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A Mixture-Amount Stated Preference Study on the Mobility 
Budget 

 

Abstract 

The mobility budget is considered a promising new tool in remuneration and transport policy 

in Belgium, especially due to its potential of shrinking the company car fleet and lowering car 

use. Because revealed preference data were scarce in the context of the mobility budget, we 

conducted a stated preference study to examine the potential outcomes of the introduction of 

the mobility budget. A challenge in our study is that it required the respondents to choose 

between mixtures of remunerations for different total budget amounts. In other words, the study 

was a mixture-amount stated preference study, which involved modeling challenges as well as 

experimental design challenges. In this paper, we therefore introduce advanced mixture-amount 

regression models in the choice modeling literature and present a generic method to set up 

mixture-amount stated preference studies to collect suitable data. Our case-study data comes 

from an online questionnaire administered to employees at 12 large companies in Belgium 

(n=817). For our choice data, a second-order polynomial mixture model in combination with a 

quadratic effect for the amount led to the most suitable utility function. Our results indicate that 

current company car users prefer additional days off, income or a car. The bicycle, pedelec and 

public transport options are disregarded by most employees. Based on our results, we call for a 

critical reflection on the current system of company cars and reimbursements in Belgium. 

 

Keywords: commuting, company car, mixture-amount experiment, mobility budget, optimal 

experimental design, panel mixed logit model 
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A Mixture-Amount Stated Preference Study on the Mobility 
Budget 

 

1. Introduction: a mixture of fringe benefits 
In recent years, as in some other countries, the concept of the mobility budget (MB) gained 

popularity in Belgium. This concept is framed as an alternative to the company car with fuel 

card (CC); the primary target group consists of CC users. The key principle of the concept is 

that, instead of a CC, employees are provided with a virtual budget by their employer. The size 

of this budget is equal to the sum of the current fixed and variable costs of the CC. The 

employees can then use the MB to meet their work-related transport needs. Options available 

within ‘the virtual shop’ are mostly transport modes and services, although many proponents 

also stress the need to add non-transport options, to ensure that employees are tempted to opt 

for something other than a CC. Many of the options enable private use because a CC can be 

used privately as well in Belgium, if the employee agrees to pay a (relatively small) tax on this 

benefit-in-kind. For a company bicycle or a public transport (PT) card provided by the 

employer, no tax on the benefit-in-kind has to be paid. In the most popular interpretation of the 

MB concept (see Zijlstra & Vanoutrive, 2018), one is also able to save money, by selecting 

cheaper travel options. The remaining budget is then paid to the worker as an end-of-the-year 

bonus, with a favorable tax treatment. This can be an incentive to pick alternative transport 

options, in addition to or in exchange for the relatively expensive CC (Zijlstra & Vanoutrive, 

2018).  

 

The concept of the MB is strongly related to flexible benefit plans (Barringer & Milkovich, 

1998; Benders, Delsen, & Smits, 2006; Hillebrink, Schippers, Doorne-Huiskes, & Peters, 

2008), as both evolve around fringe benefits, use the idea of input equals output, and deviate 

from the traditional one-size-fits-all approach. In both concepts, a new form of remuneration is 

created for employees. However, the MB is dominated by transport related input and output, 

and there are some clear transport policy goals attached to it. To understand the dominance of 

transport related options, one must understand that Belgium has a particularly strong culture 

when it comes to transport cost compensations, as these are either remunerated by the employer 

or they are tax deductible (Mérenne-Schoumaker, Van der Haegen, & Van Hecke, 1999; 

Vanoutrive, 2010). The treatment of the CC in the Belgian tax system is particularly 

advantageous, as only about 40% of the benefit is taxed (De Borger & Wuyts, 2011; Harding, 

2014). 

 

The objective of the MB is that employees would prefer other modes of transport over a CC or 

would combine other models of transport with a cheaper (and smaller) car. When successful, 

the MB would lead to a reduction in the number of cars on the Belgian roads, the vehicle 

kilometers driven and fuel consumption, and it would lead to an increase in multimodal 

transport. More specifically, it is hoped that the congestion levels during rush hours would 

decrease (Zijlstra & Vanoutrive, 2018). The current congestion levels, especially near Brussels 

and Antwerp, are known to be problematic (e.g. OECD, 2013). A switch from CCs to other 

modes of transport is considered feasible for many employees, as many CC owners do not 

actually need a car for business purposes. As a matter of fact, the CC is used by employers as a 

bonus in the wage package, due to a favorable tax rate (De Borger & Wuyts, 2011; KPMG, 

2012). Especially for employees with a high income, the CC is an attractive option, as Belgium 

has a progressive income tax. For these reasons, a relatively large number of employees possess 
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a CC in Belgium: one out of ten passenger cars is a CC. These CCs account for 15% of the 

vehicle kilometers by passenger cars (Harding, 2014; Laine & Van Steenbergen, 2016; May, 

2017). Laine and Van Steenbergen (2016) and Zijlstra (2016) estimate that access to a CC 

results, on average, in 5,800 to 6,800 additional vehicle kilometers for non-work-related trips 

on an annual basis, compared to the mileage of vehicles privately owned by a suitable control 

group. Simply because car, fuel and maintenance costs are paid by the employer. 

 

The implementation of a multimodal MB by employers is not straightforward in Belgium, partly 

due to the complex tax and social security systems: transport modes (public transport, car, 

bicycle) and trips motives (business, commute, and private) are treated differently in the current 

regulations on reimbursements or fringe benefits (Vanoutrive, 2010). To overcome this barrier, 

the implementation of a new federal law (next to the existing legislation) was necessary (Zijlstra 

& Vanoutrive, 2018). The work we present in this paper was motivated by the transport related 

effects of the MB and the need for new legislation to make its introduction possible.  

 

Due to the existing barriers for the implementation of the MB, revealed preference data are 

scarce and fragmented in Belgium (Zijlstra, 2016). Moreover, pilot tests performed by a small 

number of employers were generally motivated by an acute situation (for example, relocation 

of the headquarters or a shortage in parking capacity) and accompanied by the introduction of 

other corporate mobility policy measures, like the introduction of parking fees. As a result, the 

outcomes are biased. For these reasons, we used a stated preference technique (Hensher, Rose, 

& Green, 2005). 

 

A key property of the MB is that it involves mixtures of alternative CCs or alternatives to the 

CC. For instance, some employees may prefer a combination of a pedelec with a public 

transport network card, while others may prefer a smaller car and a financial bonus at the end 

of the year. As a result, our stated preference study is concerned with preferences for mixtures. 

As the composition of the mixtures depends on the total available budget and as the preferences 

may depend on the total available budget, our study also takes into account the total amount of 

the mixtures. For this reason, conceptually, our regression model resembles mixture-amount 

models in medicine (where the recovery of a patient depends on the dose of a medical drug 

taken (= amount) and the mixture of ingredients that composes the drug), agriculture (where 

the yield of a crop depends on the dose of a fertilizer and the mixture of ingredients that 

composes the fertilizer), and marketing (where the sales of a product depend on the amount of 

advertising as well as the proportions of TV, radio, magazine and internet advertising) 

(Aleksandrovs, Goos, Dens, & Pelsmacker, 2015; Piepel & Cornell, 1985).  

 

In this paper, we embed mixture-amount models in a panel mixed logit framework to describe 

preferences and preference heterogeneity for the MB. We believe that this type of modeling is 

relevant to transportation researchers, in situations where a mixture and an amount might drive 

preferences. A simple example of such a scenario is a travel route choice, where the choice 

sometimes is between (i) a journey consisting of two connecting train services and requiring a 

longer travel time, and (ii) a journey consisting of three connecting train services and requiring 

less travel time. In such cases, a traveler’s preference may depend on the total travel time (= 

amount) and the mixture of travel modes required.  

 

In Section 2, we offer an introduction to mixture-amount modeling. We discuss fields where 

the mixture and mixture-amount choice experiments can be successfully applied and describe 

the state-of-art. Next, we introduce the MB case study in Section 3. In that section, we also 

explain how we designed and set up our mixture-amount stated preference study. In Section 4, 
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we present the results of our study, discuss the goodness of fit of the various models we 

considered, and study the effects of the amount of the MB as well as its component’s 

proportions. In Section 5, we summarize the key insights, discuss the policy implication of our 

MB stated preference study, and address a number of issues with respect to choice modeling 

with mixtures. 

 

2. Mixture-amount modeling 
The collection and the analysis of data concerning the MB has two key features. First, a total 

amount is involved. Second, the total amount is assigned to different components, which gives 

rise to a mixture of components. The total amount refers to the fixed individual budget each 

employee is entitled to, regardless of what components are selected within the MB. Certain 

employees will spend their entire budget on a company car, resulting in a proportion of 100% 

for the company car component and a proportion of 0% for all other components. Other 

employees may spend 50% of their individual budget on a company car, 25% on an electric 

bike and 25% on public transport. Yet other employees may abandon their company car and 

invest 50% of their individual budget on public transport and 50% on extra days off. This way, 

each employee selects a mixture of benefits, the proportions of which all sum to 100% or 1.  

 

In this scenario, the employees’ preferences may depend on the proportions of the various 

components of the MB mixture and on the total amount of the MB. For instance, an employee 

with a small budget may spend it completely on a small CC, while an employee with a large 

budget may spend half of the MB on a small CC and the other half on a public transport network 

card. Modeling these kinds of preferences requires a specific kind of regression model, known 

in the literature as a mixture-amount model. In this section, we discuss the key properties of 

mixture-amount models. We start by explaining what the most common mixture models are. 

Then, we extend these models with additional explanatory variables called process variables. 

Mixture-amount models are special cases of mixture models involving process variables. As 

mixture models and their extensions have been applied originally in the food industry, 

chemistry, agriculture and pharmaceutics, our initial examples are taken from these disciplines. 

In the final part of this section, we provide an overview of the still limited use of mixture models 

in transportation and other branches of social science. 

 

2.1 Mixture models 

The sum of all component proportions in a mixture always equals 100% or 1 (Cornell, 2011; 

Scheffé, 1958). This equality is known as the mixture constraint: 

 

Eq. 1 ∑ 𝑥𝑖 =  𝑥1 + 𝑥2 + ⋯ +  𝑥𝑞 = 1

𝑞

𝑖=1

 

 

In this equation, xi represents the proportion of component i (or attribute i), while q represents 

the number of components. Each component proportion xi is potentially in the range [0, 1], 

though, in many practical applications, smaller intervals apply.  

 

To model data involving explanatory variables that are proportions of mixture components, 

Scheffé (1958) introduced a series of specific polynomial regression models (Eq. 2a – Eq 2d). 

The simplest Scheffé model in the table is a first-order model (Eq. 2a), while the most complex 

is the full cubic model (Eq. 2d). Equations 2a, 2b and 2c are also referred to as the linear, 
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quadratic and special cubic Scheffé model. As in any regression model, the term ε is the random 

error term. The models of Scheffé are the ones predominantly used for data involving mixture 

components (Cornell, 2011; Goos & Jones, 2011; Smith, 2005). The Scheffé models have a few 

specific characteristics. For instance, due to the mixture constraint, no intercept is present. 

Otherwise, perfect collinearity would be present, and the model parameters would not be 

identified. Also, the second-order and third-order Scheffé models do not involve quadratic 

terms in addition to cross-product terms, since this would also result in perfect collinearity 

(Prescott, 2004; Ruseckaite, Goos, & Fok, 2017). 
 

Eq. 2.a First-

order 
𝑌 = ∑ 𝛽𝑖

𝑞

𝑖=1

𝑥𝑖 +  𝜀 

Eq. 2.b Second-

order 
𝑌 =  ∑ 𝛽𝑖

𝑞

𝑖=1

𝑥𝑖 + ∑ ∑ 𝛽𝑖𝑗

𝑞

𝑗=1+𝑖

𝑥𝑖𝑥𝑗

𝑞−1

𝑖=1

+  𝜀 

Eq. 2.c Third-

order 
𝑌 =  ∑ 𝛽𝑖

𝑞

𝑖=1

𝑥𝑖 + ∑ ∑ 𝛽𝑖𝑗

𝑞

𝑗=1+𝑖

𝑥𝑖𝑥𝑗

𝑞−1

𝑖=1

+ ∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑞

𝑘=𝑗+1

𝑞−1

𝑗=𝑖+1

𝑞−2

𝑖=1

+  𝜀 

Eq. 2.d Full 

cubic 

𝑌 =  ∑ 𝛽𝑖

𝑞

𝑖=1

𝑥𝑖 + ∑ ∑ 𝛽𝑖𝑗

𝑞

𝑗=1+𝑖

𝑥𝑖𝑥𝑗

𝑞−1

𝑖=1

+ ∑ ∑ 𝛿𝑖𝑗𝑥𝑖𝑥𝑗(𝑥𝑖 − 𝑥𝑗)

𝑞

𝑗=1+𝑖

+ 

𝑞−1

𝑖=1

∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑞

𝑘=𝑗+1

𝑞−1

𝑗=𝑖+1

𝑞−2

𝑖=1

+  𝜀 

 

The cross-product terms in the Scheffé models capture possible interactions between the 

components of the mixture. More specifically, these terms allow antagonistic or synergetic 

effect between components to be captured. Synergy is the interaction of multiple components 

to produce an effect (a utility or a preference) larger than the weighted sum of their individual 

effects (their marginal utilities). An antagonistic effect is the opposite of synergy. The most 

commonly used Scheffé models in the literature are the second-order and third-order models in 

Eq. 2b and 2c (Goos, Jones, & Syafitri, 2016). 

 

In this article, we pay explicit attention to interaction effects. This distinguishes our work from 

most published stated preference studies which focus on the main effects of the attributes (often 

called part-worth values) and ignore interaction effects. With respect to transportation studies, 

synergetic and antagonistic interactions might be highly relevant. Within Mobility-as-a-Service 

packages some combinations of services can outperform others – in terms of utility -  due to 

combinations of modes and services within a single package (Matyas & Kamargianni, 2017). 

Transport authorities are confronted with investment programs with constrained budgets, here 

some combinations of projects might also generate synergetic or antagonistic effects (Hensher, 

Ho, & Mulley, 2015). Antagonistic of synergetic effects might occur in intermodal trip 

chaining, for example, to cover the first mile to the train station a bicycle is often preferred over 

a bus (Rietveld, Bruinsma, & van Vuuren, 2001). With respect to the MB, this might result in 

a synergetic effect for a combination of a bicycle and a seasonal train card. Other relevant 

interaction effects within MB schemes might occur if one can combine additional days off with 

a bicycle (to be used during the extra free time) or with additional cash (to spend during the 

extra days off). 
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2.2 Mixtures with process variables or amounts 

Often, preferences for mixtures of components are also impacted by so-called process variables. 

For instance, the preference for bread does not just depend on the proportions of the ingredients 

used to prepare the dough, but also on the baking time, the proofing time and the baking 

temperature. The effect of these process variables is additive or integral to the mixture effects. 

In the former case, the effect of the mixture component proportions does not depend on the 

levels of the process variables. In other words, the effect of the mixture component proportions 

is the same for each level of the process variables. In the bread baking example, this would 

imply that the best recipe for bread is independent of the baking time, proofing time or baking 

temperature. In a transportation context, an additive effect for a process variable would 

correspond to a scenario in which the preference for a mix of travel modes does not depend on 

whether the journey is for work reasons or for leisure. In the event there is a single process 

variable named a with an additive linear effect, we can modify the models from Table 1 as 

follows: 
 

Eq. 3a   Y = [mixture model (Eq. 2a-d)] + a 

 

In the event the process variable has an additive quadratic effect, the mixture-process variable 

model can be modified as follows:  
 

Eq. 3b   Y = [mixture model (Eq. 2a-d)] + a + a2 

 

 

When it is unrealistic to assume that the effects of the mixture components do not depend on 

the levels of the process variables, cross-products are required between the mixture proportions, 

on the one hand, and the process variables, on the other hand. The most traditional models for 

a single process variable are obtained by crossing all terms of the mixture model (Eq. 2a-d) 

with the process variable. The models in which the process variable has a linear effect only and 

a linear effect as well as a quadratic one are as follows:  

 

Eq. 4a   Y = [mixture model] + a[mixture model] 

 

 

Eq. 4b  Y = [mixture model] + a[mixture model] + a2[mixture model] 

 

With integral effects, it is assumed that the levels of the process variables have an effect on the 

blending characteristics of the mixture components (Cornell, 2011; Prescott, 2004). Prescott 

(2004) points out that the additive effect assumption is ‘not practically realistic’ (p. 90) and 

recommends the use of integral-effect models. He also points out that the standard integral 

effect models ‘will contain far too many parameters in [their] unreduced form’, which may 

result in overfitting and necessitates large datasets. For this reason, Kowalski, Cornell & Vining 

(2000) proposed a series of composite models in which elements from integral and additive 

effects of process variables are combined. As Smith (2005, pp. 302–303) demonstrates, a 

second-order mixture model with three components and two process variables with quadratic 

effects typically results in a 36-term model. If a composite model is used instead, the number 

of terms drops to 21.  

 

In some cases, the only process variable to take into account is the total amount of the mixture. 

This is relevant when the mixture under investigation is a fertilizer and the response is the yield 

of a crop, or when the mixture under investigation is a medical drug and the response is the 
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survival time of the patients. In these kinds of studies, not only the composition of the fertilizer 

or drug has an impact on the response, but also the total amount (dose). Mixture models that do 

account for the total amount of the mixture are known as mixture-amount models (Piepel & 

Cornell, 1985; Smith, 2005). With respect to the MB, we expect an amount effect, as more 

options and combination come within reach with a larger budget to spend. 

 

2.3 Preference modeling with mixtures 

Mixture models, with or without process variables, can be combined with choice models to 

model preferences for mixtures of components. Raghavarao and Wiley (2009) provide a 

number of examples in which working with mixtures in a stated preference study might be 

appropriate, like in product or service development, and insurance. Their empirical case evolves 

around the design of tourism packages for a certain period. Holiday and travel time are scarce 

resources, as there are only 24 hours in one day. Hence, in the context of tourism packages, it 

might be interesting to look into the optimal balance or mixture of activities. Not only temporal 

or financial budgets are constrained: traffic engineers, architects and urban planners need to 

deal with spatial limitations in the allocation of functions. In short, there are many fields in 

which the use of mixtures and mixture-amount stated preference studies might be of added 

value. A key requirement is that the mixture components need to be transferable to a single 

dimension with similar units in the modeling process, like costs expressed in euro, surface area 

expressed in squares meters, or travel time expressed in minutes. In our stated preference study, 

concerning the MB, all components of the mixture to be chosen have a specific cost in euro, so 

that this requirement is fulfilled. 

 

Despite the work of Raghavarao and Wiley (2009), mixtures are still uncommon in the field of 

choice modeling. We only found a few examples involving empirical data. The first application 

involves the choice of cocktails and is described by Courcoux & Séménou (1997). In that 

application, which is also studied by Goos & Hamidouche (2019), the focus is on the taste of 

cocktails consisting of three ingredients. The taste only depends on the ingredient proportions, 

and not on the total amount of cocktail. The only other applications with mixtures in a choice 

context come from one research group in the Netherlands. Dane, Timmermans & Wiley  (2011) 

as well as Khademi & Timmermans (2012) consider the optimal allocation of travel time 

budgets. Yang, Timmermans & Borgers (2016) look into the optimal combination of energy 

consumption savings within a constrained budget. In none of these papers, a state-of-the-art 

efficient experimental design tailored to choice models is used, even though the sample sizes 

used were often relatively small (n = 304 in Khademi & Timmermans (2012); n = 317 in Yang, 

Timmermans & Borgers (2016)). And in most of these papers, we cannot find an examination 

of the various alternative models that exist for mixture-amount data. 

 

The near absence of mixture and mixture-amount models in the context of choice is striking, 

since these types of models offer interesting features and certain products and services can be 

regarded as mixtures with or without process variables. In the next section, we explain how 

preferences for the MB can be modeled using a mixture-amount choice model. We also discuss 

how a sensible mixture-amount choice design can be constructed. While there exists a 

substantial body of literature on the optimal design of stated preference studies (e.g. Hensher et 

al., 2005; Huber & Zwerina, 1996; Kessels, Goos, & Vandebroek, 2006; Louviere, Hensher, & 

Swait, 2000; Rose & Bliemer, 2009), the optimal design of choice experiments involving 

mixtures with process variables or amounts is unknown research territory. The optimal design 

of choice experiments involving mixtures in the absence of process variables or amounts was 

discussed by Ruseckaite et al. (2017), who build on design construction algorithms for 
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industrial mixture experiments such as those described in Piepel, Jones & Cooley (2005). 

Ruseckaite et al. (2017) are the first to present a proper optimal design approach for choice 

experiments with mixtures, as opposed to other authors who combine traditional mixture 

experimental designs with balanced incomplete block designs in an ad hoc fashion. While the 

focus in the present paper is on presenting a suitable model for the mixture-amount choice data 

resulting from our MB stated preference study, we also present a procedure to construct an 

efficient design for a stated choice experiment involving mixtures and amounts. 

 

3. Case study of the mobility budget 
In this section, we discuss the experimental design approach we used for the stated preference 

study we carried out in Belgium concerning the MB. We also provide details on the data 

collection strategy and the resulting data set. 

3.1 Preparation of the mixture-amount stated preference study 

Our stated choice study was based on the most popular version of the MB in Belgium in 2014. 

In that version, the target group consists of current CC owners. Within a fixed budget, the idea 

of the MB is that these CC owners are allowed to combine transport-related fringe benefits 

(including a car), additional income and some other benefits like a day off. In order to limit the 

complexity of the choice tasks for the respondents, we reduced a long list of options to a total 

of five well-known and potentially popular components. Our final selection of components (or 

‘attributes’ in common stated preference vocabulary) and their absolute levels, expressed in 

euro, are presented in Table 1. For example, the bicycle component has three possible levels. If 

a respondent does not desire a bicycle (or pedelec), the cost is obviously zero. If the respondent 

does desire a bicycle, there are two options: an expensive bicycle costing 2,000 euro and a less 

expensive bicycle costing 1,000 euro. 

 

While Table 1 presents the factor levels in absolute costs, we converted these costs into 

proportions in our choice models. This is in line with the Scheffé models and the mixture-

process variable models introduced in the previous section. In the actual choice situations 

presented to the respondents, however, we presented the options in a realistic fashion, using 

descriptions such as ‘Standard bicycle’ for the 1,000-euro bicycle or ‘First class public transport 

network card’ for the 4,500-euro public transport option. The components and levels were 

introduced to the respondents with descriptive texts and pictures on screens prior to the 

experiment. The proportions of the five components are coded as x1 to x5 in the remainder of 

this paper (see also Table 1). 
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Table 1: MB components, coding and levels expressed in text and absolute costs 

Component 
Company car 
w. fuel card Bicycle Public transport Days off Bonus 

Code x1 x2 x3 x4 x5 

Label 
(displayed) 

No No No No No 

Cat. I  Standard 2nd class network card 2 days extra 2000 euro  

Cat. II  Luxurious 1st class network card 4 days extra 4000 euro 

Cat. III    6 days extra 6000 euro 

Cat. IV          

Cost 
(not displayed) 

€ 0 € 0 € 0 € 0 € 0 

€ 6,000 € 1,000 € 3,000 € 500 € 2,000 

€ 7,500 € 2,000 € 4,500 € 1,000 € 4,000 

€ 9,000   € 1,500 € 6,000 

€ 10,500         

 

Since employees with a CC receive different salaries, have different levels of fuel consumption 

and are entitled to different sizes of CCs, the individual MBs also have to differ in size. It is 

conceivable that employees with an expensive CC view this as a status symbol and will be 

reluctant to give up their CC or exchange it for a smaller one plus some other benefits. In 

contrast, it is possible that employees with a small CC are enthusiastic about the possibility of 

replacing their CC with other benefits. As a result, we expected the effects of the different 

components of the MB to differ with the overall size of the MB. Consequently, it was important 

to model the employees’ preferences as a function of the component proportions as well as the 

total size of their MB, and to allow for interaction effects between these proportions and the 

MB size. In the remainder of the paper, we refer to the size of the MB as the total amount a. 

We express the total amount in thousands of euro (× 1,000). In the planning phase of our stated 

choice study, we found out that most MBs in practice will be in the range from 6,000 to 11,000 

euro per year, given the gross costs of a fully operational lease car (including a fuel card) for 

the period of one year. Consequently, a belongs to the interval [0.6, 1.1]. In our study, we 

considered amount values a ranging from 0.6 to 1.1 in steps of 0.05, corresponding to 500 euro. 

 

Using the MB components listed in Table 1, we can define 720 ways to spend a MB, because 

there is one component with five levels, there are two components with three levels and two 

more components with four levels, and 5×3×3×4×4=720. However, not all the 720 

combinations are feasible. Certain combinations have a cost exceeding the upper limit of 11,000 

euro, while other combinations have a cost that is lower than the lower limit of 6,000 euro. 

Because we wanted to use realistic amounts of MBs in our study, we did not use these kinds of 

combinations in our stated choice experiment. Instead, we only used the 151 combinations 

whose cost falls within the interval from 6,000 to 11,000 euro. The number of acceptable 

combinations of MB components increases with the size of the MB, i.e. with the total amount. 

So, a budget size of 11,000 euros allows for more combinations than a budget size of 6,000 

euro. For instance, the number of acceptable combinations is 9 for a budget of size 6,000, as 

opposed to 20 for a budget size of 11,000. 

 

3.2 Constructing the design for the stated choice experiment 

In our choice experiment, we used choice situations involving two options, i.e., two 

combinations of MB components. Since, for any given employee, the total amount of the MB 



 

11 

 

is fixed, any choice situation should involve two options with the same total cost. This limits 

the number of possible choice situations, because it means that not all pairs of the 151 

acceptable MB component combinations are allowed. For instance, a combination with a cost 

of 6,000 euro cannot appear in a choice situation that also has a combination that costs 11,000 

euro. It turned out that, using the 151 acceptable MB component combinations, we could form 

1,023 acceptable choice situations, instead of 11,325 (=151×(151-1)/2). The constraint to have 

equal costs or amounts for both alternatives in a choice situation is inherent to the MB concept. 

In other applications involving mixtures and amounts, there may be no need for such a 

constraint and choice situations involving two alternatives with different amounts may make 

sense. An illustration of such a scenario can be found in Raghavarao and Wiley (2009).  

 

After defining the 1,023 acceptable choice situations, the next challenge was to select the choice 

situations to be used in the actual choice experiment. To ensure that we selected choice 

situations with a high information content, we made the selection of the choice situations using 

the D-optimal design approach that has been advocated by various groups of authors (Bliemer, 

Rose, & Hess, 2008; Graßhoff, Großmann, Holling, & Schwabe, 2004; Kessels, Jones, Goos, 

& Vandebroek, 2011; Rose & Bliemer, 2009; Rose, Bliemer, Hensher, & Collins, 2008). For 

any given number of choice situations used in the choice experiment, a D-optimal design 

guarantees the most precise parameter estimates, in the sense that the determinant of the 

parameter estimates’ variance-covariance matrix is minimized (Rose & Bliemer, 2009). To 

limit the computational burden when generating a D-optimal set of 96 choice situations, we 

adopted the utility-neutral design approach of Großmann et al. (2009; 2006). This allowed us 

to use the modified Fedorov point-exchange algorithm implemented in the OPTEX procedure 

for optimal experimental design in the SAS software (SAS Institute Inc., Cary, North Carolina).  

 

When creating our experimental design, we started from the special cubic Scheffé model for 

the mixture effects and a linear integrated amount effect. More specifically, we based our 

experimental design on the following utility model involving 38 parameters: 
 

Eq. 5 
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where q equals 5. In this expression, E(U) represents the systematic utility for an alternative. 

The assumed model in Eq. 5 involved many interaction terms to ensure that the experimental 

design we obtained would be capable of estimating possibly interesting interaction effects of 

the MB components precisely and of modeling the complex relationship between the 

respondents’ preferences, on the one hand, and the MB component proportions and the total 

amount of the MB, on the other hand. Because any experimental design tailored to a complex 

model also allows estimation of any simpler model, our experimental design is suitable for 

estimating a broad variety of models. 

 

Initially, we generated an experimental design involving 96 choice situations. We picked this 

number because it was our intention to let each respondent evaluate 12 choice situations and 96 

is an integer multiple of 12, and because, according to Sándor & Wedel (2005), using different 

choice situations for different respondents enhances the quality of the experimental design. 

When studying the D-optimal set of 96 choice situations produced by the SAS procedure 

OPTEX, we observed that these included very few alternatives involving a CC: 53.6% of the 

alternatives contained no CC, and only 4.7% of the alternatives involved a CC without any 

other benefits. This was at odds with the fact that the targeted respondents currently only receive 
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a CC. Due to this mismatch, we were concerned about a lack of choice situations involving the 

current default in the D-optimal choice situations and the possible drop-out of respondents this 

might entail (Fernandez & Rodrik, 1991; Kahneman, Knetsch, & Thaler, 1991; Samuelson & 

Zeckhauser, 1988).  

 

A remedy for this problem would have been to include a ‘status quo’ option in each choice set. 

However, this could have led to a substantial loss of important information in the likely event 

that the respondents would massively pick the ‘status quo’ option. Instead, we added 32 choice 

situations involving a(n) (expensive) CC. These additional choice situations were randomly 

drawn from a subgroup of choice situations, with high proportions for the CC component. The 

additional choice situations implied an increase from 96 to 128 choice situations. An alternative 

approach with a ‘forced choice’ each time a respondents selected the ‘status quo’ option, 

seemed less attractive to us, as respondents might quickly learn that picking the status quo 

option was followed by a ‘forced choice’ and therefore take a shortcut in later choice situations, 

by no longer selecting the ‘status quo’ option to complete the entire questionnaire faster. 

 

The total of 128 choice situations were divided over eight blocks of 16 choice sets each. Each 

block contained 12 choice situations from the original D-optimal design and four additional 

ones involving a(n) (expensive) CC. The full design was split into four blocks with relative low 

budgets or amounts (with values for a ranging from 0.6 to 0.9) and four blocks with relative 

high budgets or amounts (with values for a ranging from 0.9 to 1.1). Eventually, the respondents 

were randomly assigned to one of the four high-budget blocks or one of the four low-budget 

blocks, depending on their current CC. The full experimental design can be found in the 

appendix.  

 

3.3 Data collection and descriptive statistics 

We approached multiple employers in Belgium with a request to collaborate in the context of 

the MB project and to provide us with a sample of their employees with a CC. In return, 

employers were allowed to add questions at the end of the survey and were offered a company-

level report on the results. In total, 12 companies participated. Most of these companies 

considered the implementation of the MB in the future. The questionnaire with the stated choice 

experiment was administered in two rounds in 2014. The overall response rate of 38.5% is 

excellent for an online non-panel questionnaire.  

 

Our cleaned data set only contains target group members, i.e. CC users. Individuals with 

missing data for key questions, such as questions concerning the CC use, were removed from 

the dataset. In total, we received useful data from 817 individuals and a total of 13,072 choice 

situations. This should be sufficient for robust results (Rose & Bliemer, 2013). The basic socio-

demographics of our final sample are shown in Table 2. 
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Table 2: Basic socio-demographic data of the respondents in the final data set 

Aspect Level obs. % 

Gender Male 505 62% 

Female 306 38% 

Age group < 30 years 42 5% 

30 – 39 years 313 38% 

40 – 49 years 329 40% 

50 – 59 years 121 15% 

≥ 60 years 9 1% 

Children living at home Yes 613 76% 
 

No 197 24% 

Partner Yes 695 86% 
 

No 115 14% 

 

 

4. Analysis and results 

4.1 Estimation procedure 

As modeling data from mixture-amount stated preference studies is still largely uncharted 

territory, we explored the differences between the two most common estimation procedures for 

advanced mixed logit choice models: maximum simulated likelihood (MSL) and hierarchical 

Bayesian (HB) estimation (Allenby & Lenk, 1994; Rossi, Allenby, & McCulloch, 2005; Train, 

2009). In our mixed logit choice models, we treated every model parameter as random, to allow 

for inter-employee differences in preference concerning any component of the MB. 

 

Based on our comparison, we are inclined to recommend the use of HB procedures for the 

modeling for two reasons. First, for our data and all models we explored, the HB estimation 

procedure always provided estimates of the model parameters, while the MSL estimation 

approach did not converge on multiple occasions. More specifically, we encountered 

convergence problems with the MSL estimation procedure for higher-order models, because 

these models involve many parameters. Of course, before we can trust the HB estimation 

results, we need to confirm the stabilization of the Markov chains utilized in that estimation 

procedure. To this end, we used Geweke scores, Heidelbergers’ stationary test and a visual 

inspection of the trace plots. Second, the use of popular Halton draws in the MSL estimation 

procedure becomes problematic for high-dimensional problems (Andersen, 2014; Bhat, 2003; 

cf. Yang et al., 2016). More specifically, large numbers of random draws are needed in MSL 

estimation. For instance, for our second-order quadratic effect mixed logit model, we had to use 

50,000 draws to simulate the likelihood function (results not presented in this paper), and we 

had to rely on a high performance computer (a 168-node cluster with Intel IvyBridge (2680v2) 

processor) to obtain output from the MSL procedure within a reasonable amount of time (about 

30 hours). In general, the results and the performance of HB estimation procedures seemed 

more robust and, moreover, this estimation procedure was feasible on an ordinary PC. 

 

In the remainder of this paper, we discuss the results from models estimated by means of a HB 

procedure. In all cases, the model is a mixed multinomial logit model (MMNL) based on panel 

techniques and assuming a normal distribution for the random parameters. All models presented 

have been estimated using the package RSGHB in R for the HB procedure (Dumont, Keller, & 
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Carpenter, 2015; R core team, 2015), which builds on the generalized algorithms by Train 

(2006, 2009), derived from the work of Allenby and others (Allenby & Lenk, 1994; Allenby & 

Rossi, 2003; Sawtooth, 2009). For the statistical inference, we partly relied on the coda-package 

for the analysis of MCMC-chains in R (Plummer et al., 2015). 

 

For all models we report below, we applied the same prior distributions and settings in the HB 

estimation procedure. More specifically, we performed 100,000 iterations, without thinning 

(thinning =1) and with a relatively long burn-in period. We only used the final 5% of the 

iterations for estimating the model parameters. We set the degrees of freedom for the prior 

covariance matrix of the random model parameters to 250. This large number for the degrees 

of freedom results in individual-level parameter estimates that do not deviate tremendously 

from the population-level, aggregate estimates (Sawtooth, 2009). This strategy was prompted 

by the fact that our primary interest is in the population-level estimates. We set the prior mean 

for each population-level parameter to zero, and used a normal prior distribution for each of the 

parameters. Finally, we set the prior variance for the population-level parameter estimates to 

5,000.  

 

4.2 Model comparison and selection 

It is generally unclear which model is the most suitable one for any given data set. Also in our 

application involving mixtures and amounts, it is important to test various models, ranging from 

simple to complex, and to see which model fits the data best (Scheffé, 1958; Prescott, 2004). 

For linear regression models involving mixtures, Cornell (2011) recommends evaluating the 

gain in goodness-of-fit by studying the so-called F-scores. Since we need mixed logit models 

here, we cannot use F-scores. Instead, we evaluate the trade-off between model fit improvement 

and model complexity using BIC scores (Schwarz, 1978). This criterion penalizes the inclusion 

of additional parameters in models more severely than, for instance, Akaike’s information 

criterion does (Akaike, 1974). For our problem, the number of parameters increases strongly 

with the model complexity (Table 3). 

 
Table 3: Number of parameters (for mean and s.d.) in alternative mixed logit models 

 Integrated amount-effect Composite 

Polynomial None  Linear Quadratic Models 

First-order 8 16 24 10 

Second-order 28 56 84 40 

Third-order 48 96 144 90 

Full Cubic 68 136 204 - 

 

The performance of most models is good. The initial or zero log-likelihood function value (L 

score), for a model without explanatory variables, was −9,026, while the highest L score found 

is −5,653. This implies a pseudo-ρ2 value of 0.37. As shown in Fig. 1, there are substantial 

differences in BIC score for the models we fitted to our data. A general rule of thumb for BIC 

scores is that a 10-point decrease marks a highly significant improvement (Kass & Raftery, 

1995). Figure 1 shows that the drops in BIC score are quite large for our data set (much larger 

than 10 units), when moving from an ordinary mixture model to a mixture-amount model. One 

model formulation involving a quadratic effect of the amount outperforms all other models 

tested. To some extent, this is surprising since we did not include quadratic amount effects in 

the model upon which the experimental design is based (Eq. 5). Nevertheless, the design, shown 

in the appendix, involves choice situations with many different amount levels. This allows the 
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estimation and testing of higher-order amount effects. 

 

 

Fig. 1: BIC scores for the various fitted models 

The best model in terms of BIC score for our data is the second-degree Scheffé model with 

integrated quadratic amount effects. The BIC score for this model, which involves 42 mean 

parameters and 42 standard deviations for these parameters, was 12,515. The form of this model 

is as follows: 

 

Eq. 6 
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where q is again 5. The model in Eq. 5, on which the D-optimal design was based, involved 38 

parameters for the means and has a BIC score of 12,882. While that model is among the best 

models we fitted to our data, in terms of BIC score, it is outperformed by several other models 

we fitted. The parsimonious composite models proposed by Kowalski et al. (2000), and adopted 

in nearly all publications on choice models of mixtures (Dane et al., 2011; Khademi & 

Timmermans, 2012; Raghavarao & Wiley, 2009; Yang et al., 2016) do not provide the best BIC 

score either. For example, the second-order composite model with quadratic amount effects 

involves 40 instead of 84 parameters (Table 3), but it results in a BIC score of 12,969, which is 

significantly higher than the best BIC value we obtained.  

 

The relative performance of the different kinds of models in Fig. 1 was not unique to the mixed 

logit setting, which assumes that every respondent has his/her own preference structure. We 
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also compared the different models in a latent class model framework involving two classes 

and in a simple multinomial logit framework. In latent class models, the assumption is that there 

are different groups of respondents. Within each group, the respondents are assumed to have 

the same preference structure, but, across the groups, the respondents have different tastes. 

Also, in the latent class framework and in the multinomial logit framework, the model in Eq. 6 

outperformed the alternatives in terms of BIC score. These models were, however, inferior to 

the mixed logit models we fitted and compared in Fig. 1. 

 

The parameter estimates for the first- and second-order Scheffé mixture models with or without 

the linear and quadratic amount effects are shown in Table 4. The parameter estimates differ 

substantially from one model to the next in the table. This is due to the well-known phenomenon 

that dropping relevant terms causes bias in the remaining estimates. This phenomenon is quite 

pronounced for our data set, since multicollinearity is unavoidable when working with 

mixtures: when one proportion goes up, at least one other proportion must go down to ensure 

that the sum of all proportions equals one (Eq. 1). The occurrence of multicollinearity and the 

presence of many interaction terms also implies that interpreting individual regression 

parameters and performing individual significance tests makes little sense, and that it is better 

to take a prediction and optimization perspective. 
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Table 4: Mean estimates and time-series corrected s.e. for first- and second-order Scheffé models 

 First-order Scheffé model Second-order Scheffé model 

Amount effect none linear quadratic none linear quadratic 

Number of β’s 4  8  12  14  28  42  

BIC score 14,380 13,966 13,705 13,403 12,690 12,515 

Term est. s.e. est. s.e. est. s.e. est. s.e. est. s.e. est. s.e. 

β1 -0.72 0.01 -8.33 0.21 -28.47 0.11 0.36 0.02 -11.46 0.10 -18.52 0.10 

β2 -2.91 0.02 -9.96 0.35 10.48 0.46 7.69 0.55 -9.62 0.34 -3.72 0.11 

β3 -4.22 0.01 -3.52 0.14 -8.47 0.22 -6.34 0.03 -11.98 0.32 -5.38 0.11 

β4 3.36 0.03 0.07 0.12 0.81 0.33 -16.31 0.06 -15.67 0.22 -4.47 0.23 

β12       -11.00 0.79 -15.91 0.64 -15.10 0.58 

β13       2.22 0.08 -0.23 0.74 -6.44 0.25 

β14       22.35 0.18 17.57 0.51 2.33 0.87 

β15       2.93 0.13 7.10 0.31 -4.10 0.11 

β23       -5.25 0.58 1.40 0.59 4.06 0.19 

β24       2.60 1.48 9.41 0.66 14.97 0.22 

β25       -12.57 0.79 -0.46 0.13 -0.23 0.37 

β34       36.25 0.11 35.38 0.36 14.86 0.09 

β35       6.96 0.09 7.67 0.10 6.09 0.16 

β45       28.70 0.31 7.08 0.97 -3.15 0.98 

β1a   8.30 0.22 58.23 0.21   14.14 0.13 31.16 0.12 

β2a   7.49 0.47 -47.54 0.49   13.45 0.08 -10.50 0.32 

β3a   -1.23 0.20 9.99 0.68   5.13 0.40 -8.37 0.45 

β4a   3.48 0.18 1.94 0.37   -1.62 0.10 -12.38 0.14 

β12a         12.56 0.22 7.83 0.80 

β13a         5.01 0.30 4.87 0.12 

β14a         8.21 0.18 13.23 0.17 

β15a         -1.98 0.47 18.67 0.21 

β23a         5.98 0.22 -1.67 0.29 

β24a         -2.93 0.73 -10.38 0.39 

β25a         -4.11 0.57 -2.79 1.11 

β34a         7.29 0.20 23.93 0.52 

β35a         4.30 0.31 2.52 0.68 

β45a         29.65 1.29 12.38 0.08 

β1a2     -29.62 0.13     -10.19 0.21 

β2a2     34.63 0.29     20.89 0.12 

β3a2     -6.41 0.47     6.22 0.44 

β4a2     1.32 0.48     5.28 0.50 

β12a2           0.36 0.50 

β13a2           6.07 0.13 

β14a2           3.70 0.24 

β15a2           -9.73 0.59 

β23a2           0.48 0.21 

β24a2           -3.35 0.16 

β25a2           -7.23 0.33 

β34a2           -5.34 0.21 

β35a2           2.42 0.16 

β45a2           23.40 0.09 

Note: The columns labeled s.e. contain time-series corrected standard errors of the estimates, based on 5,000 iterations of the HB procedure 

and calculated with the coda package in “R” (Plummer et al., 2015). Amount effects: ‘none’ refers to models without the amount, ‘linear’ refers 

to models with integrated linear amount effects, and ‘quadratic’ refers to models with integrated quadratic amount effects. 
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4.3  Optimal mixtures: maximizing utility 

Models for data from mixture experiments are generally used to identify optimal mixtures, and 

to investigate how the optimal mixtures vary with the amount. For instance, in agriculture, one 

may look for an optimal composition of a fertilizer in the event a low dose is used, and 

investigate whether that composition needs to be changed when a high dose is needed.  

 

In order to optimize the MB composition in our application for various values of the amount 

variable a, we used the nonlinear constrained optimization function fmincon in MatLab 2014a 

(MathWorks, Natick, Massachusetts). First, we fixed the amount value to 8,807 euro, the 

estimated average budget size available to our respondents, and computed the optimal MB 

composition, using the estimates of the parameters from each of the fitted mixed multinomial 

logit models. Next, we also studied the effect of the amount on the optimal mixture. In our 

optimization, we did not impose any lower bound on the proportion of the various MB 

components. This implies that zero proportions are allowed in our optimal MB composition. A 

zero proportion in an optimal mixture should be interpreted as a component that the respondents 

dislike. A large proportion corresponds to a MB component that the respondents do like. We 

did use an upper bound, however, for each of the components during our optimization, to 

exclude impossible or extreme results. For example, the maximum spending we allowed on a 

bicycle was 3,000 euro. In general, the upper bound we use in this section for a given component 

is larger than that used in the initial experimental design (Table 1). More specifically, we 

allowed one extra level for each component of the MB. For example, the amounts that could be 

spend on a bicycle in the actual stated choice study were 1,000 and 2,000. Therefore, the new 

upper limit is 3,000 in absolute terms, or 0.341 (= 0.3/0.8807 = 34.1%) in relative terms. 

 

The optimal mixtures obtained for the various models under investigation and for an amount 

value of 8,807 euro are listed in Table 5, along with the BIC scores of the various models and 

the ranks of the models in terms of BIC score. The results indicate that employees strongly 

prefer non-transport related fringe benefits: additional days off (x4) and additional income (x5). 

In the top-5 models in terms of BIC scores, the share of ‘CC’ (x1) ranges from 32.4% to 40.8%, 

the share of ‘days off’ ranges from 13.3% to 19.6%, and the share of ‘bonus’ ranges from 45.3% 

to 49.1%. The optimal proportions for ‘bicycle’ (x2) and ‘PT’ (public transport, x3) are nearly 

always zero. 
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Table 5: Optimal mixtures for all models from Table 3 and the average MB size of 8,807 euro 

Utility formula BIC Rank CC (x1) Bicycle (x2) PT (x3) Days off (x4) Bonus (x5) 

first-order mixture 14.380 14 0.000 0.000 0.000 0.227 0.773 

     + linear amount 13.966 13 0.000 0.000 0.000 0.227 0.773 

     + quadratic amount 13.705 12 0.000 0.000 0.000 0.227 0.773 

second-order 13.403 10 0.296 0.000 0.000 0.168 0.536 

     + linear amount 12.690 2 0.384 0.000 0.000 0.163 0.453 

     + quadratic amount 12.515 1 0.324 0.000 0.000 0.196 0.480 

special cubic 13.424 11 0.000 0.000 0.000 0.213 0.787 

     + linear amount 13.020 5 0.363 0.000 0.017 0.156 0.464 

     + quadratic amount 13.035 6 0.229 0.000 0.000 0.227 0.544 

full cubic 13.209 8 0.403 0.000 0.000 0.151 0.447 

     + linear amount 13.100 7 0.249 0.000 0.000 0.116 0.635 

     + quadratic amount 13.238 9 0.156 0.000 0.000 0.109 0.735 

composite (1st order) 14.409 15 0.000 0.000 0.000 0.227 0.773 

composite (2nd order) 12.969 4 0.408 0.000 0.000 0.133 0.459 

composite (3rd order) 12.787 3 0.357 0.000 0.000 0.152 0.491 

Note: Maximum values (upper bounds) in bold 

 

Fig. 2 visualizes the impact of the amount on the preferences for the five MB components. More 

specifically, it shows the optimal proportions for the MB components for all budget sizes or 

amounts from 6,000 to 11,000 euro, calculated using the model from Eq. 6, which has the lowest 

BIC score. The figure clearly shows that the total amount is highly relevant for modeling the 

preferences. Across all amounts, the end-of-the-year bonus and days off components (whose 

proportions are denoted by x5 and x4, respectively) are popular parts of the MB mixtures. For 

people with a budget smaller than 6,500 euro, the optimal mix contains hardly anything other 

than these two components, but the days off component (x4) is the only component whose 

proportion is actually maximized. Remarkably, the bicycle or pedelec (x2) does not appear in 

any of the optimal mixtures. The preference for a CC (x1) increases with the amount. The 

increase in the proportion of CCs in the optimal MB mixture is accompanied by a decrease in 

the proportion for the end-of-the-year bonus component. This is probably due to the 

phenomenon that more expensive cars, and thus status symbols, come within reach. It might 

also be related to income tax or to a lower relative utility for additional income in high-income 

groups, as these groups will generally be the ones who receive larger mobility budgets.   
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Fig. 2: Optimal proportions for the components of the MB as a function of the total amount available 

Several remarks concerning the above analyses are in order. First, the utility formula used has 

an effect on the outcome in terms of the ideal proportions for x1, x4, and x5, (i.e., the CC, ‘days 

off’ and ‘bonus’ components), while x2 = x3 = 0 for virtually each of the models when the 

amount is 7,000 euro or larger. Second, using a first-order Scheffé model results in an optimal 

mixture at the edge of the space of MB options we explored. A more nuanced image appears 

when interaction terms are included in the model and thus when a higher-order Scheffé model 

is utilized. Third, due to the popularity of both x4 and x5, the optimal MB option involves a very 

modest nonzero share for a CC for many of the models we tested, unless the budget is smaller 

than 6,500 euro. These modest nonzero proportions for CCs correspond to very cheap cars, 

which we considered as unrealistic options when setting up our study (Table 1). A simple 

explanation for this result is that it is based on the population-level mean estimates. 

 

A more detailed analysis, using the individual level estimates, as obtained from the HB 

estimation of the model in Eq. 6, combined with estimated budget available to the individual, 

reveals that many respondents aim for (or cannot decide between) two components (Table 6). 

Popular options are, again, days off, bonus and the CC. These employees will probably allocate 

no budget to the remaining components. The upper bounds for the CC or bonus components 

are, however, rarely reached. In total, only 76 out of 817 participants dedicate a share of more 

than 90% of their budget to the CC. In only 23 cases, the maximum proportion for the bonus 

component is reached. Conversely, in 360 out of 817 cases, the maximum proportion for 

additional days off is reached. This confirms the popularity of less time for work or more time 

for family and leisure. Note that the average of all individually optimized mixtures in Table 6 

differs from the optimal mixture derived from the population-level mean parameter estimates 

(for the model in Eq. 6).  
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Table 6: Optimization results for the first 10 individuals in our sample as well as the optimal mixture 
based on the population-level parameter estimates. 
 
  Optimal situation Allocated budget ( = share * est. budget) 

ID Est. budget x1 x2 x3 x4 x5 CC (x1) Bicycle (x2) PT (x3) Days off (x4) Bonus (x5) 

1 € 7,352 18% 0% 0% 0% 82% € 1,322 € 0 € 0 € 0 € 6,031 

2 € 9,997 80% 0% 0% 20% 0% € 7,997 € 0 € 0 € 2,000 € 0 

3 € 9,396 0% 32% 48% 20% 0% € 0 € 3,000 € 4,500 € 1,896 € 0 

4 € 12,882 41% 23% 0% 0% 36% € 5,219 € 3,000 € 0 € 0 € 4,662 

5 € 8,068 69% 0% 6% 25% 0% € 5,575 € 0 € 493 € 2,000 € 0 

6 € 8,214 51% 0% 0% 0% 49% € 4,223 € 0 € 0 € 0 € 3,991 

7 € 9,269 41% 0% 0% 0% 59% € 3,806 € 0 € 0 € 0 € 5,463 

8 € 8,716 44% 0% 0% 0% 56% € 3,852 € 0 € 0 € 0 € 4,863 

9 € 9,082 78% 0% 0% 22% 0% € 7,082 € 0 € 0 € 2,000 € 0 

10 € 9,658 79% 0% 0% 21% 0% € 7,658 € 0 € 0 € 2,000 € 0 

11 … … … … … … … … … … … 

…            

817 … … … … … … … … … … … 

AVG € 8,807 44% 6% 9% 13% 28% € 3,858 € 561 € 776 € 1,113 € 2,500 

 

5. Conclusion 
In this paper, we presented the set-up, design, implementation and data analysis of a mixture-

amount stated preference study about the composition and combination of options within the 

mobility budget framework. The mobility budget is a new concept mainly aimed at reducing 

company car ownership and use. For a given individual and fixed budget (=amount), employees 

were allowed to make their own choices with respect to transport-related issues instead of 

getting a company car with fuel card. If they choose and travel wisely (i.e. if they do not opt for 

expensive company cars), these employees are able to save for an end-of-the-year bonus or 

obtain extra days off, for instance. 

 

5.1 Policy implications 

Our results demonstrate that current CC owners are hardly interested in a bicycle, pedelec or a 

network card for unlimited use of the PT network. Indeed, the MB seems to be a poor instrument 

to promote other modes of transport. Additional days off or a bonus are popular alternatives to 

the CC, as our results indicate. These options do have some potential to lower car ownership, 

to promote smaller (and lighter) vehicles and to reduce car use. However, it remains unclear 

how this additional time and money spend will be used by current CC users. Furthermore, when 

employees enjoy their days-off, other employees might be needed to carry out the work that 

needs to be done in their place. Some employees might cover more kilometers with their (less 

expensive) CC on a day-off than they would have on a regular day of work. In short, we do not 

expect that these options will necessarily result in a decrease of transport-related problems. 

 

There are, of course, options to improve the relative position of the other transport modes, in 

comparison to the CC. This can be achieved by subsidies or tax-cuts for bicycles or public 

transport modes or by a less beneficial position for the CC. The latter is highly controversial, 

and was, in fact, the reason to promote the MB in the first place. The first option basically 

means an extension of the beneficial position of the CC to other modes. Meanwhile, one should 
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be aware, that these options already receive subsidies and tax-cuts within the current legislative 

framework, especially for commutes.  

 

One of the most obvious questions related to this paper would be: should we implement the MB 

in Belgium? In response, we would stress that the MB does not exist. In fact, multiple designs 

for the MB are possible, each with different highlights, key elements, and definitions. We only 

studied a popular interpretation of the concept via our experiment. The question regarding the 

need to implement the MB should therefore always be accompanied by a question regarding its 

design: what kind of MB should be implemented? This question, in turn, is directly related to 

the question of policy objectives and priorities. Moreover, the MB will always be nested within 

a larger framework of legislation and taxation (reimbursements, income tax, benefit-in-kind, 

etc.). Changes in any of these fields might have a direct or indirect effect on the success of the 

MB. Indeed, a seemingly technical-juridical issue is in fact political. 

 

In general, we are relucted to promote the concept of the MB, as it does not directly deal with 

the issues associated to the CC. The beneficial treatment of the CC in current legislation and 

taxation was the reason to suggest the MB in the first place. The MB is not promoted instead 

of, but next to this beneficial position. Next, implementation of the MB is voluntary by 

employers, participation by employees is voluntary and within the MB these participants have 

the ‘freedom-of-choice’. Hence, it is a soft approach. The implementation of the MB requires 

serious investments by all parties involved, while the results from our stated choice study 

suggest that the modal shift potential of the MB will, most likely, be limited. In contrast, we 

would support a critical reflection and revision of the current system of the CC, which has its 

deficiencies. This revision does not, however, hinder the implementation of the MB, and might 

even boots its popularity. 

 

If policy makers do feel the need to implement the MB or when the MB is already implemented, 

we would strongly suggest reconsidering the following design aspects: size of the budget, 

choice moments, and bonus option. In our experiment the size of the MB was equal to the 

current fixed and variable costs of the CC. The estimated budget available to the individuals 

ranged from 5,945 to 12,880 euros. For three reasons, we argue the size of the budget should 

not equal the current transport related costs. First, the current costs are also used to cover the 

costs for the excesses, like the annual 6,000 to 7,000 private kilometers (Section 1). If the 

current transport costs are transferred to a future budget, this budget will be sufficient to 

maintain current excesses. This first argument suggests that the budget should be lower. Second, 

establishing the current cost is not straightforward, especially not for new employees, as these 

costs might vary from time to time and there is no list readily available concerning what to 

include and exclude.  A more robust approach is needed. Third, the use of current cost might 

be informative in the transition from one system to the next. Once the new system is in place, 

the current cost can no longer serve as guidance, as they do not exist anymore. The prices of 

fuel, cars, bicycles, public transport, and so on vary over time, not necessarily in same pace or 

direction. Especially when people decide to waive their CC a point of reference will be missing 

within just a few years. 

 

Within our experiment we did not include any information about the period associated with the 

choices made or the frequency of choice moments. Hence, people were unaware whether they 

selected options for one week, one year or a decennium. In practice, this information needs to 

be available to participant. Given the length of contracts with lease companies, some actors 

suggest a choice moment every five years. We believe that this is absurd, as there is too much 

uncertainty involved. Moreover, the current CC should not be the point of reference. In the 
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Flemish pilot project Mobiliteitsbudget werkt! many employees regretted their initial choices 

after merely a few weeks (Christiaens, De Witte, & Vanderbeuren, 2013).  We favor a dual 

track approach. Fundamental choices such as a CC or a relocation bonus on the long-term track; 

and flexibility for relatively small expenses on a daily basis, like the use of bicycle sharing, car 

sharing, taxi, or public transport, for instance via an all-in-one mobility card or Mobility-as-a-

Service app. 

 

The option to save money within the MB for a bonus is a key characteristic of an efficient 

version of the concept to some actors involved, as it provides an incentive to ‘choose wisely’ 

(Zijlstra & Vanoutrive, 2018). Our choice experiment demonstrates that the Bonus-option is 

very popular. However, due to the use of the CC in wage-optimization, the two most relevant 

and interrelated questions here are: what ratio for car-to-cash is to be used and should this bonus 

be limited in size? The necessity of a limit in the budget that can be payed as additional wage 

is related the creation of a new loophole in the system; employers and employees might use the 

MB to increase net wages. Therefore, we suggest that the best and easiest way to avoid abuse 

is to subject the bonus to the same tax regime as ordinary wage and to create a more level 

playing field between CC and wage. 

 

5.2 Scientific contribution 

The stated preference study we conducted in the context of the mobility budget is of interest to 

choice modelers in transportation, because the mobility budget choice is essentially a mixture-

amount problem: the respondents’ preferences depend on a mixture of components and on the 

total amount available in their personal mobility budget. Similar dependencies have been 

modelled successfully for many years in agriculture, in the chemical industry and in the food 

industry using mixture-amount regression models (Cornell, 2011; Piepel & Cornell, 1985; 

Smith, 2005). We embedded traditional mixture-amount regression models in the usual choice 

models used in transportation studies, such as the multinomial logit model and the panel mixed 

logit model. We also adopted a D-optimal design approach to construct an informative set of 

choice situations. For the analysis of the data from a mixture-amount stated choice experiment, 

we obtained useful results in a limited amount of computing time by using hierarchical Bayesian 

estimation methods, as we did not encounter convergence problems with this estimation 

techniques and as it produced individual-level parameter estimates in addition to population-

level parameter estimates.  

 

The mixture-amount problem is certainly not unique to the mobility budget context. Many other 

potential applications exist in the field of transport and in other fields. Budgets, time and space 

are scarce, while there always exist multiple options to use a financial budget, a certain amount 

of time or a certain amount of space. Certain combinations of options may be more attractive 

than others, and the perceived utility of combinations of options is sometimes larger (smaller) 

than the sum of the perceived utilities of the individual components. In such scenarios, where 

synergetic (or antagonistic) interactions exist, combining choice models with mixture models, 

mixture-amount models, and mixture-process variable models may provide useful insights into 

the combinations that optimize the respondents’ utility. Examples in the field of transport can 

relate to road design and the allocation of mode-specific space (bus, car or bicycle lanes), mode-

specific and total time use in multimodal trips or packages in relation to Mobility as a Service. 

To conclude, we are convinced that mixture and mixture-amount modeling is an interesting 

new approach within the field of choice modeling. 
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The models for preference studies involving mixtures involve many parameters, especially if 

multiple process variables are included or complex interactions occur. This also implies that 

many choice situations are needed and that the choice task becomes quite burdensome for the 

respondents, unless blocking is used. For complex models involving many interaction terms, 

providing sensible prior information concerning the model parameters (i.e., specifying prior 

means as well as a prior variance-covariance matrix) is challenging. In this paper, we therefore 

used a utility-neutral design approach, in which we assumed that all model parameters were 

zero and that there was no uncertainty concerning these values. This reduced the computational 

burden tremendously and allowed us to come up with a suitable experimental design in a limited 

time period. A better, but computationally substantially more demanding approach would have 

been to allow for uncertainty concerning some or all of the values of the model parameters and 

use a Bayesian approach with zero prior means and nonzero prior variances. A yet better 

approach would be to perform a small pilot study to estimate the most important model 

parameters and quantify the uncertainty concerning these parameters, as recommended by 

Huber and Zwerina (1996). It would be an interesting topic for future research to investigate 

the added value of these computationally more intensive approaches to designing stated 

preference studies with mixtures and an amount. 
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Appendix: Choice design 
In Table A.1, we present the experimental design of our stated preference study. In the table, 

Blk is short for block. Only one block was presented to each respondent. Blocks 1 to 4 were 

presented to respondents with a relatively small MB. Blocks 5 to 8 were presented to 

respondents with a relatively large MB. The column labeled ‘Xtra’ flags the added questions to 

make sure that a enough options with a CC were presented to the respondents, who currently 

all have a CC. The symbol a denotes the amount (in 10,000 euro). The proportions x1, x2, x3, x4, 

and x5 correspond to the components CC, bicycle, PT, days off and end-of-year bonus, 

respectively.  

 
Table A.1: Experimental design 

    Option A Option B 

blk Set xtra a X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 

1 1 1 0.9 1.00 0.00 0.00 0.00 0.00 0.83 0.11 0.00 0.06 0.00 

 2 0 0.65 0.00 0.15 0.00 0.23 0.62 0.92 0.00 0.00 0.08 0.00 

 3 0 0.8 0.75 0.00 0.00 0.00 0.25 0.00 0.00 0.56 0.19 0.25 

 4 0 0.85 0.00 0.24 0.53 0.00 0.24 0.71 0.00 0.00 0.06 0.24 

 5 1 0.9 0.67 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 6 0 0.6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.50 0.17 0.33 

 7 0 0.6 0.00 0.00 0.75 0.25 0.00 0.00 0.17 0.00 0.17 0.67 

 8 0 0.8 0.75 0.00 0.00 0.00 0.25 0.75 0.25 0.00 0.00 0.00 

 9 1 0.9 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.67 

 10 0 0.8 0.00 0.25 0.56 0.19 0.00 0.75 0.25 0.00 0.00 0.00 

 11 0 0.7 0.86 0.14 0.00 0.00 0.00 0.00 0.29 0.43 0.00 0.29 

 12 0 0.6 0.00 0.00 0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.67 

 13 1 0.85 0.88 0.12 0.00 0.00 0.00 0.88 0.00 0.00 0.12 0.00 

 14 0 0.75 0.00 0.00 0.00 0.20 0.80 0.00 0.27 0.00 0.20 0.53 

 15 0 0.65 0.00 0.00 0.69 0.00 0.31 0.00 0.15 0.69 0.15 0.00 

  16 0 0.6 0.00 0.17 0.00 0.17 0.67 0.00 0.33 0.50 0.17 0.00 

2 1 1 0.9 0.67 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 2 0 0.8 0.00 0.25 0.00 0.00 0.75 0.75 0.00 0.00 0.00 0.25 

 3 0 0.7 0.00 0.00 0.43 0.00 0.57 0.00 0.29 0.00 0.14 0.57 

 4 0 0.6 0.00 0.17 0.75 0.08 0.00 0.00 0.33 0.00 0.00 0.67 

 5 1 0.9 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.67 

 6 0 0.75 0.00 0.00 0.00 0.20 0.80 0.00 0.00 0.40 0.07 0.53 

 7 0 0.85 0.00 0.24 0.35 0.18 0.24 0.71 0.12 0.00 0.18 0.00 

 8 0 0.6 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.17 0.33 

 9 1 0.9 1.00 0.00 0.00 0.00 0.00 0.83 0.11 0.00 0.06 0.00 

 10 0 0.6 0.00 0.00 0.75 0.25 0.00 0.00 0.33 0.50 0.17 0.00 

 11 0 0.65 0.00 0.00 0.00 0.08 0.92 0.00 0.31 0.46 0.23 0.00 

 12 0 0.8 0.00 0.00 0.56 0.19 0.25 0.00 0.25 0.56 0.19 0.00 

 13 1 0.85 0.71 0.24 0.00 0.06 0.00 0.88 0.12 0.00 0.00 0.00 

 14 0 0.6 0.00 0.00 0.75 0.25 0.00 0.00 0.17 0.50 0.00 0.33 

 15 0 0.65 0.00 0.00 0.46 0.23 0.31 0.00 0.31 0.00 0.08 0.62 

  16 0 0.85 0.00 0.24 0.00 0.06 0.71 0.71 0.12 0.00 0.18 0.00 

3 1 1 0.9 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.67 
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 2 0 0.6 0.00 0.17 0.75 0.08 0.00 1.00 0.00 0.00 0.00 0.00 

 3 0 0.7 0.86 0.00 0.00 0.14 0.00 0.00 0.00 0.43 0.00 0.57 

 4 0 0.6 0.00 0.00 0.00 0.00 1.00 0.00 0.17 0.75 0.08 0.00 

 5 1 0.9 1.00 0.00 0.00 0.00 0.00 0.83 0.11 0.00 0.06 0.00 

 6 0 0.6 0.00 0.17 0.50 0.00 0.33 0.00 0.33 0.00 0.00 0.67 

 7 0 0.8 0.00 0.13 0.38 0.00 0.50 0.00 0.25 0.56 0.19 0.00 

 8 0 0.65 0.00 0.00 0.46 0.23 0.31 0.00 0.00 0.69 0.00 0.31 

 9 1 0.9 0.67 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 10 0 0.6 1.00 0.00 0.00 0.00 0.00 0.00 0.33 0.50 0.17 0.00 

 11 0 0.65 0.00 0.15 0.46 0.08 0.31 0.00 0.31 0.69 0.00 0.00 

 12 0 0.75 0.80 0.00 0.00 0.20 0.00 1.00 0.00 0.00 0.00 0.00 

 13 1 0.85 0.88 0.00 0.00 0.12 0.00 0.71 0.00 0.00 0.06 0.24 

 14 0 0.7 0.86 0.00 0.00 0.14 0.00 0.86 0.14 0.00 0.00 0.00 

 15 0 0.7 0.00 0.00 0.00 0.14 0.86 0.00 0.14 0.00 0.00 0.86 

  16 0 0.6 0.00 0.00 0.50 0.17 0.33 0.00 0.17 0.50 0.00 0.33 

4 1 1 0.9 1.00 0.00 0.00 0.00 0.00 0.83 0.11 0.00 0.06 0.00 

 2 0 0.7 0.00 0.00 0.43 0.00 0.57 0.00 0.14 0.00 0.00 0.86 

 3 0 0.85 0.00 0.24 0.00 0.06 0.71 0.00 0.24 0.35 0.18 0.24 

 4 0 0.6 0.00 0.17 0.50 0.00 0.33 0.00 0.17 0.75 0.08 0.00 

 5 1 0.9 0.67 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 6 0 0.65 0.00 0.00 0.69 0.00 0.31 0.00 0.31 0.69 0.00 0.00 

 7 0 0.6 1.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.67 

 8 0 0.8 0.00 0.25 0.00 0.00 0.75 0.75 0.25 0.00 0.00 0.00 

 9 1 0.9 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.67 

 10 0 0.65 0.00 0.31 0.46 0.23 0.00 0.00 0.31 0.69 0.00 0.00 

 11 0 0.6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.75 0.25 0.00 

 12 0 0.75 0.00 0.00 0.00 0.20 0.80 0.00 0.27 0.00 0.20 0.53 

 13 1 0.85 0.88 0.00 0.00 0.12 0.00 0.71 0.12 0.00 0.18 0.00 

 14 0 0.65 0.00 0.00 0.69 0.00 0.31 0.00 0.15 0.00 0.23 0.62 

 15 0 0.85 0.00 0.12 0.00 0.18 0.71 0.71 0.24 0.00 0.06 0.00 

  16 0 0.75 0.80 0.00 0.00 0.20 0.00 0.00 0.27 0.60 0.13 0.00 

5 1 1 1.05 1.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.14 0.00 

 2 0 1.05 0.00 0.19 0.43 0.00 0.38 0.57 0.10 0.29 0.05 0.00 

 3 0 1 0.60 0.00 0.00 0.00 0.40 0.60 0.10 0.00 0.10 0.20 

 4 0 1.05 0.00 0.19 0.29 0.14 0.38 0.86 0.00 0.00 0.14 0.00 

 5 1 0.95 0.79 0.00 0.00 0.00 0.21 0.63 0.21 0.00 0.16 0.00 

 6 0 1.1 0.82 0.18 0.00 0.00 0.00 0.55 0.09 0.27 0.09 0.00 

 7 0 1.05 0.00 0.00 0.29 0.14 0.57 0.57 0.10 0.29 0.05 0.00 

 8 0 0.95 0.00 0.21 0.00 0.16 0.63 0.00 0.21 0.47 0.11 0.21 

 9 1 0.9 0.67 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 10 0 1.05 1.00 0.00 0.00 0.00 0.00 0.57 0.00 0.29 0.14 0.00 

 11 0 1.1 0.00 0.00 0.41 0.05 0.55 0.55 0.00 0.27 0.00 0.18 

 12 0 1.1 0.55 0.09 0.00 0.00 0.36 0.68 0.18 0.00 0.14 0.00 

 13 1 1.05 1.00 0.00 0.00 0.00 0.00 0.71 0.19 0.00 0.10 0.00 

 14 0 1.05 0.57 0.00 0.29 0.14 0.00 0.00 0.19 0.29 0.14 0.38 

 15 0 1.05 0.00 0.00 0.29 0.14 0.57 0.00 0.00 0.43 0.00 0.57 
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  16 0 1.05 0.00 0.00 0.43 0.00 0.57 0.00 0.19 0.29 0.14 0.38 

6 1 1 1.05 1.00 0.00 0.00 0.00 0.00 0.57 0.00 0.29 0.14 0.00 

 2 0 1.1 0.55 0.09 0.00 0.00 0.36 0.55 0.18 0.27 0.00 0.00 

 3 0 1 0.00 0.10 0.45 0.05 0.40 0.60 0.20 0.00 0.00 0.20 

 4 0 1.05 0.86 0.00 0.00 0.14 0.00 0.57 0.10 0.00 0.14 0.19 

 5 1 0.95 0.79 0.21 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.21 

 6 0 1.05 0.57 0.00 0.00 0.05 0.38 1.00 0.00 0.00 0.00 0.00 

 7 0 1.1 0.00 0.09 0.41 0.14 0.36 0.55 0.00 0.00 0.09 0.36 

 8 0 0.9 0.67 0.00 0.33 0.00 0.00 0.67 0.11 0.00 0.00 0.22 

 9 1 0.9 1.00 0.00 0.00 0.00 0.00 0.83 0.11 0.00 0.06 0.00 

 10 0 1.05 0.00 0.00 0.43 0.00 0.57 0.86 0.00 0.00 0.14 0.00 

 11 0 1.1 0.55 0.00 0.27 0.00 0.18 0.82 0.00 0.00 0.00 0.18 

 12 0 0.95 0.00 0.00 0.32 0.05 0.63 0.00 0.21 0.00 0.16 0.63 

 13 1 1.05 1.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.05 0.38 

 14 0 1.1 0.55 0.00 0.27 0.00 0.18 0.55 0.00 0.41 0.05 0.00 

 15 0 1.1 0.55 0.18 0.27 0.00 0.00 0.95 0.00 0.00 0.05 0.00 

  16 0 1.05 1.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.14 0.00 

7 1 1 1.05 0.57 0.00 0.00 0.05 0.38 1.00 0.00 0.00 0.00 0.00 

 2 0 0.9 0.67 0.00 0.33 0.00 0.00 0.67 0.22 0.00 0.11 0.00 

 3 0 1.05 0.57 0.00 0.29 0.14 0.00 0.57 0.19 0.00 0.05 0.19 

 4 0 1.1 0.55 0.18 0.00 0.09 0.18 0.55 0.18 0.27 0.00 0.00 

 5 1 0.95 0.63 0.00 0.32 0.05 0.00 0.79 0.21 0.00 0.00 0.00 

 6 0 1.1 0.68 0.00 0.27 0.05 0.00 0.68 0.18 0.00 0.14 0.00 

 7 0 1.05 1.00 0.00 0.00 0.00 0.00 0.57 0.00 0.43 0.00 0.00 

 8 0 0.9 0.00 0.11 0.50 0.17 0.22 0.67 0.00 0.33 0.00 0.00 

 9 1 1.05 0.57 0.00 0.43 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 10 0 1.05 0.00 0.19 0.43 0.00 0.38 0.71 0.00 0.29 0.00 0.00 

 11 0 0.95 0.63 0.00 0.00 0.16 0.21 0.63 0.00 0.32 0.05 0.00 

 12 0 1.1 0.55 0.09 0.00 0.00 0.36 0.68 0.00 0.27 0.05 0.00 

 13 1 1.05 1.00 0.00 0.00 0.00 0.00 0.71 0.00 0.29 0.00 0.00 

 14 0 1.1 0.00 0.18 0.27 0.00 0.55 0.82 0.18 0.00 0.00 0.00 

 15 0 1.05 0.57 0.00 0.43 0.00 0.00 0.00 0.00 0.29 0.14 0.57 

  16 0 1.1 0.00 0.00 0.41 0.05 0.55 0.00 0.18 0.27 0.00 0.55 

8 1 1 1.05 1.00 0.00 0.00 0.00 0.00 0.57 0.00 0.43 0.00 0.00 

 2 0 1.05 0.57 0.00 0.29 0.14 0.00 0.57 0.00 0.43 0.00 0.00 

 3 0 1.1 0.55 0.00 0.27 0.00 0.18 0.55 0.18 0.27 0.00 0.00 

 4 0 0.9 0.67 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.67 

 5 1 0.95 0.00 0.21 0.47 0.11 0.21 0.79 0.00 0.00 0.00 0.21 

 6 0 1 0.60 0.00 0.00 0.00 0.40 0.60 0.20 0.00 0.00 0.20 

 7 0 1.1 0.55 0.00 0.27 0.00 0.18 0.82 0.18 0.00 0.00 0.00 

 8 0 1.1 0.68 0.18 0.00 0.14 0.00 0.00 0.18 0.41 0.05 0.36 

 9 1 0.9 0.00 0.00 0.33 0.00 0.67 1.00 0.00 0.00 0.00 0.00 

 10 0 0.95 0.63 0.00 0.00 0.16 0.21 0.63 0.21 0.00 0.16 0.00 

 11 0 0.95 0.00 0.21 0.00 0.16 0.63 0.63 0.00 0.00 0.16 0.21 

 12 0 1.1 0.82 0.00 0.00 0.00 0.18 0.00 0.09 0.27 0.09 0.55 

 13 1 1.05 1.00 0.00 0.00 0.00 0.00 0.86 0.10 0.00 0.05 0.00 
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 14 0 1 0.00 0.00 0.45 0.15 0.40 0.00 0.10 0.30 0.00 0.60 

 15 0 1.1 0.00 0.18 0.27 0.00 0.55 0.55 0.00 0.00 0.09 0.36 

  16 0 1.1 0.82 0.18 0.00 0.00 0.00 0.68 0.00 0.00 0.14 0.18 

 


