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ABSTRACT

In this work, we introduce a multi-sensor subspace-based

clustering algorithm that benefits from fine spectral-resolution

hyperspectral images (HSIs) and fine spatial-resolution RGB

images. In order to extract spatial information, a hidden

Markov random field (HMRF) is employed on the fine

spatial-resolution RGB image, whereas, spectral information

is derived from an HSI using an advanced sparse subspace

clustering algorithm. The proposed algorithm is validated

on two real geological data sets. The experimental results in

this study show that the proposed algorithm outperforms the

state-of-the-art clustering algorithms in terms of clustering

accuracy.

Index Terms— Hyperspectral images, RGB images,

UAV data, hidden Markov random field, spectral-spatial clus-

tering, sparse representation, data fusion

1. INTRODUCTION

The recent advances in imaging technologies enable to ac-

quire high spectral-spatial resolution data using different

sensors. Among the different sensors, hyperspectral sensors

become the main source to acquire fine spectral-resolution

data in hundreds of narrow spectral bands in a broad spec-

trum range covering VNIR, SWIR, and LWIR [1]. As a result,

a hyperspectral image (HSI) provides valuable information

to identify, and discriminate different materials and objects.

Nevertheless, due to (1) its high dimensionality and (2) the

highly mixed nature of an HSI, the analysis of such data

can be complicated [2]. Therefore, recently, (supervised and

unsupervised) machine learning algorithms have been pro-

posed to address the aforementioned problems. Among those

algorithms, sparse representation-based algorithms have re-

ceived much attention due to their empirical success in many

fields (e.g., feature fusion [3] and image segmentation [4, 5]).

Sparse subspace clustering (SSC) is a well-known clustering

algorithm that benefits from the so-called self-expressiveness

property, in which, data points are written as a linear com-

bination of other data points from the same subspace [5].

However, SSC has some drawbacks: (1) it requires the entire

data set to calculate sparse coefficients, and (2) it uses only

spectral information [4]. In [4], the authors proposed a fast

exemplar sparse subspace-based clustering algorithm (ESC).

ESC utilizes a search function to select a subset of repre-

sentative samples (atoms) and uses this subset to cluster the

HSI. Although ESC provides fast clustering results, similar

to SSC, the algorithm only uses spectral information.

In different studies [6,7], the influence of spatial informa-

tion by fusing multi-sensor based data sets, is investigated. A

Hidden Markov Random Field (HMRF) is a stochastic pro-

cess generated by a Markov Random Field (MRF), that can

be used as a powerful tool to extract spatial information from

images [7]. The general objective of HMRF is to encourage

a local neighborhood of pixels to belong to the same class

type [8]. However originally, the HMRF was proposed for

single-sensor based data sets.

In this work, we propose a multi-sensor HMRF subspace-

based clustering algorithm to accurately analyze multi-sensor

data sets. Our proposed algorithm applies the ESC algorithm

to extract spectral information from an HSI. By employing

HMRF using a fine spatial-resolution RGB image, spatial in-

formation is incorporated in the clustering procedure.

The rest of the paper is structured as follows: Section 2

contains the applied methodology. In section 3, the data de-

scription, the experimental results, and discussions are pre-

sented. The conclusions are drawn in section 4.

2. METHODOLOGY

In the following section, the proposed algorithm is described

in detail. The workflow of the proposed algorithm is pre-

sented in Fig. 1.

2.1. Notation

Let us denote an HSI as X = [x1,x2, ...,xN ]T ∈ R
F×N ,

where F is the number of spectral channels and N is the

number of samples in X. xi = [xi1, xi2, ..., xiF ]
T represents



Fig. 1: The flowchart of the proposed algorithm

a pixel as a spectral vector and i ∈ {1, 2, ..., N} is the pixel in-

dex. Let us denote an RGB image as Y = [y1,y2, ...,yN1]
T ∈

R
3×N1, where N1 is the number of samples in the RGB im-

age, RE = [re1, re2, ..., reN ]T ∈ R
3×N represents the

resampled Y with similar pixel size as X. When applying

PCA on RE, the first principal component can be written as

Z = [z1, z2, ..., zN ]. X0 = [x1,x2, ...,xP ]
T ∈ R

F×P is a

subset of a predefined number P (P << N ) of representa-

tive samples from X. The clustering result can be expressed

as M = [m1,m2, ...,mN ], where mi ∈ L, and L =
{1, 2, ..., l} are the class label indices. G = [g1, g2, ..., gN ],
where gi ∈ L are ground truth labels for each pixel.

2.2. Exemplar-based subspace clustering (ESC)

In ESC [4], a subset of P representative samples, also known

as ”exemplars”, are selected to shape the sparse coefficient

matrix. The optimization problem used in ESC can be formu-

lated as:

min
C,X0

||C||1 +
λ

2
||X−X0C||2F (1)

where C = [c1, c2, ..., cN ] ∈ R
P×N is the sparse coefficient

matrix and λ is a trade-off parameter between the penalty and

the fidelity term. In order to initiate the clustering procedure,

a random sample is selected. Subsequently the rest of the

representative samples are selected based on a farthest first

search method, that uses Eq.(1) as a cost function.

The obtained C from Eq.(1) is used to compute a simi-

larity graph, which can be represented as W ∈ R
N×N . For

this, a t-nearest neighbor graph is constructed on C using the

k-d tree algorithm [4]. From this graph, Wij is 1 if cj is a t-

nearest neighbor of ci and 0 otherwise. To ensure that all data

points are connected to each other, a symmetrical similarity

graph A = |W| + |W|T is computed. In order to obtain the

final clustering map (M), spectral clustering is performed on

the similarity graph, i.e. standard K-means clustering is ap-

plied on the relevant eigenvectors of the normalized Laplacian

matrix of A [4]. Although in ESC, the demand of computa-

tional power is drastically reduced due to using X0 instead of

X as the spectral dictionary in Eq.(1), ESC has no constraints

to include spatial information.

2.3. Hidden Markov random field (HMRF)

HMRF is a probability-based model, in which the parameters

Θ = [θl, l ∈ L] need to be estimated, from Z, the first prin-

cipal component of the RGB image. θl = (µl, σ
2
l ) are the

mean and standard deviation of the probability density func-

tion from all points zi with class label l.

The HMRF method requires initial values for the cluster-

ing labels (M(0)) and the set of parameters (Θ(0)). Here,

we propose to use the clustering result obtained by ESC to

estimate the initial labels and parameters. Consequently, two

iterative procedures are run simultaneously to update the class

labels and the set of parameters using maximum a posteriori

(MAP) and expectation-maximization (EM), respectively.

1) MAP can be formulated as the following optimization

problem:

M̂ = argmin
M

[U(Z|M) + U(M)] (2)

where U(Z|M) =
∑N

i=1[
(zi−µmi

)2

2σ2
mi

+
log σ2

mi

2 ] is the fitness

term of the model and U(M) is the penalty term to involve

spatial information. This term is a sum of so-called clique

potentials and penalizes situations in which neighboring pix-

els have different labels. Moreover, to preserve the edges and

prevent oversmoothing, an edge detection technique is em-

ployed on Z. In this work, the Canny edge detection tech-

nique is employed [9]. The penalty term is constructed in

such a way that the estimation procedure is only carried out

on the pixels that are not located at edges.

2) The second step in HMRF estimates the parameters Θ.

The initial Θ(0) is calculated using the initial clustering result

M(0). To estimate Θ, we used an EM algorithm, for which

each iteration is given by:

Θ(k+1) = argmax
Θ

Q(Θ|Θk) (3)

where k is the iteration number, Q is the EM functional, de-

fined as: Q(Θ|Θk) = E[log p(M,Z|Θ)|Z,Θ(k)]. For more

details, we refer readers to [8].

3. EXPERIMENTAL RESULTS

3.1. Data sets

The HSI and RGB images were acquired during a field cam-

paign on sites in central Finland during September 2018. An

unmanned aerial vehicle (UAV) was deployed to obtain the



Fig. 2: (a) RGB image of the first scene and (b) RGB image of

the second scene. Both images were captured over Siilinjrvi

in Finland.

HSI and RGB images for mineral exploration. A hyperspec-

tral frame-based camera (0.6 Mpix Rikola hyperspectral im-

ager) and an RGB camera (20 MPix Parrot SODA) were de-

ployed on a hexacopter UAV (Aibotix Aibot X6v2), respec-

tively an eBee Plus fixed-wing UAV, that flew over geological

areas of interest. The RGB images of both scenes are shown

in Fig. 2. The acquired HSIs in both scenes contain 50 spec-

tral bands, covering the electromagnetic spectrum between

504-900 nm. Both data sets have a spatial resolution of 3.3 cm

for the HSI, and 1.5 cm for the RGB image before resampling.

The HSI image of the first scene is composed of 706 × 484
pixels. The HSI image of the second scene is composed of

250 × 416 pixels. The HSIs were firstly pre-processed be-

fore further analysis. For more details on the pre-processing

steps we refer the interested readers to [10]. Ground truth

was acquired during an extended field campaign on the sites.

Rock specimens and handheld hyperspectral scans were taken

and located with precise GPS measurements. Based on those

observations, we constructed the ground truth/validation data

set, including the applied labels. The main geological classes

in both scenes are Feldspar-Pegmatite, Glimmerite and Car-

bonatite, and the mixed class represents dark rocks containing

a mixture of topsoil with Glimmerite.

3.2. Qualitative and quantitative assessment of clustering

results

The performance of our proposed algorithm is compared to

ESC and an entropy-based consensus clustering (ECC) which

is based on K-means [11]. To ease the explanation, we use the

following abbreviation for the applied clustering algorithms:

ALsensor, where sensor is either the HSI or a fusion of HSI

and RGB (HSI+RGB). The concatenation of HSI and RGB

images are used in the multi-sensor versions of the ECC and

ESC algorithms. AL refers the applied clustering algorithm.

Furthermore, HMRF subspace-based clustering will be re-

ferred to as HMRFsub in the rest of the text. In the experi-

ments, HMRFsubHSI refers to a single-sensor version of the

HMRF algorithm, which uses the first PC, obtained from the

HSI to extract the spatial information. In all applied cluster-

ing methods, the default parameters suggested by their de-

velopers in [4, 8] are used. Additionally, bestMap(G,M) is

applied as a matching function to match the clustering results

and ground-truth. The bestMap(.) function is based on a Hun-

garian algorithm to solve the assignment problem, further de-

tails on bestMap(.) can be found in [4].

Quantitative assessment is carried out by reporting the

overall accuracy (OA), average accuracy (AA), and Kappa

coefficient in Tables 1-2. The clustering maps of the first

and second data set are presented in Figs. 3 and 4 respec-

tively. As can be observed from the tables, overall, the

fusion of the RGB and HSI images improves the clustering

results from ECC and our proposed method, while this is

not the case for ESC. Compared to HMRFsubHSI , which

applies the proposed method on the HSI alone, without us-

ing the RGB image, the proposed multi-sensor algorithm

HMRFsubHSI+RGB improves the clustering results by 5%

and 14% in the first and the second data set, respectively. In

both data sets, HMRFsubHSI+RGB performs well in cap-

turing geological features compared to its competitive algo-

rithms (first data set: OA = 68.15% and second data set: OA =

77.67%). In the first data set, although HMRFsubHSI+RGB

achieves the most accurate overall clustering result, it had a

weak performance in capturing Carbonatite, while ECCHSI

could capture Carbonatite with an accuracy of 71.00%. Both

HMRFsubHSI+RGB and HMRFsubHSI could distinguish

Feldspar-Pegmatite better than the other applied clustering

algorithms, with an accuracy of 89.50% and 93.00% respec-

tively. In the second data set, HMRFsubHSI+RGB performed

the best in capturing Feldspar-Pegmatite with an accuracy

of 89.22%. In addition, Carbonatite is best mapped using

ESCHSI+RGB with an accuracy of 75.00%.



Table 1: Quantitative assessment of the performances of the clustering algorithms applied on the first data set. The clustering

performance is evaluated using overall accuracy (OA), average accuracy (AA), and Kappa coefficient.

Clusters No. ground truth samples ECCHSI ECCHSI+RGB ESCHSI ESCHSI+RGB HMRFsubHSI HMRFsubHSI+RGB

Dust-soil 431 76.27 74.82 47.70 38.98 40.68 80.87

Feldspar-Pegmatite 413 41.58 56.02 78.34 33.04 93.00 89.50

Glimmerite 315 80.32 45.71 61.27 97.78 86.35 73.65

Carbonatite 457 71.00 58.24 28.31 21.11 11.14 9.50

Mixed 274 0.00 82.12 100 82.85 100 100

OA (%) 56.30 62.70 60.53 49.63 62.80 68.15

AA (%) 53.83 63.38 63.12 54.75 66.23 70.61

Kappa 0.45 0.53 0.51 0.37 0.54 0.60

Table 2: Quantitative assessment of the performances of the clustering algorithms applied on the second data set. The clustering

performance is evaluated using overall accuracy (OA), average accuracy (AA), and Kappa coefficient.

Clusters No. ground truth samples ECCHSI ECCHSI+RGB ESCHSI ESCHSI+RGB HMRFsubHSI HMRFsubHSI+RGB

Feldspar-Pegmatite 167 53.59 83.92 53.89 50.30 65.27 89.22

Dust-soil 153 35.63 77.06 41.83 12.42 71.24 63.40

Carbonatite 160 86.54 71.08 33.75 75.00 30.00 67.50

Mixed 161 36.53 72.33 80.75 11.18 94.41 100

Water 156 92.55 68.46 69.87 75.64 75.64 66.67

OA (%) 60.73 74.24 56.09 45.04 63.61 77.67

AA (%) 60.97 74.57 56.02 44.91 63.52 77.36

Kappa 0.51 0.68 0.45 0.31 0.54 0.72

4. CONCLUSIONS

In this work, we investigated the effect of fusing a fine spatial-

resolution RGB image and an HSI to improve the clustering

performance. Our proposed algorithm consists of two phases.

The first phase is used to extract subspace information from

an HSI using the exemplar-based subspace clustering algo-

rithm. The second phase incorporates spatial information in

the results of the first phase by extracting information from

a fine spatial-resolution RGB image, using a hidden Markov

random field approach. The proposed algorithm is applied

on two real geological data sets, the obtained results show

that the proposed method captures geological structures well

compared to other state-of-the-art clustering algorithms. As

our future work, we will investigate methods to find an opti-

mal number of ”exemplars” in the ESC algorithm.
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