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Abstract 

The subjective well-being (SWB) method has become a popular tool to estimate the willingness to 

pay for non-market goods. In this method, the willingness to pay measure contains the ratio of  two 

coefficients (of the nonmarket good and consumption), which are both estimated in a regression on 

subjective well-being. Computing confidence intervals for such ratios turns out to be  error-prone, in 

particular when the consumption coefficient is imprecisely estimated. In this paper, five different 

ways of computing the confidence intervals are compared: the delta, Fieller, parametric bootstrapping, 

and bootstrapping method, and a numerical integration of Hinkley’s formula. Using a large number 

of simulated SWB data sets, confidence intervals and their coverage rates are computed for each 

method. The findings suggest that the delta method is accurate only if the consumption coefficient is 

estimated with very high precision. All other methods turn out to be more robust, with minor 

differences in accuracy. 
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1 Introduction

In many fields of economics and other social sciences, researchers are interested in
the willingness to pay (WTP) of individuals for a variety of goods. This can help to
predict the benefit, expected outcome, or political acceptance of certain policies, or
to find the optimal price for a product. One of the advantages of the WTP measure
is that the non-monetary good can be any good for which individuals have pref-
erences. Some examples are applications on air quality (Luechinger 2009), travel
time (Amador, González, and Dios Ortúzar 2005), crime reduction (Brenig and
Proeger 2018), mental distress from bereavement (Oswald and Powdthavee 2008)
or from other life events (Clark and Oswald 2002). To obtain WTP estimates, a
method to elicit these preferences is needed. Different approaches to do so are the
revealed preference approach, contingent valuation, discrete choice experiments, or
regressions on reported subjective well-being (SWB). The last two methods, dis-
crete choice experiments and the SWB method, are prone to a common source of
error; for all differentiable and additively separable utility functions, the estimated
WTP measure contains the ratio of two coefficient estimators.

In case an ordinary least squares or a maximum likelihood estimation is used,
the estimators are asymptotically normally distributed. Accordingly, their ratio
asymptotically follows a normal ratio distribution. It is known for a long time
that the statistical properties of the normal ratio distribution differ from those
of the normal distribution in many ways (Geary 1930; Fieller 1940; Fieller 1954;
Marsaglia 1965; Hinkley 1969), and that one should be cautious when using the
normal distribution to approximate it. Most notably, the moments of the normal
ratio distribution are not defined, such that the mean and standard deviation of
the final estimate are generally meaningless (Daly, Hess, and Train 2011). Theoret-
ically, these are infinite, even though empirical applications always generate finite
(and often even seemingly reasonable) moments, luring researchers into believing
their results were correct.

While a growing body of literature compares different methods to construct
confidence intervals for the normal ratio distribution in the context of discrete
choice experiments (see, for instance, Hole 2007; Bolduc, Khalaf, and Yélou 2010;
Gatta, Marcucci, and Scaccia 2015; Wang et al. 2020), I am not aware of any
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study published to this date doing the same in the context of SWB data. The aim
of this paper is to find out which of the most commonly used methods (Fieller,
bootstrap, parametric bootstrap, and delta) yield sufficiently accurate confidence
intervals for WTP when using the SWB method. I further propose a new method
where the formula given by Hinkley (1969) is numerically integrated. While this
list of methods is not exhaustive, it covers a spectrum of different assumptions
and approaches. Moreover, not all methods use the same value around which the
confidence interval is located. It is not evident that the median of the distribution
of estimated WTP should also be the median of the confidence interval for WTP.
I discuss why it can be advantageous to choose intervals which are not located
around the median. Finally, the accuracy and robustness of these different methods
are compared by means of a simulation, using a large number of data sets based
on the same underlying preferences. By varying the cut-off levels on the t-values
of the coefficient estimators, I investigate whether the popular cut-off level of 1.96
is sufficient in the given context, or whether the t-value of the denominator should
be at least 3, as proposed by Geary (1930).

The findings in this study underline that special attention needs to be given
to the monetary coefficient estimator. As it enters the formula for WTP in the
denominator, larger imprecision in its estimate can lead to an exorbitant level of
imprecision in the WTP estimate. When applying the conventional cut-off level of
1.96 on the t-value of the monetary coefficient estimator, the confidence intervals
for the final estimate may be substantially less accurate than for a cut-off level of
3. Further, the accuracy depends not only on the chosen cut-off values, but also
on whether the expected t-values are sufficiently large. Accordingly, the statistical
power of a SWB survey aimed at estimating WTP should be larger than that of a
SWB survey investigating the determinants of well-being. Another finding is that
all methods presented here except for the delta method perform reasonably well
when a cut-off on the monetary coefficient estimator is applied. The delta method
fails to incorporate the skewness of the normal ratio distribution, such that it is
particularly inaccurate for certain significance levels while being fairly accurate for
others. It is also the least robust method to changes in correlation between the
estimators, smaller sample sizes, and lower statistical power. Although the focus
of this paper is on the SWB method, most of the findings also apply to applications
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with discrete choice experiments.
In section 2, I briefly outline how the willingness to pay measure is estimated

using the SWB method, and show why the normal ratio distribution appears in
the final estimate. Section 3 gives an overview of the five methods to construct
confidence intervals and discusses the choice of the interval mid-point. I describe
the set up of the simulation in section 4 and the results in section 5. In section 6,
I discuss the results and draw inference for practitioners before concluding in the
final section.

2 Estimation

2.1 Subjective well-being method

The SWB method requires a data set which includes reported life satisfaction,
individual outcomes in the monetary good and the non-monetary dimension for
which WTP is estimated, and ideally some additional variables which are cor-
related with SWB and individual outcomes (e.g. socio-demographics, personality
traits, or answers to locus of control questions). It is further required to assume
a parametric model of preferences. Reported life satisfaction LSi is then regressed
on all the other variables to measure their influence on life satisfaction. For the
example below, and without loss of generality, I use a simple log-linear utility
function over two life dimensions, consumption c and the non-monetary good k.1

The log-linear specification is obtained by transforming one life dimension, in this
case consumption, with the logarithm. Given some additional variables zi, and an
unobserved, random component εi, the utility function looks as follows:

LSi = β0 + βc · log(ci) + βk · ki + βz · zi + εi. (1)

The idea behind WTP is to keep the level of utility constant while changing
the outcome in the non-monetary good of interest. It is given by the level of con-

1As shown in the course of this paper, the findings hold for a much wider set of utility
functions and for more than two dimensions.
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sumption which individual i would forego to attain k∗, the hypothetical outcome
level of good k.2 Figure 1 illustrates this concept:

WTPi

ci

c∗i

ki k∗

li

l∗i

good k

co
ns

um
pt

io
n

Figure 1: Illustration of willingness to pay measure.

Individual i is endowed with the outcome li =
(
ci ki

)
in both life dimensions

and has complete, continuous, and transitive preferences over the space of out-
comes R2

+, here depicted by the indifference curve through li. The intersection
of the indifference curve through li with the vertical line at k∗ shows the level
of consumption c∗i at which i is equally well off as in her observed situation, but
with the hypothetical attainment k∗ in the non-monetary dimension.3 This level
of consumption c∗i is also called “equivalent consumption”.4 The vertical distance
between c∗i and the observed level of consumption ci then represents WTPi. To
derive the formula for WTP, both li and l∗i =

(
c∗i k

∗) are inserted in the right-hand

2It is implicitly assumed here that all individuals attain the same reference outcome k∗,
which is obviously not the case in every real-world application. One could alternatively use an
individual-specific value k∗i .

3Note that good k may as well be a discrete or binary variable. In that case, the indifference
curve would be an indifference set. It is however required that consumption is continuous,
otherwise there may be no consumption level which yields the same predicted life satisfaction as
the observed outcome.

4Equivalent consumption itself can also be used as a measure to compare individual well-being
in a multi-dimensional setting. It combines multiple life dimensions into one by deducting the
WTP for each non-monetary dimension from the consumption level, hence respecting individual
preferences (Decancq, Fleurbaey, and Schokkaert 2015).
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side of equation 1, and the two expressions equated. After some transformations,
one obtains:

WTPi = ci ·

(
1− exp

[
βk

βc

·
(
ki − k∗)]). (2)

Two features of equation 2 are important for the concepts presented in this
paper. First, only the outcome bundle of individual i, the new attainment in the
non-monetary dimension, and the coefficients βc and βk are needed to determine i’s
WTP. This means that preferences are not individual, but assumed to be equal for
the whole population.5 Hence, when all individual outcomes li, and the coefficients
βc and βk are known, the WTP of every individual is determined, independent
of their reported life satisfaction or other individual characteristics. Second, the
coefficients βc and βk appear as a ratio where βc is in the denominator, which
is always the case for any additively separable utility function.6 In this example,
these two coefficients are also the only coefficients which need to be estimated. For
additively separable functions with more parameters, equation 2 may contain more
coefficients to be estimated, but βc and βk still appear as a ratio. The regression
is only a means to an end; its purpose is to yield an unbiased and precise estimate
of the coefficients determining the shape of the indifference curves.

2.2 Normal ratio distribution

Imprecision is the natural by-product of any estimation using regressions. When
interpreting the results, it is imperative to answer the question how this imprecision
is captured in the final estimate. In this paper, imprecision is defined from a
frequentist perspective. It is assumed that the coefficients which determine the
utility function have a true value, which is unknown to the observer. By means of
a regression, the observer can form an expectation in which range these values may
be located, or in other words, she can compute confidence intervals. The width of

5It is possible to allow for interaction effects between the life dimensions and, typically, socio-
demographic characteristics. In that case, preferences are equal for everyone belonging to the
same socio-demographic group.

6The proof is fairly simple: Following the notation of this paper, any additively separable
utility function can be written as LSi = β0 + βc · fc(ci) + βk · fk(ki) + · · ·+ εi, where fc and fk
denote the transformation functions of ci and ki, respectively. Setting LSi(ci, ki) = LSi(c

∗
i , k

∗)
and rewriting the equation yields: WTPi = ci − f−1

c

[
fc(ci) +

(
βk

βc
· [fk(ki)− fk(k

∗)]
)]

.
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a confidence interval is determined by the significance level α, its mid-point, and
the level of imprecision. The significance level denotes the likelihood α with which
the confidence interval of a random sample from the population contains the true
parameter value, and the mid-point divides the probability mass of the confidence
interval in half. Hence, if the significance level and mid-point are given, the size of
the confidence interval only depends on the level of imprecision. In contrast to a
Bayesian perspective, imprecision is not interpreted as a distribution of coefficients
in the population, but as a data-driven limitation which hinders the observer to
narrow down confidence intervals further.

In the context of the SWB method, the parameters βc and βk are typically es-
timated using an ordinary least squares or a maximum likelihood regression.7 If so,
their estimators are asymptotically normally distributed. Under the assumption
that the estimators are jointly distributed, it follows that their ratio asymptotically
follows a normal ratio distribution. For the remainder of the paper, the estimators
of βc and βk are denoted by β̂c and β̂k respectively, and the estimator of their
ratio by π̂ := β̂k/β̂c. Using the assumption of joint distribution, the multivariate
distribution is given by:

β̂ =

(
β̂c

β̂k

)
d−→ N

(
µ,Σ

)
,

where µ =

(
µc

µk

)
and Σ =

(
σ2
c σck

σck σ2
k

)
.

(3)

Some characteristics of the normal ratio distribution severely complicate the
analysis. Four of these have immediate consequences for the construction of confi-
dence intervals: First, the normal ratio distribution is “heavy tailed”, meaning that
its moments (mean, variance, etc.) are infinite, and hence not defined. Empirically,
one would always obtain finite moments when taking some random samples, but

7Life satisfaction is usually reported on discrete scales, e.g. on the scale of integers from 0 to
10. Since a one point difference in reported SWB at the top of the scale may not represent an
equally large difference in real subjective well-being as a one point difference at the bottom of
the scale, it seems more sensible to use an ordered logit model for the regression. However, as
shown by Ferrer-i-Carbonell and Frijters (2004), the coefficient estimators obtained when using
ordered logit models are very similar to those obtained with ordinary least squares.
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since the law of large numbers does not apply to moments which are not defined,
the sample moments do not converge. Daly, Hess, and Train (2011) provide a proof
and an intuition for this finding: Since β̂c appears in the denominator and has a
“relatively high” likelihood for values arbitrarily close to 0, the resulting ratio can
be arbitrarily large with “relatively high” likelihood. The theorem in Daly, Hess,
and Train (2011) states the exact condition that determines which moments are
undefined for which type of ratio distribution (e.g. for the inverse gamma, Weibull,
and uniform distribution, etc.). Truncating β̂c such that values around 0 were ex-
cluded would guarantee that π̂ had finite moments, but it might be difficult to
find defensible a priori arguments for this choice.8 Since the moments of the nor-
mal distribution are well-defined and finite, any approximation using the normal
distribution always underestimates the likelihood of extreme outcomes. Practi-
tioners who estimate confidence intervals for WTP using such an approximation
may strongly underestimate the width of these intervals.

Second, the normal ratio distribution can be bimodal in some cases. Marsaglia
(1965) shows for which combination of values the distribution is uni- or bimodal.
Bimodality occurs when the probability mass of the denominator is located closely
around 0 and the probability mass of the nominator is not, i.e. when β̂k is relatively
far away from 0 and β̂c is relatively close to 0.9 As described above, the mean of
the normal ratio distribution is not defined, and its mode is not necessarily unique.
Additionally, the median of the normal ratio distribution is generally not equal to
the ratio µk/µc. Hence, it is unclear which central measure describes the location
of the normal ratio distribution.

Third, there exists no closed-form solution to compute the quantiles of π̂. More-
over, the normal ratio distribution depends on five different continuous parameters
(the means µc and µk, the variances σ2

c and σ2
k, and the covariance σck), such that

tables with pre-calculated values, as could be found for, for instance, Student’s

8Note that a truncation of the values around 0 is different from assuming strict monotonicity.
As long as β̂c can take values arbitrarily close to 0, the moments of π̂ are infinite. Thus, one
would need to specify a value ε 6= 0 for which β̂c ≥ ε, or β̂c ≤ −ε, or β̂c /∈ (−ε, ε) is assumed.

9These conditions provide that values of π̂ close to 0 are relatively unlikely, since π̂ can only
be close to 0 when β̂k is close to 0 and/or when β̂c is very large. On the other hand, β̂c can take
both negative and positive values with a high likelihood, such that π̂ can peak on both sides of
the vertical axis. If there are peaks on both sides, the distribution is bimodal.
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t-distribution, are not available.
And fourth, as noted in Dufour (1997), the normal ratio distribution is “locally

almost unidentified”. This means that every valid method to construct its confi-
dence intervals must allow for unbounded intervals when the parameters βc and
βk cannot be identified with the given data.

When plugging π̂ into the formula for WTP, some of these characteristics might
potentiate even further.10 Incorrectly specified confidence intervals may be strongly
biased and may fail to reflect the skewness as well as the heavy tails of the nor-
mal ratio distribution. Figure 2 illustrates the intermediate steps when estimating
WTP for some hypothetical case, where β̂c and β̂k are jointly and normally dis-
tributed.11 The t-values of β̂c and β̂k are equal to 4, meaning that both estimators
are estimated with high precision. Yet, we observe that the distribution of π̂ is con-
siderably skewed to the right. The function visibly converges to 0 more slowly than
a normal distribution, as indicated by the dotted line. Inserting π̂ into equation 2
yields the distribution of estimated WTP, as shown in figure 2c. We observe that
the probability mass of estimated WTP is distributed over a wide range of values.
The dashed lines in figure 2d indicate the lower and upper bounds of a confidence
interval centred around the median of π̂. Even though the estimators are highly
significant compared to conventional significance levels, the interval spreads from
a value close to 0 to a value which is about two thirds of the total consumption.

3 Construction of Confidence Intervals

As shown in the previous section, it is futile to capture the imprecision of π̂ using
its standard deviation, since the standard deviation of a normal ratio distribution
is not defined. In this section, I present five methods to obtain confidence intervals
for a normal ratio distribution. Afterwards, I discuss why the central points around

10Consider the formula for WTP with a log-linear utility function shown in equation 2. Due
to the exponentiation of βk/βc, small differences in the preference parameter can lead to large
differences in the WTP estimate.

11For illustrative purposes, a Cobb-Douglas utility function is used here, where consumption
is transformed by a logarithm. This implies that WTP cannot be higher than the consumption
value, which in this hypothetical case is equal to 1200.
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Figure 2: Illustration of WTP estimation step-by-step.

which these confidence intervals are located differ between methods and why this
may or may not be desirable in the given context.

3.1 Five methods

The five methods presented here are the Fieller method, the Hinkley method,12

the naïve bootstrap, the parametric bootstrap, and the delta method. Neither is
this list of methods exhaustive, nor are these methods considered optimal in terms

12This method has, to the best of my knowledge, not been described before. It utilises the
formula for the normal ratio distribution given by Hinkley (1969), wherefore I use his name.
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of accuracy.13 It is not the aim of this paper to find the most accurate method;
instead, I test whether the most commonly used ones are suitable, and whether
the different assumptions and approaches employed for each method are robust.

Fieller method

The Fieller method was introduced by Fieller (1940) and discussed in more detail
in Fieller (1954). It gives confidence bounds for the ratio of two jointly normally
distributed variables.14 Hence, when applying it to the SWB method, one needs to
assume that β̂c and β̂k follow a multivariate normal distribution. The accuracy of
the confidence set thus partly depends on whether the sample size is large enough
to elicit the asymptotic properties of the two estimators.

Figure 3 illustrates how the Fieller confidence set is constructed, given some
hypothetical values.15 In this example, both t-values are equal to 4, and the point
(µc, µk) representing the ratio of means is surrounded by the 95% confidence ellipse.
The construction starts by projecting the ratio of means, i.e. point (µc, µk), onto
the vertical line at βc = 1. This projection is equivalent to dividing βk by βc,
as all points on the ray through the origin have the same ratio π. The first step
already yields the mid-point πM of the confidence set. Next, the rays through the
origin which are tangent to the confidence ellipse are drawn. The intersections
of these lines with the vertical line at βc = 1 yield the lower and upper bound
of the Fieller confidence set.16 Again, this projection of the outmost points of
the confidence ellipse onto βc = 1 is equivalent to calculating the ratio of their
coordinates. Observe that the Fieller method allows for skewness, as πL and
πU are not equidistant from πM . On that account, the mid-point of the Fieller

13See for instance Armstrong, Garrido, and Ortúzar (2001), Gatta, Marcucci, and Scaccia
(2015), Puth, Neuhäuser, and Ruxton (2015), or Wang et al. (2020) for further examples and
variations of the methods described here, some of which are considered to be more accurate or to
have better small-sample properties. Carson and Czajkowski (2019) develop an entirely different
approach where the cost coefficient is re-parametrised, such that the ratio is estimated directly.

14Interested readers can find the formula in appendix B.2.
15The illustration is adapted from von Luxburg and Franz (2009), who advocate for using

the Fieller method when the nominator and denominator are normally, or even approximately
normally distributed.

16In case the point where the ray through the origin is tangent to the confidence ellipse lies
left of βc = 0, the ray needs to extended through the origin to find the intersection with βc = 1
(see figure 4).
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confidence set should not be understood as its geometric centre, but as the point
which splits the probability mass contained between πL and πU in half. Note that
the area between the dashed lines through πL and πU covers the entire confidence
ellipse, and the dashed line through πM splits this area equally.17

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(µc, µk)

πM

πL

πU

βc

β
k

Figure 3: Construction of Fieller confidence set.

Careful readers might have noticed that I use the terms “confidence set” and
“confidence bounds” instead of “confidence interval”. The reason for this is that
the Fieller method does not necessarily yield an (inclusive) interval. Consider the
case illustrated in figure 4, where β̂c is not significant at the significance level of
the confidence ellipse. Here, the t-values are set to tc = −0.3 and tk = 2.2. Again,
all values are hypothetical and only chosen to illustrate the concept. Using the
same method to construct the Fieller confidence set as shown above yields a lower
bound which is larger than the upper bound. Moreover, the mid-point does not lie

17As not only the confidence ellipse, but also a large area outside of it are captured by
the confidence set, one might be tempted to think that the estimated confidence set is far
too conservative. However, recall that the confidence ellipse is not equivalent to the quantile
ellipse. The first describes the confidence set of the mean value, while the latter contains a given
percentage of some sample data. For jointly normally distributed variables, the quantile ellipse
is slightly larger than the confidence ellipse.
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between the two. In this case, the confidence interval is exclusive, meaning that
all values between the lower and upper bound are not part of the confidence set,
while all other values of the set of real numbers are. In mathematical notation, the
confidence set is given by (−∞, πU)∪ (πL,∞). Such an interval can be understood
as follows: If β̂c is not significantly different from 0, but β̂k is, the resulting ratio
is expected to be different from 0, and potentially very far away from it.

−1 0 1

−1

0

1

2

3

πm

πu

πl
(µc, µk)

βc

β
k

Figure 4: Construction of Fieller confidence set when β̂c is not significant.

A third type of confidence set occurs when the confidence ellipse surrounds
the origin. In that case, it is impossible to find a ray through the origin which is
tangent to the confidence ellipse. Thus, the Fieller bounds do not exist and the
confidence set contains the entire set of real numbers. Note that it is a necessary,
but not a sufficient condition that both estimators are individually insignificant
at the significance level α for the confidence set to be unbounded. If the bounds
exist, but β̂c is not significant, the confidence set is an exclusive interval. And
finally, if β̂c is significant, the confidence set is an inclusive interval. In previous
simulation studies (Hole 2007; Gatta, Marcucci, and Scaccia 2015), iterations with
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exclusive or unbounded intervals are simply discarded. Here, in order not to insert
an artificial bias, exclusive or unbounded intervals are not discarded.18

Hinkley method

Hinkley (1969) provides the exact formula for the probability density function of
a normal ratio distribution (see appendix B.1). Ideally, one would integrate this
function to obtain the cumulative distribution, find its inverse, and read off the
quantiles of π to construct a confidence set. Unfortunately, there exists no closed-
form solution for its cumulative distribution function, and due to the large number
of parameters, tables with pre-calculated values are not available. However, it
should be a fairly simple exercise to find a sufficiently precise numerical integration
method, which is usually part of any statistical software package, and to apply it
on the formula given by Hinkley. In the simulation, the uniroot function, which
is part of the R stats package (R Core Team 2023), is used to find the inverse of
the cumulative density function by means of numerical integration. To the best
of the author’s knowledge, there exists no publication to this date in which this
method has been applied or tested.

The quantiles which limit the confidence set can be chosen freely, as long as the
probability mass between them equals the significance level. If µk/µc is chosen as
its mid-point, the Hinkley method is equivalent to computing the Fieller confidence
set. One important difference is that the Hinkley method always finds confidence
bounds, even when the Fieller method does not. However, taking into account the
implications of Dufour (1997), this may not be desirable. Since the normal ratio
distribution is locally almost unidentified, a valid method to construct confidence
intervals should yield unbounded intervals with non-zero probability. Analogue
to the Fieller method, the accuracy of the Hinkley method depends on whether
the assumption of joint normality of β̂c and β̂k is satisfied. When the sample size
is too small, the asymptotic properties may not be given, rendering this method
unsuitable. Additionally, the heavy tails of the normal ratio distribution may pose
a challenge for the numerical integration method.

18Since Fieller confidence intervals are always bounded when the denominator is significant,
this decision makes no difference when sufficiently large cut-off values for the t-value of β̂c are
applied.
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Bootstrap

The widely applied bootstrapping technique has been introduced by Efron (1979).
It is often used to obtain robust results, or any results if no other method is
feasible. In this paper, I test the so-called “naïve” bootstrap. It works as follows:
First, resample B times from the original sample (in this case from each simulated
sample), and perform the regression with each of the B artificial samples. The
regressions yield B simulated values µ̃c and µ̃k. Then, take their ratios to obtain
the corresponding quantiles of π̃, which can then be used to construct confidence
intervals.

One advantage of the bootstrap is that it avoids any assumptions on the joint
distribution of β̂c and β̂k. Hence, it is robust in case the estimators have not
converged to their normal distributions, or in case they are not jointly distributed.
However, a known drawback of the bootstrap is that it is biased in small samples.
One of the robustness checks focuses on whether this poses a problem for WTP
estimation. While there exist several versions of the bootstrap which correct for
the small sample bias, I use the naïve bootstrap as a baseline.

Parametric bootstrap

In Krinsky and Robb (1986) and Krinsky and Robb (1990), the authors propose
another variant of the bootstrap.19 Assuming that β̂c and β̂k are jointly and nor-
mally distributed, their multivariate distribution can be used to simulate random
values. As in the naïve bootstrap, all pairs of β̃c and β̃k are divided to obtain the
quantiles of π̃, which yield the confidence interval for π̂.

In contrast to the naïve bootstrap, it requires only one regression, which is com-
putationally far less demanding. However, given the speed of computers nowadays
and the possibility of cloud computing, this should not be a deciding factor any
longer. More importantly, it requires an additional assumption, which may be
violated in some cases. Asymptotically, the two bootstrapping methods should be
equivalent, since the naïve bootstrap is asymptotically unbiased and the distribu-

19This method is sometimes called “Krinsky-Robb method”. To distinguish it from the naïve
bootstrap, I use the more expressive term “parametric bootstrap” instead.

16 CSB Working Paper No. 23/10



tions of β̂c and β̂k are asymptotically normal. Ultimately, the speed at which both
converge determines which bootstrapping method is more accurate.

Delta method

The delta method is a flexible approach to approximate any statistical estimator by
a normal distribution, and it is known at least since the 19th century (Portnoy and
Ver Hoef 2013). Hole (2007) uses a simulation of discrete choice experiments to test
the delta method’s accuracy in providing confidence intervals, and he finds that it is
more accurate than the other methods when “the data is well-conditioned”. It uses
a first-order Taylor approximation around one value of the distribution function,
in this case around the ratio of the means of β̂c and β̂k. The crucial assumption is
that the estimator of interest is asymptotically normally distributed, which is not
fulfilled in the case of a normal ratio distribution. Hence, the objective here is to
test whether the most common method of calculating standard errors of partial
effects (Dowd, Greene, and Norton 2013) and willingness to pay estimates (Mott,
Chami, and Tervonen 2020) is suitable in the given context. The variance of π̂ as
computed in the delta method is given by:

Var[π̂ ] =

(
δπ̂/δβ̂c

δπ̂/δβ̂k

)′
Σ−1

(
δπ̂/δβ̂c

δπ̂/δβ̂k

)
. (4)

Note that, as stated in the previous section, the moments of π̂ are not defined.
Hence, the ratio of the means of β̂c and β̂k cannot be equal to the (theoretically
infinite) mean of π̂. It is also not equal to the median of π̂, such that one needs to
be careful when interpreting the results of the delta method. The mean and stan-
dard deviation stemming from the delta method can be used to find approximate
confidence intervals, but aside from that the calculated moments have no deeper
meaning.

Figure 5, which is adapted from Hirschberg and Lye (2010), illustrates how
delta confidence intervals are constructed. The hypothetical values are the same
as in figure 3, where the t-values of both estimators are equal to 4. Again, the
construction starts by projecting the point (µc, µk) onto the vertical line at βc = 1

using the ray through the origin, and thus computing the ratio of means. This
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determines πM , the mid-point of the interval for π̂. Next, the tangents of the
confidence ellipse which are parallel to the ray through the origin are drawn, here
depicted by the dotted lines. The intersections of these tangents with the vertical
line at βc = µc are marked with a dot. Finally, these points are projected onto
the vertical line at βc = 1 to find the lower and upper bound πL and πU of the
interval.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(µc, µk)

πM

πL

πU

βc

β
k

Figure 5: Construction of delta confidence interval.

One weakness of the delta method can be seen right away. Since the tangents
are equidistant from the point (µc, µk), the lower and upper bound must be equidis-
tant from πM by construction. Accordingly, the delta method does not capture
the skewness of the normal ratio distribution. Thus, the intervals generally do not
cover very large values (in absolute terms), even though a substantial part of the
probability mass is located in the heavy tails of the normal ratio distribution (see
figure 2). Additionally, the probability mass between πL and πM is generally not
equal to that between πM and πU . The area between the dashed lines through
πL and πM represents the set of parameter combinations (βc, βk) which fall into
the interval between πL and πM (analogously, the same is true for πM and πU).
Observe how the dashed line through (µc, µk) divides the confidence ellipse in two
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halves. In this example it can be seen clearly that the entire lower right half of the
confidence ellipse is contained in the area between the dashed lines through πL and
πM , while only a part of the upper left half is contained in the area between the
dashed lines through πM and πU . Consequently, the hypothesis to be tested is that
the confidence interval for π̂ given by the delta method generally overestimates the
likelihood of values close to 0, and underestimates the likelihood of extreme values.

Hirschberg and Lye (2010) provide an illustration of how the delta method and
Fieller method relate to each other. They find that when µc, µk > 0 or µc, µk < 0,
the confidence intervals given by the two methods are more similar for a positive
correlation between β̂c and β̂k than for a negative correlation. The opposite is
true when the signs of µc and µk differ. The empirical relevance of this finding is
tested in the simulation by increasing the expected correlation between β̂c and β̂k

(in absolute terms).

3.2 Interval mid-point

It is a priori not clear where the confidence interval for π̂ should be located. Con-
sidering the cumulative distribution of an estimator, it would seem like the most
natural choice to centre the interval around the median, such that the probability
masses between 0 and the lower limit, and between the upper limit and 1 are equal.
However, given the properties of the normal ratio distribution described in section
2.2, it is unclear what its central measure is. Its mean is not defined and its mode
is not necessarily unique. Further, the median of π̂ is generally not equal to the
ratio of the means of β̂c and β̂k, and a closed-form solution to compute the median
of π̂ does not exist.

Another aspect to consider when choosing the central point is whether one
wants to respect the confidence intervals for the underlying distributions β̂c and
β̂k. To see why this may be desirable, consider an example: Given is a multivariate
distribution β̂ where β̂c is not significantly different from 0 at a given significance
level α, while β̂k is significantly different from 0. After taking a random draw
from the multivariate distribution and calculating the ratio β̃k/β̃c of the simulated
values, we observe an extremely large result for π̃ (in absolute terms). There are
three ways this could have occurred; either the value of β̃k is extremely large, or
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β̃c is very close to 0, or both. The first and the third case represent outliers of
the multivariate distribution β̂, which should not be contained in the confidence
interval for π̂. In the second case, β̃c and β̃k may lie within the confidence set
of β̂, hence π̃ should be contained in the confidence interval for π̂. In order to
decide whether or not to include π̃ in the confidence interval, one may want to
consider the likelihood of each case occurring. As the second case is relatively
likely (values close to 0 are part of the confidence interval for β̂c), extreme values
should be included in the confidence interval. A confidence interval centred around
the median of π̂, however, never includes extreme values, such that it disregards a
large set of points (β̃c, β̃k) which lie within the confidence ellipse for β̂.

Two of the methods presented here, the delta and Fieller method, are not
centred around the median, but around the ratio of means. The other three
methods are flexible in that regard; they may be centred around the median, but
one can also choose to centre them around any other value. For all methods except
the bootstrap, it is assumed that the estimators β̂c and β̂k are normally distributed.
As the Fieller method gives the exact confidence intervals for π̂ when β̂c and β̂k are
normally distributed, it is needless to check whether other methods requiring this
assumption perform better. Instead, the delta and Fieller method are compared
with the other methods centred around the median. To conclude this section, table
1 gives an overview of the five methods and their characteristics.

4 Simulation

The goal of the simulation is to find out which methods yield accurate confidence
intervals for π under different circumstances. Since WTP is a monotonic transfor-
mation of π, the confidence interval for π finally determines the confidence interval
for the WTP measure. To resemble a real-world application, a large number of
data sets following equation 1 is generated, using some hypothetical parameter val-
ues. The five methods described in section 3 are then applied to obtain confidence
intervals for π and to calculate the corresponding coverage rates, i.e. the shares
of confidence intervals which contain the true value of π. Following a frequentist
interpretation, the coverage rate of all confidence intervals should converge to their
respective significance levels as the number of simulated data sets increases.

20 CSB Working Paper No. 23/10



Method Approach Assumptions Mid-points

Fieller Compute
interval bounds β̂

d−→ N
(
µ,Σ

)
µk/µc

Hinkley Numerically integrate
density function β̂

d−→ N
(
µ,Σ

) median

Bootstrap Resample from
observations — median

Parametric
bootstrap

Resample from
estimator distribution β̂

d−→ N
(
µ,Σ

) median

Delta Approximate by
normal distribution π̂

d−→ N µk/µc

Table 1: Overview over the five methods to construct confidence intervals.

Continuing the example in section 2.1, the consumption variable c follows a log-
normal distribution, while good k, the additional variable z, and the error term
ε are normally distributed. Equation 5 shows how the true variance-covariance
matrix ∆ck of the variables c and k relates to the expected variance-covariance
matrix Σck of the estimators β̂c and β̂k. By setting the values of ∆ck accordingly,
Σck can be determined by the researcher:20

∆ck =

(
δ2c δck

δck δ2k

)
≈


σ2
e

Nσ2
c (1− ρ2ck)

−ρck σ
2
e

Nσ2
c σ

2
k (1− ρ2ck)

−ρck σ
2
e

Nσ2
c σ

2
k (1− ρ2ck)

σ2
e

Nσ2
k (1− ρ2ck)

. (5)

where σ2
e denotes the variance of the error term, N denotes the sample size in each

data set, and ρck denotes the correlation between β̂c and β̂k.
This also determines the expected t-values τc and τk of the estimators; since

tc = µc/σc and E[µc] = βc, it follows that E[tc] = τc = βc/σc as long as the
estimator β̂c is unbiased (the same holds for τk, respectively). In the baseline case,
τc and τk are set to 3. With an expected t-value of 3, about half the simulated data

20Appendix B.3 shows the derivation of this equation. Note that it only holds approximately.
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sets are expected to satisfy the threshold of tc ≥ 3 proposed by Geary (1930). A
table describing the remaining variables and their values can be found in appendix
A.1. By choosing different significance levels α = {0.01, 0.05, 0.1, 0.2, 0.4} for the
confidence intervals for π̂, the extent to which each method captures the shape
and skewness of the normal ratio distribution can be checked. Besides the baseline
configuration, the robustness of each method is tested in three scenarios: (i) when
the statistical power to reject β̂c = 0 and β̂k = 0 is low, (ii) when the sample
size is small, and (iii) when the estimators for β̂c and β̂k are strongly negatively
correlated.

Another test in the simulation deals with the behaviour of researchers. When
researchers apply the SWB method on a real-world example to estimate WTP, they
usually discard insignificant results. It is tested whether this induces a bias on the
accuracy of confidence intervals given by each method. Further, it is unclear which
cut-off value should be used to obtain sufficiently accurate confidence intervals. To
find a guideline, different cut-off values are applied on the t-value of β̂c. First, the
performance of each method is examined without a cut-off on tc. Second, the most
commonly used 5% significance level is applied, which corresponds to a cut-off
value of about 1.96. And third, a cut-off value of 3 is used, as proposed by Geary
(1930). An ideal method to find confidence intervals should always be accurate for
any given cut-off value, and a second-best method should always be accurate for
a known set of cut-off values.

The simulation mechanism works as follows: First, draw N random values
from the distributions of c, k, and ε. Depending on the underlying utility func-
tion, transform the values for c and k (in this case by taking the logarithm of c
to obtain a log-linear utility function). Second, multiply the transformed values
for c and k with βc and βk, add the error term and obtain the life satisfaction
LS.21 Third, using c, k, and LS, perform the different methods to calculate the
confidence intervals for π. Perform the regression once for each data set and then
apply the Fieller, Hinkley, parametric bootstrapping, and delta method. For the
naïve bootstrap, resample many times from the simulated samples, perform the

21Typically, life satisfaction is reported on a scale of integers, e.g. from 0 to 10. However, I
choose not to transform or restrict the life satisfaction variable, as this may bias the expected
t-values τc and τk. Hence, LS can take any value of the set of real numbers in the simulation.
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regression for each resampled sample, and store the distribution of values to con-
struct confidence intervals. Fourth, apply the cut-off values and check how many
confidence intervals contain the true value βk/βk for each method, significance
level, and cut-off value.

5 Results

5.1 Baseline values

Figure 6 shows the distribution of t-values over all 100 000 simulated data sets
in the baseline case. We see that both tc and tk are concentrated between 2 and
4; this means that most of the times, the estimators β̂c and β̂k are significant at
the 5% significance level, but not highly significant. Moreover, no simulated data
set yields t-values which are significantly smaller than 0 at the 5% significance
level.22 The dot in the middle of the data cloud shows the means of both t-values,
and as expected, it is located close to the point (3, 3). Around the means, we
find the quantile ellipse at the 95% level, here represented by the dotted line.
We observe that it is slightly stretched in the north-west to south-east direction,
indicating a small negative correlation between the estimators. Note, however,
that this graph does not resemble figures 3 and 5. The quantile ellipse depicted
here contains 95% of the values, while the confidence ellipse depicted in the other
graphs represents the distribution of the sample means. This graph does not allow
for the construction of confidence intervals for π either, as the values shown are the
t-values of the estimators β̂c and β̂k, and not the distributions of the estimators
themselves.

Table 2 shows the frequency with which the confidence intervals include the true
value of π = 0.06 for a given method, significance level, and cut-off value in the first
simulation, using the baseline values. This frequency is also known as the coverage
rate. The table can be understood as follows: The closer a value in the table is
to the targeted coverage rate given in the top row, the more accurate a method
is. When the value is too large, the confidence intervals are too conservative, and

22While this cannot be deduced from the graph, since the leftmost hexagons may contain the
critical values for a one-sided test of βc < 0, it can be seen in the data.
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Figure 6: Distribution of simulated t-values in the baseline case.

when it is too small, the confidence intervals are too narrow. Note that, contrary
to other contributions, it is not required here that all methods yield confidence
intervals which lie above or below the true value equally often for a method to
be accurate. This test would only be meaningful if all confidence interval were
centred around the median.23

We observe that the confidence intervals calculated using the Fieller, Hinkley,
bootstrapping, and parametric bootstrapping method are too conservative for ev-
ery significance level when no cut-off on the t-value is applied. Out of these four,
the Fieller method stands out as a slightly more accurate method, specifically for
lower significance levels. After applying the “conventional” cut-off value of 1.96,
the four methods become slightly more accurate for higher significance levels, but
slightly less accurate for the 60% confidence interval. Notably, the Fieller method
also becomes more inaccurate for the 80% confidence interval and does not stand

23To see why such a test would be meaningless, imagine applying it on the Fieller method.
Every time the interval was exclusive, the confidence set would either lie both above and below
the true value at the same time, or contain it.
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1−α 0.99 0.95 0.9 0.8 0.6

Fieller 0.9945 0.9708 0.9296 0.8296 0.6125
Hinkley 0.9950 0.9733 0.9396 0.8535 0.6410
Bootstrap 0.9943 0.9726 0.9379 0.8509 0.6394
Param. bootstrap 0.9944 0.9733 0.9389 0.8521 0.6404
Delta 0.9710 0.9330 0.9013 0.8489 0.6909

Fieller 0.9941 0.9655 0.9261 0.8399 0.6430
Hinkley 0.9941 0.9684 0.9302 0.8453 0.6481
Bootstrap 0.9933 0.9675 0.9287 0.8432 0.6467
Param. bootstrap 0.9934 0.9683 0.9295 0.8438 0.6473
Delta 0.9656 0.9206 0.8832 0.8214 0.6630

Fieller 0.9900 0.9488 0.8976 0.7984 0.5912
Hinkley 0.9899 0.9488 0.8975 0.7984 0.5912
Bootstrap 0.9886 0.9478 0.8960 0.7961 0.5906
Param. bootstrap 0.9888 0.9489 0.8967 0.7967 0.5905
Delta 0.9423 0.8697 0.8112 0.7180 0.5568

no
cu

t-
off

t c
≥

1.
96

t c
≥

3

Table 2: Coverage rates of confidence intervals in the baseline case.

out any longer. Out of 100 000 simulated data sets, 84 341 data sets remain after
applying the cut-off value of 1.96. After applying the cut-off value of 3, only 49 403

simulated data sets remain. Here, the four methods become more accurate and
yield very similar coverage rates. We even observe two subgroups: The Fieller
and the Hinkley method yield almost identical coverage rates, and so do the two
bootstrapping methods. However, the intervals given by the four methods are now
slightly too narrow, especially for lower significance levels.

Interestingly, the coverage rates obtained by the delta method differ strongly
from those of the other methods. When no cut-off is applied, the delta method
appears to yield highly accurate 90% confidence intervals. For higher significance
levels, though, the intervals are too narrow, and for lower significance levels too
conservative. This pattern is not found in any of the other methods. It seems
that the delta method fails to incorporate the shape of the normal ratio distribu-
tion. When applying the cut-off values, the coverage rates drop everywhere, such
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that the intervals are too narrow at every significance level. While the accuracy
increases for all other methods when the cut-off value of 3 is applied, it sharply
decreases for the delta method.

Some readers may wonder why no cut-off is applied on the t-values of β̂k,
even though it is a wide-spread practice that results only get published when the
coefficients of interest are significantly different from 0. First, it should be noted
that there is no theoretically compelling reason to do so. Confidence intervals
for the normal ratio distribution are intended to capture the possibility that the
nominator and denominator are equal or close to 0. Hence, any truncation of the
values for tc and tk induces a bias on the size and location of the confidence interval
for π. Yet, this bias is accepted when truncating the values for tc, as allowing for
values of tc close to 0 biases the confidence intervals even more strongly. Table
4 shows the impact on the coverage rates when a cut-off of 1.96 is applied on tk.
The estimated confidence intervals are far too conservative across all methods,
significance levels, and cut-off values for tc.24

5.2 Robustness Checks

In the first robustness check, the expected t-values τc and τk are set altered. De-
creasing both to a value of 2 is expected to reduce the share of simulated data sets
with significant estimators, mimicking a situation where a survey or experiment
is conducted with less statistical power. Figure 7 shows the distribution of the
t-values, which are concentrated much closer to the origin than in the baseline
case. Insignificant results and significant results in the wrong direction are much
more likely under this configuration. Table 5 contains the coverage rates of this
scenario. Analogously to the baseline case, all except the delta method show very
similar levels of accuracy. Only the Fieller method is slightly more accurate when
no cut-off is applied. In contrast, however, the highest level of accuracy is reached
when the cut-off value of 1.96 is applied, and the intervals become too narrow for
tc ≥ 3. As in the baseline case, the delta method underperforms compared to all

24Since this is also true for all robustness checks, further coverage rates after applying a cut-
off value on tk are not shown here. Only the treatment where τc = τk = 5 yields similar coverage
rates before and after applying the additional cut-off. However, since tk is rarely smaller than
the chosen cut-off values here, this is to be expected.
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other methods. Only the 90% confidence interval appears to be fairly accurate
when no cut-off is applied. With tc ≥ 1.96, the intervals are too narrow across
all significance levels, and this even worsens with tc ≥ 3. Note that under this
configuration, 51 206 simulated data sets pass the cut-off level of 1.96, and only
15 782 simulated data sets pass the one of 3.

When τc and τk are set to 5, the level of imprecision is expected to be much
smaller, such that a large share of observation is expected to be significant at the
chosen set of significance levels. In figure 8 we observe that no simulated data set
yields t-values below 0, implying that the simulated point estimates for βc and βk

are always positive. Only a small share of simulated data sets is cut off at the level
1.96, such that 99 873 data sets remain, and 97 440 data sets remain for a cut-off
level of 3. Indeed, table 6 confirms that applying the cut-offs barely changes the
results. The coverage rates of the Fieller, Hinkley, bootstrapping and parametric
bootstrapping method are almost identical and highly accurate when applying no
cut-off or a cut-off of 1.96, and only slightly too conservative when applying the
stricter cut-off level of 3. Even though the delta method is more accurate compared
to the baseline case across all significance and cut-off levels, it still lags behind the
other methods. For higher significance levels, its intervals are too narrow, and for
lower significance levels too conservative.

Second, the correlation between the estimators is changed to check the impact
on the accuracy of each method, specifically the delta method. As described in
Hirschberg and Lye (2010), the signs of µc and µk play a crucial role here. In the
baseline case, both are positive, such that a stronger negative correlation between
the estimators would lead to the intervals given by the delta and Fieller method
being less similar. Accordingly, setting ρck = −0.4 is expected to increase the
difference between the two methods. Figure 9 illustrates how the t-values are
correlated more strongly than in the baseline case, as the diagonal stretch of the
confidence ellipse is more pronounced. The coverage rates for all methods, which
can be found in table 7, resonate with the baseline case: All except the delta
method yield very similar results, with the Fieller method being slightly more
accurate when no cut-off is applied. The coverage rates of each method but the
delta method are very similar to those in the baseline case. As expected, the delta
method becomes less accurate under this scenario, with the exception of the 80%
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and 60% confidence intervals when no cut-off, or a cut-off of 1.96 is applied.
In the final robustness check, the sample size is decreased to N = 200 in order

to test whether the asymptotic properties assumed for each method hold. While
a sample size of 200 might seem large for such a test, it is very small compared to
the sample sizes one typically encounters in SWB data sets. Figure 10 indicates
no major differences compared to the baseline case, and the coverage rates in table
8 are very similar. When tc ≥ 3 is applied, all methods yield slightly narrower
intervals. Interestingly, the bootstrap seems to be slightly more inaccurate than
the other methods (excluding the delta method), which may give an indication that
a large sample size is more relevant for the asymptotic properties of the bootstrap
than it is for the assumed normal distribution of the estimators.

6 Discussion

The results of the simulation indicate that all methods to construct confidence in-
terval for a normal ratio distribution presented here, except for the delta method,
are fairly accurate and robust. When no cut-off value is applied, the intervals
given by these methods are typically too conservative, which is reassuring. The
delta method, however, is very inconsistent in terms of accuracy. For different
significance and cut-off levels, it can be too conservative or too narrow, and only
sometimes fairly accurate. Even when imprecision is relatively small, it is less
accurate than the other methods. Moreover, it is neither robust against low statis-
tical power, nor against changes in the correlation between the estimators β̂c and
β̂k, nor is it more robust against small sample size bias than the other methods.
Since all other options presented here are easily implementable and perform better
than the delta method under almost every configuration, it seems logical that the
delta method should not be used in this context.

Yet, it is not clear which of the four remaining methods is the best. Their
coverage rates are very similar for most significance and cut-off levels, and under
almost every configuration. Among the four methods, we can identify two sub-
groups: the normal ratio distribution-specific methods (Fieller and Hinkley), and
the bootstrapping methods. In the first sub-groups, the Fieller method is slightly
more accurate when no cut-off is applied, but otherwise both yield almost identical
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results. However, the Hinkley method uses the median as the interval mid-point
and its intervals are never exclusive or unbounded, which some practitioners may
prefer. Among the bootstrapping techniques, the parametric bootstrap seems to
be more robust against small sample size. Yet, there are also reasons in favour of
a non-parametric bootstrap: First, the sample size is typically known a priori in
a real-world application, such that it can easily be controlled for. Second, there
exist bias-corrected bootstrapping techniques, which may mitigate this potential
issue.25 And third, the coverage rates of both methods are almost identical under
every other configuration. Hence, there is no clear winner in this simulation study,
and all methods except for the delta method turn out to be viable options.

Another finding from this study is that the statistical power and the cut-off
values play a role for the accuracy of a method. While the latter is chosen by the
practitioner, the former is typically unobserved in real-world applications. Thus,
if the practitioner has prior knowledge or a belief about the statistical power of a
study, this should be taken into account. When the statistical power of a study
is expected to be low, and the estimators of interest turn out to be significant,
this may represent an outlier which should be treated carefully. Ideally, studies
to estimate WTP should be designed with a higher level of statistical power than
studies which are only aimed at finding significant partial effects. For instance,
when it is expected that τc = τk = 5, all methods but the delta method are
accurate, even without cut-off values. This would make the discussion about cut-
off levels superfluous.

Finally, it should be noted that when reporting results of a WTP estimation,
covariances between the estimators should be provided to allow for replication of
the data. In Mott, Chami, and Tervonen (2020), the authors assume zero covari-
ance between the estimators to measure the impact of failing to report the entire
variance-covariance matrix, and they find a considerable effect. The results of the
simulation presented here support their recommendation to report such informa-
tion: Specifically when applying the delta method, the effect on the accuracy of
confidence intervals may be sizeable.

25See Gatta, Marcucci, and Scaccia (2015) for a comparison of different bootstrapping tech-
niques, many of which are presented in more detail in DiCiccio and Efron (1996).
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7 Conclusion

In this paper, five methods to capture the imprecision when estimating willing-
ness to pay using the subjective well-being method are discussed and compared
in a simulation. For any additively separable utility function, the estimate of
willingness to pay contains the ratio of two estimated coefficients. As these are
asymptotically normally distributed, their ratio asymptotically follows a normal
ratio distribution. This normal ratio distribution has several characteristics which
impede the construction of accurate confidence intervals: It is heavy-tailed, its
moments are infinite, it can be bimodal, there exists no closed-form solution, and
it is locally almost unidentified. Five methods to construct confidence intervals
are compared in this paper: the Fieller and delta method, the naïve and para-
metric bootstrap, and a proposed numerical integration of Hinkley’s formula for
the likelihood function of the normal ratio distribution. The selection of the first
four methods is based on their popularity in applied work, and covers a spectrum
of assumptions and approaches. The performance of each method in constructing
confidence intervals for the ratio of estimators is compared in terms of accuracy in
their coverage rates, and robustness against low statistical power, strong correla-
tion between the estimators, and small sample size.

It is found that all but the delta method perform reasonably well under each
configuration. With only minor differences in accuracy, each of them can be rec-
ommended for use. The delta method is not robust and fails to reflect the skewness
of the normal ratio distribution. It is not recommended to use the delta method,
unless the monetary coefficient is estimated with very high precision. Further,
the statistical power of a survey aiming at estimating WTP should be increased
compared to a survey aiming at identifying partial effects.

References

Amador, Francisco Javier, Rosa Marina González, and Juan de Dios Ortúzar
(2005). “Preference Heterogeneity and Willingness to Pay for Travel Time Sav-
ings”. In: Transportation 32.6, pp. 627–647.

30 CSB Working Paper No. 23/10



Armstrong, Paula, Rodrigo Garrido, and Juan de Dios Ortúzar (2001). “Confidence
intervals to bound the value of time”. In: Transportation Research Part E:
Logistics and Transportation Review 37.2-3, pp. 143–161.

Bolduc, Denis, Lynda Khalaf, and Clément Yélou (2010). “Identification robust
confidence set methods for inference on parameter ratios with application to
discrete choice models”. In: Journal of Econometrics 157.2, pp. 317–327.

Brenig, Mattheus and Till Proeger (2018). “Putting a Price Tag on Security: Sub-
jective Well-Being and Willingness-to-Pay for Crime Reduction in Europe”. In:
Journal of Happiness Studies 19.1, pp. 145–166.

Carson, Richard T. and Mikołaj Czajkowski (2019). “A new baseline model for
estimating willingness to pay from discrete choice models”. In: Journal of En-
vironmental Economics and Management 95, pp. 57–61.

Clark, Andrew E. and Andrew J. Oswald (2002). “A simple statistical method
for measuring how life events affect happiness”. In: International Journal of
Epidemiology 31.6, pp. 1139–1144.

Daly, Andrew, Stephane Hess, and Kenneth Train (2011). “Assuring finite mo-
ments for willingness to pay in random coefficient models”. In: Transportation
39.1, pp. 19–31.

Decancq, Koen, Marc Fleurbaey, and Erik Schokkaert (2015). “Happiness, Equiv-
alent Incomes and Respect for Individual Preferences”. In: Economica 82.5,
pp. 1082–1106.

DiCiccio, Thomas J. and Bradley Efron (1996). “Bootstrap Confidence Intervals”.
In: Statistical Science 11.3, pp. 189–228.

Dowd, Bryan E., William H. Greene, and Edward C. Norton (2013). “Computation
of Standard Errors”. In: Health Services Research 49.2, pp. 731–750.

Dufour, Jean-Marie (1997). “Some Impossibility Theorems in Econometrics With
Applications to Structural and Dynamic Models”. In: Econometrica 65.6,
pp. 1365–1387.

Efron, Bradley (1979). “Bootstrap Methods: Another Look at the Jackknife”. In:
The Annals of Statistics 7.1, pp. 1–26.

Ferrer-i-Carbonell, Ada and Paul Frijters (2004). “How Important is Methodology
for the estimates of the determinants of Happiness?” In: The Economic Journal
114, pp. 641–659.

31 CSB Working Paper No. 23/10



Fieller, Edgar C. (1940). “The Biological Standardization of Insulin”. In: Journal
of the Royal Statistical Society 7.1, pp. 1–64.

— (1954). “Some Problems in Interval Estimation”. In: Journal of the Royal Sta-
tistical Society 16.2, pp. 175–185.

Gatta, Valerio, Edoardo Marcucci, and Luisa Scaccia (2015). “On finite sample
performance of confidence intervals methods for willingness to pay measures”.
In: Transportation Research Part A: Policy and Practice 82, pp. 169–192.

Geary, Robert Charles (1930). “The Frequency Distribution of the Quotient of Two
Normal Variates”. In: Journal of the Royal Statistical Society 93.3, pp. 442–446.

Greene, William H. (2012). Econometric Analysis. Ed. by Sally Yagan and Donna
Battista. 7th ed. Pearson Education Limited, p. 1188.

Hinkley, David Victor (1969). “On the Ratio of Two Correlated Normal Random
Variables”. In: Biometrika 56.3, pp. 635–639.

Hirschberg, Joseph Gerald and Jenny Ngaire Lye (2010). “A Geometric Compari-
son of the Delta and Fieller Confidence Intervals”. In: The American Statistician
64.3, pp. 234–241.

Hole, Arne Risa (2007). “A Comparison of Approaches to Estimating Confidence
Intervals for Willingness to Pay Measures”. In: Health Economics 16.8, pp. 827–
840.

Krinsky, Itzhak and A. Leslie Robb (1986). “On Approximating the Statistical
Properties of Elasticities”. In: The Review of Economics and Statistics 68.4,
pp. 715–719.

— (1990). “On Approximating the Statistical Properties of Elasticities: A Correc-
tion”. In: The Review of Economics and Statistics 72.1, pp. 189–190.

Luechinger, Simon (2009). “Valuing Air Quality Using the Life Satisfaction Ap-
proach”. In: The Economic Journal 119, pp. 482–515.

Marsaglia, George (1965). “Ratios of normal variables and ratios of sums of uniform
variables”. In: Journal of the American Statistical Association 60.309, pp. 193–
204.

Mott, David J., Nour Chami, and Tommi Tervonen (2020). “Reporting Quality
of Marginal Rates of Substitution in Discrete Choice Experiments That Elicit
Patient Preferences”. In: Value in Health 23.8, pp. 979–984.

32 CSB Working Paper No. 23/10



Oswald, Andrew J. and Nattavudh Powdthavee (2008). “Death, Happiness, and
the Calculation of Compensatory Damages”. In: The Journal of Legal Studies
37.2, pp. 217–251.

Portnoy, Stephen and Jay M. Ver Hoef (2013). “Letter to the Editor”. In: The
American Statistician 67.3, pp. 190–190.

Puth, Marie-Therese, Markus Neuhäuser, and Graeme D. Ruxton (2015). “On the
variety of methods for calculating confidence intervals by bootstrapping”. In:
Journal of Animal Ecology 84.4. Ed. by Dylan Childs, pp. 892–897.

R Core Team (2023). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria.

von Luxburg, Ulrike and Volker H. Franz (2009). “A Geometric Approach to Con-
fidence Sets for Ratios: Fieller’s Theorem, Generalizations and Bootstrap”. In:
Statistica Sinica 19, pp. 1095–1117.

Wang, Peng et al. (2020). “Penalized Fieller’s confidence interval for the ratio of
bivariate normal means”. In: Biometrics 77.4, pp. 1355–1368.

33 CSB Working Paper No. 23/10



A Tables and Figures

A.1 Default values

Description Symbol Value

Number of observations per data set N 1000
Number of simulated data sets – 100 000

Number of bootstrap samples B 2000
True consumption coefficient βc 0.5
True coefficient for good k βk 0.03
True coefficient for variable z βz 0.03
Standard deviation of error term σe 3
Expected t-value of β̂c τc 3
Expected t-value of β̂k τk 3
Expected correlation between β̂c and β̂k ρck -0.1
Expected correlation between c and z ρcz 0.2
Mean value of c γc e6.5(≈ 665)

Mean value of k γk 70
Mean value of z γz 10

Table 3: Overview over the variables and default values used in the simulation.
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A.2 Robustness checks

1−α 0.99 0.95 0.9 0.8 0.6

Fieller 0.9991 0.9906 0.9614 0.8741 0.6597
Hinkley 0.9997 0.9936 0.9733 0.9027 0.6947
Bootstrap 0.9996 0.9928 0.9718 0.8999 0.6932
Param. bootstrap 0.9996 0.9935 0.9724 0.9014 0.6941
Delta 0.9954 0.9797 0.9614 0.9238 0.7649

Fieller 0.9996 0.9890 0.9652 0.8993 0.7144
Hinkley 0.9996 0.9924 0.9703 0.9062 0.7217
Bootstrap 0.9995 0.9914 0.9690 0.9040 0.7203
Param. bootstrap 0.9995 0.9922 0.9694 0.9049 0.7208
Delta 0.9945 0.9758 0.9540 0.9090 0.7524

Fieller 0.9993 0.9897 0.9664 0.9023 0.7070
Hinkley 0.9993 0.9897 0.9665 0.9024 0.7072
Bootstrap 0.9992 0.9886 0.9653 0.9000 0.7063
Param. bootstrap 0.9992 0.9896 0.9655 0.9011 0.7062
Delta 0.9905 0.9581 0.9204 0.8438 0.6695

no
cu

t-
off

t c
≥

1.
96

t c
≥

3

Table 4: Coverage rates of confidence intervals with tk ≥ 1.96.
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Figure 7: Distribution of simulated t-values with τc = τk = 2.

1−α 0.99 0.95 0.9 0.8 0.6

Fieller 0.9892 0.9692 0.9430 0.8777 0.6849
Hinkley 0.9951 0.9747 0.9478 0.8896 0.7277
Bootstrap 0.9945 0.9740 0.9469 0.8879 0.7254
Param. bootstrap 0.9946 0.9747 0.9474 0.8888 0.7271
Delta 0.9646 0.9215 0.8871 0.8336 0.7354

Fieller 0.9904 0.9505 0.9009 0.8041 0.5987
Hinkley 0.9905 0.9506 0.8996 0.8009 0.5956
Bootstrap 0.9892 0.9492 0.8979 0.7989 0.5947
Param. bootstrap 0.9895 0.9507 0.8988 0.7999 0.5955
Delta 0.9314 0.8528 0.7928 0.7027 0.5584

Fieller 0.9704 0.8643 0.7544 0.5845 0.3410
Hinkley 0.9703 0.8637 0.7532 0.5834 0.3404
Bootstrap 0.9660 0.8609 0.7508 0.5805 0.3410
Param. bootstrap 0.9672 0.8638 0.7505 0.5815 0.3410
Delta 0.8268 0.6768 0.5761 0.4477 0.2877

no
cu

t-
off

t c
≥

1.
96

t c
≥

3

Table 5: Coverage rates of confidence intervals with τc = τk = 2.
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Figure 8: Distribution of simulated t-values with τc = τk = 5.

1−α 0.99 0.95 0.9 0.8 0.6

Fieller 0.9918 0.9505 0.8994 0.8001 0.5972
Hinkley 0.9928 0.9522 0.9004 0.8006 0.5974
Bootstrap 0.9915 0.9504 0.8982 0.7986 0.5963
Param. bootstrap 0.9914 0.9509 0.8996 0.7998 0.5973
Delta 0.9795 0.9464 0.9149 0.8330 0.6167

Fieller 0.9917 0.9504 0.9000 0.8009 0.5980
Hinkley 0.9927 0.9521 0.9008 0.8013 0.5981
Bootstrap 0.9914 0.9504 0.8986 0.7993 0.5971
Param. bootstrap 0.9914 0.9509 0.9000 0.8005 0.5980
Delta 0.9795 0.9464 0.9148 0.8328 0.6174

Fieller 0.9928 0.9578 0.9102 0.8137 0.6098
Hinkley 0.9931 0.9580 0.9103 0.8138 0.6099
Bootstrap 0.9920 0.9564 0.9082 0.8117 0.6088
Param. bootstrap 0.9919 0.9568 0.9097 0.8130 0.6097
Delta 0.9790 0.9450 0.9128 0.8343 0.6272

no
cu

t-
off

t c
≥

1.
96

t c
≥

3

Table 6: Coverage rates of confidence intervals with τc = τk = 5.
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Figure 9: Distribution of simulated t-values with ρck = −0.4.

1−α 0.99 0.95 0.9 0.8 0.6

Fieller 0.9945 0.9734 0.9356 0.8349 0.6131
Hinkley 0.9950 0.9748 0.9451 0.8639 0.6456
Bootstrap 0.9944 0.9735 0.9434 0.8618 0.6445
Param. bootstrap 0.9946 0.9741 0.9446 0.8624 0.6450
Delta 0.9632 0.9244 0.8931 0.8424 0.7091

Fieller 0.9940 0.9686 0.9325 0.8521 0.6598
Hinkley 0.9940 0.9701 0.9361 0.8574 0.6663
Bootstrap 0.9933 0.9686 0.9343 0.8560 0.6651
Param. bootstrap 0.9935 0.9693 0.9356 0.8561 0.6654
Delta 0.9564 0.9105 0.8734 0.8133 0.6797

Fieller 0.9898 0.9498 0.8982 0.7971 0.5929
Hinkley 0.9898 0.9498 0.8981 0.7969 0.5928
Bootstrap 0.9886 0.9476 0.8958 0.7954 0.5919
Param. bootstrap 0.9890 0.9484 0.8978 0.7960 0.5915
Delta 0.9261 0.8491 0.7880 0.6916 0.5351

no
cu

t-
off

t c
≥

1.
96

t c
≥

3

Table 7: Coverage rates of confidence intervals with ρck = −0.4.
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Figure 10: Distribution of simulated t-values with N = 200.

1−α 0.99 0.95 0.9 0.8 0.6

Fieller 0.9934 0.9682 0.9268 0.8285 0.6156
Hinkley 0.9943 0.9712 0.9362 0.8516 0.6463
Bootstrap 0.9927 0.9674 0.9293 0.8433 0.6377
Param. bootstrap 0.9936 0.9705 0.9349 0.8508 0.6450
Delta 0.9695 0.9309 0.8993 0.8459 0.6906

Fieller 0.9930 0.9620 0.9210 0.8340 0.6413
Hinkley 0.9931 0.9652 0.9248 0.8386 0.6455
Bootstrap 0.9912 0.9609 0.9185 0.8315 0.6381
Param. bootstrap 0.9923 0.9644 0.9233 0.8380 0.6444
Delta 0.9631 0.9168 0.8788 0.8149 0.6547

Fieller 0.9881 0.9442 0.8899 0.7856 0.5812
Hinkley 0.9881 0.9442 0.8898 0.7853 0.5810
Bootstrap 0.9851 0.9389 0.8825 0.7782 0.5734
Param. bootstrap 0.9868 0.9434 0.8884 0.7847 0.5802
Delta 0.9371 0.8620 0.8027 0.7093 0.5461

no
cu

t-
off

t c
≥

1.
96

t c
≥

3

Table 8: Coverage rates of confidence intervals with N = 200.
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B Technical Appendix

B.1 Hinkley’s Formula

Using the same notation as in the rest of this paper, Hinkley’s formula for the
density function fπ of the estimator for preference parameter π is the following:

fπ(p) =
b(p) d(p)√

2π σc σk a3(p)

[
Φ

(
b(p)

a(p) r

)
− Φ

(
− b(p)

a(p) r

)]

+
r

π σc σk a2(p)
exp

(
− c

2r2

)
,

(6)

with a(p) =

(
p2

σ2
k

− 2 ρck p

σc σk

+
1

σ2
c

)1
2

,

b(p) =
µk p

σ2
k

− ρck (µc p+ µk)

σc σk

+
µc

σ2
c

,

c =
µ2
k

σ2
k

− 2 ρck µc µk

σc σk

+
µ2
c

σ2
c

,

d(p) = exp

(
b2(p)− c a2(p)

2 r2 a2(p)

)
,

r =
√
1− ρ2ck,

where Φ denotes the cumulative distribution function of the standard normal dis-
tribution, and ρck denotes the correlation between β̂c and β̂k. Note that p is used
as the argument of the function instead of π since the mathematical constant π

appears in the equation.

B.2 Fieller Confidence Intervals

Sticking to the notation in the rest of this paper, the formula to compute the
Fieller bounds for the preference parameter π is given by:
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(πL, πU) =
1

1− g
·

[
µk

µc

− g σck

σ2
c

∓ tr,α
µc

·

(
σ2
k − 2σck ·

µk

µc

+ σ2
c ·

µ2
k

µ2
c

− g ·
(
σ2
k −

σ2
ck

σ2
c

))1
2
]
,

where g =

(
tr,α · σc

µc

)2
,

(7)

and tr,α denotes the value of Student’s t-distribution at confidence level α with r

degrees of freedom. Note that despite their names, the upper bound πU need not
be larger than the lower bound πL.

B.3 Variance-Covariance Matrix

In this paper, the statistical properties of the regression estimators of an equation
with additively separable coefficients are examined. To do so, a large number
of independent data sets is simulated and the regression is performed on each
of them. In order to obtain t-values and correlations of the estimators which
are roughly equal for each generated data set, it is necessary to determine the
expected variance-covariance matrix of the estimators. To achieve this, the values
of the independent variables must be simulated using a specific variance-covariance
matrix, as will be shown below.

Consider a regression of the dependent variable Y on the independent variables
c and k where the independent variables are additively separable. For each simu-
lated data set, an independent sample of N individuals is drawn from the whole
population. Let X be the design matrix

(
1 c k

)
, where c and k denote the vectors

of variables c and k after being transformed according to the underlying utility
function.26 The regression equation is given by:

Y = β0 + βc · c+ βk · k + ε = β′X + ε, (8)

26For instance, if the underlying utility was of the Cobb-Douglas type, both vectors would be
transformed with the logarithm.
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where the error term ε is distributed with E[ε |X] = 0 and Var[ε |X] = σ2
e . Note

that the last equation entails homoscedastic error terms.
As proved in, for instance, Greene (2012), the variance of the least squares

estimator is given by:

Var
[
β̂
]
=


Var
[
β̂0

]
Cov

[
β̂0, β̂c

]
Cov

[
β̂0, β̂k

]
Cov

[
β̂0, β̂c

]
Var
[
β̂c

]
Cov

[
β̂c, β̂k

]
Cov

[
β̂0, β̂k

]
Cov

[
β̂c, β̂k

]
Var
[
β̂k

]
 = σ̂2

e (X
′X)−1. (9)

Defining Σ as the expected variance-covariance matrix of β̂, for which Var
[
β̂
]

is a consistent estimator, let us denote:

Σ =


σ2
0 σ0c σ0k

σ0c σ2
c σck

σ0k σck σ2
k

 = σ2
e E
[
(X ′X)−1

]
, (10)

where E
[
σ̂2
e (X

′X)−1
]

= E
[
σ̂2
e

]
E
[
(X ′X)−1

]
= σ2

e E
[
(X ′X)−1

]
holds only if

Var[ε |X] = σ2
e , hence the assumption of homoscedastic error terms. To see why

this holds, recall that x ⊥ y ⇒ E
[
g(x)h(y)

]
= E

[
g(x)

]
E
[
h(y)

]
.

Since the estimator β̂ is a consistent estimator of β, it follows a distribution
with means β =

(
β0 βc βk

)′ and the variance-covariance matrix Σ. The plan for
the following steps is to reformulate (X ′X)−1 in equation 10, such that Σ is given
by the moments of X. Let us first define the corresponding vector of means γ and
the variance-covariance matrix ∆ of X:

γ =

 1

γc

γk

 and ∆ =

0 0 0

0 δ2c δck

0 δck δ2k

. (11)

After writing out and multiplying X ′X in equation 10, we obtain:

Σ =


σ2
0 σ0c σ0k

σ0c σ2
c σck

σ0k σck σ2
k

 = σ2
e E




N
∑

i ci
∑

i ki∑
i ci

∑
i c

2
i

∑
i ciki∑

i ki
∑

i ciki
∑

i k
2
i


−1, (12)
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where the index i in
∑

i runs from 1 to N .
Since the objective is to write Σ as a function of γ and ∆, we form the

expectations over the expressions contained in X ′X, such that we can replace
the sums in equation 12 by the moments of X. Note that Bessel’s correction for
the degrees of freedom of the sample variance and covariance is not applied here.
Hence, the final result will only be asymptotically unbiased.27 After rearranging
the general formulas for the sample mean, variance, and covariance, and taking
the expectations, we obtain:∑

i ci = Nγc ,
∑

i ki = Nγk ,∑
i c

2
i ≈ N

(
δ2c + γ2

c

)
,

∑
i k

2
i ≈ N

(
δ2k + γ2

k

)
, (13)∑

i ciki ≈ N(δck + γkγc).

Inserting these moments into the right-hand side of equation 12 and factoring
out N−1 yields:

σ2
0 σ0c σ0k

σ0c σ2
c σck

σ0k σck σ2
k

 ≈ σ2
e

N

 1 γc γk

γc δ2c + γ2
c δck + γcγk

γk δck + γcγk δ2k + γ2
k


−1

. (14)

Next, the matrix on the right-hand side needs to be inverted. We will refer to
it as matrix A, and since A−1 = 1

det(A)
· adj(A), the next step will be to find its

determinant and adjugate:

det(A) = (δ2c + γ2
c )(δ

2
k + γ2

k) + 2 γc γk (δck + γc γk)

− (δck + γc γk)
2 − γ2

c (δ
2
k + γ2

k)− γ2
k (δ

2
c + γ2

c )

= δ2c γ
2
k + δ2k γ

2
c + γ2

c γ
2
k + δ2c δ

2
k + 2 δck γc γk + 2 γ2

c γ
2
k

− δ2ck − 2 δck γc γk − γ2
c γ

2
k − δ2kγ

2
c − γ2

c γ
2
k − δ2cγ

2
k − γ2

c γ
2
k

= δ2c δ
2
k − δ2ck,

(15)

27The exact method is certainly feasible, but results in much longer expressions of ∆. For
the application presented here asymptotically unbiased results are sufficient.
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adj(A) =


(δ2c + γ2

c )(δ
2
k + γ2

k)− (δck + γc γk)
2

γk (δck + γc γk)− γc (δ
2
k + γ2

k)

γc (δck + γc γk)− γk (δ
2
c + γ2

c )

γk (δck + γc γk)− γc (δ
2
k + γ2

k) γc (δck + γc γk)− γk (δ
2
c + γ2

c )

(δ2k + γ2
k)− γ2

k γc γk − (δck + γc γk)

γc γk − (δck + γc γk) (δ2c + γ2
c )− γ2

c



=


δ2cδ

2
k + δ2cγ

2
k + δ2kγ

2
c − δ2ck− 2γcγk δckγk − δ2kγc δckγc − δ2cγk

δckγk − δ2kγc δ2k −δck

δckγc − δ2cγk −δck δ2c

.

(16)

For clearness, let us define A∗ := adj(A). Replacing the inverse of A in the
right-hand side of equation 14 by its determinant and adjugate yields:

σ2
0 σ0c σ0k

σ0c σ2
c σck

σ0k σck σ2
k

 ≈ σ2
e

N(δ2c δ
2
k − δ2ck)


A∗

11 A∗
12 A∗

13

A∗
21 δ2k −δck

A∗
31 −δck δ2c

. (17)

The equation above relates the expected variance-covariance matrix of the
estimator β̂ to the variance-covariance matrix of the process which generates X.
Note that it is only defined when det(A) 6= 0, which is equivalent to the assumption
of non-multicollinearity.

The parameters σ2
c , σ2

k, and σck, which comprise the relevant part of the vari-
ance-covariance matrix ∆, should be freely selectable for the simulation. This
can be achieved by choosing the parameters δ2c , δ2k, and δck accordingly, while σ2

e

and N are taken as fixed values. To compute the required values, we extract the
corresponding matrix elements from the left- and right-hand side of equation 17:

σ2
c ≈ δ2k ·

σ2
e

N(δ2c δ
2
k − δ2ck)

, σ2
k ≈ δ2c ·

σ2
e

N(δ2c δ
2
k − δ2ck)

,

and σck ≈ −δck ·
σ2
e

N(δ2c δ
2
k − δ2ck)

.

(18)

To get the formulas for δ2c , δ2k, and δck, the equations above need to be rear-
ranged. For this step, let us denote the expected correlation between β̂c and β̂k by
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ρck. After simplifying, we obtain:

δ2c ≈ 1

σ2
c

· σ2
e

N(1− ρ2ck)
, δ2k ≈ 1

σ2
k

· σ2
e

N(1− ρ2ck)
,

and δ2ck ≈ − ρck
σc σk

· σ2
e

N(1− ρ2ck)
.

(19)

Plugging in these expressions into ∆ in equation 11 yields the desired variance-
covariance matrix. Since the first row and column of ∆ only consist of zeros, the
restricted matrix ∆ck (without zeros) is shown here:

∆ck =

(
δ2c δck

δck δ2k

)
≈


σ2
e

Nσ2
c (1− ρ2ck)

−ρck σ
2
e

Nσc σk (1− ρ2ck)

−ρck σ
2
e

Nσc σk (1− ρ2ck)

σ2
e

Nσ2
k (1− ρ2ck)

. (20)

The following assumptions are required to obtain the result given above:
1. The distribution of the error term is homoscedastic, i.e. Var[ε|X] = σ2

e .
2. The sample size N is large, such that the uncorrected sample moments are

approximately unbiased in expectation.
3. There is no multicollinearity in the data, such that the inverse of X ′X exists.
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