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Abstract

A crucial stage in the development of medical drugs is to study which additives, usu-
ally called excipients, impact the active ingredient stability. This type of study is
generally named an excipient compatibility study and requires a mixture experiment.
Subsequently, the effect of the storage conditions, more specifically the relative humid-
ity and temperature, on the stability is investigated. This so-called accelerated life test
involves a factorial type of experiment. It has become, however, customary to include
the storage conditions in the compatibility study. This provides valuable information
concerning potential interactions between excipient combinations and storage condi-
tions. Experiments that combine a mixture experiment with a factorial experiment are
generally named mixture-process variable experiments. A limited number of designs
for mixture process-variable experiments are available in the literature. One problem
is that the proposed designs offer little flexibility. Another is that the required num-
ber of runs becomes prohibitively large for large numbers of mixture components. In
this paper, we examine flexible, optimal designs for realistic mixture-process variable
experiments. Our motivation is to provide guidance to pharmaceutical formulation
scientists concerning state-of-the art models and designs for excipient compatibility
studies. Using several proof-of-concept examples, we demonstrate that I-optimal de-
signs offer both flexibility and small variances of prediction. We also discuss a real-life
example, which could be used as a blueprint for future studies. Because many excipi-
ent compatibility studies are not completely randomized, we pay special attention to
their logistics and to the resulting randomization restrictions, which lead to split-plot
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and strip-plot experiments.

Keywords: D-optimal design; I-optimal design; mixture-process variabele experiment;
randomization restriction; split-plot design; strip-plot design.
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1 Introduction

After a new active pharmaceutical ingredient (API) has been developed, the next challenge

is to select excipients for an acceptable and stable formulation. The term “stability” refers

to the allowed storage time (or shelf life) of a medical drug before any degradation product

achieves a level that represents a risk to the patient (Waterman and Adami, 2005), or to the

capacity to retain acceptable safety and efficacy during storage. Although long regarded

as being inert, excipients in the formulation of a drug can interact with the API, either

directly or indirectly, by acting as catalysts for drug degradation processes (Aulton, 2013).

Since excipients are an integral component of all pharmaceutical products, API stability

in formulations with different excipient combinations should be assessed as early as possi-

ble in the development process to achieve the most favourable shelf life for the final drug

formulation. This assessment should be performed at different temperatures and levels of

humidity to gain insight into how storage conditions influence the reactions (Nyqvist, 1986).

To reduce the time-to-market (which has a major impact on the profitability), time-efficient

experiments providing insights into which excipients and excipient combinations impact

API stability are required. In addition to the excipient effects, also the effects of storage

conditions like temperature or relative humidity are of main interest. The goal of this pa-

per is to introduce the state-of-the-art mixture-process variable modeling techniques and

experimental designs in the context of so-called excipient compatibility studies. The mo-

tivating experiment discussed in this paper involves a formulation with eight components,

being the API and seven excipients. To assess the effect of the storage conditions on the

stability, different temperatures and relative humidities were used in the study, following

the ICH Q1A-R2 (2003) guidelines on accelerated stability studies. More specifically, in the

motivating experiment, the temperature was set to 50 and 70◦C and the relative humidity

was set to 50% and 75%.

When optimizing a formulation, it is assumed that its characteristics only depend on the

relative proportions of its components and not on its total mass. An experiment dealing

with component proportions alone is called a mixture experiment (Cornell, 2002). For a
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typical excipient compatibility study, however, we need a more sophisticated experiment,

called a mixture-process variable experiment. This is because such a study involves exper-

imental factors other than the component proportions too. In general, these variables are

named process variables (Næs et al., 1998). In an excipient compatibility study, the factors

defining the storage conditions should be regarded as process variables. Depending on how

they are performed, mixture-process variable experiments may involve different kinds of

grouping. When analyzing the results, the grouping structure should be accounted for. In

the motivating example for this paper, several mixtures were incubated in the same climate

chamber, as a result of which the experiment had a restricted randomization and correla-

tion was present between observations from the same climate chamber. Another kind of

grouping occurs when the mixtures are produced in batches and every batch is used for

multiple observations.

In Section 2 of this paper, we discuss the motivating example, a typical excipient compati-

bility study, and its experimental setup in detail. In Section 3, we introduce general models

for data from mixture experiments and describe the general form of a mixture-process vari-

able model. In Section 4, we provide a brief overview of the literature on the design of

mixture-process variable experiments. In Section 5, we describe the flexible optimal design

methodology for setting up completely randomized, split-plot and strip-plot designs for

mixture-process variable experiments. In Section 6, we compare various design strategies

using simple proof-of-concept examples. In Section 7, we revisit the motivating example

and discuss its design and the analysis of the resulting data. In Section 8, we end the paper

with a general conclusion.

2 Motivating example

In our motivating example, the compatibility of an API with a number of functional ex-

cipients is tested. Seven plausible excipients are selected based on the API’s chemical

characteristics and desired dosage forms. Three are fillers: mannitol, micro-crystalline cel-

lulose and lactose. The other four are so-called functional excipients: silicon dioxide as

glidant, croscarmellose sodium as desintegrant, sodium lauryl sulphate as surfactant and
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magnesium stearate as lubricant. Due to their specific properties, the proportions of the

excipients have to satisfy the following constraints:

0.35 ≤ m1 +m2 +m3 ≤ 0.86, (1)

0.00 ≤ m6 ≤ 0.37 (2)

and

0.00 ≤ m7 ≤ 0.30, (3)

where m1, m2 and m3 are the proportions of the fillers mannitol, micro-crystalline cellu-

lose and lactose, respectively, m6 is the sodium lauryl sulphate proportion, and m7 is the

magnesium stereate proportion in the formulation, ignoring the API. In our motivating

example, no explicit constraints were imposed on the proportions of silicon dioxide, m4,

and croscarmellose sodium, m5. However, imposing a lower bound of 0.35 on the sum of

the fillers’ proportions implies an upper bound of 0.65 for the sum of the proportions of

silicon dioxide, croscarmellose sodium, sodium lauryl sulphate and magnesium stearate.

Traditionally, to account for storage condition effects, a classic mixture experiment for the

excipients is designed and this design is replicated for a limited number of storage con-

ditions. This design strategy has two weaknesses. First, the information content of the

experimental tests is suboptimal. Second, using only a limited number of storage condi-

tions makes it impossible to draw statistical inferences concerning the effects of the storage

conditions and concerning possible interactions between the storage conditions, on the one

hand, and the mixture components or excipients, on the other hand.

It is generally recommended to use completely randomized designs for any kind of exper-

iment, so that all experimental tests are independent. In our 90-run motivating example,

however, six groups of 15 mixtures were incubated simultaneously in six climate cham-

bers, so that the experiment was not completely randomized and not all experimental tests

were performed independently. Consequently, the experiment involved six groups of 15
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correlated observations. In the laboratory where the experiment was conducted, a robot

prepared all the mixtures independently. Therefore, there was only one kind of grouping

in our motivating example (due to one restriction on the randomization), resulting in a

split-plot mixture-process variable experiment. In another testing facility, for lack of a

robot, the mixtures are produced in batches. All samples originating from the same batch

then also give rise to a group of correlated observations. The resulting mixture-process

variable experiment in that facility therefore involves two kinds of grouping (one due to

the incubation in the climate chambers and one due to the batches of mixtures prepared)

and is called a strip-plot experiment.

During the data analysis, any correlation due to the grouping of the experimental tests

should be taken into account. The importance of recognizing restrictions in randomization

when conducting experiments and analyzing the resulting data in general is discussed in

Goos and Jones (2011), and in Cornell (1988) and Kowalski et al. (2002) for mixture-process

variable experiments.

3 Statistical model

Statistical models for data from mixture and mixture-process variable experiments differ

from the ones traditionally used for factorial experiments. The same goes for models for

data from excipient compatibility studies. This is due to the fact that, when dealing with

a mixture containing q components with proportions m1,m2, . . . ,mq, all test combinations

satisfy the bounds

0 ≤ mi ≤ 1

and the general mixture constraint
q∑

i=1

mi = 1. (4)

In words, the proportion of each component in the formulation is bounded between zero

and one, and the sum of all component proportions in a specific formulation is one. After

the dose-ranging study in phase I clinical trials, the proportion of the API in the final
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formulation is determined and remains fixed during the whole excipient compatibility study.

For this reason, the API’s proportion is generally not considered explicitly in excipient

compatibility studies (e.g. Piepel, 1999; Anderson-Cook et al., 2004; Martinello et al., 2006),

and the remaining components’ proportions are rescaled so that they sum to one (Cornell,

2002). A common statistical model for data from a mixture experiment is the so-called

2nd-order canonical polynomial, proposed by Scheffé (1958):

E(Y ) =

q∑
i=1

βimi +

q−1∑
i=1

q∑
j=i+1

βijmimj , (5)

where βi represents the expected response for a formulation containing only component i,

and βij is proportional to the difference between the expected response whenmi = mj = 0.5

and the average expected responses at mi = 1 and mj = 1 (Cornell, 2002). The first kind

of parameter is called a “pure blending” parameter, while the latter is a “binary blending”

parameter. Interpreting the parameters βi and βij is quite complicated in mixture experi-

ments, because increasing one proportion requires decreasing at least one other proportion.

Therefore, the model parameters cannot be interpreted independently, unlike in traditional

regression models. A more elaborate discussion on models for mixture experiments can be

found in Cornell (2002) and Smith (2005).

In an excipient compatibility study, the effects of additional factors related to the storage,

such as temperature and relative humidity, are also of primary interest to the researchers.

These additional factors are generally referred to as process variables. As a result, excipient

compatibility studies typically belong to the class of mixture-process variable experiments.

The first generation of mixture-process variable models have been proposed by Cornell and

Gorman (1984) and Cornell (1988). However, these models become impractically large

when many mixture components or process variables are to be studied. For this reason,

Kowalski, Cornell and Vining (2000) proposed a new generation of mixture-process variable

models which involve fewer parameters, and which therefore require fewer data points and

allow for smaller experiments.

While the first generation of mixture-process variable models simply crossed a 2nd-order
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Scheffé model with a traditional response surface model in the process variables, Kowalski

et al. (2000) started with the 2nd-order Scheffé model in Equation (5) and the 2nd-order

response surface model

E(Y ) = α0 +

r∑
i=1

αi pi +

r−1∑
i=1

r∑
j=i+1

αij pipj +

r∑
i=1

αii p
2
i , (6)

where p1, p2, . . . , pr represent the levels of r process variables. They combined both models

in such a way that the final model only includes first- and second-order terms. This resulted

in the mixture-process variable model

E(Y ) =

q∑
i=1

βimi +

q−1∑
i=1

q∑
j=i+1

βijmimj +

q∑
i=1

r∑
j=1

γijmipj +
r−1∑
i=1

r∑
j=i+1

αij pipj +
r∑
i=1

αii p
2
i . (7)

That model involves the main effects of all component proportions, all two-way interac-

tions involving the component proportions and/or the process variables, and the quadratic

effects of all process variables. The model does not involve the main effects of the process

variables, because these are inestimable when all interactions between the component pro-

portions and the process variables are included in the model (for a technical explanation,

see Smith (2005) and Goos and Jones (2011)).

The mixture-process variable model in Equation (7) is parsimonious because it involves

only 1st- and 2nd-order terms. The model implicitly assumes that interaction effects of any

two mixture components do not depend on the levels of the process variables. To relax

that assumption, it may be useful to add the following terms to the model:

q−1∑
i=1

q∑
j=i+1

r∑
k=1

γijkmimjpk. (8)

As excipient compatibility studies often involve many experimental tests, we recommend

to evaluate these terms and check whether they add value to the model. The additional

terms describe the so-called interactions between the process variables and the non-linear

blending terms.
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(a) Three-component mixture. (b) Four-component mixture.

Figure 1: Experimental regions of unconstrained mixture experiments.

4 Designing mixture-process variable experiments

4.1 Experimental region for component proportions

When there are no bounds or constraints on the mixture component proportions other

than the general mixture constraint, the experimental region is called a “regular simplex”.

Due to the general mixture constraint in Equation (4), we can express any one component

proportion as a linear function of the other component proportions:

mq = 1−
q−1∑
i=1

mi. (9)

As a result, we can visualize the experimental region of mixture experiments with up to

four components graphically, as shown in Figure 1. For three components, the experimental

region is an equilateral triangle. For four components, it becomes a tetrahedron.

The edge points, or vertices, in Figure 1 correspond to formulations with a proportion

of 1 for one component. So, the vertices correspond to pure components. When moving

from one vertex to another along an edge of the simplex, the proportion of the component
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corresponding to the initial vertex is reduced, while the proportion of the component corre-

sponding to the other vertex increases, so as to satisfy the mixture constraint. The edges of

the simplex thus correspond to binary mixtures, comprising only two components. Points

within a simplex, sometimes called interior points, always represents a feasible mixture

with a specific non-zero proportion for each component.

When multicomponent constraints on the proportions are present, the experimental region

is generally not a regular simplex any more. An example of a multicomponent constraint

is given by Equation (1). When many constraints are present, the experimental region

becomes an irregularly shaped volume within the simplex.

4.2 Mixture designs

For problems where the experimental region is a regular simplex, standard mixture de-

signs have been proposed. The best-known standard designs are the simplex-lattice and

simplex-centroid designs introduced by Scheffé (1958, 1963) and the designs of Draper and

Lawrence (1965a,b). When the experimental region is not a regular simplex, it becomes

much more difficult to construct a suitable experimental design. Using the programs of

Piepel (1988), one could construct a so-called extreme vertex design. An extreme vertex

design uses all vertices of the experimental region. An extreme vertex design of degree 2

also involves the edge mid-points, i.e., the averages of all pairs of vertices. An extreme

vertex design of degree n also involves the averages of all n-tuples of vertices. The number

of runs of these kinds of designs increase rapidly with the number of mixture components

and with the degree. For example, for the motivating example, the extreme vertex design

of degree 3 involves 696 experimental runs, making the design infeasibly large.

In those cases, it is more sensible to use computer-aided optimal design of experiments to

generate a feasible, informative design with the desired number of runs. Optimal designs

are especially useful when the experimental region is restricted or when only a limited

number of runs is possible. A common criticism on optimal experimental designs is that

they are model-dependent and no longer optimal when the model is changed during the
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analysis, e.g. by dropping insignificant terms. However, standard mixture designs also have

been created with a certain model in mind and also become “suboptimal” when estimating

a different model. One approach to compute optimal experimental designs is to use a

point-exchange algorithm that uses the extreme vertices as well as their pairwise averages

and, possibly, other linear combinations of the vertices as a candidate set. The algorithm

then selects the best candidates according to some optimality criterion. Another approach

is to use a coordinate-exchange algorithm which starts from a random design. This kind

of algorithm finds an optimal design by changing the coordinates of the random starting

design one at a time. Examples of such algorithms for mixture experiments can be found

in Piepel et al. (2005) and Ruseckaite et al. (2017). Coordinate-exchange algorithms have

the advantage that all points in the experimental region can be selected, which increases

the probability of finding the globally optimal experimental design (Goos et al., 2016).

4.3 Mixture-process variable designs

In general, a completely randomized design is recommended for any kind of experiment.

The first completely randomized design for a mixture-process variable experiment was pro-

posed by Scheffé (1963). For an example with three mixture components and one process

variable, Scheffé suggested to run a simplex-centroid design at all process variable levels.

This results in a so-called crossed design. Using this approach, the number of experimental

runs increases very rapidly with the number of process variables. For dealing with multiple

process variables, Cornell and Gorman (1984) therefore suggested to use only a fraction of

the level combinations of the process variables. They proposed two types of designs. The

first type, called a matched fraction, places the same fractional factorial design at each

simplex-centroid design point. The second type, called a mixed fraction, uses different

fractional factorial designs for the process variables at each simplex-centroid design point.

Using this approach, Cornell and Gorman (1984) reduce the number of observations from

56 to 14 for one example involving three mixture components and three process variables.

Of course, using this method, several terms from the complete mixture-process variable

model are not estimable any more.
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Together with their new generation of mixture-process variable models, Kowalski et al.

(2000) also proposed a new design methodology. Their main idea was to also use only a

fraction of the runs from the complete crossed design, but they suggested to fractionate

the simplex-centroid design rather than the factorial design. They were able to construct a

design with only 24 runs for estimating all 15 parameters in their mixture-process variable

model for three mixture components and two process variables. We use the resulting de-

sign, called “design F”, as a benchmark design when discussing our completely randomized

proof-of-concept example.

In many experiments, including excipient compatibility studies, it is impractical or even

infeasible to conduct a completely randomized experiment. When the randomization is

restricted so that the runs composing the experiment appear in groups, the assumption

of independence is violated. Depending on the exact logistics of the experiment, the ex-

perimental design either is a split-plot design or a strip-plot design. In our motivating

example, for instance, 15 mixtures are incubated in each of six climate chambers. As a

result, the experiment involves six groups of 15 correlated observations. Since the mixtures

were prepared independently for each experimental run, this is the only grouping present

and the experimental design is a split-plot design. Kowalski, Cornell and Vining (2002)

adapted their original completely randomized designs to cope with split-plot scenarios. A

second type of grouping occurs whenever multiple samples are taken from a limited number

of batches. In the event the two kinds of grouping occur simultaneously, the experimental

design is a strip-plot design. In the literature, there are no ready-to-use strip-plot mixture-

process variable designs.

The main drawback of the designs proposed by Kowalski et al. (2000, 2002) is that they are

based on simplex-centroid designs. Therefore, they are only feasible when the experimental

region for the mixture component proportions is a regular simplex. One solution to cope

with irregularly shaped experimental regions is to use an extreme vertex design. Another

problem arises when the feasible total number of runs and/or the feasible number of runs

per group differ from those of the completely randomized or split-plot mixture-process vari-
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able designs of Kowalski et al. (2000, 2002). This may happen when the total budget is

limited or when the total number of mixtures in each climate chamber is limited, or when

only a small number of different batches can be produced. It is unclear how to modify the

proposed designs in these cases.

If a completely randomized mixture-process variable experiment is feasible and no addi-

tional grouping structure is present, one could opt for the same kind of computer-aided

optimal experimental design strategy as with ordinary mixture designs. One can either

use a point-exchange or a coordinate-exchange algorithm. When one type of grouping is

present, the point-exchange algorithm proposed by Goos and Donev (2007) to generate op-

timal split-plot designs provides complete flexibility in the number of runs for each group,

the number of groups in the experiment, the model under consideration and the bounds on

the mixture component proportions and the process variables. When two types of grouping

are present, the coordinate-exchange algorithms of Arnouts et al. (2010, 2013) can be used.

In the next section, the optimal experimental design approach is discussed in detail.

5 Optimal design of experiments

In order to construct optimal experimental designs, it is important to start from an a

priori model and to know which estimation technique will be used for that model. For

this reason, we start this section by introducing the model-expansion function, the model

matrix and the ordinary and generalized least squares estimators. We explain that the

required estimator depends on whether grouping is present in the experimental runs or

not.

5.1 Model estimation

For a good understanding of optimal experimental design, we first need a function, say f ,

that maps the design points (i.e., the combinations of component proportions and process

variable levels tested in the experiment) from the experimental region χ onto the model

space f(χ). For example, the mapping function for a mixture-process variable model for
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an experiment with q mixture components and r process variables is

f : R(q+r) → Rs : xi → f(xi) , for i = 1, . . . , n, (10)

where n is the total number of experimental runs, s is the number of parameters in the

full model and xi is the mixture-process variable setting for the ith run. For instance, for

a mixture-process variable experiment with three mixture components (q = 3) and two

process variables (r = 2), the mapping function for a run i involving the pure component 1

and the process variables’ low level (denoted by m1 = 1, m2 = m3 = 0 and p1 = p2 = −1)

is

xi = [m1 m2 m3 p1 p2
1 0 0 −1 −1 ]→

f(xi) =
[
m1 m2 m3 m1m2 m1m3 m2m3 m1p1 m1p2 m2p1 m2p2 m3p1 m3p2 p1p2 p21 p

2
2

1 0 0 0 0 0 −1 −1 0 0 0 0 1 1 1

]
.

Stacking all vectors f(xi) yields the (n × s) matrix X, which describes the experiment in

the model space and which is called the model matrix. In the remainder of this paper,

the function f is called the model-expansion function. The least squares method is usually

used for estimating the parameters in the statistical model. In general, the least squares

estimator is

β̂ = (XTV−1X)
−1

XTV−1Y, (11)

where Y is a vector containing the n responses corresponding to the rows of X and V is

the (n× n) variance-covariance matrix of the responses.

When dealing with a completely randomized experiment, all the experimental runs are

independent and the responses are uncorrelated. So, for a completely randomized experi-

ment, V = σ2
ε In, with σ2

ε describing the run-to-run variation and In the (n × n) identity

matrix. In that case, the least squares estimates are called “ordinary least squares” esti-

mates. When grouping is present in the data, i.e., when we are dealing with a split-plot or

strip-plot experiment, the experimental runs are no longer independent, their responses are

correlated, and V 6= σ2
ε In. In such cases, the least squares estimates are called “generalized
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least squares” estimates.

Split-plot and strip-plot experiments find their origin in agricultural experimentation. Fig-

ure 2a shows a simple two-factor split-plot design. A split-plot experiment generally involves

multiple plots or fields, traditionally called whole plots. In Figure 2a, these whole plots are

represented by the columns. A level of the whole-plot or hard-to-change factor is allocated

randomly to each of the columns, e.g. irrigation with levels I1 and I2. The whole plots

are then divided in sub-plots, and a level of a sub-plot or an easy-to-change factor, e.g.

fertilizer with levels F1 and F2, is allocated randomly to each sub-plot. Due to the fact

that all the observations from within one whole plot are performed on the same field, their

responses are correlated. So, in an agricultural split-plot design, the grouping is caused by

the different fields or whole plots.

In a strip-plot experiment, as shown in Figure 2b, any field used is partionated in a number

of horizontal and a number of vertical strips. This specific design is used when there are

two hard-to-change factors. The first hard-to-change factor, applied to the vertical strips,

is again irrigation. Unlike in the split-plot case, the fertilizer cannot be applied randomly

within the vertical strip, but has to be applied to horizontal strips over the entire field.

Thus, the fertilizer becomes the second hard-to-change factor. It should be clear that not

only the observations within one vertical strip are correlated, but also the observations

within one horizontal strip. When an experimenter is not bounded to a physical “field”, it

is not necessary to explore all row-column combinations.

In a split-plot experiment with groups of k observations, the k responses within a group

are correlated, and the (k × k) variance-covariance matrix of these k responses is

Λ =


σ2
λ + σ2

ε σ2
λ · · · σ2

λ

σ2
λ σ2

λ + σ2
ε · · · σ2

λ

...
... . . . ...

σ2
λ σ2

λ · · · σ2
λ + σ2

ε

 .

In this matrix, σ2
ε again represents the run-to-run variation in the responses, while σ2

λ
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(a) Split-plot experiment. (b) Strip-plot experiment.

Figure 2: Simple split- and strip-plot experiment examples.

represents the group-to-group variation. In the motivating example, the climate chambers

actually used in the excipient compatibility study can be viewed as a random sample

from an entire population of climate chambers. It is assumed that each climate chamber

has a different effect on the response. More specifically, it is assumed that the responses

for all the runs in some climate chambers are systematically higher than in the ‘average’

climate chamber, and that the responses for all the runs in some other climate chambers

are systematically lower than in the ‘average’ climate chamber, due to chance. How much

higher and lower depends on the application. In some applications, σ2
λ is large relative

to σ2
ε , in which case the shift in responses due to the different climate chambers is large

compared to the run-to-run variation. In other applications, σ2
λ is small relative to σ2

ε , in

which case the shift in responses due to the different climate chambers is small compared

to the run-to-run variation. In the jargon, we say that each climate chamber has a different

random effect, which is assumed to be randomly drawn from a normal distribution with

zero mean and variance σ2
λ. All observations within the same climate chamber are subject

to the same random effect, which is why they produce correlated responses. By making a

few technical assumptions, it can be shown that, when dealing with a split-plot experiment
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involving n/k groups of k correlated responses, the complete variance-covariance matrix V

has the following structure:

V =


Λ 0k×k · · · 0k×k

0k×k Λ · · · 0k×k
...

... . . . ...

0k×k 0k×k · · · Λ

 ,

where 0k×k is a (k × k) matrix of zeros.

When dealing with a strip-plot experiment, both the grouping in rows and the grouping in

columns result in sets of correlated observations. Without using matrix algebra, it is more

complicated to write down a general structure for V when a strip-plot design is used than

when a split-plot design is used. The general idea remains the same, but there are two

kinds of random effects, one for the first kind of grouping and one for the second kind. So,

when using a strip-plot experimental design, there are three variances: σ2
ε for the run-to-

run variation, σ2
λ to describe variation between groups of the first kind, and σ2

µ to describe

variation between groups of the second kind. An instructive example of a V matrix for a

strip-plot design is given in Chapter 11 of Goos and Jones (2011).

In practice, the V-matrix has to be estimated from the data. Letsinger et al. (1996), Goos

et al. (2006) and Langhans et al. (2005) recommend the restricted maximum likelihood

(REML) methodology to this end. For constructing confidence intervals and performing

significance tests, it is best to use the corrected degrees of freedom and standard errors

discussed in Kenward and Roger (1997, 2009).

Regardless of whether the experiment is conducted using a completely randomized design,

a split-plot design or a strip-plot design, the (s×s) variance-covariance matrix of the model

parameter estimates is

var(β̂) = Σ = (XTV−1X)
−1.

That matrix describes the uncertainty about the model parameters after the experiment has
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been conducted. It plays an important role in determining confidence intervals, performing

significance tests and calculating prediction variances.

5.2 Optimality criteria

The criterion used to select an experimental design should reflect the goals of the experi-

menter. The most commonly used criteria are estimation-oriented and prediction-oriented.

As pointed out by Shmueli (2010), who contrasts predictive and explanatory modeling,

even to professional statisticians, it is not always clear what the aim of a study is. How-

ever, in the context of industrial experimentation, Montgomery (2012) points out the utility

of prediction-oriented designs for response surface exploration by writing that prediction-

oriented criteria “would be most likely used for second-order models, as second-order models

are often used for optimization, and good prediction properties are essential for optimiza-

tion.” So, the use of prediction-oriented design criteria in response surface settings is

recognized as appropriate. For mixture experiments, which can be viewed as special types

of response surface experiments, Scheffé (1958) already suggested using the variance of

the predicted response as a starting point to design mixture experiments. Therefore, for

excipient compatibility experiments, using an optimality criterion focusing on precise pre-

dictions seems most appropriate. Because the best-known criterion for selecting designs is

the estimation-oriented D-optimality criterion, however, we will compare D-optimal exper-

imental designs with prediction-oriented I-optimal designs throughout this article.

5.2.1 D-optimality

The D-optimality criterion is the most commonly used criterion for selecting a design. A

D-optimal design minimizes the determinant of the variance-covariance matrix Σ of the

model parameter estimates. In doing so, a D-optimal design, in a way, minimizes the

uncertainty about the model parameters that will be left after the experimental data have

been analyzed. It can be shown that a D-optimal design minimizes the volume of the

confidence ellipsoid about the model parameters. A measure to compare the quality of

different designs for a given statistical model is the relative D-efficiency. For two designs
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with variance-covariance matrices Σ1 and Σ2, the relative D-efficiency is defined as follows:

Relative D-efficiency of design 1 to design 2 =

(
|Σ2|
|Σ1|

)1/s

. (12)

When the relative D-efficiency is larger than one, it indicates that design 1 is better than

design 2 in terms of D-optimality.

5.2.2 I-optimality

In many cases, the main focus of mixture-process variable experiments is on the optimiza-

tion of the formulation. This requires good prediction properties from the estimated model.

Therefore, when selecting an experimental design, it seems reasonable to focus on prediction

properties. Two optimality criteria are commonly used when focusing on prediction prop-

erties: G-optimality and I-optimality. While G-optimality seeks designs that minimize the

maximum prediction variance over the experimental region, I-optimality seeks designs that

minimize the average prediction variance over the experimental region. Rodríguez et al.

(2010) suggest to use I-optimality rather than G-optimality, because prediction variances

produced by G-optimal experimental designs are larger than those produced by I-optimal

designs over most of the experimental region. Therefore, in the recent literature about re-

sponse surface designs, the focus is on I-optimal designs rather than on G-optimal designs

(Jones and Goos, 2012, 2015; Goos and Syafitri, 2014; Arnouts and Goos, 2015; Syafitri

et al., 2015; Goos et al., 2016).

Evaluating the predictive quality of two designs in terms of I-optimality can be done by

using the relative I-efficiency:

Relative I-efficiency of design 1 to design 2 =
Average prediction variance of design 2
Average prediction variance of design 1

. (13)

When this efficiency is larger than one, it indicates that design 1 is better in terms of

I-optimality, and thus has a lower average variance of prediction than design 2.
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Goos et al. (2016) showed that, when comparing I- and D-optimal mixture designs, I-

optimal designs perform reasonably well in terms of D-optimality, while the performance

of D-optimal designs in terms of I-optimality strongly depends on which design points are

replicated and may be rather poor. This provides an additional argument for using an I-

optimal design for mixture-process variable experiments rather than a D-optimal design. In

the next section, we compare D- and I-optimal completely randomized, split-plot and strip-

plot designs for mixture-process variable experiments to alternatives from the literature.

This kind of comparison is new to the literature, as is the study of I-optimal mixture-process

variable designs.

6 Proof-of-concept examples

In this section, we discuss three proof-of-concept examples. The first example involves a

completely randomized experiment. Secondly, we look at a more realistic problem involv-

ing one kind of grouping of the observations. More specifically, we consider a split-plot

mixture-process variable experiment. Finally, we look at a design problem in which two

types of grouping occur simultaneously. This results in a strip-plot experiment.

All three examples involve three mixture components, with proportions denoted by m1,

m2, and m3, and two process variables, with levels denoted by p1 and p2. For the com-

pletely randomized experiment, we choose an experimental budget of 24 runs, because that

number allows us to use the completely randomized design proposed by Kowalski et al.

(2000) as a benchmark. For the case of a split-plot mixture-process variable experiment,

we extend the budget to 40 runs, equally distributed over 10 groups. This allows us to

use the 40-run split-plot design proposed by Kowalski et al. (2002) as a benchmark design.

For the case of a strip-plot experiment, no benchmark designs can be found in the litera-

ture. Therefore, for this case, we only consider a D-optimal design and an I-optimal design.

The second-order mixture-process variable model for three mixture components and two
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process variables proposed by Kowalski et al. (2000) contains 15 parameters:

E(Y ) =
3∑
i=1

βimi +
2∑
i=1

3∑
j=i+1

βijmimj +
3∑
i=1

2∑
k=1

γikmipk + α12 p1p2 +
2∑
i=1

αii p
2
i . (14)

The first six terms of that model form the second-order Scheffé mixture model. The next

six terms involve two-factor interactions between the three mixture component proportions

and the two process variables. The final three terms correspond to the two-factor interac-

tion effect of the two process variables and their quadratic effects.

The designs proposed by Kowalski et al. (2000, 2002) all share similar important features.

Firstly, a classic simplex-centroid design is obtained when the design is projected across the

levels of any process variable. This feature is attractive when one of the process variables

is found to be unimportant. Secondly, the designs involve ternary mixtures and there-

fore explore the center of the mixture region (m1 = m2 = m3 = 1/3). This makes the

estimation of a ternary blending parameter possible. Thirdly, one or more center points

(m1 = m2 = m3 = 1/3, p1 = p2 = 0) are replicated. These replicates can be used to

estimate the pure error. This pure error estimation makes it possible to formally test

for lack of fit. The major downside of the benchmark designs is that the center runs

(m1 = m2 = m3 = 1/3) at the various process variable settings do not contribute much to

the estimation of the parameters of interest. In addition, it is not straightforward how to

adapt the benchmark designs when restrictions on the mixture component proportions are

present or when a different number of runs is required.

6.1 Completely Randomized Designs

We start by comparing the 24-run benchmark completely randomized design, with both

a D-optimal and an I-optimal design. The two optimal designs were generated with the

mixture coordinate-exchange algorithm from JMP 12 using 1000 random starts. The three

designs are shown in Figures 3, 4 and 5. In the figures, the larger bullets represent repli-

cated design points. The large −1, 0 and 1 values at the top and right-hand sides of the

figures represents the low, middle and high values of the two process variables.
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Figure 3: Benchmark completely randomized design.

The model-driven nature of D-optimal designs becomes clear when looking at Figure 4.

Focusing on the precise estimation of the parameters in the model in Equation (14), the

D-optimal design does not involve any mixtures with non-zero proportions for all three com-

ponents at the same time. This is due to the fact that there is no ternary blending term in

the model. We obtain a {3, 2} simplex-lattice design when the D-optimal mixture-process

variable design is projected across the low and high levels of any process variable. The

{3, 2} simplex-lattice design incorporates the three vertices and all the edge mid-points.

At least four of the six runs of the {3, 2} simplex-lattice design are replicated in the pro-

jections. Because there are no replicated runs in the full design, it is impossible to obtain

a pure-error estimate of the residual error variance σ2
ε from the D-optimal design. As a

consequence, lack of fit cannot be formally tested.
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Figure 4: D-optimal completely randomized design.
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Figure 5: I-optimal completely randomized design.
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Table 1: Diagnostics and relative efficiencies of the three completely randomized designs under
comparison.

|Σ| Max var Avg var Rel D-eff Rel I-eff

Benchmark 5.69× 10−5 2.1484 0.3563 I-optimal to D-optimal 0.87 1.73
D-optimal 5.81× 10−7 1.1166 0.5172 Benchmark to D-optimal 0.74 1.45
I-optimal 4.44× 10−6 1.4017 0.2981 Benchmark to I-optimal 0.84 0.84

For I-optimal designs, the focus lies on a precise prediction, rather than on precise estima-

tion of the parameters. Unlike the D-optimal design, the I-optimal design in Figure 5 does

explore the center of the component proportions’ simplex-shaped experimental region. This

lowers the average variance of prediction. As pointed out by Goos et al. (2016), in I-optimal

mixture designs for second-order Scheffé models, the binary blends have a higher weight

than the pure components and the ternary blends are included as well. This is different

from D-optimal designs, in which pure components and binary blends are equally important

and ternary blends are not used. In the I-optimal design in Figure 5, there are 14 runs in-

volving binary blends and only nine involving pure components. At p1 = p2 = 0, one design

point is replicated, making it possible to estimate pure error and formally test for lack of fit.

The relative efficiencies and diagnostics of the benchmark design, the D-optimal design

and the I-optimal design, assuming that the error variance is one, are listed in Table 1.

Both the benchmark and the I-optimal design have a smaller average variance of prediction

than the D-optimal design, while the D-optimal design’s maximum variance of prediction

is smallest. The benchmark design has the largest maximum prediction variance. In terms

of D-optimality, both the D- and I-optimal design outperform the benchmark design. Both

the I-optimal design and the benchmark design substantially outperform the D-optimal

design in terms of I-optimality.

The Fraction of Design Space (FDS) plot in Figure 6 shows the prediction variances, ranked

from small to large, for 10,000 randomly chosen points in the experimental region, for each

of the designs under comparison. The plot shows that, in terms of variance of prediction,

there is some difference between the I-optimal design and the benchmark design in favor of

the I-optimal design. Both designs produce a smaller variance of prediction across almost
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Figure 6: Fraction of Design Space plot for the benchmark (solid), D-optimal (dash-dotted) and

I-optimal (dashed) completely randomized designs.

the entire experimental region than the D-optimal design.

In conclusion, the I-optimal design represents the best trade-off between good predictive

capabilities and sufficient estimation precision. In addition, the a priori selected model

to construct both the D- and I-optimal design can be extended with higher order interac-

tion terms between the process variables and non-linear blending terms. The possibility

to estimate pure error and formally test for lack-of-fit is another advantage offered by the

I-optimal design.

6.2 Split-plot designs

As pointed out by Chipman et al. (1997), Bisgaard (2000), and Jones and Goos (2007),

industrial experiments are often conducted using a split-plot design. This is especially

true for mixture-process variable experiments (see, for instance, Cornell (1988), Kowalski

et al. (2002), and Goos and Donev (2007)). For our proof-of-concept split-plot example,

we introduce grouping at the level of the process variables. In our motivating example,
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Figure 7: Benchmark split-plot design.

Combined markers indicate four replicated runs.

this kind of grouping occurs because many mixtures are incubated in the same climate

chamber. For our proof-of-concept split-plot example, we use the 40-run split-plot design

from Kowalski et al. (2002) as benchmark design. The 40 runs are evenly distributed over

ten groups. The benchmark design and the D- and I-optimal split-plot designs are shown

in Figures 7, 8 and 9. The benchmark split-plot design in Figure 7 involves the same kinds

of design points as the benchmark completely randomized design in Figure 3, but it has

many more replicates of the centroid of the experimental region for the mixture ingredients.

The model-driven nature of the D-optimal design is again clear when looking at Figure 8.

Since there are only binary blending terms in the model, no ternary blends are included in

the design. One binary blend deviates from the edge centroid when using the D-optimal

design. Additionally, two of the nine process-variable combinations of the 32 factorial de-
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Figure 8: D-optimal split-plot design.
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Figure 9: I-optimal split-plot design.
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Table 2: Diagnostics and relative efficiencies of the three split-plot designs under comparison.

|Σ| Max var Avg var Rel D-eff Rel I-eff

Benchmark 2.04× 10−1 3.1202 0.7139 I-optimal to D-optimal 0.87 1.50
D-optimal 4.35× 10−6 1.6765 0.8102 Benchmark to D-optimal 0.49 1.14
I-optimal 3.25× 10−5 1.4938 0.5414 Benchmark to I-optimal 0.56 0.76

sign are not explored. Three of the process-variable combinations, involving the extreme

levels for the process variables, are visited two times.

Unlike the D-optimal design, the I-optimal design shown in Figure 9 explores all combina-

tions of the 32 factorial design for the process variables as well as the center of the mixture

region. So, the I-optimal design does involve a ternary blend. Unlike the benchmark design,

the I-optimal design only uses three runs to explore the center of the mixture region. These

three runs appear at different settings of the process variables. There are three replicated

runs, all of which appear at the p1 = p2 = 0 setting of the two process variables. In the

I-optimal design, nine binary blends deviate from the edge centroids.

Table 2 reports the relative efficiencies of the three designs, assuming that the variance

components corresponding to the individual runs and the groups both equal one. Both

the benchmark and the I-optimal design have a smaller average variance of prediction than

the D-optimal design. The I-optimal design has the smallest maximum variance of pre-

diction of all three designs. In terms of D-optimality, the I-optimal design performs well

relative to the D-optimal one. The benchmark design, however, performs poorly in terms

of D-optimality, relative to both the D-optimal and the I-optimal design. In terms of I-

optimality, the benchmark design is inferior to the I-optimal design, but it outperforms the

D-optimal design.

The Fraction of Design Space plot in Figure 10 supports the findings in Table 2. The

I-optimal split-plot design has the smallest variance of prediction over almost the entire

experimental region. The benchmark design’s variance of prediction is the least stable, so

that that design has the largest spread in prediction variance. For a small portion of the
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Figure 10: Fraction of Design Space plot for the benchmark (solid), D-optimal (dash-dotted) and

I-optimal (dashed) split-plot design.

experimental region, the benchmark design has a larger variance of prediction than the

D-optimal design. Comparing Figure 10 with Figure 6 shows that the difference between

the benchmark design and the I-optimal design is larger in the split-plot scenario than in

the completely randomized scenario.

When choosing a split-plot mixture-process variable design, this proof-of-concept example

shows that, as for the completely randomized experiment, an I-optimal design represents

the best trade-off between estimation precision, on the one hand, and a small variance of

prediction over the entire experimental region, on the other hand. As for the completely

randomized example, the a priori selected model can be extended by adding various higher-

order terms when selecting the D- or I-optimal design. This is impossible when using the

benchmark design.

6.3 Strip-plot designs

It is possible that, in addition to the grouping due to the process variables, there is group-

ing due to the mixtures. This happens when mixtures are produced in batches and each
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Figure 11: D-optimal strip-plot design.

Markers indicate the 20 batches.

batch is used for multiple observations. The resulting experiment then involves a strip-plot

design. As there are no benchmark strip-plot designs in the literature, we only compare

a D-optimal and an I-optimal strip-plot design here. The two designs involve 40 runs, 10

independent settings for the levels of the process variables, and 20 batches of a certain

mixture, each of which is used for two runs. Consequently, the runs are grouped in two

ways. There are 10 groups of the first kind, and 20 groups of the second kind.

The D-optimal design shown in Figure 11 has a few important characteristics. Firstly, just

like in the D-optimal split-plot design, only seven of the nine process-variable combinations

of the 32 factorial design are explored, and three process-variable combinations are repli-

cated. Second, the center of the mixture region is not explored. This is again due to the

model-driven nature of the D-optimal design, and leads to a large variance of prediction
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Figure 12: I-optimal strip-plot design.

Markers indicate the 20 batches.

The bullet in the bottom-left simplex is a replicated design point.
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Table 3: Diagnostics and relative efficiencies of the three strip-plot designs under comparison.

|Σ| Max var Avg var Rel D-eff Rel I-eff

D-optimal 3.62× 10−3 2.4658 1.1417 I-optimal to D-optimal 0.79 1.51
I-optimal 1.36× 10−1 2.6247 0.7565 D-optimal to I-optimal 1.27 0.66

in the center of the mixture region. Third, several binary formulations deviate from the

edge centroids. Finally, we see that each set of four formulations is used at two different

combinations of process-variable levels.

The I-optimal design shown in Figure 12 does explore all combinations of the 32 factorial

design for the process variables. In addition, it uses two batches to explore the mixture

region’s centroid to decrease the variance of prediction in the center of the mixture region.

In the I-optimal design, four binary mixtures are shifted away from the edge centroid. As

for the D-optimal design, each set of four formulations is used at two different combinations

of levels of the process variables.

Table 3 compares the diagnostics and relative efficiencies of the two strip-plot designs. The

I-optimal design clearly has the smallest average variance of prediction. In terms of the

the maximum variance of prediction, the D-optimal and I-optimal designs hardly differ.

In terms of D-optimality, the I-optimal design performs relatively well compared to the

D-optimal design. In terms of I-optimality, the I-optimal design substantially outperforms

the D-optimal design. The Fraction of Design Space plot in Figure 13 supports the findings

in Table 3. The I-optimal design has the smallest variance of prediction over almost the

entire design region.

If a strip-plot mixture-process variable experiment is conducted, our proof-of-concept ex-

ample shows that an I-optimal design is the most sensible choice, as for the two other

scenarios discussed. The I-optimal design combines a small variance of prediction over

almost the entire experimental region with a reasonably good estimation precision. Both

models can be extended with cross-products of the process variables and the non-linear

blending terms. In addition, using the I-optimal design the model can be extended with a
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Figure 13: Fraction of Design Space plot for the D-optimal (dash-dotted) and I-optimal (dashed)

strip-plot designs.

ternary blending term. This is impossible when selecting a D-optimal design.

7 Excipient compatibility experiment

7.1 Model and design

As the a priori model for constructing a design for the excipient compatibility study de-

scribed in Section 2, we used the mixture-process variable model in Equation (7). There

were seven mixture components (q = 7) and two process variables (r = 2) in the experiment.

The storage conditions were imposed on groups of 15 formulations and all formulations were

produced independently using a robot, so that a split-plot design was required. Only six

climate chambers were available, so that the total number of experimental tests was 90 and

the number of groups defined by the settings of the process variables was six. Importantly,

six independent settings of the process variables are insufficient to estimate a complete

two-factor response-surface model with two main effects, one two-factor interaction and

two quadratic effects. Kowalski et al. (2002) discuss a similar scenario, and suggest drop-

ping the quadratic terms in the process variables from the response surface model. Leaving
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out the quadratic terms may not be warranted in certain applications and should therefore

be avoided whenever possible. For the excipient compatibility experiment discussed here,

however, the subject-matter specialists did not expect curvature, making it sensible to drop

these terms. Eventually, the following 43-term mixture-process variable model was used

for the design optimization:

E(Y ) =

7∑
i=1

βimi +

6∑
i=1

7∑
j=i+1

βijmimj +

7∑
i=1

2∑
k=1

γikmipk + α1 2 p1p2. (15)

The goals of an excipient compatibility study are to minimize the degradation of the API

and to make the degradation as robust as possible to different storage conditions. This

suggests that the emphasis is on predictive modeling and optimization rather than on a

precise model estimation. In addition, it was unclear how to adapt the designs proposed by

Kowalski et al. (2002) to cope with the constrained experimental region defined in Equa-

tions (1)–(3). Following our recommendations in Section 6, we constructed an I-optimal

split-plot design using the coordinate-exchange algorithm in JMP 12. The final design is

shown in Table 4. A major difference between the design for the motivating example and

those for the proof-of-concept examples is that the former design only involves two levels for

the process variables relative humidity and temperature, while the latter designs involved

three levels for each of these variables. This is due to the fact that we did not incorporate

quadratic effects for the process variables in the model in Equation (15).

Because the response had a right-skewed distribution and considerable heteroscedasticity

was found in the residuals, we applied a logarithmic transformation to the responses. This

was sufficient to remove most of the heteroscedasticity from the residuals.

7.2 Data analysis

We estimated the parameters from the model in Equation (15) using generalized least

squares. For the two variance components, describing the group-to-group variation and the

run-to-run variation, we used REML. To find a parsimonious model for the responses with

a good fit, we performed backward selection based on the corrected Akaike information
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Table 4: 90-run I-optimal design for the excipient compatibility study.

Group m1 m2 m3 m4 m5 m6 m7 p1 (T ) p2 (RH) log(Y )

1 0.00 0.59 0.00 0.30 0.00 0.00 0.11 1 1 −0.10536
1 0.00 0.00 0.81 0.19 0.00 0.00 0.00 1 1 −0.40048
1 0.11 0.00 0.30 0.59 0.00 0.00 0.00 1 1 −0.57982
1 0.22 0.33 0.00 0.00 0.22 0.07 0.15 1 1 −0.44629
1 0.85 0.00 0.00 0.00 0.00 0.00 0.15 1 1 −0.79851
1 0.00 0.70 0.00 0.00 0.00 0.00 0.30 1 1 −0.86750
1 0.00 0.70 0.00 0.00 0.00 0.00 0.30 1 1 −0.86750
1 0.11 0.11 0.15 0.00 0.26 0.37 0.00 1 1 −1.23787
1 0.41 0.41 0.00 0.00 0.00 0.19 0.00 1 1 −1.04982
1 0.15 0.15 0.15 0.00 0.56 0.00 0.00 1 1 −0.84397
1 0.11 0.11 0.15 0.26 0.26 0.00 0.11 1 1 −0.27444
1 0.30 0.00 0.33 0.07 0.00 0.15 0.15 1 1 −0.27444
1 0.30 0.15 0.15 0.00 0.00 0.11 0.30 1 1 −0.38566
1 0.00 0.41 0.00 0.22 0.00 0.37 0.00 1 1 0.41211
1 0.44 0.11 0.15 0.07 0.22 0.00 0.00 1 1 −0.51083

2 0.00 0.30 0.33 0.19 0.00 0.07 0.11 −1 −1 −0.65393
2 0.78 0.00 0.00 0.00 0.22 0.00 0.00 −1 −1 −1.51413
2 0.48 0.37 0.00 0.00 0.00 0.00 0.15 −1 −1 −0.91629
2 0.00 0.37 0.22 0.15 0.00 0.11 0.15 −1 −1 −0.63488
2 0.00 0.00 0.56 0.26 0.19 0.00 0.00 −1 −1 −0.75502
2 0.07 0.26 0.26 0.00 0.15 0.15 0.11 −1 −1 −0.91629
2 0.70 0.00 0.15 0.00 0.00 0.15 0.00 −1 −1 −1.02165
2 0.33 0.30 0.00 0.37 0.00 0.00 0.00 −1 −1 −0.91629
2 0.41 0.00 0.00 0.00 0.00 0.30 0.30 −1 −1 −1.30933
2 0.22 0.07 0.33 0.00 0.26 0.00 0.11 −1 −1 −0.94161
2 0.41 0.00 0.00 0.00 0.59 0.00 0.00 −1 −1 −0.99425
2 0.74 0.00 0.00 0.26 0.00 0.00 0.00 −1 −1 −0.89160
2 0.41 0.00 0.00 0.41 0.00 0.00 0.19 −1 −1 −0.86750
2 0.41 0.00 0.00 0.33 0.00 0.26 0.00 −1 −1 −0.79851
2 0.41 0.00 0.00 0.00 0.26 0.33 0.00 −1 −1 −1.46968

3 0.41 0.00 0.00 0.00 0.30 0.00 0.30 −1 −1 −0.99425
3 0.00 0.30 0.11 0.41 0.00 0.19 0.00 −1 −1 −0.35667
3 0.00 0.00 0.48 0.00 0.00 0.37 0.15 −1 −1 −1.17118
3 0.00 0.37 0.48 0.00 0.00 0.15 0.00 −1 −1 −1.04982
3 0.00 0.00 0.70 0.00 0.00 0.00 0.30 −1 −1 −1.27297
3 0.00 0.48 0.00 0.00 0.15 0.37 0.00 −1 −1 −0.96758
3 0.00 0.85 0.00 0.15 0.00 0.00 0.00 −1 −1 −1.38629
3 0.37 0.22 0.00 0.00 0.19 0.15 0.07 −1 −1 −1.46968
3 0.00 0.41 0.44 0.00 0.15 0.00 0.00 −1 −1 −1.30933
3 0.00 0.22 0.37 0.30 0.00 0.00 0.11 −1 −1 −1.42712
3 0.00 0.41 0.00 0.00 0.41 0.00 0.19 −1 −1 −1.30933
3 0.00 0.00 0.41 0.30 0.30 0.00 0.00 −1 −1 −1.13943
3 0.33 0.07 0.22 0.15 0.00 0.11 0.11 −1 −1 −0.96758
3 0.00 0.00 0.41 0.00 0.48 0.11 0.00 −1 −1 −1.34707
3 0.26 0.00 0.59 0.15 0.00 0.00 0.00 −1 −1 −1.04982

4 0.30 0.00 0.44 0.00 0.26 0.00 0.00 1 1 −0.73397
4 0.26 0.00 0.15 0.30 0.00 0.30 0.00 1 1 0.19062
4 0.63 0.00 0.00 0.00 0.00 0.37 0.00 1 1 −0.77653
4 0.41 0.00 0.00 0.22 0.30 0.07 0.00 1 1 −0.16252
4 0.00 0.30 0.22 0.19 0.19 0.11 0.00 1 1 −0.06188
4 0.07 0.26 0.30 0.26 0.00 0.11 0.00 1 1 −0.02020
4 0.33 0.07 0.00 0.30 0.00 0.00 0.30 1 1 −0.75502
4 0.00 0.33 0.52 0.00 0.00 0.00 0.15 1 1 −1.04982
4 0.41 0.22 0.22 0.15 0.00 0.00 0.00 1 1 −0.63488
4 0.26 0.00 0.41 0.00 0.00 0.19 0.15 1 1 −0.24846
4 0.07 0.63 0.00 0.00 0.30 0.00 0.00 1 1 −0.91629
4 0.00 0.19 0.22 0.00 0.00 0.30 0.30 1 1 −0.99425
4 0.22 0.19 0.00 0.26 0.00 0.19 0.15 1 1 −0.13926
4 0.00 0.59 0.19 0.00 0.00 0.22 0.00 1 1 −1.13943
4 0.00 0.00 0.41 0.00 0.37 0.00 0.22 1 1 0.02956

5 0.33 0.00 0.19 0.15 0.26 0.00 0.07 −1 1 −0.59784
5 0.00 0.26 0.15 0.00 0.41 0.19 0.00 −1 1 −1.23787
5 0.00 0.00 0.41 0.00 0.22 0.19 0.19 −1 1 −1.23787
5 0.11 0.00 0.44 0.15 0.00 0.30 0.00 −1 1 −0.67334
5 0.07 0.67 0.11 0.00 0.15 0.00 0.00 −1 1 −1.30933
5 0.33 0.00 0.07 0.19 0.19 0.15 0.07 −1 1 −1.34707
5 0.30 0.26 0.07 0.07 0.07 0.11 0.11 −1 1 −1.27297
5 0.00 0.48 0.00 0.00 0.00 0.37 0.15 −1 1 −1.46968
5 0.41 0.30 0.00 0.15 0.00 0.15 0.00 −1 1 −1.27297
5 0.63 0.00 0.00 0.00 0.07 0.00 0.30 −1 1 −1.23787
5 0.30 0.00 0.56 0.00 0.00 0.00 0.15 −1 1 −1.42712
5 0.00 0.37 0.07 0.00 0.15 0.11 0.30 −1 1 −1.20397
5 0.00 0.00 0.41 0.30 0.00 0.00 0.30 −1 1 −1.20397
5 0.00 0.00 0.67 0.00 0.15 0.19 0.00 −1 1 −1.60944
5 0.00 0.37 0.00 0.48 0.15 0.00 0.00 −1 1 −1.30933

6 0.19 0.19 0.19 0.07 0.00 0.37 0.00 1 −1 0.31481
6 0.00 0.41 0.00 0.59 0.00 0.00 0.00 1 −1 −0.57982
6 0.11 0.00 0.70 0.00 0.07 0.11 0.00 1 −1 −0.91629
6 0.00 0.37 0.00 0.00 0.15 0.30 0.19 1 −1 −0.44629
6 0.00 0.41 0.00 0.30 0.00 0.00 0.30 1 −1 −0.82098
6 0.00 0.00 0.41 0.30 0.00 0.19 0.11 1 −1 −1.07881
6 0.44 0.07 0.00 0.15 0.19 0.15 0.00 1 −1 −0.99425
6 0.00 0.81 0.00 0.00 0.00 0.19 0.00 1 −1 −1.23787
6 0.33 0.41 0.00 0.11 0.00 0.00 0.15 1 −1 −0.82098
6 0.00 0.22 0.33 0.00 0.15 0.00 0.30 1 −1 −1.02165
6 0.00 0.26 0.15 0.00 0.48 0.11 0.00 1 −1 −1.27297
6 0.37 0.00 0.11 0.00 0.26 0.11 0.15 1 −1 −0.12783
6 0.00 0.41 0.00 0.30 0.30 0.00 0.00 1 −1 −0.44629
6 0.48 0.00 0.19 0.15 0.00 0.00 0.19 1 −1 −0.61619
6 0.00 0.41 0.33 0.00 0.26 0.00 0.00 1 −1 −0.91629
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criterion (AICc). We used the AICc as a criterion for the model selection rather than the

p-value for two reasons. First, we designed the experiment with predictive modelling in

mind, and inferences on individual parameters are more difficult in a mixture context. Sec-

ond, the AICc provides a tradeoff between underfitting, as it seeks a model that minimizes

the SSE, and overfitting, by penalizing for the number of terms in the model. During the

model selection, it is of utmost importance that all linear blending terms remain in the

model and that the main effects of the process variables defining the storage conditions are

excluded as long as their cross-products with the component proportions are in the model.

The first model used to describe the system was the mixture-process variables model given

in Equation (15). However, backward selection resulted in a non-satisfactory model with

a small R2
a and relatively high RMSE. Therefore, starting from the initial model, we

performed a forward selection based on the AICc and included interactions between the

process variables and the non-linear blending terms, as in Equation (8). If all of these

terms would be included, the full model would involve 85 instead of 43 terms:

E(Y ) =
7∑
i=1

βimi +
6∑
i=1

7∑
j=i+1

βijmimj+

7∑
i=1

2∑
k=1

γikmipk +
6∑
i=1

7∑
j=i+1

2∑
k=1

γijkmimjpk + α1 2 p1p2. (16)

Table 5 reports some goodness-of-fit statistics for the full model given in (16) and the re-

duced model selected based on the AICc. The coefficient of determination (R2) quantifies

the proportion of variation in the response (i.e., the log degradation) that can be explained

by the model, and the adjusted coefficient of determination (R2
a) corrects the R2 for the

number of parameters in the model. The AICc value measures the information lost when

using a certain model to represent the data. For the AICc criterion, small values are de-

sirable, while large values are desirable for the R2 and R2
a values. A common feature of

the R2
a and AICc criteria is that they prefer parsimonious models (i.e., models with fewer

terms), all other things being equal. The variance ratio is the ratio of the group-to-group

variance (σ2
λ) and the run-to-run variance (σ2

ε ). If this ratio exceeds one, most of the ran-

dom variability is between the different groups in the experiment. Otherwise, most of the
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Table 5: Goodness-of-fit statistics for the fitted models for the excipient compatibility study.

Full Reduced

No. of terms 84 31
R2 0.988 0.877
R2
a 0.821 0.815

AICc 4886.797 41.288
Variance ratio 0.826 0.370

variability is between the individual runs. When the variance ratio is close to zero, this

indicates that the correlation between responses obtained within the same group is small.

Two major conclusions can be drawn from Table 5. First, almost two thirds of the terms

in the full mixture-process variable model can be dropped. The resulting reduced model

has a fit similar to that of the full model, in terms of the R2 and R2
a value. Based on the

AICc value, the reduced model is by far the better option of the two. Second, for both

models, the variance ratio is smaller than one. In other words, the estimated variance in

the responses due to the groups is smaller than the estimated run-to-run variance. This

indicates that only a limited portion of the observed variation in the (log) degradation

between the different groups or climate chambers cannot be explained by the levels of the

process variables. So, for this particular data set, ignoring the grouping due to the climate

chambers and treating the 90 runs are nearly independent would be a minor mistake. Nev-

ertheless, taking into account the split-plot nature of the experiment in the data analysis

is necessary, because it is not known in general how large the group-to-group variation is

in excipient compatibility studies.

The estimates of the parameters in the reduced model are given in Table 6. The model

involves many interaction effects between linear and non-linear blending terms, on the one

hand, and the process variables, on the other hand, indicating that the effects of the mix-

ture component proportions differ significantly from one storage condition to another, and

that the effects of temperature and relative humidity differ significantly from one mixture

to another. The fact that the significances of these interaction terms can be established is

due to the fact that the excipient compatibility study involved an informative experimen-
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tal design and a model intended to investigate the simultaneous effect of the component

proportions and the process variables.

When analyzing data from mixture experiments, it is customary to use contour plots for

interpreting the effects. Contour plots corresponding to the reduced model appear in Fig-

ures 14 and 15. The plots at the bottom/top of the figures correspond to the low/high

level of the first process variable p1 (Temperature) , while those at the left/right correspond

to the low/high level of the second process variable p2 (Relative Humidity). Because the

proportion of magnesium stearate (m7) is expected to be small in the final formulation,

we fix it at 0.08 and exclude it from our further analysis. The given value is the expected

degradation of the API, expressed in %.

Figure 14 shows the effects of the three fillers when the excipient proportions m4, m5, m6

and m7 are all set to 0.08. This proportion corresponds to the levels of m4, m5, m6 and m7

near the centroid of the experimental region. Figure 15 shows the effect of three of the four

functional excipients, m4, m5 and m6, in the event m1 = m2 = m3 = 0.227 and m7 = 0.08.

The filler proportion of 0.227 is chosen such that the range for the three functional excipi-

ents, other than magnesium stearate, is maximal.

When looking at Figure 14 we see that for low temperatures, using a larger proportion

of the first filler (m1) leads to the least degradation. Remarkably, at low temperature,

a higher humidity results in less degradation. At low humidity levels, there is an active

synergistic effect between the three fillers causing more degradation in the center of the

mixture region. For high temperature and low humidity, using a larger proportion of the

third filler (m3) results in the least degradation. For this storage condition there is little

difference in degradation between the two first fillers. At high humidity, there is little dif-

ference between the three fillers. For both humidity levels, at high temperature there is a

strong synergistic effect between the first and the third filler. So, any combination of these

two fillers should be avoided.
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Table 6: Parameter estimates, standard errors, t-ratios and p-values for the reduced model.

Term Estimate Std Error t−Ratio Prob > |t|

m1 − 1.5312 0.1985 . .
m2 − 1.2277 0.1332 . .
m3 − 1.3460 0.1717 . .
m4 − 3.4294 0.6127 . .
m5 − 0.7845 0.2320 . .
m6 − 0.5155 0.2952 . .
m7 − 0.8496 0.3849 . .

m1 ×m3 2.8085 0.7789 3.6058 0.0007
m1 ×m4 4.2376 1.4126 2.9998 0.0040
m2 ×m4 6.3895 1.3842 4.6162 0.0000
m3 ×m4 5.3522 1.3749 3.8928 0.0003
m4 ×m5 5.0709 1.4951 3.3917 0.0013
m1 ×m6 − 0.9762 0.8980 −1.0870 0.2817
m4 ×m6 11.0919 1.6112 6.8841 0.0000
m5 ×m6 − 3.4308 1.6938 −2.0256 0.0475
m1 ×m7 2.9613 1.1338 2.6118 0.0115
m3 ×m7 − 0.7260 1.1106 −0.6537 0.5159
m5 ×m7 5.5053 1.6613 3.3138 0.0016

m1 × p1 − 0.1938 0.1882 −1.0300 0.3072
m6 × p1 0.1920 0.2405 0.7983 0.4286
m1 ×m3 × p1 1.6450 0.6782 2.4257 0.0184
m2 ×m4 × p1 2.4481 0.5195 4.7129 0.0000
m1 ×m6 × p1 4.9865 1.2976 3.8429 0.0003
m1 ×m7 × p1 2.3514 0.9553 2.4614 0.0169
m5 ×m7 × p1 5.7172 1.3487 4.2390 0.0001
m1 ×m3 × p2 − 1.0953 0.6647 −1.6477 0.1048
m3 ×m4 × p2 2.4720 0.6369 3.8813 0.0003
m1 ×m5 × p2 1.4603 0.6756 2.1613 0.0348
m1 ×m6 × p2 − 2.5250 0.9504 −2.6569 0.0102
m2 ×m6 × p2 − 1.5166 0.5959 −2.5450 0.0136
p1 × p2 0.1204 0.0573 2.1002 0.1180
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Figure 14: Contour plots for the fillers m1, m2, and m3 when m4 = m5 = m6 = m7 = 0.08.

The top (bottom) plots are for a large (small) relative humidity.

The left (right) plots are for a low (high) temperature.
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Figure 15: Contour plots for the functional excipients m4, m5, and m6 when m1 = m2 = m3 = 0.227

and m7 = 0.08. The top (bottom) plots are for a large (small) relative humidity. The left (right) plots are

for a low (high) temperature.
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Figure 15 shows that the interactions between the functional excipients and the storage

conditions are more pronounced. In general, a higher temperature results in larger degra-

dations. At low temperature and low humidity, a larger proportion of the desintegrant (m5)

results in smallest degradation, while a non-zero proportion of the glidant (m4) generally

results in larger degradations. The active synergistic effect between the proportion of the

glidant (m4) and the surfactant (m6) causes a maximum degradation near the vertex of the

glidant. However, at high temperature and low humidity setting, high glidant proportions

(m4) leads to a small degradation and a non-zero proportion of the surfactant (m6) results

in larger degradations. The largest degradation is now found close to the vertex of the

surfactant (m6). At high humidity, the degradation is minimal when m6 = 1 at low and

high temperatures. The degradation is always maximal when the glidant has a non-zero

proportion. At high temperature there is an active synergistic effect between the glidant

(m4) and the desintegrant (m5), so that a combination of these excipients result in larger

degradations.

8 Conclusion

We have shown that mixture-process variable models and experimental designs are useful

tools for excipient compatibility studies. Compared to the traditional excipient compat-

ibility study approach, these models and designs allow the incorporation of the storage

conditions, temperature and relative humidity. A major benefit is that this methodology

allows us to test whether the impact of the different excipients on the degradation depends

on the temperature and the humidity, and whether the impact of temperature and humid-

ity depends on the excipient proportions used in the formulation. In the statistical jargon,

the methodology allows us to test whether there are interaction effects between excipient

proportions, on the one hand, and storage conditions, on the other hand.

One challenge with the mixture-process variable methodology is to produce a suitable ex-

perimental design. In this article, we studied three different approaches to design excipient

compatibility studies, using three different scenarios: a completely randomized experi-

ment, a split-plot experiment and a strip-plot experiment. We compare designs proposed
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by Kowalski et al. (2000, 2002) to D- and I-optimal designs. The optimal design approach

allows us to take into account any constraints on the component proportions, both linear

and nonlinear. This flexibility was of utmost importance in our motivating example. An-

other advantage is that optimal designs can be computed for any kind of grouping in the

experimental setup. So, it is possible to compute optimal split-plot and strip-plot designs,

in addition to optimal completely randomized designs. It turned out that the I-optimal

designs provide an excellent trade-off between estimation precision and predictive capa-

bility. Moreover, for the examples discussed here, the I-optimal design allows additional

interactions between the process variables and the nonlinear blending terms to be included

in the model, even though these terms were not included in the a priori model used for the

design construction. Including these terms increased the goodness of fit of our model for

the motivating example substantially.

We demonstrated the I-optimal split-plot design approach using an example of an excipi-

ent compatibility study with seven excipients. By means of contour plots, we found many

interesting active synergistic effects and it became possible to visualize the effect of the

storage conditions. The larger degradations at high temperatures was expected, but the

lower degradations at low temperature and high humidity was not. This has to be investi-

gated more into detail. For further formulation development, no real incompatibilities are

found, but combining the fillers mannitol (m1) and lactose (m3) should be avoided.
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Highlights 

“Optimal design of experiments for excipient compatibility studies” 

 

- We discuss the typical split-plot and strip-plot complications in excipient 

compatibility studies. 

- We explain that excipient compatibility studies are in fact mixture-process variable 

experiments. 

- We present a flexible technology to set up highly informative experimental designs 

for excipient compatibility studies. 

- We are the first to study I-optimal split-plot and strip-plot mixture-process variable 

designs. 

- We illustrate our approach using a real-life excipient compatibility study.  


