel
times and costs (see Yeonjeong and Dong-Kyu (2011) for more details). For example, in the
context of hazardous materials transportation, a spatially dissimilar paths which minimize the
risk (distributing the risk over all regional zones to be crossed uniformly) need to be obtained.
However, for routing hazardous materials, the spatial dissimilarity between alternative paths
may depend of how localized the e�ects of a spill are. Several algorithm have been proposed for
the k dissimilar shortest paths problem. Johnson et al. (1992) introduced the iterative penalty
method (IPM) in which a shortest path algorithm is iteratively applied. A�er each application of
the method, the weights associated to the edges in the constructed path are penalized (adding
a penalty factor β) to discourage their selection in future constructions. Barra et al. (1993)
proposed a edge penalty method in which the network is modi�ed by increasing the cost of
all the edges used within the shortest path. �e main advantage of the IPM is that it only
requires a shortest-path algorithm to generate paths. A drawback is that it relies heavily on the
penalization parameter. For example, a small penalty may not achieve the goal of dissimilarity,
while a large penalty may eliminate many viable paths from consideration.

To summarize, the PDP generalizes the DPP by replacing the constraint on the disjoint so-
lutions with the constraint on similar solutions. Likewise, the m-PVRP can be extended and
generalized by making the constraint that two solutions cannot have any edges in common less
stringent. Some a�empts in this direction are followed in the literature on VRP applications in
which speci�c indices have been de�ned and used to measure similarities between solutions.

For example, in Løkketangen et al. (2012), a multiobjective decision support system (DSS) tool
is developed in order to produce a set of k dissimilar VRP solution. �e dissimilarity between
the k VRP solutions is based on an a�ribute distance function. �e distance function includes
some measures typical of the decision process and comprise, for example, road accessibility,
type and amount of load, road length, road quality, vehicle, and driver.

In Sörensen (2006) a multiobjective optimization approach is proposed in order to �nd a set
of k VRP solution that are “close” (in the solution space) to a given baseline VRP solution and
at the same time have a high quality in the sense that their total distance traveled is small. In
particular a memetic algorithm with population management is implemented in order to o�er
to the decision maker a choice of Pareto-optimal solutions, allowing him to make a trade-o�
between changing his existing solution (i.e., baseline VRP solution) and allowing a longer travel
distance.
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3 Similarity indices

In order to measure the dissimilarities between solutions several methods and indices have
been proposed. �e index to measure similarity between alternative solutions that is used
in this paper has been borrowed from the literature on shortest path problems in which the
concept of dissimilarity between solutions has been widely studied. �e dissimilarity measure
used in this paper is discussed in Section 4 and can be found in Eq. (6).

In Lombard and Church (1993) the concept of “area under the path” is introduced. If the net-
work is assumed to be representable on a plane, the “area under the path” is the area between
the path and the x-axis. �erefore, the dissimilarity between two paths is measured by the
absolute di�erence between the areas under the paths. In Martı́ et al. (2009) the dissimilarity
dis(Pi, Pj) between two paths Pi and Pj , is computed as the average of the distances between
each vertex in Pi to the path Pj plus the average of the distances between each vertex in Pj to
the path Pi. �e dissimilarity measure is given by the formula:

Dis(Pi, Pj) = 1
2

[∑
vi∈P1 δ(vi, P2)
| P1 |

+
∑

uj∈P2 δ(uj , P1)
| P2 |

]
(1)

where the value δ(v, P1) represents the distance (e.g., euclidean distance) from a vertex to a
path P1 = {v1, v2, . . . , vn} expressed as

δ(v, P1) = min
vj∈P1

δ(v, vj) (2)

�e similarity index in formula (1) considers spatial information hence the dissimilarity of the
resulting paths will also be a dissimilarity from the spatial point of view. In Akgün et al. (2000)
and Vanhove (2012) the dissimilarity is measured in terms of shared edges between paths,
without considering spatial information concerning the physical location of the vertices. �e
expression to compute the dissimilarity between two paths P1 and P2, considering only the
length (denoted by le�er L) of the shared edges, is as follows:

Dis(P1, P2) = 1 – 1
2

[
L(P1 ∩ P2)

L(P1) + L(P1 ∩ P2)
L(P2)

]
(3)

In Dell’Olmo et al. (2005) a concept of “bu�er zone” is included in the formula (3) to embed
spatial information in the measure of similarity. �e “bu�er zone” is a zone determined by
moving a circle along the path, whose center is the vehicle on the path itself and whose radius
is proportional to the impact area due to a possible accident. In �yagarajan et al. (2005) an
extension of the dissimilarity measure in (3) is proposed considering the time context. In fact,
in practical military missions, the time di�erence between routes must be considered.

In order to �nd k (dis)similar alternative solutions a distance measure to calculate the di�erence
(or similarity) between two given solutions is required. Besides measuring the dissimilarity be-
tween two alternative solutions based on the number (or the length) of the common edges, the
edit distance, which is based on the Levenshtein distance might be used (Levenshtein, 1966).
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�e edit distance can be used for permutation problems i.e., problems of which the solutions
are most naturally represented as a permutation of a set of items (i.e., problem a�ributes),
representing the order in which the items appear in each solution (e.g., a VRP solution can be
represented as a set of permutations, one for each trip. Each trip is determined by the order in
which the customers appear in it.). �is distance measure is based on the idea that the distance
between two solutions is equal to the “cost” required to transform the �rst solution into the
second one.

A comparison between these distance measures is beyond the scope of this paper. For a more
elaborate discussion of some issues related to distance measures, including some other dis-
tance measures for permutation problems, we refer to Sörensen (2007) and Løkketangen et al.
(2012).

4 Problem description

In this section a mathematical formulation of the kd-VRP is developed, based on an MIP for-
mulation for the VRP. �e VRP is seen as a subproblem the solutions of which are the input of
a master problem in which the k dissimilar alternative solutions are selected.

�e VRP is de�ned on a complete graph G = (V , E) with vertex set V = {0, . . . , n} and edge set
E. Vertices {1, . . . , n} correspond to the customers, while vertex 0 corresponds to the depot.
A non-negative cost cij is associated with each edge (i, j) ∈ E, representing the travel cost
between vertices i and j. �e cost structure is assumed to be symmetric, i.e., cij = cji ∀i, j ∈ V .
To each customer i ∈ {1, . . . , n} is associated a known demand di > 0, which represents
the quantity of goods to be delivered. A set of N identical vehicles, each with capacity C, is
available at the depot (it is assumed that di 6 C ∀i ∈ {1, . . . , n}). A general MIP formulation of
the VRP (see, e.g., Van Leeuwen and Volgenant (1983) for more details) is presented in (4a)–(4f).
�is formulation uses a three-index decision variable xhij , which assumes value 1 if edge (i, j) is
traversed by vehicle h, and 0 otherwise.

7



min
∑
h∈N

∑
(i,j)∈E

cij xhij (4a)

s.t.∑
j∈V\{0}

xh0j =
∑

j∈V\{0}
xhj0 = 1 ∀h ∈ N (4b)

∑
h∈N

∑
j∈V

xhij =
∑
h∈N

∑
j∈V

xhji = 1 ∀i ∈ V \ {0} (4c)

∑
i∈V

∑
j∈V\{0}

dj xhij ≤ C ∀h ∈ N (4d)

∑
h∈N

∑
i∈Q

∑
j /∈Q

xhij ≥ 1 ∀Q ⊂ V ;Q 6= ∅ (4e)

xhij ∈ {0, 1} ∀(i, j) ∈ E; ∀h ∈ N (4f)

�e objective function (4a) minimizes the total distance travelled by all vehicles combined.
Constraints (4b) force each vehicle to start and �nish its route at the depot, visiting at least
one vertex along its tour. Constraints (4c) state that every vertex must be visited exactly once,
implying that only one vehicle may arrive at a given vertex and depart from it. Constraints (4d)
impose a restriction on the maximum load of each vehicle. Finally constraints (4e) ensure that
no sub-tours occurs in the solution. Constraints (4f) limit the domain of the decision variable.

�e output of the VRP subproblem in (4a)–(4f) is the input of the master problem in (5a)–
(5c). �e master problem requires two more parameters to be set: the value of the similarity
threshold TS and the number of alternative solutions (k > 1).

min max
∀i∈{1,...,k}

f (yi) (5a)

s.t.
δ(yi, yj) ≤ TS ∀i, j ∈ {1, . . . , k}; i 6= j (5b)
yi ∈ Ω ∀i ∈ {1, . . . , k} (5c)

A feasible solution for the kd-VRP consists of a subset S ⊆ Ω with Ω the set of all the feasible
alternative solutions for which | S |= k. �e objective function (5a) minimizes the cost of the
worst alternative solution. Constraints (5b) impose that each pair of alternative solutions in
the optimal solution are dissimilar by at least the threshold TS . Constraints (5c) restrict the
domain of the decision variables.

As mentioned, the kd-VRP is a variant of the k disjoint VRP problem. If the similarity thresh-
old TS assumes a value equal to 0, the alternative solutions are forbidden to have any shared
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edges.

In principle, if the objective function in equation (5a) is replaced with the the minimization of
the total cost of the alternative solutions (

∑
i∈{1,...,k} f (yi) ) then the kd-VRP can be considered

as the generalization of the k disjoint VRP problem.

Both the mathematical model in (5a)–(5c) and the solution approach (developed in Section 5)
are independent of the speci�c (dis)similarity index used. Hence, all of the similarity indices
discussed in Section 2 could be used in both the formulation and the heuristic optimization
algorithm.

In this paper, we have opted for a similarity index derived from the one in formula (3) (see
Section 2). Given two alternative solutions yi and yj of the kd-VRP, this index compares each
route of alternative solution yi with each route of alternative solution yj . Let r lyi and rmyj be
the l-th route of solution yi and the m-th route of solution yj respectively, then the similarity
between these routes must not exceed the similarity threshold Ts.

δ(yi, yj) = max
l,m∈N

1
2

[
cs(r lyi , r

m
yj )

c(r lyi )
+
cs(r lyi , r

m
yj )

c(rmyj )

]
(6)

�e value cs(r lyi , r
m
yj ) represent the cost of the edges shared between the two routes r lyi and rmyj ,

and c(r lyi ) (or c(rmyj )) is the cost of route r lyi (or rmyj ). A di�erent option (which is not considered
in the remainder of this paper) could consider the management of the number of shared edges
between routes r lyi and rmyj ) instead of the cost of the edges shared between the two routes
(cs(r lyi , r

m
yj )) and the number of edges included in each route instead of the cost of each route

(c(r lyi ) or c(rmyj )).

Alternatively, it is possible to consider the number of shared edges between a couple of routes
(for the value ws(r lyi , r

m
yj )) and the number of edges which compose the routes (for the values

w(r lyi ) or w(rmyj )) instead of the weights of the shared edges inside the routes (ws(r lyi , r
m
yj )) or the

cost of the routes themselves (w(r lyi ) or w(rmyj )), in formula (6).

5 Metaheuristic description

In this section an iterative metaheuristic to solve the kd-VRP problem is presented. �e meta-
heuristic developed in this paper is similar to the iterative penalty method used in Johnson
et al. (1992) and Barra et al. (1993) to �nd k dissimilar shortest paths. We call this method the
Iterative Penalty Method for the kd-VRP (IPM kd).

Our version of the iterative penalty method di�ers from the one proposed in Johnson et al.
(1992) and Barra et al. (1993) because at each iteration alternative solutions are selected under
the conditions of a maximum degree of similarity. To this end the metaheuristic examines so-
lution cost and solution overlaps simultaneously while searching for k alternative solutions.
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�e IPM kd algorithm is described as follows. A�er initialization, the IPM kd sequentially gen-
erates k alternative solutions, storing each of them in a candidate set S = {y1, y2, . . . , yk}. A�er
each alternative solution has been found and added to set S, the cost matrix of the underlying
VRP is updated, penalizing all edges used in previous alternative solutions. �e procedure con-
tinues until the desired number of alternative solutions (k) is reached. �e penalty structure
is multiplicative, i.e., the new cost of each edge is based on the current cost (which may have
been penalized before) multiplied with a factor β. �e scheme of the IPM kd metaheuristic is
summarized in Algorithm 1.

Algorithm 1: IPM kd metaheuristic structure
Initialize both kd-VRP and Heuristic parameters k, Ts , I , P , α, β and ω;
l ← 0;
while (l < I ) do

S ← {∅};
while (| S |< k) do

i←| S |;
p← 0;
Let y∗i be the best i-th alternative solution found so far and f (y∗i ) its cost;
Let yi be the current i-th alternative solution and f (yi) its cost;
y∗i ← {∅}, yi ← {∅}, f (y∗i )←∞, f (yi)←∞;
while (p < P) do

if (p == 0) then
yi ← Lin–Kernighan(yi) ∪ Spli�ing(yi);

else
yi ← Perturbation(y∗i );

yi ← VND(yi);
if (f (yi) < f (y∗i )) then

y∗i ← yi;
f (y∗i )← f (yi) ;

p + +;
if (i == 0) then

add y∗i to S;
y∗i ← PenalizationFunction(y∗i );
y∗i ← VND(y∗i );

else
while (δ(y∗i , yh) > Ts ∀h ∈ 1, . . . , i – 1) do

y∗i ← PenalizationFunction(y∗i );
add y∗i to S;
if (| S |== k) then

l + +;
Return the best set S found so far;

�e internal parameters used by the IPM kd algorithm (referred to as heuristic parameters) as
well the kd-VRP key controls (referred to as kd-VRP parameters) are summarized in Table 1.

As shown in Algorithm 1 four basic heuristic components (described in sub-paragraphs 5.1-5.4
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Table 1: Heuristic and kd-VRP parameters

Parameter Description

kd-VRP parameters

k Number of alternative solutions to be generated
Ts Maximum similarity threshold

Heuristic parameters

I Number of restarts of the algorithm
P Number of times the Perturbation heuristic is applied
α Number of closer neighbour vertices to be considered in the Repair heuristic
β Penalty factor used in the Penalization function
ω Maximum percentage number of routes to be destroyed

respectively) are applied in the solution approach: (1) �e Lin–Kernighan heuristic followed
by the Prins spli�ing procedure; (2) a Penalization function; (3) a VND (Variable Neighbourhood
Descent) heuristic; (4) a Perturbation.

5.1 Lin-Kernighan heuristic plus Prins splitting procedure

To �nd an initial alternative solution yi the algorithm employs the Lin-Kernighan heuristic,
followed by the Prins spli�ing procedure, both using the current cost matrix.

�e current solution yi is then improved using the VND heuristic (see Section 5.3) and a diver-
si�cation mechanism (see Section 5.4) to escape from local optima.

�e Lin-Kernighan heuristic described in Lin and Kernighan (1973) is a deterministic approach
generally considered to be one of the most e�ective methods to generate optimal or near-
optimal solutions for the symmetric travelling salesperson problem (TSP). �e Lin-Kernighan
heuristic employed in this paper uses the modi�ed version as implemented in Helsgaun (1998,
2000, 2006).

To transform this TSP solution into a VRP solution the Prins spli�ing procedure described in
Prins (2004) is used. �is procedure creates an auxiliary graph containing n + 1 nodes (0 to n),
and adds an arc between nodes i – 1 and j (with i ≤ j) if the route visiting the i-th node to the
j-th node in the order they appear in the giant tour is feasible. �e best possible way to split
the giant tour in feasible routes, is determined by �nding the shortest path from node 0 to node
n in the auxiliary graph. If the shortest path contains the arc from i – 1 to j, the giant tour is
split between the i – 1-th node and the i-th node and between the j-th and the j + 1-th node.
For a more detailed explanation of this procedure we refer to Prins (2004).
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5.2 Penalization function

�e Penalization function updates the cost matrix of the VRP, and is used: (1) a�er a new
feasible alternative solution yi is added to set S and (2) every time an infeasible alternative
solution has been generated. Its purpose is twofold:

• Once a new solution yi is added to set S, the Penalization function increases the cost of
all edges used in yi by a factor 1 + β (β > 0). In doing so, the search process is forced to
move to a di�erent part of the search space. In order to speed up the search for a new
feasible alternative solution yi+1 which contains dissimilar routes from the ones of yi,
the Penalization function also penalizes the edges that can be obtained by combining the
vertices which are in each route of yi by half of the penalty. In other words, suppose that
solution yi contains a route r in which the sequence of vertices is visited in the following
order [0, 1, 3, 5, 0]. �en the Penalization function increases the cost of the edges (0; 1),
(1; 3), (3; 5), (5; 0), (1; 0), (3; 1), (5; 3) and (0; 5) by a factor (1 + β). �e edges that may be
generated by reshu�ing the vertices in route r (e.g., (0; 3), (3; 0), (1; 5), (5; 1), (3; 0) and
(0; 3)) are penalized by a value equal to (1 + β/2) (e.g., if c1,5 = 6 and β = 0.50 the new
cost of the edge (1; 5) will be c̄1;5 = 7.5).

• If solution yi is not feasible because its similarity to solution yj , already in S, exceeds
the threshold TS , the Penalization function penalizes the use of the edges which are in
common between yi and yj . �is is done by increasing the cost of the shared edges by a
factor 1 +β. �is operation forces the algorithm to discard the shared edges, guiding the
VND heuristic (see paragraph 5.3) towards a feasible solutions.

If a relatively large penalty is chosen, then edges that appear in the previous alternative so-
lutions are discouraged more heavily. A smaller penalty, on the other hand, allows for more
frequent recurrence of edges in the k alternative solutions.

5.3 VND (Variable Neighbourhood Descent) heuristic

�e VND heuristic has a dual purpose. First, it is used every time a new alternative solution
has been generated in order to improve it. Secondly it is used a�er the Penalization function
has been applied to the current infeasible solution yi, to make it feasible, discarding the shared
edges which make the current solution infeasible. In other words the VND heuristic is used
both to improve the current solution and to guide the algorithm towards a feasible alternative
solution.

�e VND heuristic in Algorithm 1 is a sequential Variable Neighbourhood Descent block in
which seven di�erent local search operators are used:

• Intra Route Local Search Operators which a�empt to improve a single route: Internal Or-
Opt and Internal Relocate, Internal 2-Opt shown in Figure 2).
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• Inter Route Local Search Operators which change more than one route simultaneously.
Our VND heuristic implements External Exchange, External Relocate, External 2-Opt and
External Cross-Exchange shown in Figure 3).
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Figure 2: Intra Route Local Search Operators
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Figure 3: Inter Route Local Search Operators

�e VND heuristic stops when the current solution cannot be further improved by any of the
local search operators, and thus a local optimum has been reached. Each local search operator
uses a �rst-improvement descent strategy, accepting a move that improves the current solution
as soon as it is found and restarting the VND heuristic from the new current solution.
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Finding the right order of neighbourhoods used in a deterministic VND heuristic may be of
considerable importance for the quality of the solution. We tested di�erent combinations of
the order in which the local search operators are used. On average, the most promising order
of neighbourhoods is the one shown in Algorithm 2.

Algorithm 2: VND structure
Let y be the current solution and f (y) its cost;
Let y∗ be the best solution found so far and f (y∗) its cost;
λ← 1 �ag ← false ;
while !�ag do

if (λ = 1) then
y ← NIntOr–Opt (y) ;

if (λ = 2) then
y ← NIntRelocate(y) ;

if (λ = 3) then
y ← NInt2–Opt (y) ;

if (λ = 4) then
y ← NExtExchange(y) ;

if (λ = 5) then
y ← NExtRelocate(y) ;

if (λ = 6) then
y ← NExtCross–Exchange(y) ;

if (λ = 7) then
y ← NExt2–Opt (y) ;

if (f (y) < f (y∗)) then
y∗ ← y;
λ← 1

else
if (λ < 7) then

λ + + ;
else

�ag ← true ;
return y∗ ;

5.4 Perturbation

�e perturbation heuristic is used in the IPM kd algorithm as a diversi�cation mechanism to
escape from local optima, while looking for the current alternative solution. During the per-
turbation heuristic a destroy-and-repair operator, similar to the one described in Talarico et al.
(2013), is used. First, the best alternative solution found so far (y∗i ) is partially destroyed and
then it is repaired obtaining a new current solution (yi). �e destroy-and-repair operator takes
ω as a parameter, which is the number of routes to be destroyed, as a percentage of the total
number of routes, from y∗i . �e destroy-and-repair operator works as follows:

• Destroy phase: a random route from the alternative solution y∗i is selected. All vertices
are removed from this route and inserted in a list of unvisited vertices (L). �is step is
repeated ω · N times where N represents the number of routes in y∗i .

• Repair phase: the new current alternative solution yi is generated starting from the non
destroyed routes of y∗i and adding new routes which contain the nodes in L. �ese new
routes are generated applying a greedy randomized nearest neighbourhood heuristic,
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using the parameter α, which represents the �rst α nearest vertices from which selecting
the next vertex.

A�er the application of the destroy-and-repair operator, the new solution yi, which has been
generated, is saved as the current solution and is improved using the VND heuristic.

6 Experiments

�e IPM kd metaheuristic described in Section 5 has been coded in Java language and it has
been extensively tested using a large set of benchmark instances taken from the VRP library.
As mentioned, given a similarity measure between alternative solutions, an instance of the
VRP can be transformed into an instance of the kd-VRP by adding only two parameters: the
number of alternative solutions k and the similarity threshold Ts.

In our computational experiments we used 51 medium and large instances available in the VRP
literature from di�erent sources (Augerat et al., 1998; Christo�des et al., 1979; Fisher, 1994;
Taillard, 1993; Golden et al., 1998)1 ranging from 45 to 484 nodes. �e characteristics of the
instances are reported in Table 2, the results of the experiment are summarized in Section 6.1.

All computational experiments were performed using a machine with an Intel core i7-2760QM
2.40GHz processor with 4GB RAM.

6.1 Computational results

�e computational experiments have been carried out in three di�erent phases. In the �rst
phase the heuristic parameters of the IPM kd were tuned (see Table 1) by running a full facto-
rial statistical experiment on a subset of the benchmark instances. A brief description of the
heuristic parameters, as well as the tested values, the number of tested values, and the optimal
parameter con�guration is given in Table 3.

Analyzing the average results obtained over all possible parameter levels the optimal con�gu-
ration of the IPM kd algorithm was determined (see also Figures 4 and 5). �ese results show
that if the number of times that the IPM kd algorithm is restarted (I ) or the number of times that
the Perturbation heuristic is applied (P) are increased, the quality of the solutions (lower values
of the objective functions) improves, but at the expense of increasing the running time.

In the second step of our computational experiments, using the best con�guration of the heuris-
tic parameters, all test instances are solved.

In order to analyze the relationship between these values and both the quality of the solution
and the computational time, the IPM kd algorithm is tested using di�erent values of the kd-
VRP parameters: (1) k (number of alternative alternative solutions to be generated); (2) Ts
(similarity threshold) and (3) β (penalty factor).

1�e instances are available at http://neo.lcc.uma.es/vrp.
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Table 2: VRP instances

Author Name # Nodes Best known VRP
Solution

Augerat et al

A-n53-k7 53 1010.0
A-n65-k9 65 1177.0
A-n80-k10 80 1764.0
A-n69-k9 69 1168.0
B-n56-k7 56 707.0
B-n68-k9 68 1272.0
B-n78-k10 78 1221.0
B-n63-k10 63 1496.0

Christo�des et al.

vrpnc1 51 524.6
vrpnc2 76 835.26
vrpnc3 101 826.14
vrpnc4 151 1028.42
vrpnc5 200 1291.29
vrpnc11 121 1042.11
vrpnc12 101 819.56

Fisher
F-n45-k4 45 724.0
F-n72-k4 72 237.0
F-n135-k7 135 1162.0

Taillard

tai75a 76 1618.36
tai75b 76 1344.62
tai75c 76 1291.01
tai75d 76 1365.42
tai100a 101 2041.34
tai100b 101 1940.61
tai100c 101 1406.2
tai100d 101 1581.25
tai150a 151 3055.23
tai150b 151 2656.47
tai150c 151 2341.84
tai150d 151 2645.39
tai385 386 24431.44

Golden et al.

kelly1 241 5627.54
kelly2 321 8447.92
kelly3 401 11036.23
kelly4 481 13624.52
kelly5 201 6460.98
kelly6 281 8412.88
kelly7 361 10195.56
kelly8 441 11663.55
kelly9 256 583.39
kelly10 324 742.03
kelly11 400 918.45
kelly12 484 1107.19
kelly13 253 859.11
kelly14 321 1081.31
kelly15 397 1345.23
kelly16 481 1622.69
kelly17 241 707.79
kelly18 301 998.73
kelly19 361 1366.86
kelly20 421 1821.15
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Figure 4: Relationship between ω and the average cost of the obtained solutions
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Figure 5: Relationship between α and the average cost of the obtained solutions

Parameter Description Values # best setting

I Number of times the IPM kd algorithm is
restarted

10 1 10

P Number of times the Perturbation heuristic is
applied

10 1 10

ω Maximum percentage number of routes in
best solution found so far to be destroyed

20,30,40,
. . . ,90,100%

9 40%

α Number of closer neighbour vertices to be
considered in the Repair heuristic

1,2,3,. . . ,9,10 10 4

Table 3: Heuristic parameters

If k increases, the cost of the k-th alternative solution increases, as well as the computational
time needed to generate an additional dissimilar alternative solution.

If TS increases, the cost of the k-th solution decreases, as well the computational time (see �gure
6.1). In fact, the higher the threshold, the less constrained the problem and the fewer solutions
will be discarded by the heuristic. If TS is set equal to zero, the kd-VRP problem is reduced to
�nd k disjoint alternative solutions. If TS assumes values close to 1, the k alternative solutions
obtained will share a high number of edges and the cost of the k-th alternative solution solution
will tend to approach the cost of the best known VRP solution.

An exploration of the in�uence of the penalty factor β on both the quality of the solutions and
the running times of the algorithm yields the following results. Smaller values of β encourage
alternative solutions with lower cost to be generated. However, given that edges which are al-
ready used may still appear, the similarity between the alternative solutions may be close to Ts.
On the other hand, high values of β discourage already selected edges, favouring dissimilarity
at the expense of constructing alternative solutions with higher cost. �e lower the penalty,
the longer the search for feasible solutions and the be�er the quality of the solutions. As shown
in Figure 6.1, if the value assigned to β increases, the computational time decreases, while the
quality of the solution worsens. A good compromise between the quality of the solutions and
the computational time might be to choose values of β between 0.10 and 0.20. Our experiments
show that when β assumes values equal to 0.10 (or 0.20), the solution gets worse by 0.01 (or
0.02) if compared with the solutions obtained when β is equal to 0.05. However when β is equal
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Figure 6: Relationship between the average solutions obtained and the average computational time

in relation to di�erent values of the similarity threshold TS, while k = 3

to 0.10 or 0.20 the savings in computational times are respectively 0.08 and 0.14 lower than the
computational time needed for β equal to 0.05.
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Figure 7: Relationship between the average solutions obtained and the average computational time

in relation to di�erent values of the β, while k = 3

In the third step of our computational experiments, using the best parameter con�guration for
the IPM kd, we solved the benchmark instances described in Table 2. For each instance we
executed 15 runs �xing the problem parameters as follows:

• �e similarity threshold TS = 0.20 (and thus the k alternative solutions, contained in S,
must be di�erent from each other by at least 80%);

• �e penalty value β = 0.05.

�e results obtained are summarized in Table 4, where for each value of k we report the per-
centage gap between the best solution obtained a�er 15 runs and the best known VRP solution
(column % BestGap); the percentage gap between the average cost of the solutions obtained
during 15 runs and the best known VRP solution (column % AvgGap); the average computa-
tional time in seconds (column AvgTime).
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As expected, when k increases the computational time grows approximately as a linear func-
tion (see Figure 6.1). On average, when k increases by one (e.g., from k = 3 to k = 4), the
computational time needed to solve the kd-VRP grows by 46%. �e relationship between the
cost of the kd-VRP and k is shown in �gure 6.1. As expected, for kd-VRP instances with a
smaller number of vertices, the gap between the cost of the k-th alternative solution and the
best known VRP solution is higher than in the case of bigger instances. In fact, when the num-
ber of vertices increases, the number of potential edges (E = V ×V ) increase even more. Hence
the possibility to select non shared edges, with a relative low cost, is much higher for larger
instances.

However, considering all the 51 benchmark instances, the average percentage gap from the
best known VRP solutions is only 25% when 5 alternative solutions are generated that di�er
by 80% from each other. �e algorithm also shows a good level of robustness since the average
di�erence between the costs of the best and the average solutions remains limited to 3.74%.
�e average computational times also seem encouraging, and the average time needed to solve
an instance in the benchmark set, when k = 5 and Ts = 0.20, is below 14 seconds.
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7 Conclusions

In this paper we have presented a new combinatorial optimization problem, including a math-
ematical formulation, the aim of which is to generate a set of k alternative solutions of a single
vehicle routing problem instance, in such a way that each alternative solution di�ers from all
the others by at least a given threshold. A min-max objective function minimizes the cost of
the worst solution in this set.

�e kd-VRP is applicable in several practical situations. In the cash-in-transit sector, the kd-
VRP can be used to de�ne a set of alternative routes to pick up cash and valuables, something
which is o�en required by law. Other applications can be found in the fuel distribution or in the
transportation of dangerous goods, in which all customer must be served and for speci�c rea-
sons (e.g., accidents, unavailability of some route edges, security reasons), several alternative
routes need to be generated.

To solve this problem, we have developed an iterative method (IPM kd) based on a similar
method for the k dissimilar shortest paths problem. A distance metric between alternative
solutions has also been de�ned. �e IPM kd metaheuristic was tested using 51 VRP benchmark
instances varying the number of alternative solutions that need to be generated. �e results
obtained are encouraging. In a limited computational time we were able to obtain solutions of
good quality. In particular, for k = 5 and a maximum similarity threshold Ts = 0.20, the VRP
alternative presenting the highest cost is, on average, only 25% worse than the best known
solution of the original VRP problem.

In the future, we plan to investigate extensions of the kd-VRP, e.g., by including additional
real life constraints such as time windows, route length restrictions, and precedence relations
between vertices. Also the comparison to other algorithms, and the development of exact
methods and bounds for this problem, present promising research avenues.
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