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Superconducting nanowires can exhibit a spatially inhomogeneous pair condensate that leads to the
formation of new Andreev-type states. Such states are mainly located beyond the regions where the order
parameter is enhanced, and no normal-superconducting contact or external magnetic field is needed for
their formation. Our numerical self-consistent solutions of the Bogoliubov-de Gennes equations for
cylindrical nanowires, in the clean limit, demonstrate that these new Andreev-type states decrease the ratio
of the energy gap to the critical temperature as compared to its bulk value. The low-lying excitations in a
clean superconducting nanowire are these new Andreev-type states induced by quantum confinement of

the electrons in the transverse direction.
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Recent advances in nanofabrication technology resulted
in nanoscale structures like wires with width about
~10 nm [1,2] and films with thickness of a few mono-
layers [3—5]. In particular, superconducting metallic nano-
wires or nanofilms are now attainable with electron mean
free path being about the specimen width or thickness
[1,4]. To a great extent such nanoscale superconducting
specimens can be considered as being in the clean limit. In
this case nonmagnetic impurities can only influence the
electron motion parallel to the wire or film. Then, argu-
ments similar to the Anderson theorem [6] make it possible
to expect that the longitudinal scattering of electrons on
such nonmagnetic imperfections cannot have a significant
effect on the superconducting characteristics in the
clean limit. The physical properties of a clean nanosuper-
conductor are governed by quantum confinement (QC) of
electrons, which open up a unique and promising possibil-
ity of investigating the interplay between QC and
superconductivity.

It is well established that the superconducting order
parameter A(r) can be treated as a wave function of the
center-of-mass motion of Cooper pairs (see the textbook
[71). Hence, A(r) should vary with position in the presence
of QC. The spatial variations of A(r) are expected to be
especially significant for nanoscale specimens. Recently,
such variations were calculated for a cylindrical nanowire
[8,9] and for a nanofilm [10] by numerically solving the
Bogoliubov-de Gennes (BdG) equations. It was shown that
the superconducting order parameter and its spatial inho-
mogeneity are strongly enhanced when a size/shape-
dependent superconducting resonance appears [9,10].
Such resonances result in a size-dependent increase of
the critical temperature 7. which was recently observed
in aluminum and tin nanowires [1,2]. Therefore, a remark-
able consequence of QC is the appearance of the size/
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shape-resonant superconductivity characterized by a non-
uniform spatial distribution of the pair condensate.

Spatial variations of A(r) can result in Andreev reflec-
tion and quantization of low-energy excitations [11].
Under certain conditions, the excitations located in the
areas of low values of |A(r)| cannot penetrate into the
areas of higher values of |A(r)|. This mechanism
[Andreev mechanism (AM)] leads to Andreev quantization
as previously discussed for a normal region of the inter-
mediate state [11] and for a single Abrikosov vortex core
[12]. In both cases the boundary conditions are specified by
the bulk surroundings, i.e., A(r) approaches its bulk value
Apux When |r| — oo,

The situation is dramatically different in the presence of
QC. An interesting interplay between AM and QC was
recently reported [13] for a clean mesoscopic specimen
with an embedded superconductor—normal-metal —super-
conductor structure. In this case QC plays a secondary role
(as compared to AM) and results in oscillations of the
Andreev levels as function of the specimen dimensions.

In the present study we investigate, for the first time, AM
in a clean nanosized superconductor governed by QC.
Based on a numerical self-consistent solution of the BdG
equations for a cylindrical nanowire in the absence of a
magnetic field, we show that on the nanoscale, AM mani-
fests itself through the formation of new Andreev-type
states mainly located beyond the regions where the order
parameter is enhanced. Stress that these states cannot be
localized in the areas where A(r) is suppressed, because
the typical length scale for spatial variations of the order
parameter is about the Fermi wavelength A (Ar < &,
where £ is the coherence length). In general, one may
expect that the lowest quasiparticle states in a clean nano-
scale superconducting specimen are always such new
Andreev-type states.
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In the absence of magnetic field, A(r) can be taken real
and the BdG equations yield [6]

2
Ee) = (=509 = w)ute) + A (e, (1)

2
Ev,(r) = A®)u(r) — (—%vz - ,L)ui(r), 2

where E; is the energy of the excitations, u is the chemical
potential, and m, is the electron band mass. Next, we have
to add the self-consistency relation

A(r) = 82_”;‘(1')1’?(1')[1 —2fil 3)

In the above equation we denote the coupling constant as g,
and f; = f(E;) is the Fermi function. The summation in
Eq. (3) is over the Debye window of the single-electron
states, i.e., the interval from w — hwp to u + hwp, where
wp is the Debye frequency [6]. Finally, the chemical
potential is determined from

n :% - der“lli(r)Pfi + v, P =)L @

where 7 is the mean electron density and V = 7R?L is the
system volume.

We write the transverse boundary conditions on the
nanowire surface as u;(r)|,es = v;(r)l;es = 0 and take
periodic boundary conditions in the longitudinal direction.
For the chosen geometry we have A(r) = A(p), where p,
¢, z are the cylindrical coordinates, and

img eikz

ui(r) = ”i(P)\/T—ﬂ_ ﬁ,

eime eikz
vi(r) = Ui(ﬂ)\/T—-ﬂ_ ﬁ,
&)

where { = {j, m, k}, j is the quantum number associated
with the transverse coordinate [the number of zeros of
u;(p) and v,(p) for p < R], m is the azimuthal quantum
number, and k is the wave vector of the quasifree electron
motion parallel to the nanowire. We remark that the terms
including A(r) are local in Egs. (1) and (2), which follows
from the delta-function approximation for the electron-
electron effective interaction (see textbooks [6,7]).
Nonlocality may result in a smearing of the oscillatory
behavior of the superconducting order parameter. How-
ever, this smearing will not be significant in our nanowires
because the transverse profile of the order parameter is
dictated by QC.

As mentioned above, superconducting properties of a
sample depend on the number of single-electron states in
the energy interval from u — Awp to @ + hwp. This
number varies with the radius of the nanowire. In a clean
metallic nanowire QC splits the band of single-electron
states in a series of one-dimensional subbands. An increase
of the radius of the nanowire leads to a decrease of the

energy of the subbands. When the bottom of a certain
subband passes through the Fermi level, the number of
relevant single-electron states increases abruptly. This
abrupt increase results in a series of radius-dependent
resonances [9,10]. At the resonant values of the nanowire
radius the order parameter is strongly enhanced as com-
pared to its bulk value and exhibits a nonuniform spatial
distribution. The smaller the radius of the nanowire, the
stronger the resonance [9,10].

In Fig. 1(a) we show A(p) as obtained from a numerical
self-consistent solution of Eqgs. (1) and (2) for an aluminum
nanowire with R = 0.87 nm (one of the resonant radii) at
zero temperature. The values of the parameters used in the
calculations are hwp = 3231 meV, gN(0) =0.18,
Mpuk = 0.9¢V, where N(0) is the bulk density of states
at the Fermi level and . is the bulk chemical potential
(the Fermi level) (see, for details, discussion about an
effective Fermi level in Ref. [10]). The BCS coherence
length for the chosen parameters is &y = 1.6 um [7]. It
follows from Fig. 1(a) that at R = 0.87 nm we have a giant
enhancement of the superconducting order parameter
(Apux = 0.25 meV), and, at the same time, A(p) is spa-
tially dependent. In this case there are five relevant quasi-
particle subbands with quantum numbers j =0, m = 0,
j=0,|m|l=1and j =0, |m| = 2. It is worth noting that
only the low-lying states contribute to A(p). The others are
excluded because the corresponding single-electron ener-
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FIG. 1 (color online). The resonant point R = 0.87 nm: (a) the
superconducting order parameter A(p), (b) the square of the
absolute value of the transverse particlelike wave function
u ;i (p) for the relevant quasiparticle branches (the lowest state
is presented for any given quasiparticle branch), (c) the excita-
tions energies ([J) as function of k for the lowest quasiparticle
branches together with the branch gaps A, and (d) the quasi-
particle energies ordered in the ascending manner vs the ordering
number together with the total energy gap Ag.
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gies do not belong to the interval from u — hwp to u +
hwp. The dominant contribution to the superconducting
order parameter comes from the two branches with j = 0,
m = —2 and j = 0, m = 2 that determine the giant en-
hancement of the order parameter at p = 0.58R.

The probability densities to locate electron-type and
hole-type quasiparticles along the transverse coordinate p
are given by |u;,(p)I* and |v;,.(p)|?, respectively. Our
numerical analysis shows that u;,,(p) and v;,(p) are
almost proportional to each other. It follows from
Fig. 1(b) that the profile of |u,(p)I* at j =0, |m| =2
is similar to the profile of A(p) in the region where A(p) is
enhanced. The contribution to A(p) from the quasiparticle
states with j = 0, [m| = 1 and j = 0, m = 0 is minor, and
these states are mainly located outside the area of enhanced
order parameter. We refer to them as the new Andreev-type
states induced by QC.

In Fig. I(c) the quasiparticle energies are plotted as
function of the wave vector k for the five relevant branches.
For any quasiparticle branch specified by j and m we can
introduce an energy gap Aj,, the minimal quasiparticle
energy. In the absence of superconductivity the particlelike
and holelike excitations are decoupled and, so, A, = 0.
For the superconducting state we get A ;,, # 0, and one can
define the total energy gap A = minA,. As seen, A,
and A(_,, corresponding to the branches forming the
profile of the enhancement in the order parameter, are
larger than A, Ao, and A _; associated with the new
Andreev-type states. The energy density of the quasipar-
ticle states with j = 0, |m| = 2 is much higher than that of
the Andreev-type levels with j =0, |[m| =1 and j = 0,
m = 0. This explains why the contribution of the states
with j = 0, |m| = 2 to the superconducting properties is
the most important. We remark that these states have
sufficiently long wavelengths ( = 10-20 nm) in the direc-
tion parallel to the nanowire. Hence, one can expect that
the profile of the order parameter will not be strongly
influenced by surface roughness and, therefore, the new
Andreev-type states will only be weakly altered. In
Fig. 1(d) the quasiparticle energies ordered in ascending
manner are plotted versus the ordering number. One can
distinguish three regimes in Fig. 1(d): (1) only the quasi-
particle states with j = 0, m = 0O contribute to the spec-
trum; (2) the states with j = 0, |m| = 1 appear in addition
to those with j =0, m = 0; (3) the states with j =0,
|m| = 2 dominate. The lowest branch corresponds to j =
0, m=0 (so that Ap = Agy = 8.1 meV), and exactly
these quasiparticles are the most remote from the area of
giant spatial variation in A(p) at p/R = 0.58. As seen
from Fig. 1(d), any time when a new quasiparticle branch
starts to contribute to the excitation spectrum, we observe a
kink in the dependence of the quasiparticle energy on the
ordering number.

In order to demonstrate a more complex example, in
Fig. 2(a) A(p) is plotted for another resonant value R =
0.97 nm (the rest of the input parameters are the same as
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FIG. 2 (color online). The same as Fig. 1 but now for the
resonant point R = 0.97 nm.

for Fig. 1). In this example there are six quasiparticle
branches contributing to the superconducting properties.
In addition to the five branches mentioned above, there is a
new one with j =1, m = 0 which strongly affects the
profile of A(p). The probability density |u;,;(p)* is
shown in Fig. 2(b). It is seen from the data that excitations
with j =0, [m| =1 and j = 0, |m| = 2 are located far
apart from the region of the enhancement in A(p) at p = 0.
These states form the four new Andreev-type quasiparticle
branches with the lowest branch gaps Ay, = 3.87 meV
and Ag; = 4.04 meV, as seen from Fig. 2(c) and 2(d). The
interplay between AM and QC is now more complicated
due to the presence of the two local maxima in A(p).
Hence, in addition to the states with j = 0, |m| = 1 and
Jj =0, |m| = 2, there are the Andreev-type states with j =
0, m = 0 that try “to avoid” the second, less pronounced
maximum of A(p) situated at p/R = 0.68. As expected,
the branch gap is now higher, Agy = 5.51 meV. Thus, at
R = 0.97 we have the four different branch gaps and, so,
four regimes appear in the quasiparticle energy ordered in
the ascending manner and plotted versus the ordering
number in Fig. 1(d). The resonance shown in Fig. 2 com-
pletely decays when the radius increases up to R =
1.1 nm. For R = 1.1 nm the spatially averaged order pa-
rameter is only about 0.2 meV, and no significant effect of
AM is found. In particular, the difference between A, and
A, is here much less pronounced, within 10% [compare
with Fig. 2(c)].

An important consequence of AM is a modification of
the ratio of the zero-temperature gap to the critical tem-
perature. In Fig. 3 we plot Ag/kpT, calculated for an
aluminum cylindrical nanowire as a function of R. At a
resonant point AM significantly reduces the energy gap but
has little effect on T.. As a result the ratio Ag/kgT,
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FIG. 3 (color online). The ratio Ag/kzT, vs the radius of a
cylindrical aluminum nanowire.

decreases with respect to the well-known bulk BCS value
Apu/kgT . pue = 1.76 typical for a spatially uniform pair
condensate. Between the points of the width-dependent
superconducting resonances, where AM is less important,
Ag/kgT, increases: the more profound the drop of the
superconducting characteristics, the larger the increase.
Note that the width-dependent ratio of the gap to the
critical temperature never exceeds the uniform (bulk) limit
1.76. Moreover, only in few points the curve in Fig. 3
approaches this limiting value. It occurs when the super-
conducting order parameter is strongly reduced and, so,
nearly uniform in space. Oscillations of Ag/kpT. slowly
decay when the nanowire radius increases (due to weak-
ening of the width-dependent resonances, see Ref. [9]). At
R > 10 nm the ratio Ag/kgT, is very close to the bulk
value 1.76. In the previous paragraphs we considered, for
the sake of simplicity, ultrathin nanowires (with R =
1 nm) which may exhibit a finite resistance originating
from thermal and, possibly, quantum fluctuations (see,
for instance, Refs. [1,2]). In the case of R = 3-5 nm,
corresponding to the narrowest superconducting nanowires
fabricated in recent experiments [1,2], the size supercon-
ducting resonances are less profound as compared to R =
1 nm. However, they are noticeable, and the new Andreev-
type states are still of importance. In particular, as seen
from Fig. 3, the ratio Ag/kgT, for R = 4 nm still differs
about 10% from the bulk value.

To conclude, quantum confinement is the major effect
governing the superconducting properties of a clean nano-
scale specimen. This results in size- or shape-dependent
superconducting resonances with a nonuniform spatial
distribution of the order parameter. Such inhomogeneity
in the order parameter leads to the formation of new
Andreev-type states trying ‘“‘to escape’ the domains of

enhanced order parameter and being mainly located out-
side such domains. These new Andreev-type states result in
a decrease of the ratio of the energy gap to the critical
temperature as compared to bulk. A numerical self-
consistent solution of the Bogoliubov-de Gennes equations
for a cylindrical metallic nanowire demonstrates that this
decrease is significant for nanowires with diameters less
than ~10 nm. We recall the reader that the ordinary
Andreev bound states appearing in the core of an isolated
vortex almost “kill”” the gap in the excitation spectrum
[12]. On the contrary, the new Andreev-type states can only
somewhat reduce the energy gap. This is due to the fact that
AM plays a secondary role as compared to QC in the case
of interest. We expect that the low-lying excitations in a
clean nanosuperconductor are such new Andreev-type
states which can be probed, e.g., through tunneling
experiments.
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