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ABSTRACT
A widely adopted paradigm in the design of recommender systems
is to represent users and items as vectors, often referred to as la-
tent factors or embeddings. Embeddings can be obtained using a
variety of recommendation models and served in production using
a variety of data engineering solutions. Embeddings also facilitate
transfer learning, where trained embeddings from one model are
reused in another. In contrast, some of the best-performing collab-
orative filtering models today are high-dimensional linear models
that do not rely on factorization, and so they do not produce embed-
dings [27, 28]. They also require pruning, amounting to a trade-off
between the model size and the density of the predicted affinities.
This paper argues for the use of high-dimensional, sparse latent
factor models, instead. We propose a new recommendation model
based on a full-rank factorization of the inverse Gram matrix. The
resulting high-dimensional embeddings can be made sparse while
still factorizing a dense affinity matrix. We show how the embed-
dings combine the advantages of latent representations with the
performance of high-dimensional linear models.
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1 INTRODUCTION
Wherever humans are faced with a large number of possible actions,
subjective preferences, and limited time, recommender systemsmay
help them make decisions. At the heart of many of these systems
sit collaborative filtering algorithms. They model preferences as a
function of past interactions, and use it to recommend future actions.
Many collaborative filtering algorithms rely on latent factors or
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embeddings. These are vectors of numbers representing typically
either a user of the system or an item from its catalog.

Latent factor models were first developed by participants of the
Netflix Prize, a machine learning competition on film ratings that
ran from 2006 to 2009 [6, 9, 14, 22, 23], and have become extremely
popular in the years since the Netflix Prize, becoming the de facto
industry standard for recommendation. Item embedding models
have been developed or deployed by a range of prominent indus-
try players, including Microsoft, Facebook, Spotify, Pinterest and
Deezer [1–3, 19, 32]. They have several benefits. Most importantly,
they generally work well. They are conceptually simple, and offer
a geometric interpretation of users and items as points in high-
dimensional space. Compared to neighborhood models, they also
have the benefit that two items may be related even if no user
ever interacted with both. And lastly, embeddings allow for trans-
fer learning: embeddings learned on one model may be reused in
another.

For as long as there have been latent factors, there have also been
linear collaborative filtering algorithms not relying on embeddings.
These models extract an item-item similarity matrix and recom-
mend the items that are most similar to those in the user histories.
The item-item matrix may be based on co-counts (how often do two
items occur together across all users’ history) or learned through
optimization, e.g. the SLIM model [21].

Many models of either kind are linear and shallow. Recent work
has shown that, despite the success of deep learning elsewhere, lin-
ear and shallow recommenders continue to produce state-of-the-art
results, while results for neural recommenders are brittle and diffi-
cult to reproduce [5, 23, 28]. In particular, in 2019, Steck proposed
EASER , a simple linear model that is easy to train and achieves
state-of-the-art performance on ranking metrics [28]. Crucially,
Steck’s is not a factor model, but a variant of SLIM; it is ‘full-rank’.
Might it be more useful for a model to be ‘wide’ than ‘deep’?

1.1 Prediction Coverage
Many real-world recommenders consist of a two-stage architecture.
For a given user or query, a big number of candidate items is first
retrieved by a candidate generation system. The candidate items are
then ranked by a ranking system that is trained to assign scores
to arbitrary query-candidate pairs, perhaps given some additional
context [4, 31]. With some abuse of terminology, we will refer
here to the number of items receiving a non-zero score for a given
user or query as the prediction coverage. Coverage is important for
two-stage recommender systems in that candidate generation and
ranking systems need to be able to score, respectively, a large or
arbitrary number of query-item pairs.
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Two-stage architectures expose a downside of current high-
dimensional models like SLIM and EASER . Having O(N 2) parame-
ters, these models typically need to be pruned to maintain a practi-
cal memory footprint. As we will see, this comes at the expensive
of prediction coverage. Meanwhile, models based on factorization
are able to assign scores to any user-item pair: the user and item
embeddings factorize the dense matrix of predicted affinities.1

In this paper, we ask whether we can make high-dimensional
embedding representations practical. In particular, we propose a
simple linear model based on Cholesky embeddings: sparse, high-
dimensional item embeddings that combine the advantages of
embeddings with the beneficial performance of high-rank mod-
els like Steck’s. It offers great ranking performance, fast train-
ing and better prediction coverage—assigning non-zeros scores
to over 99% of items—at practical sparsity levels. An is available at
https://github.com/jvbalen/cholesky.

2 RELATEDWORK
We distinguish three types of latent factor models: user-item mod-
els, item-item models and non-linear models. In user-item models
each user and each item are assigned an embedding, and the rec-
ommendation score of an item i for a user j is modeled as the dot
product of their embeddings. In item-item models, only items have
embeddings. To get recommendation scores for given a user, the
embeddings of all items in a user’s history have to be summed, first,
to obtain an “on-the-fly”, user embedding. Non-linear models tend
to follow the same approach, but apply some non-linear transfor-
mation to the summed embeddings before scoring items, typically
using a neural network.

2.1 Factor Models
User-item factor models algorithms are trained on a dataset of
observed user-item interactions, typically represented as a sparse
M × N matrix X , with M and N the number of users and items.
The non-zero elements of X may encode explicit feedback, such
as ratings, or implicit feedback: whether a user i engaged with an
item j. The central idea in these algorithms is to approximate X
with matricesU ∈ RM×K and V ∈ RN×K .

X ≈ UV ⊺ (1)

U andV are learned through an optimization procedure. Many vari-
ants include item and user bias vectors and ℓ2 regularization [14].
In weighted matrix factorization (WMF), non-uniform weights are
applied to the reconstruction error during optimization [9]. To rec-
ommend new items to a user, user-item scores can be read directly
from the dense reconstruction Y = UV ⊺ .

Item-item models, such as NSVD [22], asymmetric SVD [14]
and FISM [10], are inspired by neighborhood models, in which
recommendations Y = XS are a function of X and a given item-
item similarity matrix S . In item-item factor models, however, S is
replaced with two N × K matrices P and Q that are learned during
training:

X ≈ XPQ⊺ (2)

1Note also that, while EASER and SLIM are trained to predict zeros for unseen items,
this is not what we use them for in practice. Even in papers, they are evaluated based
on how they rank unseen items in the hold-out set, which requires non-zero scores.

plus again an optional vector b of item biases. In this setup, the
model learns two sets of item embeddings, P and Q . The purpose
of the latter is the same as V above, while the former is used to
compute on-the-fly user factors XP . This generally reduces the
number of parameters and generalizes more easily to new users.

2.2 Neural Networks
The most commonly used neural architectures for collaborative
filtering are auto-encoders [16, 18, 24, 26, 30]. Auto-encoders take
rows of X as inputs, transform these using one or more “hidden”
layers and try to reconstruct them on the output side. The limited
width of the hidden layers prevents the model from learning the
identity function, along with other regularization techniques such
as dropout, Gaussian noise or weight decay [18]. At the time of
writing, the best results achieved with neural recommenders have
come from variational auto-encoders [12, 13, 18]. Auto-encoders as
described here are similar to item-item models: most of the model
capacity is in the first and last layer, which perform the same role
as the factors P and Q in an item-item factor model. The I-AutoRec
model, for example, has only two layers, of which the first one is
linear, and so the only difference with an item-item factor model is
in the training objective [24].

A similar strand of neural recommenders is the item2vec fam-
ily. It is inspired by language models, and in particular, word2vec.
Word2vec learns word embeddings by trying to predict a masked
word from its immediate context [20]. Its architecture is that of a
simple item-item model (two layers, linear bottleneck). Its objective
however is different, and involves negative sampling: instead of
computing a loss over all possible N predictions, output values are
computed only for the true positive items and a random sample of
“negatives”. The resulting loss is an approximation, but makes the
final layer of the model many times more efficient and drastically
reduces training time. Item2vec and prod2vec, among other models,
applied these ideas to recommendation [1, 8].

2.3 High-dimensional Linear Models
If item-item models take the S out of neighborhood models and
replace it with the product of two learned embedding matrices
P and Q , high-dimensional linear models instead replace S with
a more general N × N weight matrix B that doesn’t necessarily
decompose into K-dimensional factors.

X ≈ XB (3)

The training objective is to minimize the squared error ∥X − XB∥22 .
The diagonal of B can be constrained to zero to avoid recovering
the trivial solution B = I . Nonetheless, this essentially performs a
simple but very high-dimensional linear regression. Like the factor
models above, the idea first appeared in solutions to the Netflix
Prize, e.g. [14, 22]. Since B has many more parameters than P and
Q , the SLIM model adds sparsity-inducing ℓ1 and ℓ1 penalties to the
training objective, as well as a hard positivity constraint. Estimation
of B is parallelized across the column of B, each sub-problem solving
a linear regression with one dependent and N − 1 independent
variables [21].

Further research has shown that the positivity constraint and
the ℓ1 penalty can be dropped, enabling faster training [17, 28]. One
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(a) ML100K Dataset (b) Netflix Dataset

Figure 1: Adapted from [10]. Hit rate as a function of the embedding dimension K of the FISMmodel, on two datasets. Similar
figures can be found in other publications proposing embedding models [14, 24].

model, called EASER , has the following closed-form solution:

B = I − PD−1
p (4)

where P (for precisionmatrix) is the regularized inverse of the Gram
or co-count matrix X⊺X .

P = (X⊺X + λI )−1 (5)

Dp is a diagonal matrix containing the diagonal of P and λ a regu-
larization parameter. Computing B is still a memory-intensive task,
due to the N 2 parameters, but it is much faster than the N separate
regressions required for SLIM.

Experiments with EASER have shown it to match or outperform
state-of-the-art matrix factorization and auto-encoder models, de-
spite its simple formulation. They also show that the weights B may
be pruned down to a much sparser matrix, by setting all elements
except those with the highest absolute value to zero. A sparsity of
99%-99.9% could be achieved with less than 1% relative loss of recall
[27].

3 FULL-RANK EMBEDDINGS
From Steck’s experiments comparing EASER to existing factor and
auto-encoder models, we hypothesize that the low-rank bottlenecks
inherent to existing embedding models are also recommendation
quality bottlenecks. This is consistent with results from several
works on low-rank factor models: performance goes up as the
embedding dimension increases, see e.g. Figure 1, adapted from
[10], as well as tables and figures in [10, 24].

Of course, researchers and practitioners have a good reason
for choosing a modest number of dimensions: efficiency. Beyond
some number of dimensions, additional performance gains may
not be worth the linear increase in memory required to store high-
dimensional embeddings, or the cost of making predictions. How-
ever, this is only true for dense vectors.

We propose a combination of high-dimensional factorization
and pruning as a way to increase performance without increasing
memory footprint. Or alternatively: to reduce the memory footprint
of high-dimensional embedding models without having to reduce
the embedding dimension K . This ties our work to embedding com-
pression. However, while compressed embeddings have made an
appearance in recommender systems before, work so far has, to

our knowledge, focused only on bloom filters [25] and quantization
[11, 30] rather than pruning.

3.1 Cholesky Decomposition
The main idea of this paper is to turn the the embedding dimension
K all the way up toK = N and compute full-rank embeddings. That
is, for a catalog with N items, we use sparse N -dimensional embed-
dings. We can obtain such embedding efficiently by building on the
high-dimensional linear recommender proposed by Steck [28]. We
propose to decompose its N ×N weight matrix B into the following
form:

B = LL⊺Dπ (6)

withDπ a diagonal matrix. UsingY = XB, we arrive at a formula for
the recommendation scores that admits a familiar interpretation:

Y = XLL⊺Dπ (7)

In other words, our model is an item-item factor model with P = L
and Q = Dπ L. Or, alternatively, a model with P = Q = L of which
the item scores are multiplied by a vector π of multiplicative item
priors.

To find L, we perform Cholesky decomposition. The Cholesky
decomposition LL⊺ of a real, symmetric matrix A is an exact fac-
torization of A into a lower-triangular matrix L and its transpose.
In particular, we decompose βDp − P , where β is a scalar hyper-
parameter and Dp the diagonal matrix from section 2.3. We have:

LL⊺ = βDp − P

Y = XLL⊺Dπ
(8)

For β = 1 and Dπ = D−1
p , this reduces exactly to EASER : Y =

XB. The Cholesky factor L exists when A is a positive-definite
matrix. While Dp −P is generally not positive-definite, we find that
small values of β ≥ 2 are typically enough to make the rows of
βDp−P diagonal dominant, allowing it to be decomposed. Note that
choosing β > 1will cause LL⊺Dπ to deviate from B in the diagonal,
however we note here that in SLIM-like models, the diagonal of B
does not affect the recommendation scores of new items (those not
already part of a user’s history), which is what we’re interested in.
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Algorithm 1: Cholesky embeddings in Python

# let X be the sparse user-item matrix
# let l2_reg a regularization parameter
# let beta >= 2
G = (X.T @ X).toarray() # compute Gram matrix and make dense
diag_indices = numpy.diag_indices_from(G)
G[diag_indices] += l2_reg # G + l2_reg * I
P = numpy.linalg.inv(G) # invert
A = -P
A[diag_indices] += beta * numpy.diag(P) # beta * D_p - P
L = scipy.linalg.cholesky(A, lower=True) # decompose

3.2 Singular Value Decomposition
As an alternative to Cholesky factorization, we may also consider
the more commonly-used singular value decomposition (SVD),
where a matrix is decomposed into left-singular vectors U , right-
singular vectorsV , and a diagonal matrix Σ of singular values. Since
the matrix we decompose can be made positive-definite and sym-
metric, the singular values are positive andU =V . We can therefore
choose H = U Σ

1
2 = V Σ

1
2 and rewrite as:
U ΣV ⊺ = βDp − P

HH⊺ = βDp − P

Y = XHH⊺Dπ

(9)

In practice, we find full-rank singular value decomposition to be
unstable when using commonly available python implementations;
for typical βDp − P , none converged. However, we can exploit
some additional knowledge of about the factors and use another
algorithm that, for symmetric and positive-definite matrices, also
yields the SVD: eigen-decomposition.

QΛQ⊺ = βDp − P (10)

Using H = QΛ
1
2 we then obtain the embeddings H .

3.3 Complexity
The time complexity of both eigen- and Cholesky decomposition
is O(N 3), the same as that of computing the inverse Gram matrix.
This inversion is also required to compute B. Hence, our method
for computing L and H has the same complexity as training EASER .
The train-time memory footprint is also the same: O(N 2). In prac-
tice, training is efficient in that involves only a single pass over the
data, but, like EASER , its complexity can be prohibitive for large-
catalog recommendation. Preliminary experiments indicate that it
is possible to compute sparse approximate Cholesky embeddings in
O(kN ) time (k the number of non-zeros per item), using an proce-
dure similar to the one in [29]. At prediction time, the complexity
is greatly reduced by pruning.

Optimized matrix compositions are available in most standard
linear algebra packages, including Numpy and Scipy.2 CHOLMOD,
part of SuiteSparse3 also provides a fast Cholesky implementation
but requires pruning P down to a sparse matrix. Following the

2See http://www.numpy.org/ and http://www.scipy.org/
3See http:www.suitesparse.com/

Python code example in [28], Algorithm 1 shows an example im-
plementation of a function that computes L from X using Scipy,
without pruning.

3.4 Adaptive Sparsity
The Cholesky factor L is lower-triangular: all elements above the
diagonal are zero. This can be exploited to induce a kind of adaptive
sparsity. Note first that we are free to choose the order of the rows
of L. It depends on the order of the columns ofX which is essentially
an arbitrary choice made ahead of training.

For example, we may choose to rank items by their popularity
rank r , popular items first. The resulting embeddings (that is, the
rows of L) will have r non-zeros in their embeddings. We then
independently prune each embedding down to at most k non-zeros.
This procedure will ensure that the first k items are not affected
by pruning (they can keep all r < k of their parameters). All other
items get to keep k of their r parameters, constituting an “effective”
density of k/r .

A similar adaptive compression strategy was previously shown
to be useful in another, quantization-based (as opposed to pruning-
based) approach to embedding compression [11]. Preliminary ex-
periments confirm that here, too, ordering items by number of
interactions or number of non-zero co-counts gives better results
than ordering randomly. In the next section, we will look at the
performance of the proposed embeddings under varying levels of
sparsity.

3.5 Relationship with Low-Rank Embeddings
Having defined our embeddings as a factorization of the EASER
weights matrix, we can interpret existing linear, low-rank embed-
ding models as similar factorizations. The most salient difference is
that existing factorization models effectively drop dimensions from
the latent representations, instead of making them sparse. Seeing
that sparse models are currently gaining in popularity, we hope
to see our pruning approach become a starting point for further
research, similar to the way the Netflix Prize-era models have in-
spired several deep and non-linear alternatives since they were first
proposed.

4 EXPERIMENTS
We now evaluate the recommendation performance of the pro-
posed sparse SVD (SSVD) and Cholesky (CHOL) embedding models.
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Figure 2: Recommendation performance of the EASER and CHOLmodels on the Million Song Dataset as a function of density
and the ℓ2 regularization strength, shown here as l2_reg.

Table 1: Dimensions and sparsity of the used datasets, after
filtering.

dataset #users #items #interactions density

MovieLens-20M 136677 20108 9990030 0.0036
Netflix dataset 463435 17769 56880037 0.0069
Million Song Dataset 571355 41140 33633450 0.0014

(a) (b)

Figure 3: (a) total train time for the twomodels (both pruned
to 0.05% sparsity). (b) average number of items with a non-
zero score.

We also show results for an implementation of EASER , and four
low-rank models: a user-item weighted matrix factorization model
[9], and three auto-encoders [13, 18]. Except for one, all models
were trained and evaluated on three commonly-used recommen-
dation datasets: MovieLens-20M, the Netflix prize data and the
Million Song Dataset. Table 1 gives an overview of the dimensions
and sparsity of each dataset’s user-item matrix. We measure so-
called ‘strong generalization’, using the same evaluation set-up
as [18, 28]: we rank held-out items for unseen users and compute
the NDCG@100 ranking metric, which assigns a higher weight to
positives appearing near the top of the results list, as well as re-
call@50, which reports the total fraction of true positives returned
within the top 50—see the aforementioned publications for a more
extensive motivation.

Table 2: Performance on our test split of theMovieLens-20M
data for SSVD and CHOL, after pruning embeddings to k
non-zeros per item.

NDCG@100
k density SSVD CHOL

N 1.0 0.416 0.416
6000 0.3 0.415 0.416
2000 0.1 0.408 0.417
600 0.03 0.360 0.417
200 0.01 0.224 0.416

4.1 Singular Value Decomposition
A first set of experiments, on the smallest of the three datasets, al-
ready shows that the embeddings based on Cholesky aremuchmore
amenable to pruning those based on SVD. Table 2 shows the test set
performance on MovieLens-20M of SSVD and CHOL, each of them
pruned down to k ∈ {N , 6000, 2000, 600, 200} non-zeros per item.
The ℓ2 regularization parameter was held constant at λ = 100. Per-
formance of the SSVD embeddings drops from NDCG@100 = 0.416
to 0.224 while the CHOL embeddings’ performance is not mean-
ingfully affected. In the next sections, we will no longer consider
the SSVD embedding model and focus on CHOL.

4.2 Cholesky Decomposition
Experiments with regularized item-item models consistently show
how performance increases with embedding size, see e.g. figures
and tables in [10, 14, 24]. In the limit K = N , the high-dimensional
EASER model outperforms, on big datasets, weighted matrix factor-
ization and several non-linear auto-encoders. On the challenging
Million Song Dataset, EASER is, at this time and to our knowledge,
the best-performing “pure” collaborative filtering model.4 For this
reason, and because Cholesky decomposition is exact, we know
that a dense Cholesky embeddings model would reach the same
state-of-the-art performance. Our second experiment confirms this.
The top half of Table 3 shows the performance of a dense EASE

4I.e., not content-based or aided by side information.
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Table 3: Test set metrics for dense and pruned versions of the CHOL and EASE models, and a set of low-rank models. A line
separates models with O(N 2) parameters from those with O(N ). Results in bold indicate best performance among this second
group.

MovieLens-20M Netflix Million Song Dataset
model k K recall@50 NDCG@100 recall@50 NDCG@100 recall@50 NDCG@100

EASE N N 0.521 0.420 0.445 0.395 0.430 0.390
CHOL N N 0.521 0.420 0.445 0.395 0.430 0.390

EASE 200 N 0.516 0.417 0.440 0.390 0.427 0.389
CHOL 200 N 0.516 0.417 0.440 0.390 0.429 0.390
H+Vamp∗∗ 1000 0.551 0.445 0.463 0.409 - -
Mult-VAE∗ 200 0.537 0.426 0.444 0.386 0.364 0.316
Mult-DAE∗ 200 0.524 0.419 0.438 0.380 0.363 0.313
WMF∗ 200 0.498 0.386 0.404 0.351 0.312 0.257

Note. k is the number of non-zeros per item, K is the rank (smallest latent dimension). WMF is a weighted matrix
factorization model, VAE and DAE are a variational en denoising autoencoder and H+Vamp is a variational
auto-encoder with a more flexible prior [9, 13, 18]. Results for ∗ and ∗∗ are taken from [18] and [13], respectively.

model, and a fully dense CHOL embedding model. As expected,
their performance is exactly the same.

Dense high-dimensional embeddings however are impractical.
Therefore, we focus our experiments on measuring the effect of
sparsity on the quality and prediction coverage of the embeddings.
In particular, we compare CHOL to EASER and hypothesize that
CHOL (i) achieves similar or better performance (NDCG) compared
to EASER , (ii) yields more recommendations with non-zero scores.

To address the first hypothesis, Figure 2 illustrates the recom-
mendation performance of both EASER and CHOL on a validation
split (10K users) of the Million Song Dataset. It shows NDCG@100
for various densities and regularization strengths. The EASER mod-
els were pruned based on a global magnitude threshold as in [27].
Cholesky embeddings were pruned down to a fixed number of
non-zeros k per embedding (k = 100–200).

The figure makes clear that using pruned Cholesky embeddings
rather than pruned EASER weights does not impact performance
negatively—it even comes with a small but consistent improvement.

Figures 3a and 3b show, for three datasets, the total train time
and prediction coverage (average number of non-zero item scores
per user). The two models were pruned as above, to an equivalent
density of 200/N or k = 200. While training CHOL takes a little
longer than training EASER , the number of non-zero scores is a lot
higher: 99–99.9% vs 6-12%, confirming our second hypothesis, and
illustrating an important benefit of using embeddings.5

An overview of all test set metrics is shown in Table 3. A line
separates models with O(N 2) parameters from those with O(N ).
The lower section of the table contains results for pruned versions
of EASER and CHOL, again to an equivalent density of 200/N
or k = 200. The last three models are‘low-rank’ models, copied
from [18] (same datasets, preprocessing and split size).6 All three
have a 200-dimensional bottleneck. The numbers are consistent

5We note here that for completeness, experiments should be done to determine the
quality of the scores beyond the top-50 and top-100 cut-offs used in our evaluation
set-up, and perhaps after which point beyond they become too noisy.
6We have reproduced a subset of these numbers for our own test splits and find the
difference to be small (≈ 0.002).

with Steck’s: while the low-rank autoencoders perform best on
MovieLens-20M, EASE and CHOL do much better on the larger
Million Song Dataset [28]. And they are consistent with Figure 2:
CHOL tends to perform slightly better than EASER .

4.3 Benefits and Limitations
To highlight the benefits of our approach, we return to our dis-
cussion of the conditions that determine when embeddings are
useful and when they are not. Embeddings will generally be useful
if we would like to give scores to arbitrary user-item pairs without
having to store a dense item-item matrix, as is the case in a typical
ranking system. In contrast, for applications that only ever require
the top k items per user, a pruned EASER or SLIM may work just
fine. However, if k is large, as is the case for a typical real-world can-
didate generation system, embeddings become increasingly useful
again. The embeddings we propose allow us to recover prediction
coverage while outperforming existing embeddings systems.

We also believe that, for existing production frameworks that
are already optimized for serving embeddings and re-using them
in various contexts, the embeddings introduced in this paper may
be relatively easy to adopt—-especially as machine learning frame-
works and hardware continue to extend support for sparse matrix
and tensor computations [7, 15].

The main limitations of our approach are the memory require-
ment we inherit from EASER , and prediction time. Even though
the model trains fast, predicting item recommendation scores with
Cholesky embeddings was found to take longer than with other
models: up to 500ms for a batch of 100 Million Song Dataset users.7
This is 3–10 times longer than low-rank models. In an offline set-
ting, this may not be a problem, but online applications may suffer.
The problem is that XL can be >15% dense even if X and L are
sparse. This makes the downstream matrix multiplications more
expensive. Pruning these user embeddings XL may help, but more
experiments need to be done to analyze its effect on prediction time

7wall time on a 2019 6-core Macbook Pro
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and ranking performance. Alternatively, indexing and approximate
nearest neighbors methods may be used to speed up prediction.

Finally, we want to underline the generality of the proposed
factorization: embeddings are not just used in recommender sys-
tems, but also in NLP and in machine learning models operating on
tabular data. Perhaps some of those application could also benefit
from a shift to sparse rather than low-dimensional embeddings.

Of course, while embeddings generally facilitate transfer learn-
ing, sparse and high-dimensional embeddings are not as easy to
integrate as their low-rank counterparts. Here, we note that our
Cholesky model can be viewed as a sparse, two-layer neural net-
work of which not just the weights, but also the sparsity structure
can be re-used. The sparsity structure of the Cholesky embeddings
also defines a directed acyclic graph, and we expect this kind of
transfer learning to receive further attention as research interest
in sparse neural networks and graph neural networks increases.
We eventually hope to see the ideas in this paper contribute to the
advancement of sparse and graph neural networks in recommenda-
tion research.

5 CONCLUSION
We have proposed a simple and efficient way to learn two types of
sparse high-dimensional embeddings. The proposed embeddings
based on Cholesky factorization show great ranking performance
while retaining the benefits of embeddings. In particular, they en-
able scoring of arbitrary items at practical sparsity levels. We also
showed that SVD-based embeddings did not reach the same perfor-
mance, and discussed the CHOL model’s benefits and limitations.
In future work, we hope to investigate more efficient training proce-
dures, and hope to use Cholesky embeddings in a transfer learning
application that exploits item interactions and side-information.
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