DEPARTMENT OF ENGINEERING MANAGEMENT

The k-dissimilar vehicle routing problem

Luca Talarico, Kenneth Sérensen & Johan Springael

UNIVERSITY OF ANTWERP

Faculty of Applied Economics
City Campus

I—T Prinsstraat 13, B.226

' AACSB| B-2000 Antwerp

ACCREDITED Tel. +32 (0)3 265 40 32
i Fax +32 (0)3 265 47 99
www.uantwerpen.be

http://www.uantwerpen.be/

FACULTY OF APPLIED ECONOMICS

DEPARTMENT OF ENGINEERING MANAGEMENT

The k-dissimilar vehicle routing problem

Luca Talarico, Kenneth Sérensen & Johan Springael

RESEARCH PAPER 2013-029
DECEMBER 2013

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium
Research Administration - room B.226
phone: (32) 3 265 40 32
fax: (32) 3 265 47 99
e-mail: joeri.nys@uantwerpen.be

The research papers from the Faculty of Applied Economics
are also available at www.repec.org
(Research Papers in Economics - RePEc)

D/2013/1169/029

mailto:joeri.nys@uantwerpen.be
http://www.repec.org/

The k-dissimilar vehicle routing problem

L. Talarico;K. Sorensen, J. Springael
University of Antwerp Operations Research Group ANT/OR
Prinsstraat 13, 2000 Antwerp, Belgium

November 2013

In this paper we define a new problem, the aim of which is to find a set of
k dissimilar alternative solutions for a vehicle routing problem (VRP) on a sin-
gle instance. This problem has several practical applications in the cash-in-transit
sector and in the transportation of hazardous materials. A min-max mathematical
formulation is developed that minimizes the objective function value of the worst
solution. A distance measure is defined based on the edges shared between pairs
of alternative solutions. An iterative heuristic algorithm to generate k dissimilar
alternative solutions is also presented. The solution approach is tested using large
and medium size benchmark instances for the capacitated vehicle routing problem.

Key words: Vehicle Routing Problem (VRP), Metaheuristic, Security, Similarity.

1 Introduction

In many European countries, cash-in-transit companies must by law determine several alter-
native routes for each of their vehicles when transporting cash. The aim of this measure is to
allow the company to easily change its plans in case of unforeseen circumstances (e.g., acci-
dents, road works) and to increase security by making the vehicle routes more unpredictable. In
this paper, we define a new vehicle routing problem — the k-dissimilar vehicle routing problem
or kd-VRP — to support this optimization problem.

A solution of this novel problem consists of k feasible solutions of a single capacitated vehicle
routing problem (VRP). Each of these VRP solutions (which we will consistently call alternative
solutions) must obey the traditional constraints of the VRP: all customers are visited exactly
once, all vehicles begin and end at the depot, and the capacity of the vehicle is not exceeded.
The quality of an alternative solution is measured as the total distance traveled by all vehicles.

*Corresponding author: University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium, Tel:+3232654177, E-
mail:luca.talarico@uantwerpen.be

Assuming that a similarity metric can be calculated between any pair of alternative solutions, a
feasible solution to the kd-VRP is a set of k feasible alternative solutions for which the difference
between each pair of alternative solutions is larger than a certain threshold. The objective of
the kd-VRP is to minimize the cost of the worst alternative solution in the set. To the best of
our knowledge, this problem has never been studied before in the literature.

The kd-VRP is closely related to the m-peripatetic vehicle routing problem (m-PVRP) studied
in Ngueveu et al. (2010a,b). This problem consists in finding a set of edge-disjoint routes of
minimal total cost over m periods so that each customer is visited exactly once per period and
the edge between a pair of customers can be used at most once during the m periods. “Periods”
in the m-PVRP are essentially the same concept as “alternative solutions” in the kd-VRP. The
difference between the kd-VRP and the m-PVRP is twofold: in a feasible solution of the m-
PVRP, no edge is used twice, whereas the double (or triple, ...) usage is not explicitly forbidden,
but rather penalized in the objective function of the kd-VRP. In other words, multiple usage of
an edge is a hard constraint in the m-PVRP and a soft constraint in the kd-VRP. Secondly, the
m-PVRP minimizes the total cost over all periods, whereas the kd-VRP minimizes the worst-
case cost over all alternative solutions. The motivation for the kd-VRP is that for some real-life
applications (e.g., money collection), the constraint that imposes k edge-disjoint VRP solutions
in which not a single edge is shared between the alternative solutions might be too stringent.
The min-max objective function of the kd-VRP is a design choice, that can easily be changed
to a total cost objective, in which case the kd-VRP generalizes the m-PVRP.

Figure 1 shows an example of a solution for the kd-VRP with k = 3, for which a set containing
three dissimilar, but not disjoint, alternative solutions (see sub-figures 1(a), 1(b) and 1(c)) has
been generated.

(a) (b) (©)
Figure 1: A solution for the kd-VRP with k = 3, instance F-n45-k4

The kd-VRP has many practical applications. A first application, which provided the motivation
for this work, can be found in the context of money collection and distribution, also known
as the cash-in-transit sector. In this context, a set of customers (e.g., banks, shops, casinos,
jewelers) needs to be visited to pick up valuables and cash. As mentioned, companies in the
cash-in-transit sector are often required by law (see SPFI (2003) for details) to determine several

alternative solutions in advance. Additionally, the same alternative solution cannot be used
more than two consecutive times. On the other hand, the travel distance of each of these
alternative solutions should be minimized for obvious economic reasons. The aim is thus to
decrease the predictability of the chosen alternative solution, reducing the risk to be assaulted,
while maintaining economic viability.

A second application can be found in the transportation of dangerous materials (e.g., the rout-
ing of tankers which must serve a set of petrol stations). In this case a limitation of the number
of shared edges between the routes might be required in order to better share and mitigate the
risk of accidents (Gopalan et al., 1990).

A third application concerns the design of patrol routes for security agents who must follow
partially different routes over time (Wolfler Calvo and Cordone, 2003).

The remainder of the paper is organized as follows. In Section 2, the literature on the peri-
patetic VRP and similar problems such as the dissimilar k paths problem and the disjoint paths
problem is presented. In Section 3, some indices used to measure the (dis)similarity between
paths and alternative solutions are also introduced. In Section 4, the k-dissimilar vehicle rout-
ing problem (kd-VRP) is described in detail and a mathematical formulation is developed. In
Section 5, an iterative metaheuristic to find solutions for the kd-VRP is developed. In Section 6
the solution approach is tested using 51 benchmark instances from the VRP library. Finally
Section 7 concludes and provides some suggestions for future research.

The contributions of this paper are the following: (1) A new NP-hard combinatorial optimiza-
tion problem is proposed, the k-dissimilar vehicle routing problem or kd-VRP. The kd-VRP
requires a similarity measure that can calculate the difference between alternative solutions.
We define such an index, starting from the similarity index used for the dissimilar k-shortest
path problem. (2) A mathematical formulation for the kd-VRP is proposed. (3) An iterative
metaheuristic to solve medium and large instance of the kd-VRP is described, implemented
and tested.

2 Literature review

As mentioned, the kd-VRP shares several properties with a set of routing problems called peri-
patetic. A solution of the m-peripatetic vehicle routing problem (m-PVRP) consists of a set of
m different VRP solutions for which it holds that each pair of alternative solutions is edge-
disjoint. In other words, each edge is used at most in one of the m VRP solution. The m-PVRP
generalizes two well-known NP-hard problems: the vehicle routing problem (VRP) and the
m-peripatetic salesman problem (m-PSP). The latter is a special case of the m-PVRP with one
single vehicle of infinite capacity.

The m-PSP was introduced by Krarup (1975), and consists in finding m edge-disjoint Hamilto-
nian cycles on a graph in such a way that the total distance of all Hamiltonian cycles is minimal.
Krarup (1975) proposed a two stage heuristic to find a feasible solution for the m-PSP: first solve
a TSP on the initial graph (exactly or by means of a heuristic), remove from the graph all the

edges used in the TSP solution and then solve a second TSP on the remaining graph. The
heuristic is repeated until m Hamiltonian cycles have been obtained. More recent and efficient
approaches to solve the m-PSP problem can be found in Wolfler Calvo and Cordone (2003);
De Kort (1993); Duchenne et al. (2007).

Recently a problem similar to the m-PSP has been proposed within a competition (Kaggle, 2012)
in which a peripatetic travelling salesman problem needs to be solved to help Santa Claus de-
liver his presents. Santa’s dilemma is slightly different form the traditional m-PSP. In particular
Santa likes to see new terrain every year and he does not want his route to be predictable. For
this reason, two disjoint alternatives for each TSP are required to be obtained (i.e., if one of
the solution contains an edge from A to B, the other path must not contain an edge from A to
B or from B to A). The competition thus requires the solution of a m-PSP problem in order to
allow Santa to follow a different path every year, and then, for each yearly Santa’s TSP tour, a
2 edge-disjoint TSP needs to be solved.

The problem of finding dissimilar solutions has received some attention in the literature on
shortest path problems. The k-shortest paths problem (k-SPP) is a generalization of the shortest
path problem in which the shortest, the second shortest, until the k-th shortest path from an
origin node to a destination node are sought, in increasing order of length. In the literature the
generation of the k shortest paths has been widely studied (see, e.g., Yen (1971); Azevedo et al.
(1993); Ahuja et al. (1990); Shier (1979); Hershberger et al. (2007)) and many algorithms have
been proposed (see, e.g., Feillet et al. (2004); Gotthilf and Lewenstein (2009); Di Puglia Pugliese
and Guerriero (2013)).

The k shortest paths are likely to share a large number of edges, and tend to be very similar
to each other. For some applications in which dissimilar alternatives are needed, a different
approach is required. In Park et al. (2002) a path is considered a reasonable dissimilar alter-
native to another existing path, by evaluating multiple attributes (e.g., distance, travel time,
variability) associated to the edges used in both solutions from an individual’s perspective.

To find dissimilar paths, the disjoint-path problem (DPP) can also be used, a classical and impor-
tant combinatorial optimization problem with several applications. Differently from the clas-
sical k shortest paths problem, in the DPP no common edges (edge-disjoint paths) or shared
vertices (vertex-disjoint paths) are allowed between the alternative paths (see, e.g., Nguyen
(2007)).

However (as also highlighted in Kuby et al. (1997)) for many real-life applications (e.g., haz-
ardous material transportation, couriers, routing in congested network) the constraint that the
paths have no edges in common may be too stringent and, due to the impossibility to reuse
all the shortest edges employed in the previous solutions, the resulting disjoint paths may be
impractically long. In fact, in the majority of real-life transportation applications, in which a
minimum number of dissimilar solutions, not necessarily disjoint, is required, the cost of each
alternative should be as small as possible. Therefore, a valid alternative to DPP is represented
by the path dissimilarity problem (PDP) in which a set of dissimilar solutions with minimum

cost are generated. The PDP (see, e.g., Akgiin et al. (2000) and Dell’Olmo et al. (2005)) is a bi-
objective routing problem in which a set of k paths, from an origin to a destination, must be
generated with minimum length and maximum dissimilarity.

In the PDP a set of k alternative paths from an origin to a destination node is generated, using
a specific index to measure the similarity between the alternative paths. Nowadays there is
also a growing need for satellite navigation services to provide multiple dissimilar alternative
paths which reflect a variety of user preferences and a dynamic/stochastic variety of travel
times and costs (see Yeonjeong and Dong-Kyu (2011) for more details). For example, in the
context of hazardous materials transportation, a spatially dissimilar paths which minimize the
risk (distributing the risk over all regional zones to be crossed uniformly) need to be obtained.
However, for routing hazardous materials, the spatial dissimilarity between alternative paths
may depend of how localized the effects of a spill are. Several algorithm have been proposed for
the k dissimilar shortest paths problem. Johnson et al. (1992) introduced the iterative penalty
method (IPM) in which a shortest path algorithm is iteratively applied. After each application of
the method, the weights associated to the edges in the constructed path are penalized (adding
a penalty factor (3) to discourage their selection in future constructions. Barra et al. (1993)
proposed a edge penalty method in which the network is modified by increasing the cost of
all the edges used within the shortest path. The main advantage of the IPM is that it only
requires a shortest-path algorithm to generate paths. A drawback is that it relies heavily on the
penalization parameter. For example, a small penalty may not achieve the goal of dissimilarity,
while a large penalty may eliminate many viable paths from consideration.

To summarize, the PDP generalizes the DPP by replacing the constraint on the disjoint so-
lutions with the constraint on similar solutions. Likewise, the m-PVRP can be extended and
generalized by making the constraint that two solutions cannot have any edges in common less
stringent. Some attempts in this direction are followed in the literature on VRP applications in
which specific indices have been defined and used to measure similarities between solutions.

For example, in Lokketangen et al. (2012), a multiobjective decision support system (DSS) tool
is developed in order to produce a set of k dissimilar VRP solution. The dissimilarity between
the k VRP solutions is based on an attribute distance function. The distance function includes
some measures typical of the decision process and comprise, for example, road accessibility,
type and amount of load, road length, road quality, vehicle, and driver.

In Sérensen (2006) a multiobjective optimization approach is proposed in order to find a set
of k VRP solution that are “close” (in the solution space) to a given baseline VRP solution and
at the same time have a high quality in the sense that their total distance traveled is small. In
particular a memetic algorithm with population management is implemented in order to offer
to the decision maker a choice of Pareto-optimal solutions, allowing him to make a trade-off
between changing his existing solution (i.e., baseline VRP solution) and allowing a longer travel
distance.

3 Similarity indices

In order to measure the dissimilarities between solutions several methods and indices have
been proposed. The index to measure similarity between alternative solutions that is used
in this paper has been borrowed from the literature on shortest path problems in which the
concept of dissimilarity between solutions has been widely studied. The dissimilarity measure
used in this paper is discussed in Section 4 and can be found in Eq. (6).

In Lombard and Church (1993) the concept of “area under the path” is introduced. If the net-
work is assumed to be representable on a plane, the “area under the path” is the area between
the path and the x-axis. Therefore, the dissimilarity between two paths is measured by the
absolute difference between the areas under the paths. In Marti et al. (2009) the dissimilarity
dis(P;, Pj) between two paths P; and Pj, is computed as the average of the distances between
each vertex in P; to the path P; plus the average of the distances between each vertex in P; to
the path P;. The dissimilarity measure is given by the formula:

ZviePl 5(1/1', PZ) + Z”J'GPZ 5(uj’Pl)

Dis(P;, P;) =
is(P;, P;) = —
P2 | Py | | Py |

(1)

where the value (v, P;) represents the distance (e.g., euclidean distance) from a vertex to a
path Py = {vi, va,..., vn} expressed as

3w, Pr) = min 0(v.v) ®)
]

The similarity index in formula (1) considers spatial information hence the dissimilarity of the
resulting paths will also be a dissimilarity from the spatial point of view. In Akgiin et al. (2000)
and Vanhove (2012) the dissimilarity is measured in terms of shared edges between paths,
without considering spatial information concerning the physical location of the vertices. The
expression to compute the dissimilarity between two paths P; and P,, considering only the
length (denoted by letter L) of the shared edges, is as follows:

1 |L(P; N Py) . L(P1 N Py)

Dis(Py,P) =1 - AR (P 3)

In Dell’Olmo et al. (2005) a concept of “buffer zone” is included in the formula (3) to embed
spatial information in the measure of similarity. The “buffer zone” is a zone determined by
moving a circle along the path, whose center is the vehicle on the path itself and whose radius
is proportional to the impact area due to a possible accident. In Thyagarajan et al. (2005) an
extension of the dissimilarity measure in (3) is proposed considering the time context. In fact,
in practical military missions, the time difference between routes must be considered.

In order to find k (dis)similar alternative solutions a distance measure to calculate the difference
(or similarity) between two given solutions is required. Besides measuring the dissimilarity be-
tween two alternative solutions based on the number (or the length) of the common edges, the
edit distance, which is based on the Levenshtein distance might be used (Levenshtein, 1966).

The edit distance can be used for permutation problems i.e., problems of which the solutions
are most naturally represented as a permutation of a set of items (i.e., problem attributes),
representing the order in which the items appear in each solution (e.g., a VRP solution can be
represented as a set of permutations, one for each trip. Each trip is determined by the order in
which the customers appear in it.). This distance measure is based on the idea that the distance
between two solutions is equal to the “cost” required to transform the first solution into the
second one.

A comparison between these distance measures is beyond the scope of this paper. For a more
elaborate discussion of some issues related to distance measures, including some other dis-
tance measures for permutation problems, we refer to Sérensen (2007) and Lokketangen et al.
(2012).

4 Problem description

In this section a mathematical formulation of the kd-VRP is developed, based on an MIP for-
mulation for the VRP. The VRP is seen as a subproblem the solutions of which are the input of
a master problem in which the k dissimilar alternative solutions are selected.

The VRP is defined on a complete graph G = (V, E) with vertex set V = {0, ..., n} and edge set
E. Vertices {1,...,n} correspond to the customers, while vertex 0 corresponds to the depot.
A non-negative cost c;; is associated with each edge (i,j) € E, representing the travel cost
between vertices i and j. The cost structure is assumed to be symmetric, i.e., ¢;; = ¢j; Vi,j € V.
To each customer i € {1,...,n} is associated a known demand d; > 0, which represents
the quantity of goods to be delivered. A set of N identical vehicles, each with capacity C, is
available at the depot (it is assumed that d; < CVi € {1,...,n}). A general MIP formulation of
the VRP (see, e.g., Van Leeuwen and Volgenant (1983) for more details) is presented in (4a)—(4f).
This formulation uses a three-index decision variable xl}} which assumes value 1 if edge (i, j) is
traversed by vehicle h, and 0 otherwise.

min Z Z cij xi}]’- (4a)

heN (i,j)eE
s.t

PE TR VheN (4b)

jev\{o} jev\{o}

ZZXSzZij};:l Vie V\ {0} (4¢)

heN jev heN jev

Y > dgxh<c VheN (4d)
i€jevi{o}

ZZng-zl YQC V;0#0 (4e)
heN ieQ j&Q

xie {01} Y(i,j) € EYh € N (4f)

The objective function (4a) minimizes the total distance travelled by all vehicles combined.
Constraints (4b) force each vehicle to start and finish its route at the depot, visiting at least
one vertex along its tour. Constraints (4c) state that every vertex must be visited exactly once,
implying that only one vehicle may arrive at a given vertex and depart from it. Constraints (4d)
impose a restriction on the maximum load of each vehicle. Finally constraints (4e) ensure that
no sub-tours occurs in the solution. Constraints (4f) limit the domain of the decision variable.

The output of the VRP subproblem in (4a)-(4f) is the input of the master problem in (5a)-
(5¢). The master problem requires two more parameters to be set: the value of the similarity
threshold Ts and the number of alternative solutions (k > 1).

. | 5

min max f(y))
s.t.

S(yiy) < Ts Vije{l,... ki) (5b)

Vi €9 Vie{1,...,k} (5¢)

A feasible solution for the kd-VRP consists of a subset S C 2 with 2 the set of all the feasible
alternative solutions for which | S |= k. The objective function (5a) minimizes the cost of the
worst alternative solution. Constraints (5b) impose that each pair of alternative solutions in
the optimal solution are dissimilar by at least the threshold Ts. Constraints (5c) restrict the
domain of the decision variables.

As mentioned, the kd-VRP is a variant of the k disjoint VRP problem. If the similarity thresh-
old Tg assumes a value equal to 0, the alternative solutions are forbidden to have any shared

edges.

In principle, if the objective function in equation (5a) is replaced with the the minimization of
the total cost of the alternative solutions (3 ;¢ {1k} f(yi)) then the kd-VRP can be considered
as the generalization of the k disjoint VRP problem.

Both the mathematical model in (5a)—-(5¢) and the solution approach (developed in Section 5)
are independent of the specific (dis)similarity index used. Hence, all of the similarity indices
discussed in Section 2 could be used in both the formulation and the heuristic optimization
algorithm.

In this paper, we have opted for a similarity index derived from the one in formula (3) (see
Section 2). Given two alternative solutions y; and y; of the kd-VRP, this index compares each
route of alternative solution y; with each route of alternative solution y;. Let rjl/i and r)',;‘ be
the [-th route of solution y; and the m-th route of solution y; respectively, then the similarity
between these routes must not exceed the similarity threshold Ts.

I .m I .m
1 |es(ry. it es(ry, 1)
5()}1" y]) - max - yzl Vi lmy] (6)
LmeN 2 o(ry,) c(ry;
The value cs(r}l,i, r;;‘) represent the cost of the edges shared between the two routes r}l,i and rj',;‘,

and c(rf,i) (or c(rJ’,;_’)) is the cost of route r)l,l_ (or r)’,;_’). A different option (which is not considered
in the remainder of this paper) could consider the management of the number of shared edges
between routes r)l,l_ and r)',;_’) instead of the cost of the edges shared between the two routes

(cs(réi, rjr/?) and the number of edges included in each route instead of the cost of each route
(c(r)l,i) or c(r)',f))

Alternatively, it is possible to consider the number of shared edges between a couple of routes

(for the value ws(r)l,i, r)’g‘)) and the number of edges which compose the routes (for the values

w(rjl,i) or w(r)',zl)) instead of the weights of the shared edges inside the routes (ws(r}l,i, r;;) or the

cost of the routes themselves (w(r)l,l.) or w(r{,?)), in formula (6).

5 Metaheuristic description

In this section an iterative metaheuristic to solve the kd-VRP problem is presented. The meta-
heuristic developed in this paper is similar to the iterative penalty method used in Johnson
et al. (1992) and Barra et al. (1993) to find k dissimilar shortest paths. We call this method the
Iterative Penalty Method for the kd-VRP (IPM_kd).

Our version of the iterative penalty method differs from the one proposed in Johnson et al.
(1992) and Barra et al. (1993) because at each iteration alternative solutions are selected under
the conditions of a maximum degree of similarity. To this end the metaheuristic examines so-
lution cost and solution overlaps simultaneously while searching for k alternative solutions.

The IPM_kd algorithm is described as follows. After initialization, the IPM_kd sequentially gen-
erates k alternative solutions, storing each of them in a candidate set S = {y1, y2,. .., yi }. After
each alternative solution has been found and added to set S, the cost matrix of the underlying
VRP is updated, penalizing all edges used in previous alternative solutions. The procedure con-
tinues until the desired number of alternative solutions (k) is reached. The penalty structure
is multiplicative, i.e., the new cost of each edge is based on the current cost (which may have
been penalized before) multiplied with a factor 8. The scheme of the IPM_kd metaheuristic is
summarized in Algorithm 1.

Algorithm 1: IPM_kd metaheuristic structure

Initialize both kd-VRP and Heuristic parameters k, Ts, I, P, o, 3 and w;
[+ 0;
while (I < I) do
S+ {0};
while (| S |< k) do
i«|S
p < 0;
Let y; be the best i-th alternative solution found so far and f(y}) its cost;
Let y; be the current i-th alternative solution and f(y;) its cost;
vi < {0} yi < {0}, £(7) = 00, f(i) = 003
while (p < P) do
if (p == 0) then
yi < Lin—Kernighan(y;) U Splitting(y;);
else
‘ yi < Perturbation(y;);
Yi <= VND(yy);
if (f(vi) < f(y})) then
Vi < i
JOH) < f(yi)s
p + +;
if (i == 0) then
add yf to S;
yi < PenalizationFunction(y});
yi < VND(y});

5

else

while (6(y}, yp) > TsVhe 1,...,i-1)do
‘ Y§ 4« PenalizationFunction(y;);

add yf to S;

if (| S |== k) then
‘ I+ +;

Return the best set S found so far;

The internal parameters used by the IPM_kd algorithm (referred to as heuristic parameters) as
well the kd-VRP key controls (referred to as kd-VRP parameters) are summarized in Table 1.

As shown in Algorithm 1 four basic heuristic components (described in sub-paragraphs 5.1-5.4

10

Table 1: Heuristic and kd-VRP parameters

Parameter Description

kd-VRP parameters
k Number of alternative solutions to be generated
T Maximum similarity threshold

Heuristic parameters

Number of restarts of the algorithm

Number of times the Perturbation heuristic is applied

Number of closer neighbour vertices to be considered in the Repair heuristic
Penalty factor used in the Penalization function

Maximum percentage number of routes to be destroyed

g ™o u

respectively) are applied in the solution approach: (1) The Lin—Kernighan heuristic followed
by the Prins splitting procedure; (2) a Penalization function; (3) a VND (Variable Neighbourhood
Descent) heuristic; (4) a Perturbation.

5.1 Lin-Kernighan heuristic plus Prins splitting procedure

To find an initial alternative solution y; the algorithm employs the Lin-Kernighan heuristic,
followed by the Prins splitting procedure, both using the current cost matrix.

The current solution y; is then improved using the VND heuristic (see Section 5.3) and a diver-
sification mechanism (see Section 5.4) to escape from local optima.

The Lin-Kernighan heuristic described in Lin and Kernighan (1973) is a deterministic approach
generally considered to be one of the most effective methods to generate optimal or near-
optimal solutions for the symmetric travelling salesperson problem (TSP). The Lin-Kernighan
heuristic employed in this paper uses the modified version as implemented in Helsgaun (1998,
2000, 2006).

To transform this TSP solution into a VRP solution the Prins splitting procedure described in
Prins (2004) is used. This procedure creates an auxiliary graph containing n + 1 nodes (0 to n),
and adds an arc between nodes i - 1 and j (with i < j) if the route visiting the i-th node to the
j-th node in the order they appear in the giant tour is feasible. The best possible way to split
the giant tour in feasible routes, is determined by finding the shortest path from node 0 to node
n in the auxiliary graph. If the shortest path contains the arc from i - 1 to j, the giant tour is
split between the i — 1-th node and the i-th node and between the j-th and the j + 1-th node.
For a more detailed explanation of this procedure we refer to Prins (2004).

11

5.2 Penalization function

The Penalization function updates the cost matrix of the VRP, and is used: (1) after a new
feasible alternative solution y; is added to set S and (2) every time an infeasible alternative
solution has been generated. Its purpose is twofold:

+ Once a new solution y; is added to set S, the Penalization function increases the cost of
all edges used in y; by a factor 1 + 5 (8 > 0). In doing so, the search process is forced to
move to a different part of the search space. In order to speed up the search for a new
feasible alternative solution y;;; which contains dissimilar routes from the ones of y;,
the Penalization function also penalizes the edges that can be obtained by combining the
vertices which are in each route of y; by half of the penalty. In other words, suppose that
solution y; contains a route r in which the sequence of vertices is visited in the following
order [0,1,3,5,0]. Then the Penalization function increases the cost of the edges (0; 1),
(1;3), (3;5), (5;0), (1;0), (3;1), (5;3) and (0; 5) by a factor (1 + 3). The edges that may be
generated by reshuffling the vertices in route r (e.g., (0;3), (3;0), (1;5), (5;1), (3;0) and
(0;3)) are penalized by a value equal to (1 + 3/2) (e.g., if ¢;5 = 6 and # = 0.50 the new
cost of the edge (1;5) will be ¢;.5 = 7.5).

« If solution y; is not feasible because its similarity to solution yj, already in S, exceeds
the threshold Ts, the Penalization function penalizes the use of the edges which are in
common between y; and y;. This is done by increasing the cost of the shared edges by a
factor 1+ f3. This operation forces the algorithm to discard the shared edges, guiding the
VND heuristic (see paragraph 5.3) towards a feasible solutions.

If a relatively large penalty is chosen, then edges that appear in the previous alternative so-
lutions are discouraged more heavily. A smaller penalty, on the other hand, allows for more
frequent recurrence of edges in the k alternative solutions.

5.3 VND (Variable Neighbourhood Descent) heuristic

The VND heuristic has a dual purpose. First, it is used every time a new alternative solution
has been generated in order to improve it. Secondly it is used after the Penalization function
has been applied to the current infeasible solution y;, to make it feasible, discarding the shared
edges which make the current solution infeasible. In other words the VND heuristic is used
both to improve the current solution and to guide the algorithm towards a feasible alternative
solution.

The VND heuristic in Algorithm 1 is a sequential Variable Neighbourhood Descent block in
which seven different local search operators are used:

« Intra Route Local Search Operators which attempt to improve a single route: Internal Or-
Opt and Internal Relocate, Internal 2-Opt shown in Figure 2).

12

o Inter Route Local Search Operators which change more than one route simultaneously.
Our VND heuristic implements External Exchange, External Relocate, External 2-Opt and
External Cross-Exchange shown in Figure 3).

| | 0]
) (a)DInternal Relotcate)) (b)n Internal Or—é)pt)
@

‘ (c) Internal 2-Opt ‘

Figure 2: Intra Route Local Search Operators

‘ (a) External Exchangé : o (b) External Relocate
E E @ &

(& ® ®

(c) PVi':‘lxternal Cross-Exch;nge ' (d) External 2-Opt T
Figure 3: Inter Route Local Search Operators

The VND heuristic stops when the current solution cannot be further improved by any of the

local search operators, and thus a local optimum has been reached. Each local search operator

uses a first-improvement descent strategy, accepting a move that improves the current solution
as soon as it is found and restarting the VND heuristic from the new current solution.

13

Finding the right order of neighbourhoods used in a deterministic VND heuristic may be of
considerable importance for the quality of the solution. We tested different combinations of
the order in which the local search operators are used. On average, the most promising order
of neighbourhoods is the one shown in Algorithm 2.

Algorithm 2: VND structure

Let y be the current solution and f(y) its cost;
Let y* be the best solution found so far and f(y*) its cost;
A 1 flag « false ;
while !flag do
if (A = 1) then
| ¥ < Nimtor-opt(y) ;
if (A = 2) then
‘ ¥ < Nirelocate() 5
if (A = 3) then
| ¥ < Ninrz-opt() 5
if (A = 4) then
‘ Y« NEerxchange(y) B
if (A =5) then
‘ ¥ < NExtRelocate(¥) 5
if (A = 6) then
‘ Y NExtCrosstxchange(Y) 5
if (A = 7) then
| ¥ < Nexz-op(¥) ;
if (f(y) < f(v*)) then
‘ Y e w
A1
else
if (A < 7) then
‘ A+ o+
else
‘ flag « true;;
return y* ;

5.4 Perturbation

The perturbation heuristic is used in the IPM_kd algorithm as a diversification mechanism to
escape from local optima, while looking for the current alternative solution. During the per-
turbation heuristic a destroy-and-repair operator, similar to the one described in Talarico et al.
(2013), is used. First, the best alternative solution found so far (y}') is partially destroyed and
then it is repaired obtaining a new current solution (y;). The destroy-and-repair operator takes
w as a parameter, which is the number of routes to be destroyed, as a percentage of the total
number of routes, from y;. The destroy-and-repair operator works as follows:

« Destroy phase: a random route from the alternative solution y; is selected. All vertices
are removed from this route and inserted in a list of unvisited vertices (.%). This step is
repeated w - N times where N represents the number of routes in y;.

+ Repair phase: the new current alternative solution y; is generated starting from the non
destroyed routes of y and adding new routes which contain the nodes in .Z. These new
routes are generated applying a greedy randomized nearest neighbourhood heuristic,

14

using the parameter «, which represents the first a nearest vertices from which selecting
the next vertex.

After the application of the destroy-and-repair operator, the new solution y;, which has been
generated, is saved as the current solution and is improved using the VND heuristic.

6 Experiments

The IPM_kd metaheuristic described in Section 5 has been coded in Java language and it has
been extensively tested using a large set of benchmark instances taken from the VRP library.
As mentioned, given a similarity measure between alternative solutions, an instance of the
VRP can be transformed into an instance of the kd-VRP by adding only two parameters: the
number of alternative solutions k and the similarity threshold Ts.

In our computational experiments we used 51 medium and large instances available in the VRP
literature from different sources (Augerat et al., 1998; Christofides et al., 1979; Fisher, 1994;
Taillard, 1993; Golden et al., 1998)! ranging from 45 to 484 nodes. The characteristics of the
instances are reported in Table 2, the results of the experiment are summarized in Section 6.1.

All computational experiments were performed using a machine with an Intel core i7-2760QM
2.40GHz processor with 4GB RAM.

6.1 Computational results

The computational experiments have been carried out in three different phases. In the first
phase the heuristic parameters of the IPM_kd were tuned (see Table 1) by running a full facto-
rial statistical experiment on a subset of the benchmark instances. A brief description of the
heuristic parameters, as well as the tested values, the number of tested values, and the optimal
parameter configuration is given in Table 3.

Analyzing the average results obtained over all possible parameter levels the optimal configu-
ration of the IPM_kd algorithm was determined (see also Figures 4 and 5). These results show
that if the number of times that the IPM_kd algorithm is restarted (I) or the number of times that
the Perturbation heuristic is applied (P) are increased, the quality of the solutions (lower values
of the objective functions) improves, but at the expense of increasing the running time.

In the second step of our computational experiments, using the best configuration of the heuris-
tic parameters, all test instances are solved.

In order to analyze the relationship between these values and both the quality of the solution
and the computational time, the IPM_kd algorithm is tested using different values of the kd-
VRP parameters: (1) k (number of alternative alternative solutions to be generated); (2) T
(similarity threshold) and (3) 3 (penalty factor).

IThe instances are available at http://neo.lcc.uma.es/vrp.

15

Table 2: VRP instances

Author Name #Nodes Best known VRP
Solution
A-n53-k7 53 1010.0
A-n65-k9 65 1177.0
A-n80-k10 80 1764.0
Augerat et al A-n69-k9 69 1168.0
B-n56-k7 56 707.0
B-n68-k9 68 1272.0
B-n78-k10 78 1221.0
B-n63-k10 63 1496.0
vrpncl 51 524.6
vrpnc2 76 835.26
vrpnc3 101 826.14
Christofides et al. ~ vrpnc4 151 1028.42
vrpne5 200 1291.29
vrpncll 121 1042.11
vrpncl2 101 819.56
F-n45-k4 45 724.0
Fisher F-n72-k4 72 237.0
F-n135-k7 135 1162.0
tai75a 76 1618.36
tai75b 76 1344.62
tai75¢ 76 1291.01
tai75d 76 1365.42
tail00a 101 2041.34
tail00b 101 1940.61
Taillard tail00c 101 1406.2
tail00d 101 1581.25
tail50a 151 3055.23
tail50b 151 2656.47
tail50c 151 2341.84
tai150d 151 2645.39
tai385 386 24431.44
kelly1 241 5627.54
kelly2 321 8447.92
kelly3 401 11036.23
kelly4 481 13624.52
kelly5 201 6460.98
kelly6 281 8412.88
kelly7 361 10195.56
kelly8 441 11663.55
kelly9 256 583.39
kelly10 324 742.03
Golden et al kelly11 400 918.45
kelly12 484 1107.19
kelly13 253 859.11
kelly14 321 1081.31
kelly15 397 1345.23
kelly16 481 1622.69
kelly17 241 707.79
kelly18 301 998.73
kelly19 361 1366.86
kelly20 421 1821.15
1860
1850
1840
g 1830
1820
1810
1800
20 30 40 50 60 70 80 920 100
®

Figure 4. Relationship between w and the average cost of the obtained solutions

16

1830

1825

1820

Cost

1815
1810

1805

Figure 5: Relationship between « and the average cost of the obtained solutions

Parameter Description Values # best setting

I Number of times the IPM_kd algorithm is 10 1 10
restarted

p Number of times the Perturbation heuristicis 10 1 10
applied

w Maximum percentage number of routes in 20,30,40, 9 40%
best solution found so far to be destroyed ...,90,100%

« Number of closer neighbour vertices to be 1,2,3,...,9,10 10 4

considered in the Repair heuristic

Table 3: Heuristic parameters

If k increases, the cost of the k-th alternative solution increases, as well as the computational
time needed to generate an additional dissimilar alternative solution.

If Ts increases, the cost of the k-th solution decreases, as well the computational time (see figure
6.1). In fact, the higher the threshold, the less constrained the problem and the fewer solutions
will be discarded by the heuristic. If Ts is set equal to zero, the kd-VRP problem is reduced to
find k disjoint alternative solutions. If Tg assumes values close to 1, the k alternative solutions
obtained will share a high number of edges and the cost of the k-th alternative solution solution
will tend to approach the cost of the best known VRP solution.

An exploration of the influence of the penalty factor S on both the quality of the solutions and
the running times of the algorithm yields the following results. Smaller values of 3 encourage
alternative solutions with lower cost to be generated. However, given that edges which are al-
ready used may still appear, the similarity between the alternative solutions may be close to Ts.
On the other hand, high values of 3 discourage already selected edges, favouring dissimilarity
at the expense of constructing alternative solutions with higher cost. The lower the penalty,
the longer the search for feasible solutions and the better the quality of the solutions. As shown
in Figure 6.1, if the value assigned to [increases, the computational time decreases, while the
quality of the solution worsens. A good compromise between the quality of the solutions and
the computational time might be to choose values of 5 between 0.10 and 0.20. Our experiments
show that when (3 assumes values equal to 0.10 (or 0.20), the solution gets worse by 0.01 (or
0.02) if compared with the solutions obtained when 3 is equal to 0.05. However when [is equal

17

4,500
4,000
3,500
3,000

2,500

Cost

2,000

Time (s.)

1,500
1,000

500

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
T,

s

il Avg. Solution Cost ==« = Avg. Computational Time

Figure 6: Relationship between the average solutions obtained and the average computational time
in relation to different values of the similarity threshold Tg, while k = 3

to 0.10 or 0.20 the savings in computational times are respectively 0.08 and 0.14 lower than the
computational time needed for 3 equal to 0.05.

4,000 10
3,900
3,800

3,700

Cost

3,600

3,500

3,400

BN W B U e N o ©
Time (s.)

3,300

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B

el Avg Solution Cost == =6 = Avg Computational Time

Figure 7: Relationship between the average solutions obtained and the average computational time
in relation to different values of the 3, while k =3

In the third step of our computational experiments, using the best parameter configuration for
the IPM_kd, we solved the benchmark instances described in Table 2. For each instance we
executed 15 runs fixing the problem parameters as follows:

+ The similarity threshold Ts = 0.20 (and thus the k alternative solutions, contained in S,
must be different from each other by at least 80%);

« The penalty value 5 = 0.05.

The results obtained are summarized in Table 4, where for each value of k we report the per-
centage gap between the best solution obtained after 15 runs and the best known VRP solution
(column % BestGap); the percentage gap between the average cost of the solutions obtained
during 15 runs and the best known VRP solution (column % AvgGap); the average computa-
tional time in seconds (column AvgTime).

18

0% r 14
5% 12
10% - 10
15%

20%

(<))
Time (s.)

25%

30%

35% 0

= == Avg. Sol. Best Sol. Avg. Computational Time (s.)

Figure 8: Average computational time, best and average percentage gap from the best known VRP
solutions in relation to different values of k

As expected, when k increases the computational time grows approximately as a linear func-
tion (see Figure 6.1). On average, when k increases by one (e.g., from k = 3 to k = 4), the
computational time needed to solve the kd-VRP grows by 46%. The relationship between the
cost of the kd-VRP and k is shown in figure 6.1. As expected, for kd-VRP instances with a
smaller number of vertices, the gap between the cost of the k-th alternative solution and the
best known VRP solution is higher than in the case of bigger instances. In fact, when the num-
ber of vertices increases, the number of potential edges (E = V x V) increase even more. Hence
the possibility to select non shared edges, with a relative low cost, is much higher for larger
instances.

However, considering all the 51 benchmark instances, the average percentage gap from the
best known VRP solutions is only 25% when 5 alternative solutions are generated that differ
by 80% from each other. The algorithm also shows a good level of robustness since the average
difference between the costs of the best and the average solutions remains limited to 3.74%.
The average computational times also seem encouraging, and the average time needed to solve
an instance in the benchmark set, when k = 5 and T = 0.20, is below 14 seconds.

19

¥8C°€1 %L8'TE %66'%C 660°6 %96°1¢C %0C° LT €0L°S %9 VL %YL TL LLTY %88°6 %SS"L aderaay
LLO6S %8¢CL1 %0€'ST 61¢°6¢ %LV %02°¢T G99°81 %STTL %8¢€°01 866°¢L %TC 1L %€¢°01 02ZAT[Y
G56'8C %E0PT %16°61 1€8°C1 %8T°EL %IT'8 05201 %L9°01 %69°L L89'L %1¥'6 %SL9 614119
SY1'81L %€0°Le %Ty'ce 6¢¢’ 11 %8E°LT %6171 L86'L %8E'TT %20°6 066'G %6¥'6 %IT'L STATY
8¥S°01 %8C°€C %61°02 6S9°L HLTYT %TH'IT PLE9 %16'6 %0%°8 08Ly %T8'L %80°9 LIATY
S9€°L9 %66'CS %¥S'eh LEL'SY %¥SLE %66'CE S8¥'LT %912 %LS'LT $19°0C %ITH1T %8Y'TT 9TATY
06¢°1¥ %6L°09 %¥6'€S 200°1¢ %LOEY %9¢'8¢ L6S°61 %88°€C %0T'TT 86971 %TLy1 %LT°CT STATPY
215'9¢ %0579 %¥T'6S 2¢¢°0C %L8° 9% %90°¢h 6SCV1 %S6°LT %EL'YT 76901 LULT %Sy'CT PIATRY
691 %90°09 %18'%S Ly9°C1 %L8 9V %98y S¥8°6 %91°62 %19°¢€C €8¢°L %9S°¢1 %0%°0T STATY
18L°82 %6S°€C %¥S'CC €81°0C %YL9T %T8'CL 0S8°TT %yeCl %LY0T L88'8 %0T°0T %89°6 ZIATY
yiv'ie %EY'€T %9181 o8LYL %9¢° LT %EV'ST 612’11 %S8°€l %¢S01 71v'8 %89'6 %6€°6 TTATPY
680791 Y yaads %9L'ST €86 11 %09°61 %08'%1 0828 %YS YL %0221 0129 %TT 01 %6L'8 OTATY
0L0°0T %E6°LT %E6'LT SLY'L %IEPL %86'CT 08%'9 %ET'TL %€S°6 098% %10°GT %I8°L 64T
8891 %18°1C %ST'TC 06601 %0591 %0591 9989 %I1°Cl %6¥°6 6¥1°S %09°6 %228 84Ty
889°9% %82°02 %80°8T 0T1'8¢ %0991 %10°ST €91°82 %STPL %YETT 2erie %668 %SE’L LATIY
[4ExAt %S8'8¢ %0¥%'9¢ 109°L %LE9T %Tv'ce 066'S %6¥°€C %08°61 covy %9191 %8y'Cl 94T
Bl %CL9Y %YL Y (4194 %ye0v %01°9¢ 86L°¢ %9Sve %TL'LT 6¥8°C %0L’SC %98'1¢C SATY
9ILeC %ELVT %8L'0C S0T'Te %8S°€C %LT6T S6L91 %L8'ST %SS'ST 96S°C1 %08°0T %LT0T PATPY
80891 %9891 %9191 PIT'GL %9591 %y1et 1611 %60°¢T %€e01 €168 %LS'TT %9Y'6 ATy
L8991 %8¥'L %6€°9 LIT'ET %06'S %ST'S L88'S %T6'V %¥9°€ ITF ¥ %SEY %€9°¢ 24T
6089 %1e91 %T6'Cl STy %T8Y1 %9%'Cl 29T'¢ %Iyel %S€0T L¥¥'C %Ly'Cl %€9°6 LAY
9G9°6L %ET'TS %L8°0C L8L'6S %I91°GE %LE8T GL9°82 %¥8'12 %09°€T 90S°12 %0S°€T %20°1T G8¢re}
0€9°G %88V %eeTl 816’1 %1901 %TC'8 9960 %IL'L %16°S jadll %¢9'S %SSY postre}
06L° 1T %19°01 %1S'8 20T'L %¥e6 %00°8 962°S %0¢°L %ELY TL6’E %0¥%'S %66'¢ 2061re}
657 v %0¢°0T %966 8¢T'T %90°6 %8¥°L 9S¥°0 %T9'L %LE9 Zve0 %8%'9 %9¢°S qostrel
[Uzadt %TS'9¢ %¥S'ee 6%0°8 %EV YT %0%'TT 1v6'L %09°01 %L8'9 966'S %SL'L %62°S eosIre)
S6¢'T %80°62 %0122 L02'T %LT'8T %0S°€T 1750 %0¥%°C1 %62°6 90¥%°0 %298 %L9'S poorre}
9681 %9¢°81 %06'CT 1891 %€6°01 %CC’6 10%°1 %00°6 %SC9 160°T %6€°9 LTS 2001Te}
LSTC %18°62 %8S'CC 7651 %99°61 %1¥'Cl 6S€°0 %8EVL %656 692°0 BIL'L %01y qoorrel
029'1 %¥9°0% %L0'8¢C €vel %8¢'1¢ %SL'ST 68¢°0 %LTTT %9T°6 162°0 %88'G %L8'Y BOOTI®}
819 %0L'68 %09°T19 LS8°C %8L°EY %6€'SE €5¥'C %6E°T1 %y10T 0%8'1 %¥6'9 %90°G psLre)
L66°0 %S¥'92 %LO'TC 8960 %¥€02 %8S'ST 8¢€0 %90°GT %L8°0T €520 %€T 01 %06°L RIYALE]
01$’S %06'ST %8S°Cl 909'1 %LITT %60°6 ILTT %CT L %60°S 8L8°0 %0€y %IT'E q6.Lre}
229'C %ST'8Y %ET'TE STyl %EE'CT %0EPT 92°0 %9¢°01 %LY'L 861°0 %99'S %1eY eGLIe}
6697 %LOVL %09°TT 6€C’T %S¢eCl %€C01 0L°0 %8101 %0¢'8 8250 %608 %0C°L LA-GeTu-g
(2974 %¥y'Se %¥S'LT 968°0 %06°0€ %9TLT 92¢0 %1292 %6L°61 S¥20 %Y6°LT »eVIT PH-2Lu-d
1L2°¢ %¥0°LT %¥T el 7€8°0 %IT°ET %8L'8 1€5°0 %¥E6 %18°S 86€°0 %1E°S %YV PA-SPU-4
€9¢°¢ BLL'EE %SL'TE 66S°C %¥6' e %S1'€C 6£2°0 %6L91 %6V ¥1 6L1°0 %¥eL %IL'9 z1oudia
0Z¥'1 %0T'TT %¥0°6 796°0 %¥1'8 BIL'S 1v2°0 %8T°S %6¥°€ 181°0 %L9°C %Y1 rroudia
918'¢ %61¥C %8%'0C 698°C %6¥'81 %9%'ST LLT'T %¥8'S1 %EY'CL €880 %09°C1 %¥y'8 goudia
LLOC %LE8C %EY'1IT 6LL'T %EL'ET %S0°ST 9%S°0 %8T'ST %T6'TT 60%°0 %¥1°01 %00°L poudia
1261 %10°8¢ BLL'TC [41Ia %TEeT %8T'LT 062°0 BLLYT %1101 L12°0 %Ve'8 %OLY goudia
6%9'1 %0%° 6% %60'TH 966°0 %OT'IE %I1'¥C 162°0 %ET'61 %0211 681°0 %OT'TT %€9°9 goudia
S62'1 %88°LY %€0°6E S¥8°0 %10°8¢ %8262 9LT'0 %1692 %9L91T zeT0 %Yy LT %STTT roudia
28¢°S %62°0¢ %00°02 6%0'1 %el'61 %ETHL 65270 %S1°el %€0°6 761°0 %958 %959°G 013-¢9u-g
0617 %LY'EY %88'€C G6S'T %€9°S2 %S9°€T 861°0 %0€'TT %L6°L 8¥1°0 %YLL %0L'S 0T3-8Lu-¢g
$69C %SS'€e %OL¥C 66¥%'1 %90°¢1 %1901 961°0 %L0'8 %9L°9 Ly1'0 %S¥'S %YSY 64-89u-g
Pee1 %SS'€C %T0°LT 198°0 %8691 %YTEL €92°0 %06°C1 %S0°6 L6T°0 %€C'8 %E1'9 L¥-9su-g
8LE'T %IT°€C %LLIT €7s0 %6681 %6L'CT 8820 %S8°CT %9¢°6 9120 %TE8 %69°S 63-69U-Y
0%9'1 %SE SV %56'SE I6T'T %0€°2C %IL9T L¥€0 %LS'CL %CL’L 092°0 %89°L %€8'G 01¥-08U-V
026'C %eS'EY %¥9'¥C 290C %19°0€ %06°02 982°0 %LS'02 %SO'TT S12°0 %LETT %6L°L 63-69U-v
L88'T %16°0S %L0'8C 29’1 %LT0¢ %50°02 1L2°0 %2061 %¥8'cl €020 %80°01 %08°¢ LA-€SU-Y

sun8ay denSay % deoysog %

Ss=

sun;8ay denSay % deoysog %

v=2

sun sy denSay % deoysog %

€=

sun sy denSay 3 deoysag %

c=

pr

0Z°0 = S pue 500 = ¢ Buisodwi Aq ¥ ‘€2 = Y JO SAN|BA JUJJIP JO4 SOOUBISUI HJEWIYDUSQ Y} JO SHNSDY ' d|qe|

20

7 Conclusions

In this paper we have presented a new combinatorial optimization problem, including a math-
ematical formulation, the aim of which is to generate a set of k alternative solutions of a single
vehicle routing problem instance, in such a way that each alternative solution differs from all
the others by at least a given threshold. A min-max objective function minimizes the cost of
the worst solution in this set.

The kd-VRP is applicable in several practical situations. In the cash-in-transit sector, the kd-
VRP can be used to define a set of alternative routes to pick up cash and valuables, something
which is often required by law. Other applications can be found in the fuel distribution or in the
transportation of dangerous goods, in which all customer must be served and for specific rea-
sons (e.g., accidents, unavailability of some route edges, security reasons), several alternative
routes need to be generated.

To solve this problem, we have developed an iterative method (IPM_kd) based on a similar
method for the k dissimilar shortest paths problem. A distance metric between alternative
solutions has also been defined. The IPM_kd metaheuristic was tested using 51 VRP benchmark
instances varying the number of alternative solutions that need to be generated. The results
obtained are encouraging. In a limited computational time we were able to obtain solutions of
good quality. In particular, for k = 5 and a maximum similarity threshold T = 0.20, the VRP
alternative presenting the highest cost is, on average, only 25% worse than the best known
solution of the original VRP problem.

In the future, we plan to investigate extensions of the kd-VRP, e.g., by including additional
real life constraints such as time windows, route length restrictions, and precedence relations
between vertices. Also the comparison to other algorithms, and the development of exact
methods and bounds for this problem, present promising research avenues.

References

RXK. Ahuja, K. Mehlhorn, J. Orlin, and RE. Tarjan. Faster algorithms for the shortest path problem.
Journal of the ACM, 37(2):213-223, 1990.

V. Akgiin, E. Erkut, and R. Batta. On finding dissimilar paths. European Journal of Operational Research,
121(2):232-246, 2000.

P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, and G. Rinaldi. Computational results
with a branch and cut code for the capacitated vehicle routing problem. Technical report, Research
Report 949-M, Universite Joseph Fourier, Grenoble, France, 1998.

J. A. Azevedo, M. E. O. S. Costa, J. J. E. R. S. Madeira, and E. Q. V. Martins. Algorithm for the ranking of
shortest paths. European Journal of Operational Research, 69(1):97-106, 1993.

T. Barra, B. Perez, and J. Anez. Multidimensional path search and assignment. In 21st PTRC Summmer
Annual Conference, 1993.

21

N. Christofides, A. Mingozzi, P. Toth, and C Sandi. The vehicle routing problem. In Combinatorial
Optimization, pages 315-338. John Wiley and Sons, Chichester, 1979.

J.BJ.M. De Kort. A branch-and-bound algorithm for symmetric 2-peripatetic salesman problems. Euro-
pean Journal of Operational Research, 70(2):229-243, 1993.

P. Dell’Olmo, M. Gentili, and A. Scozzari. On finding dissimilar Pareto-optimal paths. European Journal
of Operational Research, 162(1):70-82, 2005.

L. Di Puglia Pugliese and F. Guerriero. Dynamic programming approaches to solve the shortest path
problem with forbidden paths. Optimization Methods and Software, 28(2):221-255, 2013.

E. Duchenne, G. Laporte, and F. Semet. The undirected m-peripatetic salesman problem: Polyhedral
results and new algorithms. Operations Research, 55(5):949-965, 2007.

D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary shortest path
problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):
216-229, 2004.

M. L. Fisher. Optimal solution of vehicle routing problems using minimum k-trees. Operations Research,
42(4):626-642, 1994.

Bruce L Golden, Edward A Wasil, James P Kelly, and I-Ming Chao. The impact of metaheuristics on
solving the vehicle routing problem: algorithms, problem sets, and computational results. In Fleet
management and logistics, pages 33-56. Springer, 1998.

R. Gopalan, S.K. Kolluri, R. Batta, and M.K. Karwan. Modeling equity of risk in the transportation of
hazardous materials. Operations Research, 38(6):961-973, 1990.

Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and the replacement
paths problems. Information Processing Letters, 109(7):352-355, 2009.

K. Helsgaun. An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Number 81. Datalo-
giske Skrifter, Roskilde University, 1998.

K Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European
Journal of Operational Research, 126(1):106—130, 2000.

K. Helsgaun. An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP Heuristic. Number
109. Datalogiske Skrifter, Roskilde University, 2006.

J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new algorithm and its
implementation. Transactions on Algorithms, 3(4):45-56, 2007.

P.E. Johnson, D.S. Joy, and D.B. Clarke. Highway 3.01, an enhancement routing model: program, de-
scription, methodology and revised user’s manual. Technical report, Oak Ridge National Laboratories,
1992.

Kaggle. Traveling Santa Problem. http://www.kaggle.com/c/traveling-santa-problem, 14 December
2012.

J. Krarup. The peripatetic salesman and some related unsolved problems. In B. Roy, editor, Combinatorial
Programming: Methods and Applications, volume 19 of NATO Advanced Study Institutes Series, pages
173-178. Springer Netherlands, 1975.

M. Kuby, X. Zhongyi, and X. Xiaondon. A minimax method for finding the k best ‘differentiated’ paths.
Geoghaphical Analysis, 29(4):298-313, 1997.

22

V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics
- Dokladyy, 10:707-710, 1966.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Oper-
ations Research, 21(2):498-516, 1973.

A. Lokketangen, J. Oppen, J. Oyola, and D.L. Woodruff. An attribute based similarity function for VRP
decision support. Decision Making in Manufacturing and Services, 6(2):65-83, 2012.

K. Lombard and R.L. Church. The gateway shortest path problem: Generating alternative routes for a
corridor location problem. Geographical Systems, 1(1):25-45, 1993.

R. Marti, J.L. Gonzalez-Velarde, and A. Duarte. Heuristics for the bi-objective path dissimilarity problem.
Computers & Operations Research, 36(11):2905-2912, 2009.

S.U. Ngueveu, C. Prins, and R. Wolfler Calvo. A hybrid tabu search for the m-peripatetic vehicle routing
problem. Matheuristics, 10:253-266, 2010a.

S.U. Ngueveu, C. Prins, and R. Wolfler Calvo. Lower and upper bounds for the m-peripatetic vehicle
routing problem. 4OR, 8(4):387-406, 2010b.

T. Nguyen. On the disjoint paths problem. Operations Research Letters, 35(1):10-16, 2007.

D. Park, S. L. Sharma, L. R. Rilett, and M. Chang. Identifying multiple reasonable alternative routes: Effi-
cient vector labeling approach. Transportation Research Record: Journal of the Transportation Research
Board, 1783(1):111-118, 2002.

C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers and
Operations Research, 31(12):1985 —2002, 2004.

R. D. Shier. On algorithms from finding the k shortest paths in a network. Networks, 9(3):195-214, 1979.

K. Sérensen. Route stability in vehicle routing decisions: a bi-objective approach using metaheuristics.
Central European Journal of Operations Research, 14(2):193-207, 2006.

K. So6rensen. Distance measures based on the edit distance for permutation-type representations. Journal
of Heuristics, 13(1):35-47, 2007.

Service Public Federal Interieur SPFIL. Arrété royal réglant certaines méthodes de surveillance et de
protection du transport de valeurs et relatif aux spécificités techniques des véhicules de transport de
valeurs. Moniteur Belge, 7 April 2003.

E. D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks, 23(8):661-676,
1993.

L. Talarico, K. Sorensen, and J. Springael. The risk-constrained cashi-in-transit vehicle routing problem
with time window constraints. In Maartin Josef Geiger Andreas Fink, editor, 14th Workshop of the
EURO Working Group “EU/ME : the metaheuristics community”, pages 104-109, 2013.

K. Thyagarajan, R. Batta, M.H. Karwan, and RJ. Szczerba. Planning dissimilar paths for military units.
Military Operations Research, 10(1):25-42, 2005.

P.H. Van Leeuwen and A. Volgenant. Solving symmetric vehicle routing problems asymmetrically. Eu-
ropean Journal of Operational Research, 12(4):388-393, 1983.

S. Vanhove. Alternative Routing Algorithms for Road Networks. phd thesis, Ghent University, Department
of Applied Mathematics and Informatics, 2012.

23

R. Wolfler Calvo and R. Cordone. A heuristic approach to the overnight security service problem. Com-
puters & Operations Research, 30(9):1269-1287, 2003.

J. L. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):712-716, 1971.

J. Yeonjeong and K. Dong-Kyu. Dissimilar alternative path search algorithm using a candidate path set.
In N. Mansour, editor, Search algorithms and applications, pages 409-424, 2011.

24

