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Abstract

We introduce weighted links in a local public good game in an endogenous

network with heterogeneous players. We find that the equilibrium predictions

are sharper than when links are not weighted. In particular, active players

form a complete core-periphery graph, where they are either in the core of

interconnected players, or connected to every player in the core. Furthermore,

a player’s type is tightly related to her public good provision and her position

in the network.
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1 Introduction

Inspired by influential contributions on global public goods (Warr, 1983; Bergstrom

et al., 1986), some researchers have studied local public goods, which benefit only

some individuals (Bramoullé and Kranton, 2007; Allouch, 2015, 2017). Indeed, in-

dividuals often choose between alternatives whose advantages they do not know. In

order to take a decision, they acquire some information on these benefits either per-

sonally or through their peers. Since agents benefit from their neighbors’ investment,

personal acquisition of information is a local public good.

Most models study public good provision in fixed networks. However, for some

applications, such as collecting and sharing information with friends, links are often

endogenous as individuals decide with whom to interact in order to collect infor-

mation. In a seminal contribution, Galeotti and Goyal (2010) allow homogeneous

players to establish unweighted links, and show that strict Nash equilibria are core-

periphery networks, in which large contributors are linked, while others link to them.

Yet, individual characteristics are relevant in most applications. Consider con-

sumers who decide how much information about alternative products to acquire (Fe-

ick and Price, 1987) or farmers who learn about new fertilizers (Conley and Udry,

2010). In these examples, richer consumers and farmers with bigger plots value more

the same piece of information. Hence, these individual characteristics affect public

good provision and networking; e.g., influential consumers (market mavens) enjoy

shopping more (Feick and Price, 1987). This endogeneity creates a challenge for the

estimation of the impact of social networks on behavior (Jackson, 2010).

Allowing for heterogeneity, however, significantly complicates the theoretical anal-

ysis. Kinateder and Merlino (2017, 2021) show that, when the benefits from public

good consumption vary across players, they form nested split graphs, where players

have nested neighborhoods.1 However, the players who would demand more public

good in isolation do not necessarily provide more. Hence, it is not possible to estab-

lish a tight relationship between a player’s type, her position in the network and her

1When homogeneous players’ efforts are strategic complements, nested split graphs also emerge
if the value function is convex (Hiller, 2017).
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contribution to the public good. This makes it difficult to employ these models in

theoretical and empirical applications.

The contribution of this paper is to show that the equilibrium predictions are

sharper if we allow players to establish weighted links. In the model, players simul-

taneously choose public good provision and weighted links. Links are established

unilaterally, but once two players are linked, they access each other’s public good

provision proportionally to the weight of the link connecting them. Players differ in

the (concave) valuation of consuming the public good; we then define better types

as those who optimally acquire more public good in isolation.

We show that allowing players to establish weighted links implies that a player

is active, i.e., contributing to the public good, only if she has completely exhausted

the free riding opportunities, that is, only if there are no contributors left to whom

she can profitably link. Indeed, when links are either 0 or 1, players who need a

small additional amount of public good might prefer not to establish a link to a large

contributor. When links are weighted, players can always modulate the weight of a

link to their desire. Hence, a player contributes to the public good only after she has

links of weight 1 to all large contributors.

We then characterize sociable Nash equilibria (Kinateder and Merlino, 2021)

in which players establish all weakly profitable connections.2 In that case, active

players form a complete core-periphery graph, i.e., they are either in a core of fully-

interconnected players, or in the periphery, in which case they establish a link of

weight 1 to all players in the core. This result stems from the fact that, as we have

just discussed, active players establish links of weight 1, together with two other

equilibrium requirements: first, conditional on linking, a player links to the largest

contributors; and second, the largest contributors form a core, as otherwise they

could increase their utility by linking among them. Hence, while weighted links

discipline the behavior of active players, none of them establishes any weighted link

in equilibrium.

2In other words, a Nash equilibrium is sociable if no player can increase the weight of a link (with-
out changing other links), while obtaining the same payoffs. This refinement prevents situations in
which, out of indifference, many networks can be an equilibrium.
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In any non-empty sociable equilibrium network, only inactive players, i.e., those

who do not contribute to the public good, establish weighted links. Additionally,

there are no isolated players, as a weighted link to the largest contributor is profitable

also for players with very low valuations.

We then derive the implications of the equilibrium characterization for players’

public good provision and their linking behavior. First, only players of the best type

can be in the core, and the size of the core is bounded by the cost of establishing

links. Second, better types have more links and contribute more to the public good,

so that players are inactive only when their type is sufficiently low.

Hence, in contrast to models which restrict links to be either 0 or 1, in our model

there is a tight relationship between players’ type, their public good provision and

their network position. This implies that a player’s type can be inferred from her

network position or her public good provision.

Finally, we discuss the robustness of the equilibrium characterization of the model

in Section 4. There, we characterize strict Nash equilibrium networks and discuss

the role of alternative assumptions, such as different linking technologies, one-way

flow of spillovers, or the introduction of a fixed cost of linking.

This paper naturally relates to Galeotti and Goyal (2010). They assume that

players are homogeneous and links can be either 0 or 1; then, strict Nash equilibrium

networks are complete core-periphery graphs. Allowing for heterogeneous players,

Kinateder and Merlino (2017) show how the characterization is affected by the source

of heterogeneity. Kinateder and Merlino (2021) study income redistribution and in-

equality in a more general model with non-linear best replies and a budget constraint.

The contribution of this paper is instead to allow for weighted links.

There are a few papers that study the possibility of establishing weighted links.

In particular, Bloch and Dutta (2009) and Baumann (2021) develop network forma-

tion models with weighted links, but without strategic interaction on the resulting

network. Hence, differently from here, in those models the value of connections does

not depend on players’ level of activity.3

3Cabrales et al. (2011), Galeotti and Merlino (2014) and Merlino (2014, 2019) introduce strategic
interaction when players decide how much to invest in an undifferentiated socialization effort, so
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We model network formation non-cooperatively (Bala and Goyal, 2000). When

players only choose links, heterogeneity in valuation plays a minor role (Galeotti

et al., 2006). Yet, it significantly affects the equilibria when linking costs are also

heterogeneous (Billand et al., 2011) to a point that Nash networks might not exist

(Haller et al., 2007). In our model, the players’ benefit from linking is determined

endogenously by their choice of effort.

The remainder of the paper is organized as follows. Section 2 introduces the

model. Section 3 presents the main results, while Section 4 discusses their robustness.

Section 5 concludes. All proofs are in the appendix.

2 Model

We study a local public good game, in which each player i ∈ N = {1, ..., n} exerts

effort xi ∈ X, where X = [0,+∞) and establishes costly weighted links to free ride

on the effort exerted by others.

Denote a weighted directed network g by an adjacency matrix in which each line

i represents player i’s links by a row vector gi = (gi1, ..., gin), where gij ∈ [0, 1], for

each j ∈ N \ {i} and gii = 0 for all i ∈ N . Let gi ∈ Gi = [0, 1]n. Network formation

is non-cooperative (Bala and Goyal, 2000): player i links to j with weight gij at a

cost k · gij, with k > 0. We show below that direct spillovers are never negative, so

that incoming links are always accepted. We say that player i links to player j if

gij > 0. We define Ni(g) = {j ∈ N : gij > 0} as the set of players to whom i links,

i.e., the set of i’s neighbors.

Spillovers flow among connected players, independently of who initiated the link.

This model thus captures situations where one player pays for the communication

or link, but then information is exchanged between both. Examples for this are the

acquisition and exchange of information about new products and technologies with

friends and social acquaintances (Feick and Price, 1987; Conley and Udry, 2010).

More formally, we represent the network of spillovers by ḡ, the closure of g. In the

that players decide how much to link, but not with whom.
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undirected network ḡ, ḡij = max{gij, gji} for each i, j ∈ N ; Ni(ḡ) = {j ∈ N : ḡij > 0}
is the set of players i is linked to in ḡ, and let ηi(ḡ) = |Ni(ḡ)| be the number of i’s

neighbors in ḡ, or i’s degree. A player i is isolated if ḡij = 0 for all j ∈ N \ {i}.
A core-periphery graph is a network such that for every pair of players l,m in the

core C(ḡ), ḡlm = 1, while for every pair of players i, j in the periphery P(ḡ), ḡij = 0;

furthermore, for any i ∈ P(ḡ), there exists l ∈ C(ḡ) such that ḡil = 1.4 A complete

core-periphery graph is a core-periphery network where ḡil = 1 for all i ∈ P(ḡ) and

l ∈ C(ḡ). A weighted core-periphery graph is a network such that for every pair

of players l,m in the core C(ḡ), ḡlm > 0, while for every pair of players i, j in the

periphery P(ḡ), ḡij = 0; furthermore, for any i ∈ P(ḡ), there exists l ∈ C(ḡ) such

that ḡil > 0. A star is a (weighted) core-periphery network with a single player in

the core.

Let ⌊y⌋ be the floor operator of any y ∈ R+. Following Mahadev and Peled

(1995), in a nested split graph ḡ with degree partition D = (D0, D1, ..., DK),
5 nodes

can be partitioned in independent sets Di for i = 1, ..., ⌊K
2
⌋ containing the periphery

players and a dominating set of core players ∪K

i=⌊K
2
⌋+1

Di in the connected subgraph

of ḡ constituted by N \ D0. Moreover, the neighborhoods of the nodes are nested.

More formally, for each node v ∈ Di, for i = 1, ..., K:

Nv(ḡ) =

{

∪i
j=1DK+1−j if i = 1, ..., ⌊K

2
⌋,

∪i
j=1DK+1−j \ {v} if i = ⌊K

2
⌋+ 1, ...K.

As players in the core are all connected among themselves and all non-isolated players

link to them, a nested split graph is a core-periphery graph. As the set of agents’

neighbors are nested, for any pair of agents i, j ∈ P(ḡ), if ηj(g) ≤ ηi(g), then Nj(g) ⊆
Ni(g). In the same spirit, we define a weighted nested split graph as a weighted core-

periphery graph such that, for any i, j ∈ C(ḡ), if∑z∈N ḡjz <
∑

z∈N ḡiz, then ḡjz ≤ ḡiz

for all z ∈ C(ḡ) and, furthermore, for any i, j ∈ P(ḡ), if
∑

z∈N ḡjz ≤
∑

z∈N ḡiz, then

4Differently from Galeotti and Goyal (2010), we use the standard definition of core-periphery
graphs, whereby players in the core can have different neighborhoods.

5Take ḡ whose positive degrees are d(1) < d(2) < ... < d(K) and let d(0) = 0 (even if there is no
agent with degree 0 in ḡ). Further, define Dj = {i ∈ N : di(ḡ) = d(j)} for j = 0, ...,K. Then, the
set-valued vector D = (D0, D1, ..., Dk) is called the degree partition of ḡ.
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ḡjz ≤ ḡiz for all z ∈ C(ḡ).
Player i’s set of strategies is Si = X × Gi, and S = S1 × ... × Sn. Denote a

strategy profile by s = (x, g) ∈ S. Player i’s payoffs are:

Ui(x, g) = fi

(

xi +
∑

j∈N

ḡijxj

)

− cxi −
∑

j∈N

kgij, (1)

where c > 0 is the cost of providing the public good, k > 0 is the linking cost and

fi(x) describes player i’s benefits from public good consumption. Furthermore, for

all i ∈ N , (i) fi(x) is a twice continuously differentiable function in x and i, and it

is strictly concave and increasing in x, (ii) f ′
i(0) > c, (iii) limx→∞f ′

i(x) = mi < c,

and (iv) ∂2fi/∂x∂i ≤ 0, or f ′
i(x) ≥ f ′

j(x) for all x > 0, if i < j. Hence, there

is a unique positive optimal investment in the public good in isolation for every i

denoted by ai = argmaxxi∈X fi(xi)−cxi, which represents player i’s type. We assume

a1 ≥ a2 ≥ ... ≥ an > 0. Hence, we refer to lower-indexed players as better types. We

say that a player i is active if xi > 0, and inactive otherwise.

A strategy profile s∗ = (x∗, g∗) is a Nash equilibrium if for all si ∈ Si and all

i ∈ N , Ui(s
∗) ≥ Ui(si, s

∗
−i), where s = (si, s−i). Following Kinateder and Merlino

(2021), we say that a Nash equilibrium s∗ is sociable if, whenever there exist i ∈ N

and s′i 6= s∗i such that Ui(s
∗) = Ui(s

′
i, s

∗
−i), then g∗ij ≥ g′ij for any j ∈ N \ {i}, with

strict inequality for some j. In words, in a sociable equilibrium, any player who is

indifferent between increasing the weight of one link or not, increases it; hence, if

there is no such indifference, a Nash equilibrium is sociable. Finally, an equilibrium

is strict if no player can unilaterally change her strategy without reducing her payoff.

It follows that any strict equilibrium is sociable.

3 Results

First, we show that, as in the model with unweighted links, in any equilibrium,

active players always consume exactly the amount of public good as if they were in

isolation.
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Lemma 1 In any Nash equilibrium (x∗, g∗), x∗
i +
∑

j∈N ḡijx
∗
j = ai for all i ∈ N such

that x∗
i > 0.

The proof of this result adapts that of Lemma 2 in Kinateder and Merlino (2017) to

our model with weighed links.

Note that, when players are homogeneous, the introduction of weighted links does

not affect the equilibrium characterization of Galeotti and Goyal (2010). Indeed,

when all players want to consume a1 in isolation, every two players providing k/c or

more public good are linked. Otherwise, they could (weakly) increase their payoffs by

establishing that link, since the cost of free-riding is lower than that of own provision.

Other players then link to all players in the core. As a result, in a strict Nash

equilibrium the total provision of public good is a1, a complete core-periphery graph

emerges and players do not use weighted links. If instead the largest contributors

provide exactly k/c and are not all linked among themselves, then the total provision

may exceed a1. In this case, players may use weighted links out of indifference, but

this does not affect the equilibrium characterization.

To characterize equilibrium networks for heterogeneous players, define k = ca1.
6

Theorem 1 A sociable Nash equilibrium always exists. If k ≤ k, in any sociable

Nash equilibrium (x∗, g∗):

(i) ḡ∗ is a weighted core-periphery graph;

(ii) active players form a complete core-periphery graph with links of weight 1;

(iii) there are no isolated players.

In any sociable Nash equilibrium, the largest contributors form a core (Theorem

1.(i)). If there were several players providing k/c of the public good who are not

linked among themselves, there could be Nash networks without a core. In contrast

to the model with homogeneous players, in this model this also might happen when

the total public good provided is a1. To show this, Figure 1 depicts an equilibrium

where some players provide k/c. While all of them link to the highest contributor (so

that the total public good provision is a1), the equilibrium network does not display

6If k > k, the unique equilibrium network is empty.
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a core.7

In a sociable equilibrium, however, all players providing k/c or more are linked

among themselves, ensuring the formation of the core.8

1 4

2 3 5

Player 1 2 3 4 5
ai 1 .8 .6
x∗
i .4 .2 0

Figure 1: Example of a Nash equilibrium that is not a core-periphery graph when
fi(xi) = bi

√
xi, c = 1 and k = .2. Actives players are in gray.

Other players establish links to as many players in the core as it is profitable for

them. As a result, a core-periphery graph emerges.

The main result of this theorem is Theorem 1.(ii): active players establish only

links of weight 1, so that in a sociable Nash equilibrium they form a complete core-

periphery graph. In other words, they are either in the core, thereby having a link

of weight 1 with all players in the core, or in the periphery and sponsor themselves

a link of weight 1 to all the players in the core. The intuition for this result is the

following. Since core players produce at least k/c, free-riding on them is cheaper

than own provision. Hence, players are active only if they link to all core players,

thereby exhausting all free riding opportunities. For example, in Figure 2, players 1

to 5 are active, and form a complete core-periphery.

It is worthwhile to discuss some other novel features of this model. First, in

general, players in the core might provide identical quantities of the public good,

and thus receive links from different players who are indifferent to whom to link. As

a result, periphery players might link to different players in the core and have several

weighted links. Figure 2 depicts an example where players 1 and 2 provide identical

quantities, so that players who link to only one of them, such as 7, are indifferent to

7Perturbations of the values of the linking cost do not suffice to break eventual ties. For example,
consider an economy with 5 players where a1 = 4, ai = 3 for the other players. The following is
a Nash equilibrium without core for any k ∈ [c/2, c]: x∗

1 = 2, x∗

2 = x∗

3 = k/c, x∗

4 = x∗

5 = 1 − k/c,
g∗i1 = 1 for all i 6= 1, g∗42 = 1 and g∗53 = 1, while no other links are formed. Since 2 and 3 receive
links but are not themselves connected, no core emerges for an interval of values of the linking cost.

8In the example of Figure 1, sociability would require players 4 and 5 to link either to player 2
or 3, resulting in a core-periphery graph.
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1 2

3 4 5 6 7

Player 1 & 2 3,4,5 6 7
bi 2 1.78885 1.4 .6
ai 1 .8 .49 .09
x∗
i .35 .1 0 0

links ḡ12 = 1 gi1 = gi2 = 1 g61 = .97, g62 = .9356 g71 = .35

Figure 2: Example of a sociable Nash equilibrium with fi(xi) = bi
√
xi, c = 1 and

k = .3. Core players are in gray and weighted links are dotted.

whom to link. Hence, non-nested neighborhoods might emerge. We show in Section

4 below that the predictions of our model are even sharper if we focus on strict Nash

equilibria.

Second, there are no isolated players. The intuition is the following. Whenever

the network is non-empty, someone, say player i, provides at least k/c. As then free-

riding is cheaper than own provision, all players find it profitable to establish a link

with the appropriate weight to player i. This contrasts with models of unweighted

links, as there, if a player has a very low valuation of the public good, she might

prefer staying isolated and active instead of establishing a full link to the largest

contributor.

In the next proposition, we characterize how players’ type is related to network

position and the size of the core. For this purpose, let |a1| be the number of players

of the best type.

Proposition 1 In any non-empty sociable Nash equilibrium (x∗, g∗):

(i) ai = a1 for all i ∈ C(ḡ∗);
(ii) |C(ḡ∗)| ≤ min{⌊ca1/k⌋, |a1|};
(iii)

∑

i∈N x∗
i = a1.

Since all players in the core consume the same amount of public good as they are

connected to all active players, only players of the best type can be in the core.

Indeed, if a player of a lower type were in the core, she would access at least as
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much public good as players of the best type, which by Lemma 1 cannot be an

equilibrium. Hence, all players whose consumption in isolation is below a1 are always

in the periphery.

Proposition 1.(i) implies that players in the core collectively provide at most a1.

This allows us to bound the size of the core. Indeed, the maximal size is achieved

when all core players provide the same amount of public good; in this case, each of

them provides a1/|C(ḡ∗)|. However, in order to attract links, each player in the core

has to provide at least k/c. These two facts yield the threshold stated in Proposition

1.(ii).

Furthermore, as active agents form a complete core-periphery graph and there

are no isolated players, total provision must then be equal to a1 (Proposition 1.(iii)).

Building on Proposition 1, we can now derive some general results on how players’

type relates to their provision and their neighborhood in ḡ.

Proposition 2 In any non-empty sociable Nash equilibrium (x∗, g∗) if ai > aj for

i, j ∈ N , then:

(i)
∑

z∈N ḡ∗iz ≥
∑

z∈N ḡ∗jz, with strict inequality if x∗
i = x∗

j = 0;

(ii) x∗
i ≥ x∗

j , with strict inequality if x∗
j > 0.

In words, in the model with weighted links, there is a tight relationship between

players’ type, provision and links. First, better types have more links, and strictly

so if they are inactive. The intuition is the following: since players of better type

need more public good, they have to provide more, in which case they receive more

links, and/or link more to free ride on others.

Furthermore, even when there are multiple equilibria, better types provide more

public good. When links are discrete, better types in the periphery have more links

as well, but low type players, who have a low valuation of the public good, might

prefer not to link to all players in the core, and instead contribute a bit. However,

in this model, active players in the periphery have the same spillovers, and inactive

players of better type have more links. These results imply that better types both

link and contribute more also in the periphery.

The next proposition further characterizes the relationship between players’ types

10



and their public good provision.

Proposition 3 In any non-empty sociable Nash equilibrium (x∗, g∗):

(i) x∗
i > x∗

j for some i, j ∈ C(ḡ∗) if, and only if,
∑

z∈N ḡ∗izx
∗
z <

∑

z∈N ḡ∗jzx
∗
z, while

∑

z∈N ḡ∗iz ≥
∑

z∈N ḡ∗jz;

(ii) there can be i ∈ N such that ai < a1 and x∗
i > 0 only if, for all j with aj = a1,

j ∈ C(ḡ∗);
(iii) there exists a threshold ñ such that x∗

i = 0 for all i ≥ ñ;

(iv) if x∗
i = 0 and ai < a1,

∑

z∈N g∗izx
∗
z ≥ ai.

First, since all players in the core are of the best type, they consume the same

amount of the public good. Hence, if one of them provides more, she has to receive

less spillovers, as in Figure 3. Furthermore, since she provides more, she might

attract more links, but only from inactive players.

However, while all players in the core are of type 1 (Proposition 1.(i)), not all

players of type 1 need to be in the core. Whether any of them is in the periphery

has implications for how much public good other periphery players provide. As

Proposition 3.(ii) points out, players of a lower type—who are then in the periphery—

can be active only when all players of type 1 are in the core.

To see why, consider the following cases. First, there can be at most one active

player of the best type in the periphery, as otherwise active players of the same type

would consume different amounts of the public good, thereby contradicting Lemma

1. In that case, all other periphery players must be inactive by the same reasoning.

Figure 3 gives an example of such an equilibrium, where players 1 to 3 are of the best

type, but player 3 is in the periphery and active. It is easy to see that if players 4

and 5 were active, player 3 would consume less than players 1 and 2, thereby leading

to a contradiction.

Additionally, if there is more than one player of the best type in the periphery,

all of them must be inactive, otherwise they would consume different amounts of the

public good. Figure 4 exhibits an example of such an equilibrium with a star, but

the same logic applies to all other equilibrium networks, as active players have to be

arranged in complete core-periphery graphs.
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1 2

3 4 5

Player 1 2 3 4,5
bi 2 1.8
ai 1 .81
x∗
i .5 .4 .1 0

links - g21 = 1 gi1 = gi2 = 1

Figure 3: Example of a sociable Nash equilibrium with one best type in the periphery
when fi(xi) = bi

√
xi, c = 1 and k = .3. Core players are in gray.

1 2

3 4 5

Player 1 2,3 4,5
bi 2 1.8
ai 1 .81
x∗
i 1 0 0

links - gi1 = 1 gi1 = 1

Figure 4: Example of a sociable Nash equilibrium with more than one best type in
the periphery when fi(xi) = bi

√
xi, c = 1 and k = .3. Core players are in gray.

As spillovers crowd out own contribution, we can find a threshold that identifies

players who are inactive in all equilibria, as the provision of players in the core always

satisfies their demand for the public good (Proposition 3.(iii)).

Additionally, inactive players generally consume more than in isolation, as stated

in Proposition 3.(iv). Indeed, while the marginal cost of own provision is given by c,

the marginal cost of linking is only k. Hence, in any non-empty network, the marginal

unit of public good is cheaper for inactive players. For example, in the equilibrium

depicted in Figure 2, players 6 and 7 consume .66 and .1225, respectively, which are

both higher than their consumption in isolation.

To summarize, in this section we have derived the equilibrium characterization of

a local public good model when players can establish weighted links. The starkest im-

plication of allowing players to form weighted links is that active players are arranged

in complete core-periphery structures where all links are of weight 1. This translates

into a tight relationship between a player’s type, her position in the network and her

contribution to the public good.

In the following section, we discuss some additional properties and extensions to

the benchmark model.
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4 Discussion and Extensions

4.1 Strict Nash Equilibria

We now show that the characterization of strict Nash equilibria is sharper than that

of sociable equilibria.9

Proposition 4 In a strict Nash equilibrium (x∗, g∗), ḡ∗ is a weighted nested split

graph where active players have links of weight 1 and inactive players have at most

one link with weight in (0, 1).

In a strict equilibrium, any player is neither indifferent between linking and public

good provision, nor between linking to different players. Hence, it is best to always

exhaust a link to a contributor before linking to another who provides less. As a

result, weighted nested split graphs emerge.

Additionally, only the link to the lowest contributor among the out-links of an

inactive player can be weighted. Hence, players have at most one weighted link.

Figure 5 depicts a strict equilibrium for the same economy as in Figure 2. In

this example, since linking to player 1 is more profitable than linking to 2, every

player establishes a link with a weakly higher weight to 1 than to 2. As a result, now

neighborhoods are nested, and inactive players only have one weighted link.

This simple fact has some consequences for welfare, as inactive players have a

different number of links. As each core player provides a different amount of the

public good than in the equilibrium depicted in Figure 2, the weight of the links is

different. In particular, player 6 has a weighted link to 2, and 7 to 1. Since player 1

is providing more, and 2 less, than in the equilibrium in Figure 2, now 6 links (and

thereby consumes) less, and 7 more.

4.2 Linking technology

In the benchmark model, we assume that the technology to establish links is linear,

in the sense that the weight of a link between two players is equal to their investment

9Note that all strict Nash equilibria are sociable, but the converse is not true.
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1 2

3 4 5 6 7

Player 1 2 3,4,5 6 7
bi 2 1.78885 1.4 .6
ai 1 .8 .49 .09
x∗
i .37 .33 .1 0 0

links - g21 = 1 gi1 = gi2 = 1 g61 = 1, g62 = .68 g71 = .37

Figure 5: Example of a strict Nash equilibrium with fi(xi) = bi
√
xi, c = 1 and

k = .3. Core players are in gray and weighted links are dotted.

in that link, up to the maximal weight of 1. In this subsection, we consider a different

link formation technology such that only weighted links are established.

More formally, define by eij ≥ 0 player i’s investment in a link with player j.

Then, gij = l(eij), where the linking technology l(·) is an increasing and differentiable

function such that l(0) = 0, lime→∞ l(e) = 1 and l(e) < 1 for any e ∈ [0,∞). Let

ei = (ei1, ..., ein), where eij ∈ [0,∞), for each j ∈ N \ {i} and eii = 0, for all i ∈ N .

Let ei ∈ Ei = [0,∞)n. Player i’s set of strategies is then defined accordingly as

Si = X × Ei.

Next we show that with this linking technology any non-empty sociable equilib-

rium yields a weighted core-periphery graph.10

Proposition 5 If the linking technology is l(·), in a non-empty sociable Nash equilib-

rium (x∗, g∗), ḡ∗ is a weighted core-periphery graph, where g∗iz = g∗jz for all i, j, z ∈ N

with x∗
i , x

∗
j ∈ (0, x∗

z).

This proposition stresses that the characterization of the benchmark model is robust

to different linking technologies. However, there are some important differences.

Indeed, the weight of a link to players depends on their public good provision. So,

when links are weighted and core players provide a different amount of the public

good, they might receive different spillovers from periphery players. Hence, while

players of a better type are still in more central positions in the network, players in

10If k > k̄, the empty network is the unique equilibrium, where k̄ = ca1 lime→0 l
′(e).
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the core can be of different types, as shown in the following example.

Figure 6 depicts an equilibrium of an economy where l(e) = 1 − exp(−e). In

the example, both players 1 and 2 receive links from players 3 and 4. However, the

weights of the links are different, so that players 1 and 2 receive different spillovers.

Therefore, both of them are in the core even if they have different public good

consumption in isolation.

1 2

3 4

.289

.289
.194 .289

.194

Player 1 2 3 4
bi 2 1.9 1.5 1.4
ai 1 .9025 .5625 .49
x∗
i .703 .62 .239 .166

Figure 6: Example of a sociable Nash equilibrium with linking technology l(e) =
1 − exp(−e) when fi(xi) = bi

√
xi, c = 1 and k = .5. Core players are in gray and

the weight of a link is indicated on the corresponding edge.

4.3 Fixed cost of linking

In the benchmark model, we have assumed that the costs to bear in order to form a

link are directly proportional to the weight of that link. In some applications however,

there might be fixed costs associated with establishing a link, such as starting a phone

call. These concerns are captured in the following formulation:

∑

j∈Ni(g)

(K + kgij) , (2)

where K is the fixed component to be paid for each sponsored link independently of

its weight. Note that this formulation embeds both the unweighted and the weighted

link model for k = 0 and K = 0, respectively.

The characterization that results under (2) is the same as in a model of unweighted

links (Theorem 2 in Kinateder and Merlino, 2017). While active agents still only have

links of weight 1, the fixed cost of linking might induce players to provide a little bit

of public good rather than establishing an additional link. The following corollary

states these results.
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Corollary 1 For any K > 0, in any sociable Nash equilibrium (x∗, g∗), ḡ∗ is a

weighted core-periphery graph where active players have links of weight 1. Further-

more, there exists an fi such that player i is active and not connected to all players

in the core C(ḡ∗).

This corollary stresses that better types might not be larger contributors and active

agents do not need to form a complete core-periphery graph; this second result also

implies that there can be isolated players. The example depicted in Figure 7 exhibits

these results.

1 2

3 4 5

Player 1 2 3 4 5
bi 4.11825 4 4 3.1 1
ai 4.24 4 4 2.4025 .25
x∗
i 2 1.6 .4 .4025 .25

Figure 7: Example of a sociable Nash equilibrium in the model with fixed costs of
linking where all players are active but g∗ is not a complete core-periphery graph
when fi(xi) = bi

√
xi, c = 1, K = 1 and k = .5. Core players are in gray.

Note, however, that the results of the model with K = 0 are robust to the

introduction of a small fixed cost of linking. As we show in the following corollary,

there exists a threshold of the fixed cost of linking below which active players behave

as when K = 0, while inactive players link and consume less than when K = 0.

Corollary 2 Consider the model where linking costs are given by (2). Take a strict

Nash equilibrium (x∗, g∗) when K = 0. Then, there exists κ > 0 such that (x∗, g∗) is

a strict Nash equilibrium for any K < κ.

4.4 One-way flow of information

In some cases, information does not flow two-way, but to access it each player has to

sponsor a link, as on Twitter. Our model extends to this case, in which sponsoring

a link only allows its sponsor to access information.
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Formally, the payoff function (1) is modified and becomes

Ui(x, g) = fi

(

xi +
∑

j∈N

gijxj

)

− cxi −
∑

j∈N

gijk, (3)

i.e., information does not any more flow on the closure of ḡ, but rather on g. Then,

we derive the following:11

Corollary 3 A sociable Nash equilibrium (x∗, g∗) with one-way flow of information

always exists, and g∗ is either empty or a weighted core-periphery graph where active

agents have links of weight 1. Moreover, there is n such that j ∈ P(g∗) for all j ≥ n

in all equilibria (x∗, g∗).

This result shows that the characterization of Theorem 1 holds. In the core, players

reciprocate links, and periphery players link to core players. However, since periphery

players in the one way-flow model do not create spillovers, they can achieve a higher

consumption than a player in the core by complementing the spillovers they access

with their own provision. As a result, contrarily to Proposition 1, the best types

need not be in the core.

For example, in Figure 8, the players’ demand for public good is sufficiently

similar, and thus, having those of the best type in the periphery constitutes an

equilibrium.

1 2

3 4

Player 1,2 3,4
ai 1 .8
x∗
i .2 .4

Figure 8: Example of a sociable Nash equilibrium in the model with one-way flow
of spillovers where best types are in the periphery when fi(xi) = bi

√
xi, c = 1 and

k = .3. Core players are in gray.

11In the one-way flow model, we adapt the definition of the core as follows: for every i, j ∈ C(g),
gij = gji = 1. Hence, all links in the core are reciprocated.

17



4.5 Two-sided link formation

The equilibrium characterization we derived so far assumes that players can form

links unilaterally. This assumption does not capture well situations where some

investment by both players is possible/required for a link between them to be es-

tablished. In the following, we argue that our characterization is robust to this

extension as long as the complementarity between the two players’ investments is

not too strong, or players can transfer resources to compensate for linking costs.12

Following Ding (2019), we can express the linking technology as

ḡij = 1

{

(

1

2
eij +

1

2
eji

)
1

β

≥ 1

}

, (4)

where 1 is the indicator function and eij and eji are i’s and j’s investment in an

undirected link ḡij between them, for i, j ∈ N and eij ≥ 0. As in the benchmark

model, the undirected network ḡ resulting from a profile of investment eij for all

i, j ∈ N with i 6= j, is the network that describes spillovers across players in (1).

The linking technology described in (4) corresponds to one-sided linking if β → ∞.

Ding (2019) shows that with (4), only one player would sponsor a link as long

as β > 1. It is then easy to see that a player links to j if xj ≥ 2
1

β k/c. Hence,

any two players providing more than 2
1

β k/c are linked in equilibrium, and the same

equilibrium characterization results for any β > 1.

5 Conclusion

In this paper, we find that allowing for weighted links in a local public good game

with an endogenous network yields a tight relationship between type, public good

provision and network position. Hence, players’ types can be inferred from their

12In case mutual consent is required to establish a link (Jackson and Wolinsky, 1996), players
may ask for compensation to share the public good they provide (Bloch and Jackson, 2007). Then,
each equilibrium network under one-sided linking is an equilibrium under two-sided link formation
with transfers since the player proposing a link under one-sided linking can always find transfers so
that the link is accepted by the other party under two-sided linking with transfers.
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network position or their public good provision, and vice versa. We thus believe,

this model can be used to guide future empirical or theoretical work in applications

when the network is endogenous and links are weighted.
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Appendix

Proof of Lemma 1. Suppose that (x∗, g∗) is a Nash equilibrium and x∗
i > 0.

However, suppose ad absurdum that x∗
i +

∑

j∈N ḡ∗ijx
∗
j 6= ai. Then, a contradiction

arises since player i can profitably increase her payoff by increasing (decreasing) x∗
i if

f ′
i(x

∗
i +

∑

j∈N ḡ∗ijx
∗
j) is strictly larger (smaller) than c = f ′

i(ai), i.e., x
∗
i +

∑

j∈N ḡ∗ijx
∗
j

is strictly smaller (larger) than ai. This concludes the proof of Lemma 1. �

Proof of Theorem 1. First note that as fj(·) is twice continuously differentiable,

strictly concave and increasing, both f ′
j(·) and its inverse exist for all j ∈ N . If

k ≤ k, the following is an equilibrium: x∗
1 = a1, while g∗j1 = min{1, (f ′

j)
−1(k)/a1}

and x∗
j = 0 for all players j ∈ N \{1}; note that, since k ≤ ca1, and thus, f ′

j(a1g
∗
j1) =

k ≤ c = f ′
j(aj), we get, by inverting f ′

j(·), a1g∗j1 = (f ′
j)

−1(k) ≥ (f ′
j)

−1(c) = aj. This

equilibrium is also sociable, proving existence.

If a player j is active, there is no player i with x∗
i > k/c such that ḡ∗ji < 1. If not,

j would have a profitable deviation by setting g′ji = g∗ji + ǫ accessing ǫx∗
i additional

public good at a cost ǫk instead of ǫcx∗
i . Furthermore, if a player j is active, there
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is no player i with x∗
i = k/c such that ḡ∗ji < 1. Indeed, by the reasoning above,

ḡ′ji = ḡ∗ji + x∗
j/x

∗
i would give i the same payoffs as the current strategy. Hence, in a

sociable equilibrium, if i is active, she has no weighted links.

If there are j and i such that g∗ji = 1, then there is no z with x∗
z ≥ x∗

i and ḡ∗zi = 0.

If not, since g∗ji = 1, k ≤ cx∗
i , z could reduce effort by x∗

i linking to i and either

strictly profit from the deviation, or weakly so, contradicting that g∗ is sociable

Nash equilibrium. Therefore, any i receiving active in-links is connected to all j ∈ N

such that x∗
j ≥ x∗

i . Hence, all i ∈ N with x∗
i ≥ k/c form the core C(ḡ∗).

Note that a player among those of the best type needs to be in the core; wlog,

denote this player by 1. Suppose ad absurdum that there is i ∈ C(ḡ∗) with ai < a1

and 1 /∈ C(ḡ∗). As 1 needs to collect more public good than any player in the core,

we know that g∗1j = 1 for all j ∈ C(ḡ∗) (including i) and x∗
1 > 0. However, this

implies that x∗
i +

∑

j∈N ḡ∗ijx
∗
j ≥ x∗

1 +
∑

j∈N ḡ∗1jx
∗
j = a1. By Lemma 1, i would then

have an incentive to reduce her provision of the public good, a contradiction. This

proves 1 ∈ C(ḡ∗). Hence, C(ḡ∗) 6= ∅.
As for p ∈ P(ḡ∗), two cases apply. If x∗

p > 0, we have just shown that g∗pi = 1 for

all i ∈ C(ḡ∗), proving (ii). If x∗
p = 0 and g∗pi > 0 for some i ∈ C(ḡ∗), the statement

follows. Hence, ḡ∗ is a core-periphery graph.

Finally, if z ∈ N with g∗zi = 0 for all i ∈ N \ {z}, x∗
z = az. Suppose z deviates to

g′zi = ε > 0 for i ∈ argmax x∗
j and x′

z = x∗
z − εx∗

i . Then, the cost of attaining εx∗
i

goes from cεx∗
i to kε. If x∗

i > k/c, the deviation is strictly profitable; if x∗
i = k/c,

the deviation is weakly profitable; hence, g∗zi = 0 would not be part of a sociable

equilibrium. This concludes the proof of Theorem 1. �

Proof of Proposition 1. Ad (i). By Lemma 1, any active player i ∈ N consumes

ai. By Theorem 1.(ii), active players form a complete core-periphery graph where

all links are of weight 1. Hence, all players in the core attain the same consumption

of the public good, and are of the same type. Furthermore, Theorem 1.(ii) implies

that core players consume more public good than all other players. Hence, they have

to be of type 1.

Ad (ii). For all i ∈ C(ḡ∗), x∗
i ≥ k/c. If |C(ḡ∗)| > |a1|, then for some player j ∈ C(ḡ∗),
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aj < a1, contradicting (i). If |C(ḡ∗)| > ⌊ca1/k⌋, then x∗
i < k/c at least for some

i ∈ C(ḡ∗), a contradiction. Therefore, |C(ḡ∗)| ≤ min{⌊ca1/k⌋, |a1|}.
Ad (iii). Suppose not and ad absurdum that

∑

i∈N x∗
i 6= a1. By Lemma 1 and Theo-

rem 1.(ii), a player of the best type can improve her payoff either by providing more

public good if
∑

i∈N x∗
i < a1, or by providing less if

∑

i∈N x∗
i > a1, a contradiction.

This concludes the proof of Proposition 1. �

Proof of Proposition 2. Suppose that ai > aj for any i, j ∈ N . We first show

that in this case x∗
i ≥ x∗

j . If i ∈ C(ḡ∗), then ai ≡ a1 and this trivially implies that

j ∈ P(ḡ∗) and x∗
i > x∗

j . If i, j ∈ P(ḡ∗), suppose ad absurdum that x∗
i < x∗

j . Then,

given that x∗
j > 0, ḡ∗jz = 1 for all z ∈ C(ḡ∗) and since ai > aj also ḡ∗iz = 1. Hence,

∑

z∈N ḡ∗izx
∗
z =

∑

z∈N x∗
z =

∑

z∈N ḡ∗jzx
∗
z. However, since x∗

i < x∗
j , i receives less public

good than j, and a contradiction arises with ai > aj. Therefore, x
∗
i ≥ x∗

j .

Now we show that
∑

z∈N ḡ∗iz ≥ ∑

z∈N ḡ∗jz. If i ∈ C(ḡ∗) and j ∈ P(ḡ∗), then triv-

ially
∑

z∈N ḡ∗iz ≥ ∑

z∈N ḡ∗jz. If i, j ∈ P(ḡ∗), suppose ad absurdum that
∑

z∈N ḡ∗iz <
∑

z∈N ḡ∗jz. This implies that
∑

z∈N g∗iz <
∑

z∈N g∗jz. Since i, j link to the largest

contributors in the core, this implies that
∑

z∈N g∗izx
∗
z <

∑

z∈N g∗jzx
∗
z. Moreover, as

we have just shown, x∗
i ≥ x∗

j . This yields a contradiction with ai > aj, or it implies

that either i (by linking more and providing less public good) or j (by linking less)

can deviate profitably. Hence,
∑

z∈N g∗iz ≥
∑

z∈N g∗jz.

Suppose now that ai > aj for any i, j ∈ N and x∗
i ≥ x∗

j > 0. Then, g∗iz = g∗jz = 1 for

all z ∈ C(ḡ∗), and thus i and j receive the same spillovers from the network. Then,

x∗
i > x∗

j follows from ai > aj. This concludes the proof of Proposition 2. �

Proof of Proposition 3. Ad (i). Suppose that x∗
i > x∗

j for some i, j ∈ C(ḡ∗). By

Proposition 1.(i), ai = aj = a1 or equivalently,
∑

z∈N ḡ∗izx
∗
z + x∗

i =
∑

z∈N ḡ∗jzx
∗
z + x∗

j ,

which trivially implies
∑

z∈N ḡ∗izx
∗
z <

∑

z∈N ḡ∗jzx
∗
z. Moreover, given that x∗

i > x∗
j ,

∑

z∈N ḡ∗iz ≥
∑

z∈N ḡ∗jz.

Ad (ii). Suppose that x∗
i > 0 for i such that ai < a1 and ad absurdum that some

j /∈ C(ḡ∗) with aj = a1. Then, i, j ∈ P(ḡ∗) and thus ḡ∗ij = 0, while x∗
i > 0 implies

that g∗iz = 1 for all z ∈ C(ḡ∗), and a contradiction arises with aj = a1 since any

z ∈ C(ḡ∗) receives x∗
i , while j does not, and by Proposition 1.(i), az = a1.
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Ad (iii). By Theorem 1.(ii) active players form a complete core-periphery graph,

and thus, a player j is active if, and only if,
∑

i∈C(ḡ∗) x
∗
i < aj. All players for whom

aj ≤ mins∗∈SNE

∑

i∈C(ḡ∗) x
∗
i are inactive, where SNE is the set of all sociable Nash

equilibria. Then, picking the smallest such i ≡ ñ, x∗
i = 0 for all such i.

Ad (iv). Given x∗
i = 0 and a∗i < a1 implies that g∗iz > 0 for some z ∈ C(ḡ∗). This

in turn implies that cx∗
z ≥ k. Deriving i’s FOC shows that it is beneficial for i to

sponsor weighted links until
∑

z∈N g∗izx
∗
z = (f ′

i)
−1(k) ≥ (f ′

i)
−1(c) = ai given that

x∗
z ≥ k/c for all z ∈ C(ḡ∗). This concludes the proof of Proposition 3. �

Proof of Proposition 4. Take a strict Nash equilibrium and a player p such that

x∗
p = 0, which implies that p ∈ P(ḡ∗). Suppose ad absurdum that g∗pi ∈ (0, 1) and

g∗pj ∈ (0, 1) for i, j ∈ C(ḡ∗), where, wlog, x∗
i > x∗

j . Then, there is ǫ > 0 such that

g′pi = g∗pi + ǫ and g′pj = g∗pj − ǫ is a profitable deviation. Hence, for any j, p ∈ N ,

if g∗pj > 0, then g∗pi = 1 for all i ∈ N such that x∗
i > x∗

j . This implies that ḡ∗ is a

weighted nested split graph, concluding the proof of Proposition 4. �

Proof of Proposition 5. First note that the result of Lemma 1 extends to the model

with l(·) as it does not depend on the linking technology. Note also that, following

the same reasoning as in Theorem 1, if ai > aj for i, j ∈ N , ηi(ḡ) > ηj(ḡ); otherwise,

j would consume more public good than i, a contradiction. Additionally, if g∗ij > 0

and there is a player z with x∗
z > x∗

j for i, j, z ∈ N , then ḡ∗iz > ḡ∗ij; otherwise i would

have a profitable deviation by reducing g∗ij while increasing g∗iz. Also remember that

in a sociable equilibrium all weakly profitable links are established.

A player i’s maximization problem is given by:

max
ei,xi

fi

(

xi +
∑

z∈N

ḡizx
∗
z

)

− c(xi)− k
∑

z∈N

eiz,

with xi = max{ai −
∑

z∈N ḡizx
∗
z, 0}.

If i is active, by Lemma 1, i’s consumption of the public good in any equilibrium is

ai. Hence, small changes in i’s spillovers translate into small changes of her provision,

but not her consumption in equilibrium. As a result, i’s maximization problem can
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be written as

max
ei

fi(ai)− c

(

ai −
∑

z∈N

ḡizx
∗
z

)

− k
∑

z∈N

eiz.

As by definition ḡij = max{l(eij), l(eji)} for any j ∈ N \ {i}, the FOC with respect

to eij gives

∂max{l(eij), l(eji)}
∂eij

cx∗
j ≤ k, (A-1)

with equality if e∗ij > 0. Indeed, as k > 0, if l(eij) ≤ l(eji), ḡij is determined by l(eji),

and the LHS of (A-1) is null; hence, in equilibrium e∗ij = 0. If instead l(eij) > l(eji),

ḡij is determined by l(eij); since l(e) < 1 for any finite e, l(1) is not a possible corner

solution; as a result, i will invest in this link up to the point where the marginal

cost equals the marginal benefit. This implies that g∗ij = g∗zj for all i, j, z ∈ N with

x∗
j > x∗

i , x
∗
z > 0.

If i is inactive, i’s maximization problem can be written as

max
ei

fi

(

∑

z∈N

ḡizx
∗
z

)

− k
∑

z∈N

eiz.

Since i is inactive, in equilibrium no player links to i, i.e., l(eji) = 0 for all j ∈ N .

Hence, the FOC with respect to eij gives

f ′
i

(

∑

z∈N

gizx
∗
z

)

∂l(eij)

∂eij
x∗
j ≤ k, (A-2)

with equality if eij > 0. Indeed, if j’s provision is not large enough with respect to

the linking cost k, the LHS is lower than the RHS, and i would find it optimal to

set eij = 0. If instead eij > 0, eij is set for marginal cost to be equal to the marginal

benefits of that link, given that l(eij) < 1 for any finite eij.

To prove that ḡ∗ is a weighted core-periphery graph, it is left to prove that, if there are

players i and j such that g∗ij > 0, then there is no player z ∈ N with x∗
z ≥ x∗

j > 0 and
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ḡ∗jz < ḡ∗ij. To see this, comparing (A-1) and (A-2) reveals that ḡ∗jz ≥ ḡ∗ij if ḡ∗jz > 0.

Furthermore, if ḡ∗jz = 0 and x∗
z > x∗

j > 0, j could set e′jz = ǫ, thereby reducing

public good provision by g(ǫ)x∗
z; by (A-1), there is an ǫ > 0 for which this deviation

is strictly profitable, in which case, in a sociable equilibrium, e′jz > 0. If instead

x∗
z = x∗

j > 0 and ḡ∗jz = 0, the deviation is weakly profitable; hence, in a sociable

equilibrium, either x∗
j = 0 or ḡ∗jz > 0. These arguments also imply that g∗iz = g∗jz for

all i, j, z ∈ N with x∗
i , x

∗
j ∈ (0, x∗

z). This concludes the proof of Proposition 5. �

Proof of Corollary 1. Take a sociable Nash equilibrium (x∗, g∗), and wlog, assume

i < j if x∗
i ≥ x∗

j . First, note that if a player i has a weighted link to j, then i

is inactive. To show this, suppose that i has a weighted link to j and i is active.

Lemma 1 implies xi +
∑

l∈N

ḡilx
∗
l = ai. Then, i linking with a weight g∗ij < 1 implies

that x∗
j ≥ K/(cg∗ij) + k/c > k/c. On the contrary, setting g′ij and x′

i such that

x′
i +
∑

i∈Ni(g′)
g′ijx

∗
j = ai is not profitable if x∗

j < k/c, a contradiction. Hence, if i is

active, she has no weighted links. Following similar arguments as in Theorem 1, g∗

is a weighted core-periphery graph where active players have links of weight 1.

Second, if g∗ is empty, the statement trivially follows. Otherwise, the most profitable

link is to player 1. Now consider a scalar α ∈ R+ and introduce a player z such that

Uz(x, g) = αf1

(

xz+
∑

j∈N

ḡzjxj

)

−cxz−
∑

j∈Nz(g)

(K + kgzj); i.e., z has the same benefits

as 1, but scaled down by α. In particular, assuming that α is low enough that when

gz1 = 1, z is inactive, z is isolated if αf1(gz1x
∗
1)− kgz1 − (αf1(az)− caz) < K, where

gz1 ∈ (0, 1] is the optimal weight of the link to 1 chosen by z. Using the envelope

theorem, the derivative of the LHS with respect to α is f1(gz1x
∗
1) − f1(az) > 0, so

that the LHS is continuously differentiable and increasing in α, and equal to 0 if

α = 0. Hence there is α > 0 such that z is isolated for all α ∈ (0, α). Following a

similar argument, if x∗
2 ≥ k/c and x∗

2 < x∗
1, there is α > 0 such that g∗z1 = 1 but

g∗z2 = 0 for all α ∈ [α, α). This concludes the proof of Corollary 1. �

Proof of Corollary 2. Since (x∗, g∗) is a strict Nash equilibrium when K = 0, for

any i ∈ C(ḡ∗) and j ∈ N such that x∗
i > 0 and g∗ji = 1, x∗

i > k/c. Suppose now

K > 0 and denote by (x′, g′) an equilibrium. Then, note first that if g′ij = g∗ji = 1,
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x′
i = x∗

i for any i, j such that x∗
i , x

∗
j > 0, as K does not affect the marginal cost of

consuming the public good directly or indirectly. As x∗
i > k/c, there exists κi such

that x∗
i = (κi + k)/c so that x∗

i > (K + k)/c for any K < κi and g′ji = 1. For a

player j such that x∗
j = 0, consider j’s least profitable link in g∗, call it g∗jz. Then,

g′jz solves x′
zf

′
j(
∑

i∈N x′
i) = k. As this condition does not depend on K and x′

i = x∗
i

for any player in i ∈ C(ḡ∗), g∗jz = g′jz if g′jz > 0. Finally, g′jz > 0 if

x∗
z

(

1− K

c(f ′)−1

(

k

x∗
z

))

>
k

c
. (A-3)

Clearly the condition is satisfied for K = 0. Furthermore, the LHS is strictly de-

creasing in K. Hence, there exists κj such that (A-3) is satisfied for any K < κj.

Define κ = mini∈C(ḡ∗),j∈N |x∗

j=0{κi, κj}. As a result, for any K < κ, (x∗, g∗) = (x′, g′).

This concludes the proof of Corollary 2. �

Proof of Corollary 3. First we show that a non-empty network is a weighted core-

periphery graph. If a player j is active, there is no player i with x∗
i > k/c such that

g∗ji < 1. If not, as in the two-way flow model, j would have a profitable deviation by

setting g′ji = g∗ji + ǫ accessing ǫx∗
i additional public good at a cost ǫk instead of ǫcx∗

i .

Since x∗
i > k/c, the deviation is profitable. If instead x∗

i = k/c, g∗ji < 1 is not part of

a sociable equilibrium. So all players producing more than k/c are linked with each

other and form the core. Periphery players link to the highest producers, so that a

sociable Nash equilibrium network is a weighted core-periphery graph where active

players have links of weight 1.

Finally, given any equilibrium (x∗, g∗), player j is in the periphery if aj−
∑

i∈C(g∗) x
∗
i <

k/c. Define by NE the set of all Nash equilibria. Then, for all j ≥ n, j ∈ P(g∗)

given any equilibrium for which aj −mins∗∈NE

∑

i∈C(g∗) x
∗
i < k/c. This concludes the

proof of Corollary 3. �
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