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Abstract

Many of the state-of-the-art data mining techniques introduce non-linearities in their

models to cope with complex data-relationships effectively. Although such techniques are

consistently included among the top classification techniques in terms of predictive power,

their lack of transparency renders them useless in any domain where comprehensibility is

of importance. Rule-extraction algorithms remedy this by distilling comprehensible rulesets

from complex models that explain how the classifications are made. The present article

considers a new rule extraction technique, based on active learning. The technique generates

artificial data points around training data with low confidence in the output score, after

which these are labelled by the black-box model. The main novelty of the proposed method

is that it uses a pedagogical approach without making any architectural assumptions of the

underlying model. It can therefore be applied to any black-box technique. Furthermore, it

can generate any rule format, depending on the chosen underlying rule induction technique.

In a large-scale empirical study, we demonstrate the validity of our technique to extract trees

and rules from Artificial Neural Networks, Support Vector Machines and Random Forests,

on 25 datasets of varying size and dimensionality. Our results show that not only do the

generated rules explain the black-box models well (thereby facilitating the acceptance of

such models), the proposed algorithm also performs significantly better than traditional rule

induction techniques in terms of accuracy as well as fidelity.

Index Terms

Rule Extraction, Active Learning, Comprehensibility, Pedagogical

I. INTRODUCTION

Data mining is a relatively young and interdisciplinary field of computer science that

concerns itself with discovering new patterns from large datasets. Benchmarking studies

reveal that non-linear techniques, such as Artificial Neural Networks (ANN) [1], Support

Vector Machines (SVM) [2] and ensemble methods [3] perform consistently well in

terms of predictive accuracy [4], [5], [6]. Their ability to capture non-linearities is

simultaneously their greatest weakness, as the generated predictive models are often
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Sex = male

Age > 9.5 Survived

true false

Died Survived

true

IF Sex = NOT Male THEN Class=Survived
IF Sex = Male AND Age > 9.5 THEN Class = Died
IF Sex = Male AND NOT Age > 9.5 THEN Class = Survived
...

false

Fig. 1 : Both decision tree algorithms (left) as well as a ruleset-generators (right)

generate comprehensible models that allow one to reason about the data. This example

comes from the famous Titanic example and illustrates the “Women and children first”

principle.

incomprehensible to a human interpreter. Comprehensibility is required in any domain

where the model needs to be validated before it can be used in practice, such as

medical diagnosis [7] or audit mining [8]. In credit scoring this requirement is even

a legal one [9], where financial institutions need to be able to explain to any rejected

loan applicant why credit has been denied. The Basel III capital accord has similar re-

quirements with regards to the models for internal capital requirement calculations [10].

Furthermore, prior work suggests that when users do not understand the inner workings

of a decision making system, they will be sceptical and reluctant to use the model, even

if the model is known to improve the decision performance, see e.g., [11], [12], [13],

[14], [15]. Although the importance of comprehensibility has been established decades

ago [16], current data mining research seems focused on predictive accuracy only.

Rule extraction techniques have been proposed as a way to generate predictive rules

that mimic the classifications made by the black-box technique [17], [18], [19], and

take an important role in data mining, which was originally defined as ”the non-trivial

process of identifying valid, novel , potentially useful, and ultimately understandable

patterns in data.” [20].

As shown in Figure 1, the generated rule sets from such a model provide insights
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into the logics underlying the black-box model in a human-readable form. The extent

to which the extracted rules explain the black-box model is measured in terms of the

percentage of test data that are classified the same by both the black-box model and the

rules. If this so called fidelity metric is high enough, one can decide that enough insight

into the black-box model is obtained and it can be used in practice. The rationale behind

this is that, as the fidelity increases (measured on a test set), the decision boundaries

of both models resemble each other more and more. Interestingly, previous research

has shown that performing rule extraction can even lead to an improved test accuracy

and comprehensibility, when compared to traditional rule induction techniques [18]. A

result that will be confirmed in our empirical section.

The general structure of this paper is as follows: first we elaborate on the rationale

behind rule extraction and discuss the important design factors and evaluation metrics

that have to be taken into account (Section II). In Section III we cover the general

rule extraction methodology in more detail after which we explain the data mining

techniques used in the empirical study in Section IV. In Section V and VI we perform

large-scale experiments to study if our method performs significantly well in different

contexts. The results are then summarized in the concluding section, together with

prospects into future developments of the reported technique.

II. RULE EXTRACTION: OVERVIEW

A. Rationale behind rule extraction

For many applications, it is important to build classification models that are both very

accurate and easily understood. Using traditional techniques, these requirements often

work in a contradictory manner and either one must be sacrificed for the other or as

Breiman stated in 2011 [21]: ”Unfortunately, in prediction, accuracy and simplicity

(interpretability) are in conflict”. For instance, using a complex non-linear SVM might

yield very good performance, but it is uninterpretable in most realistic settings. Rule

induction techniques such as Quinlan’s C4.5 [22] construct very comprehensible models
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but often comes at the cost of losing considerably on accuracy. Rule extraction is a

technique that attempts to find a compromise between both requirements by building a

simple rule set that mimics how the well performing complex model (black-box) makes

its decisions. In the presented approach, rule sets are generated by a rule induction

method, hereafter called the white-box technique.

There are two sub-scenarios in which rule extraction techniques are commonly used [18].

First of all, one might be interested in the logics or inner workings of a black-box

model with strong predictive power. That is, we want to know the rationale behind the

decisions made, and verify and whether its results make sense in practice. This can be

useful in many safety-critical applications ranging from the operation of power plants

and air traffic control to decision support and medical diagnosis [23]. In this case, the

aim is to extract rules that mimic the black-box well, measured by the fidelity.

Another way in which rule-extraction can be used is to attempt to improve the perfor-
mance of a rule induction technique. In this second scenario we are only concerned
with improving the rule set accuracy, while maintaining comprehensibility (for instance
by removing noise from the data). We will come back to this point in Section V-
A. Although this manuscript focusses on global explanations for black-box models,
one should note that also instance based explanations can be generated to explain the
classification for a single data instance [24], [25], [26].

B. Overview of existing rule extraction techniques

A chronological overview of some rule extraction techniques and their translucency/rule
expressiveness is given in Table I. A myriad of techniques have been proposed to
extract rules from complex methods, each having different characteristics and outputs.
Andrews et al [23] propose a taxonomy for rule extraction techniques according to five
dimensions. Although these were presented for the special case of ANNs, four of these
dimensions are applicable on a more general class of rule extraction algorithms as well.

The expressive power of the extracted rules: Many types of rules have been suggested in
the literature. Propositional rules take the form of If ... Then ... expressions, where the
clauses are defined in propositional logic (e.g. x ≥ 3 and y ≤ 5). Another type of rules
is the M-of-N rule and differs in that the clause can take the form of at least/exactly/at
most M of the N conditions. Although the first form is easier to understand, the second
form allows the generation of richer rule sets. Breaking away from traditional logic,
fuzzy rules allow partial truths instead of Boolean true/false outcomes. These allow
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Algorithm Ref. Transl. BB Rule Format Comment

Trepan (1996) [17] P ANN M-of-N splits tree decision tree induction
ANN-DT (1999) [27] D ANN decision tree induction
DecText (2000) [28] D ANN decision tree induction
SVM+Prototypes (2002) [29] D SVM propositional rules clustering using RBF
REFNE (2003) [30] D ANN propositional rules breadth-first search with sampling
REX (2003) [31] P ANN fuzzy rules genetic algorithm
Rabuñal (2004) [32] P ANN propositional rules genetic programming
BUR (2004) [33] P SVM propositional rules based on gradient boosting machines
Barakat (2005) [34] D SVM decision tree train decision tree on support
Fung (2005) [35] D SVM propositional rules only for linear classifiers
Re-RX (2006) [36] P ANN hierarchical rule sets first splits are based on discrete attributes
Iter (2006) [37] P SVM propositional rules iterative growing of hypercubes, regression
SQRex-SVM (2007) [38] D SVM propositional rules sequential covering
ALBA (2008) [18] D SVM open active learning with support vectors
Farquad (2010) [39] D SVM propositional rules regression
Su (2011) [40] D SVM propositional rules genetic algorithm based on support vectors
LORE (2011) [41] D ANN decision diagrams eclectic
ALPA (2013) P open open present paper

TABLE I : Chronological Overview of Rule Extraction Algorithms with an indication
of the translucency (pedagogical ’P’ or decompositional ’D’), the black-box techniques
it can be applied to and the rule format.

for more comprehensive rules that are still clear to understand by human experts since
many of them bare close resemblance to linguistic concepts.

Translucency: The translucency refers to the relation between the extracted rules and
the internal architecture of the underlying complex model. In decompositional rule
extraction methods, the algorithm is intertwined with the workings of the complex
model. These algorithms are usually specifically built for the complex method and not
portable to other methods. For example, the ALBA [18] and SVM+Prototypes [29]
techniques make explicit use of support vectors and can therefore only be used for
SVM rule extraction, while DecText [28] and ANN-DT [27] can only be used for
ANN rule extraction.

Pedagogical techniques “view rule extraction tasks as a learning task where the target
concept is the function computed by the [complex model] and the input features are
simply the [complex model] input features” [42].1 An advantage of such techniques is
the broad applicability to any black-box model.

The quality of the extracted rule: The quality of the extracted rules is usually measured
in terms of accuracy, fidelity and comprehensibility. Accuracy is defined as the number
of test data points correctly classified by the rules, divided by the total number of data
points in the test set. Fidelity is a similar metric that uses the number of data points
where the rule set and the complex model agree as the numerator, it is an indicator of

1Sometimes, techniques that use a combination of both approaches are said to follow the eclectic approach. We
refer to these as being decompositional as well [23].
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Algorithm Approach Explored Region Rule format

TREPAN (1996) P Adaptive M-of-N splits tree
ALBA (2008) D Fixed open
ALPA (2012) P Adaptive open

TABLE II: Comparison with TREPAN and ALBA.

how similar the extracted rule set and the complex model are. For more information
on how to measure comprehensibility see Section II-C.

The algorithmic complexity: This dimensions refers to the universal requirement for
the algorithm to be as efficient as possible. Some algorithms are only applicable to
toy examples due to their complexity while others can perform well in terms of time
resources on real datasets.

Two techniques deserve special attention because they contain very useful and crucial
concepts for rule extraction that are also present in the proposed algorithm: Trepan
and ALBA. Trepan [17] is a rule extraction technique initially designed by Craven and
Shavlik for ANN that builds M-of-N decision trees. In order to handle the problem
of the decreasing number of training observations as the depth in the tree increases,
Trepan generates additional random data instances, which are labelled by the ANN
model. Using this mechanism, a certain minimum number of observations is ensured
on each level of the tree, leading to more fine-grained rule sets. Trepan is one of
the first pedagogical approaches to rule extraction in the literature. Later this concept
was further developed in ALBA [18] (Active Learning-Based Approach to SVM Rule
Extraction) by Martens et al. Here, an active learning component generates additional
artificial data points near the decision boundary, where most of the noise is present in
the data. ALBA uses the support vectors as proxies for the decision boundaries, seen
that these specific training points are typically located near the decision boundary. The
main limitations of ALBA are that it is rather slow and the decompositional approach
can only be applied to SVM models. We expand on the concept of generating extra
data in specific regions of the input space, but confine these interesting regions even
more. Furthermore, in order to avoid any generality problems, we propose a pedagogical
algorithm that does not use specific architectural properties of the algorithm to define
these regions. A comparison of the methodological similarities and differences between
our method, Trepan and ALBA is displayed in Table II. As can be seen from Tables I
and II-C, our proposed ALPA rule extraction technique is the first that is applicable to
any black-box model2 and has no limitations on the rule format.

2Beyond the approach of only changing the class labels of the training data to the black-box predicted labels [38].
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C. Design and evaluation considerations

Besides the taxonomy provided by Andrews et al. [23] (discussed above), the rule
extraction literature also provides us five important criteria for evaluating rule extraction
methods [43].

a) Comprehensibility: is the extent to which extracted representations are humanly
comprehensible. There are two design choices to consider when evaluating comprehen-
sibility. A first aspect to be taken into account is the model complexity. A decision tree
with more than one hundred branches is clearly not very comprehensible. Empirical
research by Dejaeger et al [44] has shown that larger representations of rules result in
a decrease in expert answer accuracy, an increase in answer time, and a decrease in
confidence. A second aspect is the type of rule structure used. There are many rule types
and structures and each of these has a different level of comprehensibility. Although
cognitive science research is still ongoing, preliminary research [44] has shown that
decision tables are the most comprehensible in general, but that the choice often depends
on situational - and thus hard to control - aspects such as the expert’s experience with
a rule set structure.

b) Generality: The generality depends on the extent to which a method requires special
training regimes or restrictions on the model architecture. The decompositional approach
cannot be ported to other techniques without some prior modifications, making it very
specific and limited in applicability. A pedagogical approach, in principle, require no
internal knowledge or structure and can therefore be applied to other black-box methods
as well. Even so, as can be seen from Table I (column BB) existing techniques in the
literature are still custom tailored with a specific black-box technique in mind. One
exception to this are metaheuristics-based approaches such as REX [31], GEX [45].

c) Scalability: Scalability is the ability of the method to scale to problem instances
with large input spaces and large number of data both in comprehensibility and time.

d) Fidelity and accuracy: As discussed before, accuracy and fidelity are the two most
important evaluation criteria for extracted rule sets.

e) Software availability: Software availability is the extent to which researchers make
their models available to potential users.

III. UNCERTAINTY BASED RULE EXTRACTION

A. Proposed Rule Extraction Technique

The central idea on which ALPA relies is that in order to improve a rule set in terms of
accuracy or fidelity, we should train a comprehensible model (the white-box) to mimic
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the output of a more complex3 black-box model that performs better. Given a training
set and a black-box technique, by presenting the predicted target values of the training
set to the white-box algorithm instead of the original target values associated with
the training set, we can improve the similarity between the black-box and the white-
box substantially. As such, the black-box becomes an oracle for the white-box and we
call the training data linked with the predictions of that black-box, the oracle set (as
opposed to the original set). The similarity between the white-box and the black-box
models is defined as the fidelity of the rule set. As the fidelity improves, the behaviour
of the rule set given by the white-box models converges to that of the black-box. This
relabling step can also be seen as a step to remove noise from the input, thus reducing
ambiguity.

Active Learning As brought up in [17], we do not have to limit ourselves to the
original data: since we are using an oracle, we can generate new artificial data points and
their predictions (provided by the oracle) without restrictions. Further improvements of
fidelity can be achieved by offering the white-box technique more data. This pedagogical
approach is not a new idea and similar lines of reasoning have been used in other lines
of research, including optimal design of experiments [46] and active learning [47]. The
main concern that both of these fields deal with, is choosing which input vector adds
the most information for further predictions. In our case this concern is translated into
finding the region in which we should generate new training data vectors to achieve
optimal fidelity under some constraints (e.g. limited number of rules).

Active learning recommends focussing on the problem areas and for rule extraction
these are the areas where the noise is the highest [47]. The key observation used in
our method, is that most of the dissimilarities between both models are found near the
decision boundary, which marks the transition from one class to another [18]. Thus,
one way to improve the model is to shift focus from the regions where the algorithm is
very certain of its predictions and the black-box and white-box models concur largely
in their predictions, to the boundary regions where there is more uncertainty. In order
to do so, we must generate points in those (boundary) regions. There are a few practical
problems that arise when trying to do so. First, not all boundary regions prove to be
interesting (e.g. in parts of the input space where there are no nearby data points).
Even worse, often no closed boundary is given by the black-box model or the formula
is simply not known. In summary, we have to find some subregion of the boundary
region where it is feasible and interesting to generate new data points.

Valley points A solution to both of these problems can be found in the observation
that we know which data points of the original dataset lie near to the boundary: those
with the lowest prediction confidence. Generating data points near these makes sense,
since they are close to the decision boundary and are certain to lie in regions where
some of the input data lies. In addition, dense regions near the decision boundary will

3Note that the complexity of a classification model is defined in terms of transparency to a human interpreter.
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(a) Original Ripley dataset before processing. (b) Oracle dataset: The SVM decision boundary is shown
by a red curved line and all valley points are marked.

Fig. 2 : A toy example: the Ripley dataset was drawn from a mixture of overlapping
Gaussian distributions.

have more data points with high uncertainty. As such, the distribution of the data is
implicitly taken into account.

We first choose a subset of the training set, containing points that are near to the
decision boundary. The points in this set are called valley points, because they lie
near the decision boundary in the valley of the confidence function π of the black-box
model4. That is, points nearby the decision boundary have low prediction confidence
and are considered to be in a problem region (a point lying on the decision boundary
has the lowest possible confidence since picking either class is equally likely). Consider
the Ripley dataset displayed in Figure 2(a), which we will be using as a toy example
to illustrate the algorithm [48]. This dataset stems from a binary classification problem,
where input vectors were generated from a mixture of overlapping Gaussian distribu-
tions. As explained before, first a black-box model is trained (in this example, a Support
Vector Machine (SVM), see Section IV-B) on the training set, followed by a relabeling
of the training data so as to get the oracle set. Figure 2(b) displays the relabeled set
along with the separating hyperplane given by the SVM and shows no more overlap is
present in the data. We marked the top 15% most uncertain points with a black circle,
these are the valley points for this particular dataset and black-box model. The number
of valley points chosen depends on the black-box technique used, but our empirical
analyses show that generally about 20 percent of the training set should be used.

Number of valley points: Two aspects are important when we generate extra data in
the problem regions. Not only is the region in which we generate new points important,
but also the number of extra data we generate. As mentioned before, new information

4These points serve a similar role as the support vectors in ALBA.
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Algorithm 1 ALPA for Nv valley points and N training points.
1: procedure EXTRACT(blackbox, whitebox, D = {(xi, yi)}Ni=1, Nv)
2: // Build the oracle set.
3: for i = 1 · · ·N do
4: oi ← predict(blackbox,xi)
5: end for
6: Otrain = {(xi, oi)}i=2/3·N

i=1 . Oracle training data.
7: Oval = {(xi, oi)}Ni=2/3·N+1 . Oracle validation data.
8: for ρ ∈ {0%, · · · , 250%} do . Reweighing factor.
9: Nr = 2/3 · ρ ·N . Generate Nr extra points.

10: Generate a set R = {ai}Nr
i=0 of artificial points using

Algorithm 2 or 3
11: // Relabel the data
12: for i = 1 · · ·Nr do
13: ui ← predict(oracle,ai)
14: end for
15: // Add the points to the training set and generate a model
16: O(ρ) ← Otrain ∪ {(ai, ui)}Nr

i=1

17: rulemodel = train(whitebox,O(ρ))
18: [fid, comp] = evaluate(rulemodel,Oval)
19: end for
20: Return the rule model with the best fidelity.
21: end procedure

is made available to the white-box technique which allows it to make better predictions.
An important side-effect is that the importance of the boundary region as opposed to the
rest of the input space is increased. This could be interpreted as a reweighing process
of the two regions of space: generating no points at all gives more focus to the space
outside of the boundary regions, generating an infinite amount of extra information
would remove all importance of the outside region. It is clear that we have to find
some balance between both of these behaviours. This trade-off can be quantified in the
fraction ρ = #boundary region

#outside region
, where ρ = 1 gives approximately equal importance to both

regions. Through empirical experimentation we found that the optimal boundary/outside
region importance always lies within the interval [0, 2.5] (where setting ρ = 0 is the
same as using the original oracle set). The exact value is instance-dependent but it is
not computationally difficult to perform a linear search for a set of feasible ρ values.
Combining all of the previous ideas leads to Algorithm 1.

Data generation Given the valley points, we want to generate extra data in the
neighbourhood thereof, on both sides of the decision boundary and not too far away.
The only remaining question is how to define ‘not too far away’. The relationship
between the distance in output space (e.g. score) and the difference in input space is
generally not known except in some specific cases. Depending on the type of black-box
technique used, and more specifically whether a continuous output score is provided,
we propose two viable ways of making this design choice.
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Algorithm 2 Valley–Boundary Approximation
1: procedure GENERATEARTIFICIAL(oracle,Nv ,Nr) . Nv valley and boundary points, Nr random

points
2: V ← {(xi, πi) | (xj , πj) /∈ V πi ≤ πj}Nv

i=1

3: B ← {bi = arg
x

min (confidence(xi))}Nv
i=1

4: for bi ∈ B do
5: for vi ∈ V do
6: dbi,vi

= |bi − vi|
7: end for
8: end for
9: // Generate Nr extra data points in the problem region.

R ← {br + c · dbr,vr}Nr

with c ∈ [−1, 1]m,
r ∈ {0, 1, ..., Nv}

10: end procedure

1) Valley–Boundary Approximation: The valley–boundary approximation requires that
a (locally convex) continuous confidence measure of the black-box model’s prediction
be known. The confidence of a prediction can be formalized by introducing the confi-
dence function π(Ci|x) : (C,x)→ R. A high output value indicates high confidence of
classifying input vector x as belonging to class Ci. Note that the exact return value of
this function does not matter since we are only interested in a ranking of (un)certainty.

In a first step, for each valley point, we look for a point nearby on the decision boundary,
we will call these points boundary points (see Figure 5(a)). Once we have found these
points, we can define the interesting region as that which contains all of the points in
the input space that lie closer to the decision boundary points than the original valley
points. Finding these boundary points boils down to solving the optimization problem:

arg
x

min π(Ci |x), (1)

when starting from the respective valley points. Function π is a measure for the
confidence of the class prediction Ci made by the black-box model for input vector x
and v is the starting valley point. As the confidence approaches 0%, the oracle gives
very uncertain predictions for the input vector x and thus x must lie very close to the
decision boundary. The minimization algorithm that we used for finding the boundary
points is the Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton method (with a cubic
line search procedure). This Quasi-Newton method uses the BFGS formula for updating
the approximation of the Hessian matrix of the confidence function [49].

If we give the optimization procedure the valley points as initial starting points and
repeat the minimization process for each valley point, the output will be a list of points
that lie close to the valley points, on the decision boundary. In some rare cases, an
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(a) Finding the boundary points: the original valley points
are connected to their nearest minima (the boundary
points).

(b) Once the boundary region is found, random points are
generated (illustrated for gradient descent).

Fig. 3 : Graphical representation of the algorithm with the valley-boundary approxima-
tion when applied to the Ripley dataset.

initial overshoot might cause a point to lie far away but this is easily remedied using
Grubbs test for outlier detection [50], [51]. Following the Ripley example, the result
of this procedure is displayed in Figure 3(a), where each valley point is connected to
it is associated boundary point, found by the BFGS Quasi-Newton algorithm.

Once we have correctly identified the boundary points, we choose the generation region
to be that which contains all of the points that lie as far from a boundary point as its
corresponding valley point (in each feature dimension in the input space) and generate
points uniformly in this region. The distance in each of the m dimensions is given by
the component-wise distance vector dx,y:

d(i)x,y = |xi − yi| (2)

dx,y =
[
d(1)x,y, d

(2)
x,y, · · · , d(m)

x,y

]
. (3)

The set of points lying in the boundary region associated with a boundary point b and
a valley point v is therefore defined as:

{dx,b � dv,b | ∀x ∈ S}, (4)

where ’�’ is the element-wise smaller than order-relation and S the input space. The
resulting region is displayed in Figure 5(a). This choice allows us to generate random
numbers computationally fast (as opposed to previous methods such as [18]). A more
exact scheme would be to perform rejection sampling or Monte Carlo sampling to
determine which points of the underlying distribution lie as near to the confidence
value as the original confidence value. This turns out to be computationally infeasible to
perform for all valley/boundary point pairs in very high dimensional data. The resulting
procedure is summarized in Algorithm 2, where we introduced the πi shorthand notation
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(a) C4.5 boundary. (b) ALPA boundary.

Fig. 4 : Example of C4.5 and ALPA boundaries on the Ripley dataset using Ripper
as a rule extraction algorithm. The SVM decision boundary is shown by a curved red
line. The rule set decision boundaries are drawn by straight black lines.

to denote the highest confidence prediction for an input vector xi. Continuing the Ripley
example, after finding the valley/boundary pairs we can generate points uniformly
distributed in the region defined using Equation 4. The result of applying the procedure
to each valley point and generating random points is displayed in Figure 3(b).

The resulting model of the thus far described method using uncertainty descent is
displayed in Figure 4. Here, a rule extraction algorithm was trained on the original
dataset as a baseline (Figure 4(a)) and a second, baseline rule extraction algorithm
was trained using the method explained in this section (Figure 4(b)). Although the
white-box technique (C4.5) achieved a fairly good explanation of the black-box model,
using our proposed method allowed the rule extraction method to fine-tune on the
important regions and the fidelity increased. Both the C4.5 and the ALPA boundary
regions were generated using the same pruning factor. As one can tell by looking at the
figure choosing the right pruning factor for the rule extraction algorithm remains very
important to not produce overcomplicated models. The reason why ALPA is able to
arrive at more complicated models is due to the fact that the relabling process removes
noise and reduces ambiguity. This in turn allows for more rules to be generated since
the effect of pruning is less noticeable.

Despite the fact that we have constructed the algorithm with computational complexity
in mind, we should note that the algorithm does not scale well for datasets with
large input dimension m. The culprit of this is the Quasi-Newton search procedure
which must be repeated for each valley point. When using secant updating methods,
the complexity of each Quasi-Newton iteration takes O(m3) operations. Although the
number of iterations is linear for quadratic objective functions, it behaves superlinear
(but not quadratic) in terms of convergence for more general problems. Since the process
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(a) Valley–Boundary Approximation.
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(b) Valley–Valley Approximation.

Fig. 5 : Problem regions as defined by (a) the valley–boundary approximation and (b)
the valley–valley approximation.

has to be repeated for each of the O(N) chosen valley points, the total amount work
of work is bounded by O(C · N · m5), where C is the time required to evaluate a
prediction by the black-box model.

2) Valley–Valley Approximation: Defining a good confidence function can be hard or
the dimensionality of the dataset might be very high. In these cases, a rougher estimate
of the neighbourhood can be defined by considering the region between two points that
lie in different sides of the decision space. This eliminates the need for the gradient
descent step and thus the need for an explicit confidence function. Given two valley
points at opposite half-spaces of a decision boundary (e.g. a hyperplane), the line
segment connecting both valley points will certainly cross the boundary and lie at least
partly in a region of high uncertainty (and due to continuity contain more points of low
confidence)5. This line segment is defined by the convex combination of two nearby
valley points:

r = θ · vi + (1− θ) · vj, θ ∈ [0, 1], (5)

where vi and vj are nearby valley points and all the r are points on the line segment.
By extension we can define the region in a similar way as before as those points that
lie in the cuboid region in input space, defined by the convex combination in each
coordinate dimension:

R = {x ∈ S | ∃θ ∈ [0, 1]m : x = θ · vi + (1− θ) · vj}, (6)

where S is the original input space, m the number of dimensions, θ a vector of values,
each of which lies in [0, 1] and 1 a vector of ones. This leads to Algorithm 3, where

5When the black-box technique maps the input data in some feature space, the above statement is only valid for
continuous mappings (e.g. for SVMs and ANNs). A full proof for all black-boxes considered in this manuscript is
provided in the Appendix.
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Algorithm 3 Valley–Valley Approximation
1: //Nv valley points, Nr random points.
2: procedure GENERATEARTIFICIAL(oracle,Nv ,Nr)
3: // Determine the Nv valley points.

V ← {(xi, πi) | (xj , πj) /∈ V πi ≤ πj}Nv
i=1

4: // Calculate the pairwise distance matrix.
5: for (vi,vj) ∈ V × V do
6: if predict(oracle,vi) 6= predict(oracle,vj) then
7: Di,j = ||vi − vj ||2
8: else
9: Di,j =∞

10: end if
11: end for
12: // Determine the set of neighbours and generate

// Nr extra data points in the problem region.
13: N = {(vi,vj) ∈ V × V | arg

i,j
min
j
Di,j}

14: R ← {θ · vi + (1− θ) · vj}Nr θ ∈ [0, 1]m, (vi,vj) ∈ N
15: end procedure

we introduced the πi shorthand notation to denote the confidence of a prediction for
an input vector xi.

This method does not use any information of the black-box model or its transformed
space beyond the output score or a certainty ranking of the original data. The drawback
of the line segmentation method is that although we are ensured that we will cover
the most uncertain points, we could be covering quite a lot of points that are not so
uncertain at all thereby including not so informational ones as well, thus slowing down
the progress of the algorithm. Consider the extreme case in which only one valleypoint
lies in half-space S1 and all the other valleypoints lie in half-space S2. We would then
cover a very large part of both half-spaces by using this method.

The advantage, however, is that it is usually much faster in the generating phase and that
it does not require an uncertainty function. The valley–valley approximation method
does not suffer from dimensionality scaling issues, but is more sensitive to the number
of data presented. This is due to the fact that calculating the distance matrix requires
N(N−1)

2
operations, each of which considers the dimension m only once, resulting in

a complexity bound of O(N2 ·m + N · C). The second term comes from the valley
point prediction phase (step 2) in which in the order of N points have to be predicted
in order to determine their confidence, with C again the blackbox prediction time. This
operation is usually very fast (i.e. the time required to evaluate a non-linear function),
but it depends on the black-box technique used.

Note that the computationally most expensive steps in both Algorithm 2 (step 4 to 8)
and Algorithm 3 (step 3 to 8) have to be performed only once since their results can
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Black-box π(Ci|x)

SVM hi(x)−max
j 6=i

hj(x)

ANN (eyi(x,w))/

(
n∑

k=1

eyk(x,w)

)
RF avg

k
I(hk(x) = y)−max

j 6=y
avg
k

I(hk(x = j)

TABLE III: Confidence functions

be stored outside of the loop at line 5 in Algorithm 1.

IV. COVERED TECHNIQUES

In order to test the validity of the proposed rule extraction technique, we will consider
several problem instances with varying characteristics. We consider SVMs, ANNs
and Random Forests (RF) as black-box techniques in this study. For each of these
techniques, we deduce how we come to a mathematically and semantically sound
formula for its uncertainty functions. In order to explain these complex models, we
use C4.5 [22] and Ripper [52] as white-box rule inducers. This choice is motivated by
the fact that these produce distinctly different rule sets, respectively a tree structure and
a list of many-term rules. An overview of the confidence function for all three black-box
techniques is given in Table III. In order to understand the semantics of these functions,
we must take a look into the inner workings of the black-box techniques first.

A. Artificial Neural Network

A feed-forward neural network [1] can be described as a series of functional transfor-
mations, applied in sequence. This sequence is described in layers, where each layer
defines a process step. Given a dataset of N data points {xi, yi}Ni=1, with input data
xi ∈ Rm, each neuron of the input layer calculates the linear combination of the m
input feature values x1, . . . , xm. This is then transformed using a non-linear activation
function. Repeating this process for each layer in the network (two in our case), we
end up with the final output value:

yk(x,w) = σ

(
J∑

j=0

w
(2)
k,jh

(
m∑
i=0

w
(1)
j,i

))
, (7)

where h is the activation function for the hidden layer and σ the sigmoid function.

As Equation (7) shows, this two stage process results in a complex non-linear function,
fully parametrized by the weight vector w. The trained model is very difficult to
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understand without some help from rule extraction techniques. By applying the softmax
function to the output of the neural network we get an estimation of the posterior class
probabilities (cfr. [53]), which we can use as a surrogate for the prediction certainty:

π (Ci |x) = Pr (Ci |x) =
eyi(x,w)

n∑
k=1

eyk(x,w)

(8)

B. The Support Vector Machine

The Support Vector Machine is a learning procedure based on the statistical learning
theory [2]. Given a training set and corresponding binary class labels yi ∈ {−1,+1},
the SVM classifier constructs a hyperplane in a feature space, induced by the non-linear
function ϕ.

This hyperplane, wTϕ(x)+ b = 0, discriminates between the two classes. By minimiz-
ing wTw, the margin between both classes is maximized. In primal weight space the
classifier then takes the form

y(x) = sign
(
wTϕ(x) + b

)
, (9)

but, on the other hand, is never evaluated in this form.

To solve the system of inequalities, it is reformulated as a convex optimization problem
and then solved using Lagrange multipliers. The exact details of this procedure are
beyond the scope of this report but this leads to the following classifier:

y(x) = sign
(∑N

i=1 αi yiK(xi,x) + b
)
, (10)

where K(xi,x) = ϕ(xi)
Tϕ(x) is a positive definite kernel satisfying the Mercer

theorem.

As equation (10) shows, the SVM classifier can be a very complex function if a non-
linear kernel is chosen. Trying to comprehend the logics of the classifications made is
quite difficult, if not impossible.

In order to apply our method, we need to define an uncertainty measure. There exist
measures to define the a posteriori probability of a prediction for the binary classification
case [54], [55]. Unfortunately these methods are computationally resource intensive and
not trivially generalizable to a one-vs-all multi-class setting. We therefore resort to an
approximate measure that uses the decision value information, already given by SVM
(the decision value is the argument given to the signum function of Equation (10)).
These decision values should not be interpreted as probability measures, but they are a
measure of confidence nonetheless since they represent the distance from the ”optimal”
decision hyperplane. A prediction with high confidence is far away from the decision
plane and will have a large value. If the confidence for more than one class is high, the
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resulting output confidence should be lowered, this induces a ranking on the confidence
(which is enough for our algorithm to work). To take these effects into account we define
the confidence of a prediction as:

π (C |x) = hi(x)−max
j 6=i

hj(x), (11)

where C is the predicted class for input vector x and hi is the decision value of classifier
i for input vector x.

C. Random Forest

A Random Forest is a classifier consisting of a collection of n tree-structured classifiers
{h(x, rk), k = 1, ..., n} where the {rk} are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x. This is
also known as a bagging approach. The uncertainty of a random forest is defined by
the margin function [56]:

margin(x, y) = avg
k

I(hk(x) = y)−max
j 6=y

avg
k

I(hk(x = j), (12)

where I(·) is the indicator function. The margin function is very similar to the previously
defined uncertainty function for SVM (Equation 11). It could be used directly as a proxy
for the certainty function in the algorithm. Unfortunately its discreteness makes it ill-
suited for the Gradient Descent Algorithm. Given N trees in the collection of trees,
the uncertainty function can only reach one of the N + 1 values of { 0

N
, 1
N
, ..., N

N
}. The

Gradient Descent approximation using Quasi-Newton needs small continuous changes
in target function value to work properly since it updates the Hessian matrix based on
these changes. In cases like these, it is therefore advisable to work with the valley-valley
approximation instead (see Section III-A.2).

V. EXPERIMENTAL SETUP

In this section we demonstrate the empirical usefulness of ALPA in two experimental
benchmarks. First of all we confirm whether the rule extraction mechanism works well
by evaluating the fidelity and accuracy of ALPA and comparing it to the original rule
induction technique. Next, we determine the added value of the presented method vis-
a-vis other rule extraction mechanisms.

A. Datasets

As mentioned in Section II-A, there are two scenarios in which rule extraction is
useful and we selected datasets that comply with either one of these two use-cases.
The main application is to obtain insight in the performance of the black-box model.

August 19, 2014 DRAFT



20

Dataset Instances Variables Classes

arrhythmia 452 279 2
balance 576 4 3
bene 3122 24 2
breastcancer 568 31 2
cmc 1473 9 3
credit-a 690 16 2
diabetes 766 8 2
ecoli 336 8 8
ger 999 20 2
glass 214 10 7
haberman 306 3 2
heart 270 14 2
hepathitis 155 20 2
ionosphere 349 34 2
iris 150 4 3
lymph 148 19 4
mammography 829 6 2
mushroom 8124 22 2
ripley 1249 2 2
wine 129 13 3
krvskp 3196 36 2
ringnorm 7401 21 2
sick 3772 30 2
vowel 990 14 11
wisconsin 198 34 2

TABLE IV: Dataset Properties

Additionally, we could use our rule-extraction approach to improve the accuracy of the
white-box technique’s predictions as well. Both scenarios require the black-box model
to outperform the white-box model with respect to the dataset. That is, we would
probably not be interested in the behaviour of the black-box model if its performance
were worse than that of the white-box model. Furthermore, there is little hope of
improving the white-box model by using information from a black-box model that
performs worse. As was mentioned by [18] this requirement is often overlooked in the
literature, leading to overoptimistic results.

All of the datasets used in this study are listed in Table IV and were collected from
the UCI machine learning repository [57]. We focus on datasets that have been used
in various other rule extraction studies (e.g. [58], [59], [18]) and consequently allow
us to compare the results to previous (and future) research. The accuracy requirement
mentioned in the previous paragraph is not always met due to varying performances
of the black-box and white-box techniques, but we explicitly filter out these infeasible
situations ad hoc (cfr. Section VI). This leads to a heterogeneous selection of 25 datasets
of varying size, number of variables and number of classes (see Table IV).
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B. Rule extraction performance

To test whether the algorithm works well with a wide variety of black-box and white-
box techniques, we carry out tests on a grid of black-box technique (SVM, ANN,
RF) and white-box technique (Ripper, C4.5) combinations. Additionally, we test each
white-box technique with default and extensive pruning settings (based on the pruning
factor c6). This leads to a total of 12 experimental settings per dataset. We mentioned
before (Section III) that the best number of valley points depends on the black-box
and supplementary tests are performed to determine this parameter for each black-box
technique as well.

For every dataset we evaluate the fidelity and the accuracy of our algorithm ten times
(using a ten fold cross-validation scheme) for every ρ value (boundary/non-boundary
trade-off parameter) in the linear search. In each fold iteration, we split the data
in 9

10
learning data and hold out 1

10
of the data for evaluation purposes (test data).

Subsequently in the learning procedure 2
3

of the learning data is used as training data
and the remaining 1

3
is used as validation data for tuning ρ. After performing this linear

search, the best trade-off parameter ρ∗ can then be used to extract a candidate rule set.
This rule set is then used and tested for similarity with the black-box model on the
testing data. These test results are then compared to the fidelity and accuracy of the
white-box technique when used as a rule induction method on the original dataset.7

C. Active learning component and the pedagogical approach

In these experiments we are interested in the performance of ALPA versus other
techniques. The main issue that we encountered was that no open implementations were
available for most of the techniques in the literature (even though software availability
is reported to be one of the key criteria for rule extraction techniques by Andrews [23])
so we had to resort to new implementations.

A first comparison of interest is the difference of performance of ALPA with respect
to randomly generating data (without a smart choice of boundary). If the main active-
learning premises of ALPA is true (i.e. boundary regions are more important) the
outcome should be that ALPA performs significantly better on the bench of dataset.

As a test of validity, we also compare ALPA to the technique on the ALBA technique on
which it was inspired. This comparison is somewhat more limited because ALBA only
works on SVMs, but it can provide us interesting insights nonetheless. A good outcome
for this test would show that both methods perform more or less similar, because

6The pruning factor controls the number of rules in the rule set by limiting the width of the prediction confidence
interval or the minimum total weight of the instances covered by a rule for C4.5 and Ripper respectively.

7This test set-up led to the generation of a total of 150.000 white-box models.
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TABLE V : Comparison of the performance over the grid of experiments of ALPA
versus the original rule induction techniques (C4.5, Ripper). The rule complexities
were explicitly kept in the same order using differing pruning factors. R+ indicates
the number of wins, R= the number of draws and R− the number of losses of ALPA
versus the original white-box technique.

Fidelity Accuracy Median Rules
BB ρ R+ R= R- p-value R+ R= R- p-value WB ALPA

C
4.

5
(0

.2
5

vs
0.

00
1)

RF 25 94 31 20 5.72 · 10−8 59 34 52 0.3087 30 25
20 89 32 24 7.77 · 10−10 64 38 43 0.1629 30 27
15 99 28 18 9.00 · 10−11 67 32 46 0.0632 30 25

SVM 25 105 23 23 3.08 · 10−12 85 29 37 2.30 · 10−3 23 29
20 105 20 26 8.37 · 10−12 87 29 35 1.80 · 10−4 23 29
15 95 28 28 5.24 · 10−9 81 28 42 8.41 · 10−3 23 29

ANN 25 105 18 19 1.01 · 10−15 78 22 42 8.29 · 10−3 23 33
20 106 23 13 2.85 · 10−16 74 25 43 1.80 · 10−3 23 34
15 107 15 20 1.16 · 10−14 73 20 49 6.38 · 10−3 23 29

R
ip

pe
r

(2
vs

12
)

RF 25 104 31 22 8.01 · 10−13 78 32 47 0.0110 4 5
20 100 31 26 3.55 · 10−12 74 33 50 0.0158 4 6
15 100 29 28 2.73 · 10−11 72 30 55 0.0408 4 6

SVM 25 88 34 22 7.44 · 10−12 68 40 36 3.72 · 10−4 4 6
20 92 25 27 2.18 · 10−12 69 30 45 6.90 · 10−3 4 5
15 94 26 24 1.94 · 10−12 71 36 37 9.06 · 10−4 4 5

ANN 25 101 20 20 4.46 · 10−12 77 25 39 2.31 · 10−4 4 7
20 100 21 20 5.82 · 10−12 78 25 38 2.30 · 10−4 4 7
15 95 24 22 7.89 · 10−10 68 29 44 5.71 · 10−3 4 6

that would mean that we can achieve similar behaviour without making architectural
assumptions: the main goal of our pedagogical technique.

VI. BENCHMARK RESULTS

A. Rule extraction performance

In our first experiments we kept all pruning factors of the white-boxes similar. As can
be seen from Table ?? in the Appendix, the results of these experiments show superior
performance of ALPA on all of the datasets in terms of both accuracy as well as fidelity.
In all of the comparison tables, R+ indicates the number of wins, R= the number of
draws and R− the number of losses of ALPA in terms of fidelity and accuracy for that
particular setting. Note that these numbers do not necessarily sum to the same amount,
as for some datasets the non-linear black-box performed equally or worse, compared
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to the white-box. An example of this are datasets that are particularly easy to learn or
datasets where linear frontier-based models are superior to non-linear ones (an overview
of the predictive power of all of the methods is given in Table ?? in the Appendix).
These experiment instances do not fit the premises of the study and are therefore not
included (as motivated by Martens et al. [18]).

A first concern with these results is that improving fidelity often means adding more
rules. As mentioned in Section III this is not problematic since we are only working
inside the constraints of the pruning factor of the rule algorithm (and this can be varied
according to the user’s preferences). Nevertheless, it could be argued that in order to
perform a truly fair comparison of the performance, one should also compare ALPA
with the more stringent pruning coefficient with the more relaxed white-box models,
effectively creating the same rule-complexity for both type of models8. The results for
these experiments are displayed in Table V. An overview of the actual fidelity values
for all of the datasets for the setting of an SVM is shown in Table ?? in the Appendix.

As suggested by Demsar et al [60], we applied the Wilcoxon signed rank test to
determine whether these results are significant or not. For each of the combinations,
we are able to reject the null hypothesis that both algorithms perform equally well
(p � 0.01) in terms of fidelity (significant results are marked in bold). The high
fidelities show that the primary aim of explaining the black-box model is achieved,
as the generated rules make the same predictions as the black-box model for most
of the test data. Similar results can be observed for accuracy, though less articulate.
This suggests that on many experiment instances, the original white-box technique
performed suboptimal for these problem instances, when given only the training data.
The surprising consequence is that the proposed methodology could therefore be used
as well in contexts where the focus lies with accuracy improvements.

The fact that the accuracy results do not hold as strongly as the fidelity results is
a general tendency and stems from two reasons. First of all, the ALPA method as
presented and applied in this study is tuned to improve fidelity first and foremost (hence,
to explain the black-box model). Secondly, improving accuracy is a more difficult
problem to solve in general. Similar results have been reported in a previous SVM rule
extraction study [18].

Although significant results are achieved across the board for ANNs and SVMs, the
RF results are weaker. This can be explained by the fact that the first use the fine
valley-boundary approximation, whereas the latter uses the coarser valley-valley ap-
proximation. Thus, ALPA works better for black-box models that output continuous
uncertainty scores and we would recommend using the valley-boundary approximation
over the valley-valley should the choice be available to the end user.

8Note that it is very hard to arrive at exactly the same number of rules due to the nature of the techniques, but
a comparison of the median number of rules (last column) shows that the models have approximately similar rule
complexity.
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B. Active learning component and the pedagogical approach

Table VI shows the comparison of ALPA with the original white-box method, random
data generation and ALBA on the same split-up over the bench of datasets using the
same pruning factor for C4.5 and Ripper respectively. The results show that ALPA does
significantly better than the original rule induction technique as well as random data
generation across the board. One exception seems to be the case of Neural Networks
with low number of valley points. One possible explanation of this aberrant behaviour
is that the ANN has more concentrated regions of low confidence and we might miss
out on some interesting regions when focussing on only a small part thereof. Based on
these results, we advise to keep the boundary trade-off parameter high enough (ρ >
0.15) when working with ANNs in particular. Comparing the ALPA results to those
form ALBA reveals that they perform very similar when applied to SVM models. In
most cases ALPA slightly outperforms ALBA, but this result is not significant over all
datasets so no conclusions can be made as to the superiority of one algorithm versus the
other with respect to the fidelity and accuracy of the extracted rules. Simultaneously,
the decompositional nature of ALBA makes it useless for rule extraction from ANNs
or RFs, so on a broad applicability level ALPA has an unmistakable advantage.

VII. DISCUSSION OF THE MAIN RESULTS

The results from the previous section show that ALPA is very often able to formulate
comprehensible models that are both a good representation of the black-boxes’ inner
workings (fidelity) as well as good stand-alone predictive models (accuracy). In Sec-
tion II-C we mentioned three evaluation dimensions next to fidelity and accuracy. Let
us briefly discuss how the proposed algorithm tackles each of the remaining aspects.
In terms of comprehensibility, we leave the choice of rule structure to the end user: the
rule structure can be changed by using a different white-box technique. Furthermore,
most rule induction techniques have some complexity or pruning factor available, which
the end user can use to limit the resulting rule set complexity. The proposed method
is a pedagogical approach that does not depend on any specific architecture and is
thus general in nature as well. It is worth mentioning that we believe that many of
the decompositional approaches from Table I (e.g. those based on support vectors
such as [18], [39], [40] ) can be adapted to pedagogical variants using the uncertainty
methodology provided in Section III.

As discussed in Section III, we tried to limit the computational complexity wherever
possible to increase scalability. As a consequence, our algorithm is able to formulate
good rule sets on realistic datasets in a matter of seconds for most of the problem
instances we tested for. Although the algorithm we propose performs efficiently on the
datasets included in this study, we realize that much larger datasets could be used in
practice and the curse of dimensionality does apply to our algorithm to some extent. Our
algorithm can however be applied in an online fashion so, again, the performance/time
complexity trade-off can be chosen by the user in terms of execution time. Furthermore,
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ALPA can rely on a flexible choice of rule induction technique for both the readability
as well as the scalability.

Finally, we have made our implementation easy to use and easily available to data
mining practitioners by providing an open WEKA package implementation of the
proposed method available on our website9.

VIII. CONCLUSION AND FUTURE WORK

Recent advances in data mining focus mainly on improving the generalization behaviour
of predictive models and have arguably led us further away from the data mining goal
of creating “ultimately understandable patterns in data.” [20]. Our approach attempts
to leverage the very good predictive performance of the black-box models, while still
resulting in a comprehensible set of rules. If we want to answer the call by Schmueli and
Koppius [21] for the use of predictive analytics in social sciences and humanities, we
need to have an eye on this comprehensibility issue. Our ALPA technique is based on an
already rich rule extraction literature. However, previous approaches were either quite
basic in their algorithmic working and had only limited performance (e.g. changing the
class label to the black-box prediction [38]), or performed very well by using advanced
concepts of the black-box (e.g. using the support vectors [18]) but were limited to one
class of techniques only. ALPA is the first to be applicable to any black-box model
while using advanced algorithmic concepts. The experiments have shown the suitability
for rule extraction from SVMs, ANNs and Random Forests, which holds considerable
promise for the broad applicability of ALPA to other black-box techniques and domains.
We hope that the publicly available ALPA software, compatible with Weka, can spur
a further investigation in the development and application of rule extraction.
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TABLE VI : Comparison of the fidelity of ALPA versus alternative strategies when
using C4.5 and Ripper, while keeping the same pruning factor.

Original Random ALBA
BB ρ R+ R= R- p-value R+ R= R- p-value R+ R= R- p-value

C
45

(0
.2

5)

RF 25 92 49 1 2.48 · 10−16 85 28 29 9.30 · 10−7
20 92 48 2 1.40 · 10−16 81 28 33 6.27 · 10−5
15 93 47 2 7.72 · 10−17 80 32 30 1.56 · 10−5

SVM 25 108 22 11 2.24 · 10−17 75 38 28 9.56 · 10−6 57 40 44 0.1910
20 103 26 12 4.16 · 10−16 67 41 33 2.31 · 10−3 61 31 49 0.4241
15 105 26 10 7.23 · 10−17 69 38 34 8.20 · 10−4 62 32 47 0.3236

ANN 25 113 16 11 2.36 · 10−19 64 35 41 0.0326
20 114 12 14 1.43 · 10−18 71 28 41 0.0288
15 106 16 18 5.93 · 10−17 64 27 49 0.2731

C
45

(0
.0

01
)

RF 25 98 46 1 6.73 · 10−18 91 27 27 4.47 · 10−6
20 100 44 1 3.18 · 10−18 90 23 32 3.06 · 10−6
15 102 42 1 1.40 · 10−18 91 29 25 5.00 · 10−7

SVM 25 107 34 10 1.44 · 10−17 92 33 26 1.99 · 10−7 66 36 49 0.6623
20 111 33 7 2.85 · 10−18 98 33 20 3.27 · 10−9 72 41 38 0.2803
15 102 37 12 3.60 · 10−14 85 37 29 1.84 · 10−5 65 32 54 0.5481

ANN 25 118 15 9 1.32 · 10−18 88 27 27 7.82 · 10−7
20 116 20 6 7.47 · 10−21 86 28 28 1.28 · 10−6
15 111 25 6 4.84 · 10−19 85 28 29 7.46 · 10−6

R
ip

pe
r

(2
)

RF 25 108 36 2 2.24 · 10−19 75 31 40 2.79 · 10−3
20 101 40 5 2.74 · 10−16 75 26 45 0.0348
15 103 38 5 4.45 · 10−17 77 29 40 5.84 · 10−3

SVM 25 106 25 15 3.58 · 10−16 79 33 34 1.66 · 10−3 64 34 48 0.1334
20 111 21 14 1.35 · 10−17 87 24 35 2.47 · 10−5 67 41 38 2.04 · 10−3
15 103 30 13 1.57 · 10−16 83 30 33 3.40 · 10−4 67 30 49 0.1398

ANN 25 100 17 10 1.74 · 10−17 65 29 33 2.70 · 10−3
20 101 15 11 6.52 · 10−17 71 26 30 1.12 · 10−3
15 103 14 10 3.49 · 10−16 65 29 33 0.0213

R
ip

pe
r

(1
2)

RF 25 114 39 4 1.92 · 10−19 87 25 45 5.10 · 10−4
20 105 50 2 1.36 · 10−18 79 30 48 9.42 · 10−3
15 102 50 5 2.30 · 10−18 85 22 50 3.08 · 10−3

SVM 25 107 25 12 5.74 · 10−16 82 30 32 1.29 · 10−3 54 33 57 0.5464
20 108 25 11 5.97 · 10−18 83 30 31 2.43 · 10−5 50 35 59 0.6264
15 106 25 13 1.15 · 10−15 88 27 29 8.34 · 10−5 52 31 61 0.5657

ANN 25 113 17 11 2.49 · 10−16 71 28 42 0.0390
20 106 24 11 2.42 · 10−15 72 24 45 0.0190
15 109 18 14 2.56 · 10−14 65 31 45 0.4190
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APPENDIX I
PROOF OF LEAST CONFIDENCE

A. A proof for continuous functions

In these first theorems, we prove that the connecting line approximation as defined in
the publication indeed contains a point of least confidence under the condition that the
function mapping over which we approximate is continuous. This is the case for any
SVM with a Mercer kernel (due to positive definiteness) as well as the before defined
ANN (since every differentiable function is continuous).

Definition I.1 Let T ⊂ S. T is simply connected if for every x1, x2 ∈ T there exists a
continuous function ϕ : [0, 1]→ S such that ϕ(0) = x1, ϕ(1) = x2 and ∀x∈(0,1)ϕ(x) ∈
T .

Definition I.2 Let S be an n-dimensional Euclidean vector space. A subset E ⊂ S is
called a boundary if it is a simply connected n− 1-dimensional smooth manifold.

Definition I.3 Let x ∈ S and V ⊂ S. The distance d(x, V ) from x to V is defined as

d(x, V ) := inf
y∈V
‖x− y‖.

Theorem I.4 Let S be a Euclidean vector space (in particular Rn) and E ⊂ S a
boundary. Then there exist S1 ⊂ S and S2 ⊂ S such that

(i) S1 and S2 are simply connected open sets,
(ii) S1 ∪ E ∪ S2 = S,
(iii) S1 ∩ S2 = ∅.

Moreover, there exists a continuous function π : S → R such that for x ∈ S
π(x) > 0 if x ∈ S1,

π(x) = 0 if x ∈ E,
π(x) < 0 if x ∈ S2.

Proof: Let x1 ∈ S such that x1 /∈ E. Then, we note first that since the distance
of x1 to E is larger than 0, there exists an open environment Ux1 of x1 such that
∀y∈Ux1

y /∈ E. Define the set S1 ⊂ S as the set of all y ∈ S such that there exists a
function ϕ : [0, 1] → S with ϕ(0) = x1, ϕ(1) = y, and for all λ ∈ [0, 1] ϕ(λ) /∈ E.
Note that S1 is simply connected and open. Now we define S2 := S\ (E ∪ S1). Define
the function π by

π : S → R, x 7→


d(x,E) if x ∈ S1,

0, if x ∈ E,
−d(x,E) if x ∈ S2.
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If S2 is simply connected (as it is trivially so for Rn), it follows that π is a continuous
function.

We want to assert whether any curve connecting a point from S1 with a point of S2

contains a point of least confidence.

Theorem I.5 Let x1 ∈ S1 and x2 ∈ S2. Consider any continuous function ϕ : [0, 1]→
Φ that satisfies ϕ(0) = x1 and ϕ(1) = x2. Then there exists a λ ∈ (0, 1) such that
x0 := ϕ(λ) ∈ S0.

Proof: Let x1 ∈ S1 and x2 ∈ S2. Consider a continuous function ϕ : [0, 1] → Φ
that satisfies ϕ(0) = x1 and ϕ(1) = x2. Define the function ν : [0, 1] → R as ν :=
π ◦ φ ◦ ϕ. Since ϕ, φ and π are continuous functions, ν is also continuous. Moreover,
since x1 ∈ S1 we have that ν(0) > 0 and similarly ν(1) < 0. By the intermediate
value theorem we know that there exists a λ ∈ (0, 1) such that ν(λ) = 0 and hence
x0 := ϕ(λ) ∈ S0.

B. A proof for Random Forests and discrete classifiers in general

Definition I.6 Let S be an n-dimensional Euclidian vector space. A binary decision
tree, consists of a decision function f , operating on S by splitting S into k distinct
regions R(j) such that:

(i) R(j) ⊂ S
(ii)

⋃
j

R(j) = S

(iii) f : R(j) → {0, 1}

Definition I.7 A Binary Random Forest is an ensemble of K binary decision trees fk
with associated aggregate classification function g : S → {0, 1}, defined as:10

g : x 7→

{
1 if #{j|fj(x) = 1} > #{j|fj(x) = 0}
0 otherwise .

Definition I.8 We say that the prediction of an input vector x has maximal agreement
if more than bK/2c + 1 of the K trees support that prediction (i.e. for more than
bK/2c + 1 trees the prediction fk(x) is equal to that of the target prediction). The
intersection A of all of the cuboid regions that contain the input vector and agree with
the prediction is called the (cuboid) subspace of maximal agreement.

10We can assume k to be an even number without loss of generality since, we can always enforce this by adding
a placebo tree that agrees with the majority vote and picks a class in case of equal evidence for either class.
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By definition, each point xi has an associated subspace of maximal agreement Ai which
is formed by the union of at least bK/2c + 1 regions for which fk is the maximal
agreement vote. Since the subspace of maximal agreement is the intersection of cuboid
regions, it must be a cuboid region itself (possibly of lower dimension).

Lemma I.9 Let g be a Binary Random Forest g and xi, xj two points for which
g(xi) 6= g(xj). The intersection of the subspaces of maximal agreement associated
with these points is empty for a pair of input vectors with different prediction outcome:
Ai ∩ Aj = ∅.

Proof: This follows immediately from Definition I.8. If this were not the case
for a certain choice of i and j, this would imply that the agreement for both is greater
than bK/2c+ 1 which is impossible since there are only K tree decision values.

Lemma I.10 Given a boundary E that divides a vector space into two opposite half-
spaces S1 and S2. The curve connecting any two points lying in opposite half-spaces
will intersect the boundary E.

Proof: This follows immediately from the (Hyper)Plane Separation Postulate in
Euclidian spaces.

Theorem I.11 Let g be a Binary Random Forest g and xi,xj two points for which
g(xi) 6= g(xj). Any connected subspace that contains both xi and xj must go through
a point of no agreement.

Proof: Without loss of generality, we can choose one point xi of class 0 and one
point xj of class 1. Due to Lemma I.9 these must lie in disjunct cuboid regions Ai and
Aj . Since Ai and Aj are two convex, non-empty sets, the connected subspace defined
by the convex combination of xi and xj (i.e. the line segment) must contain at least
one point x0 that is contained within the space outside of Ai and Aj : x0 ∈ Ai ∪ Aj .

Let us consider the aggregation of all cuboid regions for which the predicted value is
0 and 1 respectively called A0 and A1. We know due to Lemma I.9 that these must be
disjunct. Due to the connectedness of the subspace, we know that it must contain at
least one point x0 that is contained within a region of the space outside of A0 and A1

: x0 ∈ A0 ∪ A1. Since for this point:

(i) x0 6∈ A0 =⇒ #{j|fj(x0) = 0} < bK/2c+ 1
(ii) x0 6∈ A1 =⇒ #{j|fj(x0) = 1} < bK/2c+ 1

Given that there are exactly K trees, it must follow that support for both is equal to
bK/2c, i.e. x0 lies within a boundary region for which no agreement can be reached.
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