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1
INTRODUCTION

Many researchers work on the electrical properties of different crys-
tals, nano-structures and molecules. The starting point for all of
them is the Hamiltonian of the given system. In other words, if

the Hamiltonian of a typical system is known, everything is computable,
otherwise not. But where does this Hamiltonian come from?

For example, consider the famous two-dimensional graphene material. If
the magic value of −2.5eV is known as the electron hopping from one site
to another site, one can calculate the Hamiltonian of this structure or any
finite system created by this material and can calculate the other electronic
properties of the system. To be more precise, we can see many different
Hamiltonians which have also been introduced for graphene with different
accuracies, with different validity ranges, that have been used by researchers.
Using these Hamiltonians around 40,000 articles (up to 2020) have been
reported by researchers and it reveals how much they have paved the way for
the development of graphene science.

1.1 Nano-Materials

Hundreds of articles on nano-structures have been written in the last two
decades. Therefore, there was a need to classify them. Nano-structures, as
a matter of nanotechnology, can be called low-dimensional materials that

1



2 INTRODUCTION

include sub-micron-sized or nano-scale units in at least one direction and
with quantum size effects. The first classification of nano-structures was
introduced by Gleiter [1] in 1995 and further explained in 2000 by Skorokhod
[2]. Skorokhod and Pokropivny reported a modified classification scheme for
nano-structures [3], which incorporates zero-dimensional, one-dimensional,
two-dimensional, and three-dimensional nano-structures.

Dimension categorization of nano-materials is one of the most basic seg-
mentation of nano-structures. In this introduction, we will only introduce
the types of nano-structures and their differences, without examining details
such as properties, applications and methods of synthesis. Each material in
space has three dimensions of length, width and height. If a material is, at
least for one of these three dimensions in the nanometer range, that material
is called a nano-structure. There is no accepted definition for the nanometer
range, but a more acceptable definition is one to one hundred nanometers.
Because the importance of nanotechnology is due to its desirable properties
and better performance, and these advantages may appear even in larger
dimensions, so there are many articles that even "nano-structured" even in
the case of a few hundred nanometers.

If all three dimensions of a material are in the nanometer range, they
will be called zero-dimensional nano-structure. Likewise, if two dimensions
of the material are in the nano-scale range, they are called one-dimensional
nano-structures and if one dimension is in the nanometer range, they are
called two-dimensional nano-structures. With this designation, because the
nanometer dimension is shorter than the other dimensions, the dimension
within the nanometer range is considered as non-dimensional.

These three types of nano-structures are fundamentally different, both
in terms of synthesis and production, and in properties and applications.
In general, the electrical, optical, magnetic, surface, etc. properties of these
three structures are fundamentally different and, therefore, their applications
are different. For example, zero-, one- and two-dimensional nano-materials
are different in terms of light absorption and light emission. For example,
one-dimensional nano-structures can be used for electronic interconnections,
whereas zero-dimensional and two-dimensional nano-materials do not. One
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important point to note is that in one-dimensional nano-materials all three
dimensions can be in the nano-scale, but one of the dimensions must be
several times larger than the other two dimensions. Likewise, in 2D nano-
materials, the main two dimensions must be several times larger than the
smallest dimension [4–8].

Zero-dimensional and three-dimensional nano-structures have a sim-
pler synthesis method than the other two types (one-dimensional and two-
dimensional), and their production costs are less, and so they are more popular
and widely used. Because the properties depend on the dimensions, it is there-
fore necessary to have a set of uniform produced nanoparticles as much as
possible ie. the distribution of the particle size should be narrow [9–13] .

Most of these structures (crystalline structures) can be derived from their
bulk by reducing one or two dimension(s). But at the nano-scale, in some
compounds such as carbon, in addition to the usual atomic structures (such
as graphite and diamond structures), there exist new structures of zero-, one-
and two-dimensional nano-materials which do not have the same bulk unit-
cell. There are a variety of zero-dimensional carbon types which can be made
e.g. fullerene which can be considered as a zero-dimensional nano-structure
that has 20 hexagons and 12 pentagons [7, 14–16] .

One-dimensional nano-structures are those that have its main dimen-
sion, at least, several times larger or outside the nanometer range. One-
dimensional nano-structures are subdivided into various types, depending
on many parameters such as cross-sectional shape and aspect ratio (large to
small aspect ratio). If the aspect ratio is small, it is called a nano-rod, and if
the dimension is large, it is called a nano-wire. Synthesis of one-dimensional
nano-materials is more difficult than zero-dimensional nano-materials and
their cost-effective production is more difficult, and therefore less useful in
commercial applications, but because of their special properties, they are
widely used in research, electronics, applications in optics and etc.
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1.2 Two-Dimensional Nano-Materials

Two-dimensional (2D) nano-materials are another group of nano-structures.
Basically 2D nano-materials exist in two different and completely different
states. The more popular is the thin-film. The schematic of some 2D materials
are shown in Fig. 1.1 which can be placed on another material. The thin layer
is placed on a surface of a material called substrate.

Figure 1.1: Schematic model of 2D materials

In recent years, synthesized 2D nano-structures have become a hub for
material research because of their new properties. In the quest to find 2D
nano-structures, over the past few years, scientists have focused on the devel-
opment of 2D nano-structures. 2D nano-structures with specific geometries
exhibit unique shape-dependent properties and are used as key components
in nano-technologies [17–19] . In addition, a two-dimensional nano-structure
is interesting, not only for basic understanding of the growth mechanism, but
also for research and development of new applications in sensors, nanocontain-
ers, nanoreactors, and photocatalysts. In Fig 1.2 , some two-dimensional nano-
structures such as junctions, branched structures, nanoparticles, nanoparti-
cles, nanowires, nanotubes, and nanodiscs are shown.
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Figure 1.2: Images from electron microscopes from a variety of two-
dimensional nano-structures obtained by different research groups. (A) Junc-
tions (Continuous Islands), (B) Branched Structures, (C) Nanoplates, (D)
Nanoparticles, (E) Nanowalls, and (F) Nano disks . [20–27]

Thin layers have many applications in different domains. Thin layers
are widely used in the manufacturing of electronic and optical devices. Thin
layers also have many uses in creating customized surface properties such
as corrosion resistance, abrasion resistance, and so on. As in the case of
semiconductor materials, if the thickness is low enough to allow quantum
effects to prevail, the thin layer is called Quantum-well. The accuracy and
quality of the layers varies depending on the application, and generally it is
higher for electronics and optics. The other 2D material that is less important
than thin films are those that are independent of a substrate. From this group
we can name the nanosheets and the nanoplates. Nanoplates are often thicker
than nanosheets. The synthesis of these nano-structures strongly depends
on the crystalline structure of the material and the synthesis conditions.
Quantum wells in the second group can also exist, although they are less
important.

The most important 2D material is Graphene which is also called a single
layer of graphite. Graphene’s thickness is much less than a nanometer and
about the radius of a carbon atom. Graphene has extraordinary electronic,
optical, and mechanical properties. It has the specificity, highest electrical and
thermal conductivity, high transparency, high strength coupled with superb
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flexibility and lightness are part of the unique properties of this material.
These extraordinary properties are the main reason that scientists focus on its
importance and applications so that nowadays a large number of international
articles on its properties and possible applications are available.

1.3 2D Material Applications

In recent decades, 2D materials have been used in various fields such as
electronics, chemistry, physics and building industries and so on. Nano-scale
transistors are used for computers with highly integrated electronic circuits.
In order to further minimize nano-scale circuit components, perhaps even
down to the molecular scale, researchers have suggested several alternatives
to transistors. These nano-scale electronic devices resemble current tran-
sistors, both as switches or amplifiers. However, unlike today’s field effect
transistors, which operate based on the movement of electrons as particles in
the bulk material, they benefit from quantum mechanical phenomena that
occur at the nano-scale in two dimensions. The development of transistors in
the mid-20th century was a revolution and a dramatic shift in the technology
and manufacturing of electronic devices. The working principle of transistors
that are now widely used in manufactured integrated and non-integrated
electronic circuits are based on the principles of those basic and classic tran-
sistors. However, due to advances in material science and manufacturing
technology, current transistors are made with much smaller dimensions, with
much higher quality and durability. For example, in a computer processor,
millions of silicon transistors are built side-by-side on a single chip without
any slightest flaw.

1.4 Tight-Binding Approximation

Naturally, many of the physical properties that occur in nano-scale materials
can only be investigated by quantum mechanics. These properties, includ-
ing electrical, optical, acoustical, and physical properties are completely
dependent on their dimensions of the crystalline structure, giving rise to a
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phenomenon called Quantum Confinement Effect. In small-scale systems,
the most important measurable energy variable is the status of the system.
Each system has an identifier that is unique between different materials
like a fingerprint, and is called band-structure. The band structure shows
the energies that an electron is allowed to have in a system. In the case of
molecules the band energies reduce to energy levels.

The study of the energy band structure is done in two main ways, the
First-Principles Calculations and the Tight-Binding (TB) Approximation.
The basics approach relies on the Hartree Fock Approximation which is
computationally a self-consistent method to find the best electron density
that can satisfy the Schrödinger equation. One of these methods is Density
Functional Theory (DFT) which has been made concrete in various software
packages. One of the advantages of this method is its accuracy which can be
comparable to experiments. But at the same time, this method is inefficient
for large systems. Tight-Binding method is simpler than the real Hamiltonian.
TB method is very powerful in electronic band-structure calculations and has
almost no limitation in the number of atoms.

The term tight refers to the approximation that the overlap of atomic
wave functions is limited to neighboring atoms. Such a description allows
us to skip the additional interactions in the Hamiltonian system reducing
computations considerably. TB method is a quasi-experimental computational
method that can calculate the energy band structure including the effects of
strain, electric field, optical radiation on the material structure.

Many researchers around the world are interested in the electrical prop-
erties of various systems using the Green’s function method and use the TB
approximation. This method allows researchers to extend their system to
very high number of atoms. Researchers can also design their systems more
flexibly. For example, a non-periodic system or molecular bonding to graphene
plates can be designed.

In TB model, a set of assumptions and approximations based on physics
is used to facilitate and avoid large amounts of computation. These approx-
imations are very informative and useful for understanding orbitals and
examining the bonds formed between orbitals. Also this method is very ap-
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plicable, because it is the first step in calculating the Green’s function that
are then used in any further calculations. This method is also a very power-
ful method to calculate the Bloch states [28–31] which has been developed
by many scientists [32–34] . Meanwhile, Slater and Koster invented a very
powerful method that can reproduce the hopping between all orbitals that
are effective in forming the band structure.

TB approximation can be used in two different ways: orthogonal and non-
orthogonal, which have their own advantages and disadvantages. We can
choose the orthogonal or non-orthogonal method, depending on the accuracy
required in reproducing the band-structure and the number of bands. Some-
times the orthogonal method cannot be used because the structure is very
compact and, in fact, the orbitals are tightly compressed. Atomic orbitals in
such compact structures have complex forms and cannot be approximated by
atomic orbitals. Such structures are usually made of small atoms.

1.5 Slater and Koster Method

The most important operator that is the background of the idea of Slater and
Koster approach is the rotation operator defined as follows

D(n̂,φ)= exp
(
−iφ

n̂ ·J
~

)
(1.1)

and the SK parameters

hmm′
ll′ (~r)=

〈
ϕm

l (~x+~r)|H(~x+~r)|ϕm′
l′ (~x)

〉
,

smm′
ll′ (~r)=

〈
ϕm

l (~x+~r)|ϕm′
l′ (~x)

〉
, (1.2)

where ϕm
l (~x) stands for a specific atomic orbital defined by angular quantum

numbers l and m. Note, the orbitals in Eq. (1.2) are the real spherical har-
monics. Without any change in the basic framework one can rotate the basis
vectors as follows
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hmm′
ll′ (~r)=

〈
ϕm

l (~x+~r)|D̄†H(~x+~r)D̄|ϕm′
l′ (~x)

〉
,

smm′
ll′ (~r)=

〈
ϕm

l (~x+~r)|D̄†D̄|ϕm′
l′ (~x)

〉
, (1.3)

where D̄ = D̄(l,m,n) is a function of directional cosines defined by the angles
of the bond vector between the atoms and the Cartesian basis vectors x̂, ŷ
and ẑ. The rotation operator for different orbitals can be calculated from the
Clebsch-Gordan coefficients. The bar symbol means symmetrized coefficients
which are essential to rotate a real spherical harmonic. The complex spherical
harmonics will be converted to real spherical harmonics by applying the
following operators (Rl) for the different orbitals

R0 =
(

1
)

,

R1 =


ip
2

0 ip
2

0 1 0
1p
2

0 − 1p
2

 ,

R2 =



ip
2

0 0 0 − ip
2

0 ip
2

0 ip
2

0

0 0 1 0 0
0 1p

2
0 − 1p

2
0

1p
2

0 0 0 1p
2


. (1.4)

The integrals of the rotated vectors in the right hand side of Eq. (1.3) are
called SK parameters as ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ and
ddδ where the letters s, p, and d refer to different orbitals and the symbols σ,
π, and δ refer to different covalent bond types between the orbitals. After some
simplifications one can generate the expectation values of the Hamiltonian in
the basis of the directed orbitals in terms of the ten integrals as follows
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s−s= ssσ ,

s− py = mspσ ,

py −s= m(−spσ) ,

s− pz = nspσ ,

pz −s= n(−spσ) ,

s− px = lspσ ,

px −s= l(−spσ) ,

s−dxy =
p

3 lmsdσ ,

dxy −s=
p

3 lmsdσ ,

s−dyz =
p

3 mnsdσ ,

dyz −s=
p

3 mnsdσ ,

s−d3z2−r2 = 1
2

(
3n2 −1

)
sdσ ,

d3z2−r2 −s= 1
2

(
3n2 −1

)
sdσ ,

s−dxz =
p

3 lnsdσ ,

dxz −s=
p

3 lnsdσ ,

s−dx2−y2 =−1
2

p
3 sdσ

(
2m2 +n2 −1

)
,

dx2−y2 −s=−1
2

p
3 sdσ

(
2m2 +n2 −1

)
,

py − py = m2(−ppπ)+m2ppσ+ppπ ,

py − pz = mn(ppσ−ppπ) ,

pz − py = mn(ppσ−ppπ) ,

py − px = lm(ppσ−ppπ) ,

px − py = lm(ppσ−ppπ) ,

py −dxy = l
(
−2m2pdπ+

p
3 m2pdσ+pdπ

)
,

dxy − py =−l
(
−2m2pdπ+

p
3 m2pdσ+pdπ

)
,

py −dyz = n
(
−2m2pdπ+

p
3 m2pdσ+pdπ

)
,

dyz − py = n
(
−

(
−2m2pdπ+

p
3 m2pdσ+pdπ

))
,

py −d3z2−r2 =−1
2

m
(
2
p

3 n2pdπ−3n2pdσ+pdσ
)

,

d3z2−r2 − py = 1
2

m
(
2
p

3 n2pdπ−3n2pdσ+pdσ
)

,

py −dxz = lmn
(p

3 pdσ−2pdπ
)

,
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dxz − py = lmn
(
2pdπ−

p
3 pdσ

)
,

py −dx2−y2 = mpdπ
(
2m2 +n2 −2

)− 1
2

p
3 mpdσ

(
2m2 +n2 −1

)
,

dx2−y2 − py = 1
2

p
3 mpdσ

(
2m2 +n2 −1

)−mpdπ
(
2m2 +n2 −2

)
,

pz − pz = n2(−ppπ)+n2ppσ+ppπ ,

pz − px = ln(ppσ−ppπ) ,

px − pz = ln(ppσ−ppπ) ,

pz −dxy = lmn
(p

3 pdσ−2pdπ
)

,

dxy − pz = lmn
(
2pdπ−

p
3 pdσ

)
,

pz −dyz = m
(
−2n2pdπ+

p
3 n2pdσ+pdπ

)
,

dyz − pz =−m
(
−2n2pdπ+

p
3 n2pdσ+pdπ

)
,

pz −d3z2−r2 =
p

3
(
n−n3)

pdπ+ 1
2

n
(
3n2 −1

)
pdσ ,

d3z2−r2 − pz = 1
2

(
n−3n3)

pdσ+
p

3 n
(
n2 −1

)
pdπ ,

pz −dxz = l
(
−2n2pdπ+

p
3 n2pdσ+pdπ

)
,

dxz − pz =−l
(
−2n2pdπ+

p
3 n2pdσ+pdπ

)
,

pz −dx2−y2 = 1
2

n
(
2m2 +n2 −1

)(
2pdπ−

p
3 pdσ

)
,

dx2−y2 − pz =−1
2

n
(
2m2 +n2 −1

)(
2pdπ−

p
3 pdσ

)
,

px − px = ppπ
(
m2 +n2)−ppσ

(
m2 +n2 −1

)
,

px −dxy = m
(
pdπ

(
2m2 +2n2 −1

)−p
3 pdσ

(
m2 +n2 −1

))
,

dxy − px = pdπ
(−2m3 −2mn2 +m

)+p
3 mpdσ

(
m2 +n2 −1

)
,

px −dyz = lmn
(p

3 pdσ−2pdπ
)

,

dyz − px = lmn
(
2pdπ−

p
3 pdσ

)
,

px −d3z2−r2 =−1
2

l
(
2
p

3 n2pdπ−3n2pdσ+pdσ
)

,

d3z2−r2 − px = 1
2

l
(
2
p

3 n2pdπ−3n2pdσ+pdσ
)

,

px −dxz = n
(
2pdπ

(
m2 +n2 −1

)−p
3 pdσ

(
m2 +n2 −1

)+pdπ
)

,

dxz − px =−n
(
2pdπ

(
m2 +n2 −1

)−p
3 pdσ

(
m2 +n2 −1

)+pdπ
)

,

px −dx2−y2 = lpdπ
(
2m2 +n2)− 1

2

p
3 lpdσ

(
2m2 +n2 −1

)
,

dx2−y2 − px = 1
2

p
3 lpdσ

(
2m2 +n2 −1

)− lpdπ
(
2m2 +n2)

,

dxy −dxy =−ddδ
(
m2 −1

)(
m2 +n2)+4ddπm2 (

m2 +n2 −1
)−ddπn2 +ddπ−3ddσm2 (

m2 +n2 −1
)

,
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dxy −dyz = ln
(
m2(ddδ−4ddπ+3ddσ)−ddδ+ddπ

)
,

dyz −dxy = ln
(
m2(ddδ−4ddπ+3ddσ)−ddδ+ddπ

)
,

dxy −d3z2−r2 = 1
2

p
3 lm

(
n2(ddδ−4ddπ+3ddσ)+ddδ−ddσ

)
,

d3z2−r2 −dxy = 1
2

p
3 lm

(
n2(ddδ−4ddπ+3ddσ)+ddδ−ddσ

)
,

dxy −dxz =−mn
(
ddδ

(
m2 +n2)+ddπ

(−4m2 −4n2 +3
)+3ddσ

(
m2 +n2 −1

))
,

dxz −dxy =−mn
(
ddδ

(
m2 +n2)+ddπ

(−4m2 −4n2 +3
)+3ddσ

(
m2 +n2 −1

))
,

dxy −dx2−y2 =−1
2

lm
(
2m2 +n2 −1

)
(ddδ−4ddπ+3ddσ) ,

dx2−y2 −dxy =−1
2

lm
(
2m2 +n2 −1

)
(ddδ−4ddπ+3ddσ) ,

dyz −dyz = ddδ
(
m2 −1

)(
n2 −1

)+n2 (−4ddπm2 +ddπ+3ddσm2)+ddπm2 ,

dyz −d3z2−r2 = 1
2

p
3 mn

(
n2(ddδ−4ddπ+3ddσ)−ddδ+2ddπ−ddσ

)
,

d3z2−r2 −dyz = 1
2

p
3 mn

(
n2(ddδ−4ddπ+3ddσ)−ddδ+2ddπ−ddσ

)
,

dyz −dxz = lm
(
n2(ddδ−4ddπ+3ddσ)−ddδ+ddπ

)
,

dxz −dyz = lm
(
n2(ddδ−4ddπ+3ddσ)−ddδ+ddπ

)
,

dyz −dx2−y2 = 1
2

mn

(
ddδ

(
n2 (

l2 −m2 +4
)+ l2 +3m2 −4

)
n2 −1

+ddπ
(
8m2 +4n2 −6

)−3ddσ
(
2m2 +n2 −1

))
,

dx2−y2 −dyz = 1
2

mn

(
ddδ

(
n2 (

l2 −m2 +4
)+ l2 +3m2 −4

)
n2 −1

+ddπ
(
8m2 +4n2 −6

)−3ddσ
(
2m2 +n2 −1

))
,

d3z2−r2 −d3z2−r2 = 1
4

(
3n4(ddδ−4ddπ+3ddσ)−6n2(ddδ−2ddπ+ddσ)+3ddδ+ddσ

)
,

d3z2−r2 −dxz = 1
2

p
3 ln

(
n2(ddδ−4ddπ+3ddσ)−ddδ+2ddπ−ddσ

)
,

dxz −d3z2−r2 = 1
2

p
3 ln

(
n2(ddδ−4ddπ+3ddσ)−ddδ+2ddπ−ddσ

)
,

d3z2−r2 −dx2−y2 =−1
4

p
3

(
2m2 +n2 −1

)(
n2(ddδ−4ddπ+3ddσ)+ddδ−ddσ

)
,

dx2−y2 −d3z2−r2 =−1
4

p
3

(
2m2 +n2 −1

)(
n2(ddδ−4ddπ+3ddσ)+ddδ−ddσ

)
,

dxz −dxz =−(
m2 −1

)
n2(ddδ−4ddπ+3ddσ)+n4(−(ddδ−4ddπ+3ddσ))+ddδm2 −ddπm2 +ddπ ,

dxz −dx2−y2 =−1
2

ln
(
ddδ

(
2m2 +n2 +1

)− (4ddπ−3ddσ)
(
2m2 +n2)+2ddπ−3ddσ

)
,

dx2−y2 −dxz =−1
2

ln
(
ddδ

(
2m2 +n2 +1

)− (4ddπ−3ddσ)
(
2m2 +n2)+2ddπ−3ddσ

)
,

dx2−y2 −dx2−y2 = ddδm4 +ddδm2 (
n2 −1

)+ 1
4

ddδ
(
n2 +1

)2 −ddπ
(
2m2 +n2)2 +4ddπm2 +ddπn2

+ 3
4

ddσ
(
2m2 +n2 −1

)2
. (1.5)

Note that the equations were computed symbolically and we found that in
the paper of Slater and Koster [35] there are a few typos in the interaction
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between p and d orbitals which will result in a wrong electronic dispersion.
In the case of two atoms on top of each other to evaluate the term dyz−dx2−y2

one should calculate the limit of n → 1.
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TIGHT-BINDING STUDIO

Many researchers are interested in the study of nanostructures and
solid state materials in general, but there are many computational
and mathematical challenges which hinder rapid progress. There-

fore, new computational packages are urgently needed in order to accelerate
scientific progress. Here, we are interested in electronic structure properties.

First-principles electronic structure calculations [36] are based on the laws
of quantum mechanics and only use the fundamental constants of physics
as input to provide detailed insight into the origin of mechanical, electronic,
optical and magnetic properties of materials and molecules. Both structural
and spectroscopic information is directly obtainable from high-performance
computations and yields information which is complementary to that obtained
from experimental such as transmission electron microscopy data.

Density functional theory (DFT) is one of the most important methods used
in electronic structure calculations and computational physics has provided
already a diverse number of software packages such as OpenMX [37], VASP
[38–40], QUANTUM ESPRESSO [98] and ABINIT [42] that are based on
different algorithms. The accuracy of different methods depends on the used
approximations, e.g. the particular form for the exchange-correlation (XC)
energy.

First-principles calculations is commonly applied to calculate the prop-
erties of an infinite periodic arrangement of one or more atoms (the basis)

15
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repeated at each lattice point that describes a highly ordered structure, oc-
curring due to the intrinsic nature of its constituents to form symmetric
patterns. The periodicity can make problems easier, but sometimes it can
be a drawback when one is interested in the electronic properties of finite
size systems. Linear combination of atomic orbitals (LCAO) [43, 44] is a good
candidate to overcome this problem.

The most important justification to setup LCAO is that the combination
of this method with Green’s function theory can be also used for non-periodic
systems and furthermore, in the case of systems with a huge number of atoms
there are a variety of cost and time efficiency motivations which can lead one
to use the LCAO method.

Tight-Binding (TB) approaches are based on the LCAO method that is
primarily used to calculate the band structure and single-particle Bloch states
of a material as e.g. done by Slater and Koster (SK) [35]. The tight-binding
method is simple and computationally very fast. Therefore, it is often used
in calculations of very large systems, with more than a few thousand atoms
in the unit cell. There are a number of earlier reviews [45, 46] that people
working in this field should be aware of. TB Hamiltonian gives the electronic
structure of a system using a real-space picture of the system. The real
Hamiltonians provide insight into the nature of the transport mechanisms.

To find a TB Hamiltonian one needs to evaluate the band-structure of
a typical structure based on first principles calculations and construct a
tight-binding model via the Slater and Koster method to reproduce the band
energies obtained from DFT.

The purpose of this paper is to introduce Tight-Binding Studio (TBStudio),
a new technical software package for generating TB Hamiltonians based on
Slater-Koster method from data obtained from first principles calculations
that has been made available at tight-binding.com. Cross-platform graphi-
cal user interface of TBStudio is written in C++ using native controls and
emulates foreign functionality via wxWidgets [47] tools library for GTK, MS
Windows, and MacOS. Also, BLAS [48] and LAPACK [49] routines are used
for matrix multiplications, solving systems of simultaneous linear equations
and eigenvalue problems. The standard high performance OpenGL graphic

https://tight-binding.com
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library [50] has been used for real time plotting. The main structure of TB-
Studio and several important topics, including the post processing tools are
explained in the rest of this paper.

2.1 Linear Combination of Atomic Orbitals

Consider two atoms which have atomic orbitals described by wave function
ΨA andΨB. If the atoms are at the equilibrium distance, their electron clouds
overlap with each other and the wave function of molecular orbital can be
obtained from a linear combination of atomic orbitals as follows

ΨAB = cAΨA + cBΨB , (2.1)

where ΨAB is the normalized wave function of molecular orbitals of the
molecule AB. With this in mind we are able to expand the Bloch functions as
linear combinations of the orbitals ϕ as follows

ψk(r)=∑
i

∑
νi

c iνi(k)φνi,k(r−ri) , (2.2)

where i runs over all unit cell atoms and νi runs over the orbitals defined for
ith atom and

φν,k(r)= ∑
n∈Z

∑
m∈Z

∑
l∈Z

eik.Rn,m,lϕν(r−Rn,m,l) , (2.3)

in which Rn,m,l is the discrete translation vector of the unit cell at (n,m, l)
of the Bravais lattice. The electron hopping between different orbitals is an
essential ingredient in TB approach. In a simple non-interacting picture, the
overlap of the outermost electrons leads to the hybridization of the electronic
orbitals and leads to the de-localization of Bloch states.

To calculate the energy bands we should solve the generalized eigenvalue
problem

Ĥ(k)ψσ
n(k)= εnkσŜ(k)ψσ

n(k) , (2.4)
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where Ĥ and Ŝ are the TB Hamiltonian and the overlap operators that can
be written as

Ĥ =∑
i,i′

∑
νi,ν′i

Ĥ|φνi ><φν′ i′ | ,

Ŝ =∑
i,i′

∑
νi,ν′i

|φνi ><φν′ i′ | , (2.5)

where in general the basis can be non-orthogonal and then the overlap matrix
can be a non-identity matrix. The elements of the Hamiltonian and the overlap
matrices can be found by definition of the molecular two-center integrals in
terms of the quantities called Slater and Koster integrals.

2.2 Calculation of Slater-Koster integral
Table

The most important issue that is the background of the idea of Slater and
Koster approach is the rotation operator defined as follows

D(n̂,φ)= exp
(
−iφ

n̂ ·J
~

)
, (2.6)

and the SK parameters

hmm′
ll′ (r)=

〈
ϕm

l (x+r)|H(x+r)|ϕm′
l′ (x)

〉
,

smm′
ll′ (r)=

〈
ϕm

l (x+r)|ϕm′
l′ (x)

〉
, (2.7)

in which ϕm
l (x) stands for a specific atomic orbital defined by angular quan-

tum numbers l and m. Note, the orbitals in Eq. (2.7) are the real spherical
harmonics. Without any change in the basic framework one can rotate the
basis vectors as follows

hmm′
ll′ (r)=

〈
ϕm

l (x+r)|D̄†H(x+r)D̄|ϕm′
l′ (x)

〉
,

smm′
ll′ (r)=

〈
ϕm

l (x+r)|D̄†D̄|ϕm′
l′ (x)

〉
, (2.8)
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where D̄ = D̄(l,m,n) operator is a function of directional cosines defined by the
angles of the bond vector between the atoms and the Cartesian basis vectors x̂,
ŷ and ẑ. The rotation operator for different orbitals can be calculated from the
Clebsch-Gordan coefficients. The bar symbol means symmetrized coefficients
which are essential to rotate a real spherical harmonic. The complex spherical
harmonics will be converted to real spherical harmonics by applying the
following operators (Rl) for the different orbitals

R0 =
(

1
)

,

R1 =


ip
2

0 ip
2

0 1 0
1p
2

0 − 1p
2

 ,

R2 =



ip
2

0 0 0 − ip
2

0 ip
2

0 ip
2

0

0 0 1 0 0
0 1p

2
0 − 1p

2
0

1p
2

0 0 0 1p
2


. (2.9)

The integrals of the rotated vectors in the right hand side of Eq. (2.8) are
called SK parameters as ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ and
ddδ [35, 51] where the first and the second letters are the orbital label as s,
p and d and the third letter stands for the type of covalent binding which are
formed by the overlap of atomic orbitals. σ, π and δ bonds are related to the
relative directions of two typical orbitals.

2.3 Atomic Spin-Orbit Coupling

Structures including heavy atoms show a considerable spin-orbit effect in
their electronic properties [52]. Experimentally, this phenomenon is detectable
as a splitting of spectral lines. The addition of spin-orbit coupling (SOC) to
study such materials is known as fine structure. There are many structures
[53–57] in which taking SOC into accounts becomes very important in atom-
istic modeling. This effect is a phenomenon that comes from a relativistic
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interaction of a particle’s spin with its motion inside a potential V and so the
energy level split produced by the SOC is usually of the same order in size to
the relativistic corrections to the kinetic energy. SOC fine structure can be
added as a term to the Hamiltonian. The atomic spin-orbit interaction may
be included in the TB model as

ĤSO = 1
2(mec)2 (∇V×P).S , (2.10)

where P and S are momentum and spin, respectively. Spin-orbit interactions
can be accurately approximated by a local atomic contribution of the form

ĤSO =∑
i

∑
ν

P̂i,νλνLi.Si , (2.11)

in which P̂i,ν is the projection operator for angular momentum ν on site i and
λν denotes the SOC constant for the angular momentum ν, and Si is the spin
operator on site i. The additional term in the Hamiltonian can be found by
calculating the L⊗S operator. The angular and spin operators can be written
as follows

L= (Lx,L y,Lz) ,

S= (Sx,Sy,Sz) , (2.12)

where

Lx = L++L−

2
,

L y = L+−L−

2i
, (2.13)

in which L+,− denote the ladder operators for the orbitals. Similarly, we obtain
Sx and Sy in terms of the S+,− ladder spin operators. Note that we need the
operator to be compatible with the real spherical harmonics. The real SOC
operator can be evaluated as follows
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R̄l.(L⊗S).R̄−1
l , (2.14)

where

R̄l = Rl ⊗ I2×2 . (2.15)

One should find the final results for the different s, p and d orbitals as
listed in Table 2.1.

Table 2.1: The real spherical harmonics for different angular quantum num-
bers l and m.

l 0 1 1 1 2 2 2 2 2
m 0 −1 0 1 −2 −1 0 1 2
ϕ s py pz px dxy dyz d3z2−r2 dxz dx2−y2

ĤSOC
s =λsLs⊗S=

(
0 0
0 0

)
,

ĤSOC
p =λpLp⊗S=λp

py py pz pz px px



0 0 0 i
2 − i

2 0 py

0 0 i
2 0 0 i

2 py

0 − i
2 0 0 0 1

2 pz

− i
2 0 0 0 −1

2 0 pz

i
2 0 0 −1

2 0 0 px

0 − i
2

1
2 0 0 0 px

,
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ĤSOC
d =λdLd⊗S=

=λd

dxy dxy dyz dyz d 3
z2
−r

2

d 3
z2
−r

2

dxz dxz d
x2
−y

2

d
x2
−y

2





0 0 0 −1
2 0 0 0 i

2 −i 0 dxy

0 0 1
2 0 0 0 i

2 0 0 i dxy

0 1
2 0 0 0 i

p
3

2 − i
2 0 0 i

2 dyz

−1
2 0 0 0 i

p
3

2 0 0 i
2

i
2 0 dyz

0 0 0 − i
p

3
2 0 0 0

p
3

2 0 0 d3z2−r2

0 0 − i
p

3
2 0 0 0 −

p
3

2 0 0 0 d3z2−r2

0 − i
2

i
2 0 0 −

p
3

2 0 0 0 1
2 dxz

− i
2 0 0 − i

2

p
3

2 0 0 0 −1
2 0 dxz

i 0 0 − i
2 0 0 0 −1

2 0 0 dx2−y2

0 −i − i
2 0 0 0 1

2 0 0 0 dx2−y2

.

Please note that when we use the operators (2.9), the order of the matrix
elements are not the same as complex spherical harmonics and depends on
the definition of the transformation matrix (Rl). In this work, the order of the
real spherical harmonics are presented in Table 2.1.

2.4 Iterative Minimization

TBStudio algorithm is based on the Levenberg–Marquardt least-squares
curve fitting approach in which we have a set of data obtained from first-
principles calculation and an analytical expression representing the TB model
for which we have to find the best independent parameters. Generally, the
sum of the squares of the deviations may be written as follows

S(β)=∑
n

∑
k

∑
σ

(ε′nkσ−εnkσ(β))2 ,

where ε and ε′ are, respectively, the TB results and DFT band energies and β
is a parameter vector that is a set of independent variables i.e. SK parame-
ters and overlap integrals and SOC. Non-linear least square minimization
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problems arise especially in curve fitting where here the curves are energy
bands which are highly coupled to each other. To start the minimization, the
user has to provide an initial guess for β and using the guessed β and the
mentioned SK parameters one can find the TB band energies and also the
Jacobian matrix

Jnkσ, j = ∂εnkσ(β)
∂β j

.

In each iteration, we replace β by a new parameter vector β+δ in which
δ is a correction vector that can be estimated by first order Taylor series
expansion of TB band energies as follows

εnkσ(β+δ)= εnkσ(β)+ Jnkσ.δ .

At optimum values for the independent variables, the sum of square
deviations has reached its minimum with respect to the independent vector
and we have

∂S(β+δ)
∂δ

= 0 , (2.16)

which however may also result in local minima. Depending on the problem
and the system and the number of degrees of freedom, there might be many
local minima which occur when the objective function value is greater than
its value at the so-called global minimum. When multiple minima exist
the important consequence is that the objective function definitely has a
maximum value somewhere between two minima which makes it difficult
to obtain a good fitting. Refinement from a bad SK parameter point (a set
of independent parameter values β0) close to a physically unknown local
minimum will be ill-conditioned and should be avoided as a starting point.
Because generally we do not have an analytical expression for the TB band
structure, we can not analyze the location of local minima in detail. Band
structure curves have complex forms for which it is either very difficult
or even impossible to derive analytical expressions for the elements of the
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Jacobian. In such cases, we need to find the elements by using numerical
approximations as follows

∂εnkσ(β)
∂β j

≈ εnkσ(β+δ)−εnkσ(β−δ)
2δ j

.

2.5 Explicit form for the Tight-Binding
Hamiltonian

Fig. 2.1 shows a schematic representation of the TB model. The mono-
electronic Hamiltonian H and the overlap matrix S may be rewritten as

Ĥ = ∑
n∈Z

∑
m∈Z

∑
l∈Z

ĥl,n,meik.Rl,m,n , (2.17)

and

Ĥ = ∑
n∈Z

∑
m∈Z

∑
l∈Z

ŝl,n,meik.Rl,m,n . (2.18)

(0,0)

(-1,1)

(-1,0)

(-1,-1)

(0,-1)

(0,1)

(1,1)

(1,0)

(1,-1)

a
b

Figure 2.1: Schematic representation of the TB model for a typical 2D crystal.
The red (a) and green (b) vectors are the unit vectors and the white cells
indicate independent unit cells.
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Since H and S are Hermitian, therefore

ĥ−n,−m,−l = ĥ†
n,m,l ,

ŝ−n,−m,−l = ŝ†
n,m,l , (2.19)

and thus, in this two dimensional example, we have only five independent
matrices. As shown in Fig. 2.1 we must determine only the matrices h and s
for the cells at (0,0), (1,0), (0,1), (1,1) and (−1,1). Using the SK coefficients
we can calculate the Hamiltonian and the overlap matrix and extract the
matrices h and s. TBStudio generates the Hamiltonian and overlap matrix
for any independent unit cell. Also the code generator tool builds Eqs. (2.17)
and (2.18) in other desired programming languages. Also, one can use the
outputs from TBStudio for post-processing in other transport packages. There
are many useful packages for fast calculation of various physical properties of
tight-binding models such as PyBinding [58], Kite [59], Kwant [60], GPUQT
[61], TBTK [62], PythTB [63] and WannierTools [64].

After determining the Hamiltonian and the overlap matrix, one can easily
calculate the eigenstates and the Bloch functions as well using Eqs. (2.2)
and (2.3). The ith Wannier function (WF) for the cell (l,m,n) is the Fourier
coefficient of ψi,k(r) as follows

wl,m,n
i (r)= V

8π3

∫
d3ke−ik.Rl,m,nψi,k(r) . (2.20)

The WF calculated by this method is very close to the real chemical
bonding and provides a reliable insight into the nature of the orbitals in
the study of electronic properties of solids. It should be noted that, in this
way we do not have the problem which we encounter in finding WFs using
Maximally Localized Wannier Functions (MLWF) method [65]. Practically,
MLWF algorithms change the shape of WF mathematically to find a perfect
fitting to regenerate the band-structure obtained by first-principle methods,
because a set of WFs which can generate the obtained band-structure is
not unique and may physically not a good set of atomic-orbital-like WFs. In
such algorithms that has been implemented in Wannier90 [66] and OpenMX
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[37], to achieve a physically reliable set of WFs one needs to have a good
initial guess and also follow the symmetry adapted methods, but it results in
computational difficulties and convergence failure.

2.6 Download

The supporting information and several examples are available at tight-
binding.com. The examples and the supporting codes in additional program-
ming languages, i.e. Matlab, Mathematica, Python, C, C++ and Fortran are
also accessible through Code Generator tools in TBStudio.

https://tight-binding.com
https://tight-binding.com
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BOROPHENE AND HYDROGENATED BOROPHENE

A wide range of two-dimensional (2D) materials ranging from graphene
to topological insulators [67–72] share the extraordinary phenomenon
that electrons behave as relativistic particles in their low-energy exci-

tations. This emergent behavior of fermions in condensed matter systems has
been classified as "Dirac materials" which have attracted both experimental
and theoretical researches.
Recently, a fully metallic boron based two dimentional nano-structure has
been synthesized on a silver crystal by physical vapor deposition, named as
borophene [73–77]. There are many phases of bulk and 2D boron allotropes
such as α, β and so on, which have been proposed theoretically [78–80]. Al-
though, boron avoids to participate in the formation of chemical bonds to
make a stable honeycomb lattice, it is possible to make a stable planar struc-
ture by a mixture of honeycomb together with triangular units [81, 82]. This
structure contains two atoms per primitive unit cell which is called 2B:Pmmn
in which Pmmn stands for the Space Group 59 included in Orthorhombic
Crystal System. In 2016 Xu et al. [83] predicted a novel Dirac material: hy-
drogenated borophene (borophane) exhibiting Dirac characteristics with a
remarkable Fermi velocity which is nearly twice that of graphene.
Free standing borophene has imaginary frequencies in its phononic dispersion
and consequently is dynamically unstable and therefore it needs a substrate
to be stabilized. In contrast, borophane has a dynamically stable structure

27
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and density functional theory (DFT) calculations showed that borophane has
an anisotropic Dirac cone between the Γ and X points [83]. Considering the
recent successful realizations of graphene, silicene, germanene and stanene
with similar structure, the predicted borophane with Dirac characteristics
and ultra-high Fermi velocity is a novel interesting 2D material. In contrast
to group X IV elements (C, Si, Ge, Sn) of the periodic table, borophene and
borophane have no similar hexagonal honeycomb monolayer structures be-
cause of their electron deficiency [80].
DFT calculations have revealed that the Dirac cone in borophane, unlike for
the group X IV elements [84], is not made up of only the pz orbital. In view
of the position of the Dirac cone in the Brillouin zone and its lattice structure,
one has to take both px and py orbitals also into account in the calculations.
The goal of the present paper is to evaluate the best Slater-Koster coefficients
to generate the Dirac point in borophane within the tight-binding (TB) ap-
proximation with fitting to DFT results and to obtain accurate results for the
position of the Dirac cone and the velocity of the electrons at the Fermi level.
The fitting approach is described in section 6.3 followed by an analysis of the
energy spectrum around the Dirac cone in section 3.2.

3.1 Tight-binding model

With the linear combination of atomic orbitals (LCAO) method the system
can be described by a set of non-interacting single-particles. The Slater and
Koster scheme [35] is a powerful method to reproduce the first-principles
data. The Naval Research Laboratory (NRL) scheme [85] is an extension of
the SK method and an alternative method useful for systems including large
number of atoms in the unit-cell. The Slater and Koster scheme has been
applied to construct the tight-binding Hamiltonian of different systems. We
follow the usual Levenberg-Marquardt nonlinear fitting algorithm [86] to find
the best entries for both Hamiltonian and overlap matrices. The idea is to
find the Slater-Koster coefficients for the boron-boron bonds in borophene and
use them as initial guess for borophane and then to find the parameters of
the hydrogen-boron bonds to reproduce the Dirac cone.
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For the borophene lattice with a basis of two boron atoms, one can assume
a basis of four cubic harmonic orbitals [87] (one atomic-like s and three px,
py and pz orbitals per atom), which generates a band structure with four
valence and four conduction bands. In the case of borophane, two hydrogens
will be added in the basis for which one can add one atomic-like s orbital for
each hydrogen. So we have ten bands, but we will focus on the first five bands.
The starting point to construct the model is the following expression [88]

∑
ν′

∑
i′

[Hiν,i′ν′ −εkSiν,i′ν′]c i′ν′(k)= 0 , (3.1)

where

Hiν,i′ν′ =<φν(r− r i)|H|φν′(r− r i′)>
Siν,i′ν′ =<φν(r− r i)|φν′(r− r i′)> . (3.2)

Here H is the mono-electronic Hamiltonian and S is the dimensionless overlap
matrix with the basis formed by functions that are not orthonormal [89–91].
The integrals are calculated over the whole unit cell and i and ν run over
the atoms in the unit cell and the orbitals s, px, py and pz, respectively.
Theoretically, the interatomic matrix elements mentioned in Eq. (3.2) can
in principle be calculated directly from the known wave functions. In 1954
J. C. Slater and G. F. Koster [85] represented the expectation values of the
Hamiltonian in the basis of the directed orbitals in terms of eight integrals
(vssσ, vspσ, vppσ, vppπ, sssσ, sspσ, sppσ, sppπ) as follows

< s|H|s >= vssσ

< s|H|p i >= n ivspσ

< p i|H|p j >= (δi j −nin j)vppπ+nin jvppσ

where n i = r.ei/|r| is the directional cosines in which r is the vector along the
bond and i runs over x, y and z. The corresponding expressions for the overlap
matrix can be found by replacing H by S and v by s. To evaluate complex
conjucated hopping matrix elements we use the rule of angular quantum
number: < l|H|l′ >= (−1)l+l′ < l′|H|l >.
In practice, the unknown parameters are determined by a best fitting of the
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Figure 3.1: The optimized structure of (a) borophene and (b) borophane. Black
rectangle refers to the unit cell. Red (yellow) dots are boron (hydrogen) atoms.
R i denotes the distance between boron atoms and the H-B means the length
of the hydrogen-boron bond.

energy bands that are obtained by other methods. We calculate the values of
the eight integrals up to distances of the third nearest neighbor sites.
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In this work, the electronic properties of borophene and borophane are investi-
gated by first-principles calculations which are used to fit the TB parameters.
Atomic structure relaxations and calculations of electronic properties were
performed using OpenMX package [37] within the linear combination of
pseudo-atomic orbitals (LCPAO) method [92]. Structure relaxations were car-
ried out using the quasi-Newton scheme till the forces on the atoms become
less than 10−5eV /A. The exchange-correlation energy was treated within the
generalized gradient approximation (GGA), using the Perdew, Burke, and
Ernzerhof (PBE) functional [93, 94]. A kinetic cutoff energy of 400 eV for the
plane-wave basis was adopted. Brillioun zone integrations were evaluated
with the Monkhorst-Pack mesh (22×15×1).
The fully relaxed borophene and borophane layers are displayed in Fig.
3.1. The optimized atomic positions and lattice constant for both borophene
(a = 1.62Å and b = 2.85Å) and borophane (a = 1.92Å and b = 2.81Å) are in
agreement with previous works [80, 83]. It should be noted that the lattice
constant a of borophane is remarkably increased with about 18.4 percents
as compared with that of borophene, while the lattice vector b is practically
unchanged and as a result, the B−B bond length in borophene is stretched
which consequently will affect the electrical properties along the x-direction.
To calculate the TB Hamiltonian by using the eight Slater-Koster integrals
one needs to know the distance between the atoms. As shown in Fig. 3.1
the distance between two boron atoms is indicated by R i in which i runs
over three types of bonds between boron atoms and H-B is the length of
the hydrogen-boron bond. After optimizing the atomic positions one finds
the distances R1 = 1.625Å, R2 = 1.851Å and R3 = 2.852Å for borophene and
R1 = 1.881Å, R2 = 1.923Å, R3 = 2.806Å and H-B= 1.189Å for borophane. Note
that R1 and R2 are interchanged when going from borophene to borophane
(see Figs. 3.1(a,b)).
The bandstructure of both systems is displayed in Fig. 3.2. Note that the
bands of both systems are formed by cubic harmonic orbitals s, px, py and pz

and, as shown, the Dirac cone for borophane (right figure) is formed by the
intersection between px and py bands.

In contrast to group X IV sheets which have a Dirac cone formed by the
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Figure 3.2: The bandstructure of borophene (left side) and borophane (right
side). Red points in the Brillouin zone (see inset in right figure) indicate the
positions of the Dirac cones and a∗ = 2π

a â and b∗ = 2π
b b̂ are the reciprocal

lattice vectors.

pz orbital, in borophene and borophane the contributions of other orbitals in
the valence and conduction bands are significant. Considering that we want
to construct a TB model up to three neighbors, a good tight-binding fitting
can only be achieved if the orbitals on the different sites are assumed to be
non-orthogonal as is common practice. The complicated electronic dispersion
bands and the compact structure of borophene exhibit a sp3 hybridization.
Note that the first nearest neighbor of a boron atom in borophene lies at the
nearest cell along a and not in the primitive cell (see Figs. 3.1(a,b)). For both
structures we have found the Slater-Koster integrals of boron-boron bonds
up to the third nearest neighbors which result in a satisfactory fitting of the
band structure (see Fig. 3.3). In hydrogenated borophene we add an s orbital
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in the position of the hydrogen atom and find its on-site and Slater-Koster
parameters related to the first nearest boron atom in the lattice. There are
9 parameters which define the hoppings of an electron between the boron
atoms and hydrogen located on top or below the boron layer. From a view
of the location of the hydrogen atoms one can figure out that the x and y
directional cosines are zero and accordingly, we have to determine an addition
of 5 non-zero parameters for borophene.
In Table 3.1, we list the Slater-Koster parameters of both systems in terms
of bond length and bond type as obtained by fitting the DFT energy bands
shown in Fig. 3.3. The rather large overlap values are an indication for the
short interatomic distance between the boron atoms. The on-site parameters
of boron and hydrogen atoms are presented in Table 3.2. Using the Slater-
Koster parameters one can calculate the Hamiltonian and the overlap matrix
in terms of hoppings between different orbitals (see Appendix A).

R Vssσ Vspσ Vppσ Vppπ Sssσ Sspσ Sppσ Sppπ

R1 -3.728 -4.391 4.445 -2.298 0.213 0.287 -0.384 0.063
R2 -2.410 -3.701 3.575 -0.815 0.019 0.168 -0.235 -0.037
R3 -0.279 -0.825 1.914 -0.543 -0.034 -0.022 0.017 0.034
R Vssσ Vspσ Vppσ Vppπ Sssσ Sspσ Sppσ Sppπ

R1 -2.822 2.987 2.290 -0.672 -0.0490 -0.007 -0.147 0.010
R2 -0.742 1.709 2.076 -1.381 0.150 -0.212 -0.421 0.049
R3 -0.064 0.692 0.993 -0.428 0.062 -0.102 -0.056 0.037

H-B 4.523 -3.941 0.000 0.000 -0.113 -0.347 0.000 0.000

Table 3.1: The Slater-Koster parameters for borophene (top) and borophane
(bottom). The V parameters are in eV , and the S parameters are dimension-
less.

borophene borophane
s px py pz s px py pz

B -4.949 1.601 -1.298 2.997 -3.131 3.861 0.103 -1.015
H 7.575

Table 3.2: The on-site energies for borophene and borophane in units of eV .
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Figure 3.3: The fitted tight-bindig bandstructure of borophene (left side) and
borophane (right side).

3.2 Low-Energy two-band Effective
Hamiltonian for borophane

Concerning the Dirac cone found in the borophane bandstructure between
the Γ and X points one more simplification will be made. We will construct
the analog of the Dirac equation for relativistic spin one-half particles within
the two band effective massless Dirac Hamiltonian that is valid for low
energies. The correspondig Hamiltonian for the Dirac cone located at kd =
(±0.64,0,0)Å−1 is given by the following equation

HD = νxσx px +νyσy py+νtI px (3.3)

where σx and σy are the Pauli matrices and I is the identity matrix of size
2. This expression defines a general anisotropic two-dimensional Dirac cone
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which is described by three constants νx,νy,νt which stand for the velocity in
the x and y directions and the degree of tilting in the x-direction, respectively.
Diagonalizing this Hamiltonian results in the energy dispersion

ε(kx,ky)= (kx −kd)νt ±
√

(kx −kd)2ν2
x +k2

yν
2
y (3.4)

DFT

Dirac equation

[Ry]

Figure 3.4: The fitted dirac cone for borophane.

V
a
le

n
c
e
 b

a
n
d

x- kd

k
y

k

C
o
n
d

u
c
ti
o
n
 b

a
n
d

-0
.2

-0
.1

-0
.0

5

0
.0

5

0
.4

0
.5

0
.3

0
.2

0
.1

-0
.3

-0
.4

-0
.5

0.08

0.04

0.00

-0.04

-0.08

-0.06 -0.03 0.00 0.03 0.06

(A  )
-1

(A
  
)

-1

Figure 3.5: Contour plot of conduction (red colour) and valence (blue colour)
bands around the Dirac cone for borophane. Values of the contours are in eV.



36 BOROPHENE AND HYDROGENATED BOROPHENE

where νx = 19.58×105m/s, νy = 6.32×105m/s, νt =−5.06×105m/s. A contour
plot of the anisotropic Dirac cone is depicted in Fig. 3.5. The velocities in
the positive and negative x-direction are given, respectively, by νx + |νt| =
24.64×105m/s and νx−|νt| = 14.52×105m/s. νx+|νt|, νx−|νt| and νy are 2.95,
1.74 and 0.76 times the Fermi velocity of graphene (ν f = 8.36×105m/s).
The density of states per unit cell, derived from Eq. (3.3), is represented in Fig.
3.6 which is compared with the results obtained for graphene [95]. Despite
of the different shape of the Brillouin zone of borophane and graphene, they
have approximately the same area and also the same number of Dirac cones
per unit cell. The average of the Fermi velocities for low-energy fermions
for borophane are higher than that of graphene. That is why the number
of possible occupied states are less than that of graphene per unit cell. It
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Figure 3.6: Density of states per unit cell as a function of energy calculated
from the low-energy Dirac hamiltonian for borophane and graphene.

is possible to derive an analytical expression for the Green’s function and
extract the imaginary part of it in order to calculate the density of states (see
Appendix A for more details). The density of states per unit cell corresponding
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to the energy dispersion (3.4) can be calculated as follows

DOS(ε)= 4πν2
x

Ωνy(ν2
x −ν2

t )
3
2
|ε|Θ(εc −|ε|) (3.5)

where Ω is the area of the Brillouin zone. The parameter εc is a cut-off for
the energy to make sure that Eq. (3.5) is valid within the linear regime of the
band structure near the Dirac cones.

3.3 Band-Structure Dependent Properties of
borophane

Thermoelectric properties of solids have attracted interests because of the
capability of direct convertion of heat flux into electricity or reversely through
the Seebeck effect and Peltier effect. The conversion efficiency of a thermoelec-
tric material can be expressed by the power factor which is one of the spects
of materials choice to determine the usefulness of the material examined in a
thermoelectric cooler or a thermoelectric generator. Despite the gap between
theory and practice, by calculating the semi-classical band-structure depen-
dent quantities one can phenomenologically get a perspective of the desired
material to prognose a sufficiently high thermoelectric performance. [96]

It is helpful to make a conformity assessment between the DFT approach
and the tight-binding model described in section 6.3. So we present the
thermoelectric properties of borophane using both first principle calculations
and tight-binding approximation. Thermoelectric properties of the system
have been calculated using BoltzTraP [97] code with an interface to Quantum
Espresso [98] with the same inputs as mentioned in section 6.3 using projector-
augmented-wave (PAW) [99], but with a dense k mesh for the reciprocal
Brillouin zone.

Semi-classical transport coefficients such as Seebeck coefficient and elec-
trical conductivity were calculated under the constant relaxation time (τ)
approximation which is the most often used in praxis [100], at temperature
300(K). Substitution and doping are used to manipulate the chemical po-
tential (µ) which plays an important role on the thermoelectric transport
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properties [101]. Fig. 3.7 depicts the values of the number of carriers (n),
conductivity σ/τ, Seebeck coefficient S and power factor S2σ/τ in terms of
chemical potential.
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Figure 3.7: Transport coefficients as a function of chemical potential: (a)
Number of carriers, (b) Electrical conductivity, (c) Seebeck coefficient and (d)
Power factor with respect to relaxation time for both DFT approach (left side)
and tight-binding model (right side).

We have used the Slater-Koster parameters for borophane (Tables 3.1
and 3.2) and used the same k mesh to evaluate the transport coefficients
scaled to scattering time. The first note to point out is that, as illustrated in
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Fig. 3.7, these curves for the tight-binding model is in agreement with the
density functional theory which demonstrates that the model is constructed
and fitted adequately throughout the Brillouin zone. A comparison between
the results of borophane and Graphene (Fig. 3.8) has been made which shows
that the power factor of borophane in x direction is approximately 2 times of
that of graphene, but lower in y direction. As an explanation for the order
of the curves one should consider the relations between the Fermi velocities
as aforementioned in Section 3.2. Fig. 3.7 (d) reveals that borophane in x
direction is able to generate more energy regardless of whether it has enough
efficiency or not.

3.4 Data Availability

The supporting information and several examples are available at tight-
binding.com. The examples and the supporting codes in additional program-
ming languages, i.e. Matlab, Mathematica, Python, C, C++ and Fortran are
also accessible through Code Generator tools in TBStudio.

https://tight-binding.com
https://tight-binding.com
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DIRAC NODAL LINE IN BILAYER BOROPHENE

Newly discovered Dirac [102, 103], Weyl [104–107], and nodal line
semimetals [108–110] have resulted in novel states of matter. Nodal
line semimetals can be considered as precursor states for other topo-

logical states intermediate between insulators and metals. The valence and
conduction bands in topological semimetals touch at either discrete points
or extended lines, forming respectively Dirac or Weyl semimetals and nodal
line semimetals. Topologically nontrivial surface states are one of the charac-
teristic features of topological insulators that are protected by time reversal
symmetry. Band degeneracy points or lines in topological semimetals are also
protected by symmetries and are thus robust against external perturbations.
Recently, alongside the traditional topological insulators, topological semimet-
als attracted tremendous research interest.
Nodal line semimetals are observed in several bulk materials, such as body-
centered orthorhombic C16 [111] and hcp alkali earth metals [112] and re-
cently, also in some 2D materials [113] like black phosphorus under pressure
[114]. It turns out that there are many materials showing these topological
states ranging from hyper-honeycomb lattices [115] and 3D-honeycomb lat-
tices [116] to high-temperature super-conductions [117–119] and nearly flat
drumhead-like surface states [120]. There are a number of reports on the
existence of two concentric Dirac nodal loops centred around one point in
reciprocal space [73] or a single nodal line as found in CaP3 [121], Ca3P2

41
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[122], (Tl,Pb)TaSe2 [123].
Several novel properties have been predicted for nodal line semimetals, in-
cluding special collective modes [124], and unique Landau levels [125]. The
nodal line structure can also be considered as precursor states for different
topological states. For instance, a nodal line semimetal can be converted to
Weyl nodes [126–129] by taking spin-orbit coupling into account or the evolu-
tion of nodal rings into Dirac nodes and converting the nodal line semimetal
into a topological insulator by opening a gap [130].
Two-dimensional (2D) materials have also attracted the interest of scientists
because of the possibility of applications in high-speed nano-devices due to
their special electronic properties. The realization of 2D topological semimet-
als will provide new platforms for the design of novel quantum devices at
the nanoscale. In contrast to three-dimensional topological Dirac semimetals,
the nodal lines in many 2D materials such as monolayer hexagonal lattices
[131] and honeycomb-kagome lattices [113] are protected by mirror symmetry
and require negligible spin orbit coupling [132]. Notwithstanding the lack of
experimental realization of such structures up to now there is still a need to
predict new 2D materials with nodal lines that can be fabricated.
Recently, 2D boron sheets (called borophene) have been successfully synthe-
sized on a silver crystal by physical vapor deposition [73–77]. The boron-based
materials show different metallic [133], semimetallic [134], and semiconduct-
ing [135] behaviors. Boron atoms have four available orbitals with three
occupied valence electrons and because of electron-deficiency can form both
covalent and ionic bonds. Various allotropes of boron-based structures can be
formed such as clusters, nanotubes, 2D structures and bulk materials [136–
138]. Using density functional theory (DFT) and global minimum search
optimization method we are able to predict stable 2D bilayer borophene
consisting of B6mmm sheets that are bound together by pillars. Phonon dis-
persion calculations reveal that this structure is dynamically stable [139]
and therfore has the potential to be successfully synthesised for practical
applications. Fig. 4.1 shows the structure of bilayer borophene B6mmm. The
hexagon unit cell includes six atoms and the vectors a and b are the transla-
tional unit cell vectors that make a 120 degree angle. In the center of unit
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cell there are two atoms that form a pillar between the two layers. Most
importantly, the B6mmm structure exhibits a Dirac nodal line with a Fermi
velocity comparable to that of graphene.
Efforts to search for potentially stable boron-based sheets with low energy
and novel electronic properties are of great interest. In this paper, we report
on Dirac nodal line fermions in B6mmm borophene bilayer based on first
principles calculations and construct a tight-binding model via the Slater
and Koster (SK) method [35] to reproduce the band energies calculated by
DFT. The SK scheme is a powerful method based on the linear combination
of atomic orbitals (LCAO) method. The Dirac nodal line in B6mmm forms a
loop centred around the K point in reciprocal lattice with dispersion in energy.
Also we present a four band effective low-energy Hamiltonian to describe the
nodal line which can be used as a new platform to study the novel physical
properties of such two-dimensional Dirac nodal semimetals. Our results pro-
vide new opportunities to understand the nodal line structure and surface
states and can be used to realize high-speed spin-less devices.

4.1 Electronic Structure Using DFT

The electronic properties of B6mmm are investigated by first-principles cal-
culations using the OpenMX package [37]. Atomic structure relaxations and
calculations of electronic band-structure were performed within the linear
combination of pseudo-atomic orbitals (LCPAO) method [92]. Structure re-
laxations were carried out with the thershold 10−5eV /A for the maximum
value of the forces between the boron atoms. The generalized gradient approx-
imation was applied for the exchange-correlation energy, using the Perdew,
Burke, and Ernzerhof (PBE) functional [93, 94] with a cutoff energy of 400 eV
for the plane-wave basis. Numerical integrations in the Brillioun zone were
evaluated with the Monkhorst-Pack mesh (12×12×1).
After structure relaxation the lattice constant was calculated as |a| = |b| =
2.85Å with θab = 120◦ which are in agreement with a recent work [139]. This
structure includes two honeycomb lattice at the top and the bottom layers
which are connected through pillars. Thus the two layers of bilayer borophene
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Figure 4.1: Top (a) and side (b) views of the structure of bilayer borophene
B6mmm. The gray hexagon area is the primitive cell. The vectors a and b
denote the translational vectors of the crystal lattice.

are chemically bound together in contrast to bilayer graphene which are hold
together by only weak van der Waals forces. After optimizing the atomic
positions one finds the distances R1 = 1.65Å, R2 = 2.85Å, R3 = 1.89Å and
R4 = 1.70Å. The bandstructure of B6mmm is displayed in Fig. 4.2. The contri-
butions of the orbitals s, px, py and pz are shown by different colors. Blue and
red circles illustrate the location of two Dirac cones which are related to the
electrons and holes, respectively. The nodal line is created by the intersection
of two Dirac cones formed by the pz orbital centered at the point K in the
Brillouin zone.
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Figure 4.2: The bandstructure of B6mmm showing the contribution of differ-
ent orbitals by the different colors. Blue and red circles show the Dirac cones
which are related to the electrons and holes, respectively.

4.2 Tight-binding model and comparison with
DFT calculations

For future purposes we develope a tight-binding model to reproduce the DFT
band energies. We include the potentials of atoms on each layer which can be
only sensed by the neighboring atoms in the same layer and electrons can hop
between layers only through the pillars. To construct a TB model we consider
the following matrix elements [88]

Hiν,i′ν′ =<φν(r− r i)|H|φν′(r− r i′)> ,

Siν,i′ν′ =<φν(r− r i)|φν′(r− r i′)> . (4.1)

Here H is the single electron Hamiltonian and S is the overlap matrix re-
sulting from the non-orthogonal basis functions [89–91]. The integrals are
evaluated over the unit cell in real space and i and ν run over all atoms in
the unit cell and the orbitals s, px, py and pz, respectively. The eigen energy
equation for a single electron can be written as follows

∑
ν′

∑
i′

[Hiν,i′ν′ −εkSiν,i′ν′]c i′ν′(k)= 0 . (4.2)
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The interatomic matrix elements found by fitting the known band energies
[140]. The matrix elements can be represented by the expectation values of
the Hamiltonian in the basis of the directed orbitals in terms of eight integrals
(vssσ, vspσ, vppσ, vppπ, sssσ, sspσ, sppσ, sppπ) defined as follows

< s|H|s >= vssσ ,

< s|H|p i >= nivspσ ,

< p i|H|p j >= (δi j −nin j)vppπ+n in jvppσ . (4.3)

Note, one should use the rule of angular quantum number: < l|H|l′ >=
(−1)l+l′ < l′|H|l > to evaluate the complex conjucate hopping matrix elements.
In Eq. (4.3) ni is the directional cosines defined by the following equation

ni = r.ei

|r| (4.4)

where r is the vector along the corresponding bond and i runs over different
Cartesian directions (x, y and z). For the overlap matrix the corresponding
expressions can be found by replacing H by S and v by s in Eq. (4.3). The
unknown parameters are determined by a best fitting of the energy bands
that are obtained by the DFT method. We calculate the values of the eight
integrals up to distances of the three nearest neighbor sites in each layer and
for the pillars between layers.
B6mmm lattice is a structure with a basis of six boron atoms. We assume
a basis containing one atomic-like s and three px, py and pz orbitals per
atom, which generates a band structure with 24 bands. However, we will
concentrate to find a satisfactory fitting for the first 11 bands. To calculate
the TB Hamiltonian by using the eight Slater-Koster integrals one needs the
distances and the directional cosines in Eq. (4.3) for the different bonds which
we obtained from DFT. The distance between the boron atoms, R i, correspond
with different types of bonds are shown in Fig. 4.1.
Using the Levenberg-Marquardt nonlinear fitting algorithm [86] we find the
optimal Hamiltonian and overlap matrices. The Slater-Koster coefficients
for the differrent boron-boron bonds are given in Table 4.1 and the on-site
energies for the boron atoms in Table 4.2. The full Hamiltonian and overlap
matrices are given in Appendix B.
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R Vssσ Vspσ Vppσ Vppπ Sssσ Sspσ Sppσ Sppπ

R1 -6.667 5.527 4.707 -1.654 0.379 -0.162 0.202 0.165
R2 0.100 0.092 -0.150 -0.1968 0.035 -0.039 -0.035 0.062
R3 -0.974 1.792 2.869 -1.333 -0.126 -0.007 -0.293 -0.143
R4 4.560 -1.446 -0.738 4.189 -0.193 -0.054 -0.017 -0.047

Table 4.1: The Slater-Koster parameters for B6mmm. The V parameters are
in eV , and the S parameters are dimensionless.

s px py pz

B -3.130 5.033 4.713 1.797

Table 4.2: The on-site energies of the boron atoms for the B6mmm structure
in units of eV .

Using Eq. (4.3) with the coefficients presented in the Tables 4.1 and 4.2
one obtains the bandstructure shown in Fig. 4.3 which is compared to the
band energies calculated by DFT. We made sure that the band structure is
most accurately reproduced for small energies.
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Figure 4.3: The fitted bandstructure of the TB model compared with the one
obtained from DFT.
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4.3 Effective low energy hamiltonian

The hexagonal Brillouin zone of the B6mmm has two inequivalent corners
K and K ′. The four branches of its electronic spectrum form two Dirac cones
at each K point at different energies (See blue and red circles in Fig. 4.2).
Fig. 4.4 shows the contour plot of the conduction and valence bands near
the K point. To recover the nodal line it is necessary to include the trigonal
warping. As is apparent from Fig. 4.4 the conduction and valence bands have
significant but opposite trigonal warping. To model the low energy spectrum
around the K point we use an effective mass and group velocity dependent
hamiltonian model. The effective 4×4 model Hamiltonian near the K point
can be expressed in the following form [141–143]

H =


λ − Π†2

2m∗
e
+νeΠ 0 0

− Π2

2m∗
e
+νeΠ

† λ 0 0

0 0 −λ − Π†2

2m∗
h
+νhΠ

0 0 − Π2

2m∗
h
+νhΠ

† −λ

 (4.5)

where Π= px + ipy. me(h) and νe(h) are respectively the effective mass and the
group velocity of electrons and holes related to conduction and valence bands.
The nodal line is formed by the intersection of two Dirac cones which are
located above and below the Fermi level. The Dirac cones are related to the top
and bottom honeycomb lattice layers and the energy shift between them is 2λ.
As is evident from Eq. (4.5) the block related to electrons is shifted by λ and for
holes is shifted by −λ. The low energy bands near the point K are reproduced
by taking me = 0.174~2Å−2eV−1 = 1.325m0, mh = 0.255~2Å−2eV−1 = 1.942m0,
~νe = 4.744eVÅ, ~νh = 6.184eVÅ and γ= 0.992eV . Fig. 4.5 shows the valence
and conduction bands as obtained from the Hamiltonian Eq. (4.5). By defining
kx = kcosϕ and ky = ksinϕ we find the eigenvalues

Ec =γ− ~k
2me

√
~2k2 +4~kmeνe cos(3ϕ)+4m2

eν
2
e (4.6)

Ev =−γ+ ~k
2mh

√
~2k2 −4~kmhνh cos(3ϕ)+4m2

hν
2
h (4.7)

The intersection between the two bands defines the equation for the nodal
line. After some simplifications we obtain the nodal line k as a function of ϕ.

~k(ϕ)= 4γ

νe +νh +
√

4γcos(3ϕ)(me−mh)
memh

+ (νe +νh)2
(4.8)
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Figure 4.4: Contour plot of conduction and valence bands around the K point.

This nodal line is presented in Fig. 4.5 by the red curve. The difference
between maximum and minimum energy of the nodal line is 0.18eV . Note that
the different trigonal warping for valence and conduction bands is responsible
for the breaking of the isoenergetic line and leads to form a non-flat nodal
line with dispersion in energy.
One can find the velocities of electrons in conduction and valence band at the
nodal line by taking respectively, the derivative of Eqs. (4.6) and (4.7) with
respect to k. The equation gives us two different velocities which are related
to the electrons inside (ie. holes) and outside (ie. electrons) the nodal line. Fig.
4.6 shows the velocities of electrons in B6mmm and graphene as a function of
ϕ in units of m/s which reveals that the velocity of electrons is comparable to
that of graphene. Note the difference between minimum and maximum of two
velocities which is related to difference between trigonal warping directions
shown in Fig. 4.4.
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Figure 4.5: Valence and conduction bands. The solid red curve around the K
point shows the nodal line.

4.4 Data Availability

The supporting information and several examples are available at tight-
binding.com. The examples and the supporting codes in additional program-
ming languages, i.e. Matlab, Mathematica, Python, C, C++ and Fortran are
also accessible through Code Generator tools in TBStudio.

https://tight-binding.com
https://tight-binding.com
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Figure 4.6: The Fermi velocity of the electrons (blue) and holes (red) at
the nodal line. The dashed black horizontal line represents the velocity of
electrons in graphene near the Fermi level.
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DIRAC NODAL LINES IN CU2SI MONOLAYER

In the past decade, the discovery of topological insulators has ignited
a lot of interest because of its unique physical properties [144, 145]. A
characteristic feature of topological materials is the existence of topolog-

ically nontrivial surface states that are protected by time reversal symmetry.
Recently, research interest has moved from traditional topological insulators
to topological semimetals. In topological semimetals, the valence and conduc-
tion bands can touch at either discrete points or at extended lines, resulting
in different semimetals. Three distinct kinds of topological semimetals ex-
ist: Dirac semimetals [146, 147], Weyl [148–151], and nodal line semimetals
(NLS) [110, 152, 153] which have resulted in novel states of matter.

Nodal-line semimetals (NLSMs) are quantum materials with linear bands
and symmetry-protected band degeneracies. NLSMs are three-dimensional
graphene-like systems with low-energy relativistic excitations, but the bands
touch as a closed loop in momentum space instead of points and the band
crossing points form a continuous Dirac loop with a high density of states at
the Fermi level. The surface states of nodal-line semimetals have drumhead-
like surface flat bands. For example, the first Weyl semimetal phase discovered
in the NbAs family [154–156] is rooted in nodal lines [157, 158]. Many kinds
of three-dimensional (3D) nodal line bulk materials, such as PtSn4 [159],
PbTaSe2 [160], and ZrSiS [161, 162], have been realized experimentally. A
large number of theoretical studies exist [163–166] and numerous materials
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have been predicted to show nodal line states: TlTaSe2 [167], 3D-honeycomb
graphene networks [110], Ca3P2 [168, 169], Cu4PdN [170], and body-centered
orthorhombic C16 [171], [172, 174] Compared with 3D Dirac/Weyl semimetals,
the band touching in NLSMs is not constrained to discrete points but extends
along lines in the Brillouin zone (BZ). [152, 153, 173, 174] In contrast to the
extended literature on 3D nodal line semimetals, the study of semimetal nodal
line states in 2D materials is still in its infancy. The theoretical predictions
of a nodal line band structure have been made for several 2D materials
[175–177] but has only been confirmed experimentally for Cu2Si monolayer.
[178]

In this paper, firstly we investigate the Cu2Si monolayer, which is com-
posed of a honeycomb Cu lattice and a triangular Si lattice. In the free-
standing form, all Cu and Si atoms are coplanar [178] and thus mirror re-
flection symmetry with respect to the x-y plane (Mz) is naturally expected.
This is important for the existence of two-dimensional nodal lines. We use
first principles calculations to obtain the single particle energy spectrum
and construct a TB model via the Slater and Koster (SK) method [35] to
reproduce the low energy bands around the Fermi energy. The SK scheme is a
powerful method which is based on the linear combination of atomic orbitals
(LCAO) method. Two Dirac nodal loops are found centred around the Γ point
in reciprocal space with dispersion in energy. The gapless nodal loops are
protected by mirror reflection symmetry. This intriguing band structures is
accurately described by our TB model and both nodal loops survive in mono-
layer Cu2Si even in the presence of a weak substrate-overlayer interaction.
Our results provide new opportunities to understand nodal line structures
and its corresponding surface states and can be used to realize high-speed
spin-less devices.

5.1 Electronic structure: DFT

The electronic structure of Cu2Si monolayer is calculated with geometric
optimization using spin-polarized density functional theory (DFT) as imple-
mented in the OpenMX Package. [37] This code finds the eigenvalues and
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eigenfunctions of the Kohn-Sham equations self-consistently using norm-
conserving pseudopotentials [179], and pseudoatomic orbitals (PAOs). [180,
181] In addition, we used the Perdew-Burke-Ernzerhof generalized gradient
approximation (GGA) for exchange and correlation. [93] The k-points for sam-
pling over the Brillouin zone (BZ) were generated using the Monkhorst-Pack
scheme[182]. After convergence tests, we choose an energy cutoff of 300 Ry
so that the total-energy converges below 1.0 meV/atom. In the first step, the
atomic positions are optimized using a quasi-Newton algorithm for atomic
force relaxation. The geometries were fully relaxed until the force acting on
each atom was less than 1 meV/Å. The Brillouin zone (BZ) is sampled by a
k-mesh grid of 23×23×1 and scaled according to the size of the supercell.
The Cu2Si monolayer is modelled as a periodic slab with a sufficiently large
vacuum layer (20 Å) in order to avoid interaction between adjacent layers. In
order to accurately describe the van der Waals (vdW) interaction in Cu2Si,
we adopted the empirical correction method presented by Grimme (DFT-D2),
[183] which has been proven reliable for describing the long-range vdW in-
teractions. Simulated scanning tunneling microscopy (STM) images were
obtained using the Tersoff-Hamann theory [184] and were graphed using
WSxM software [185].

The geometric atomic structure of Cu2Si monolayer, with its hexagonal
primitive unit cell, indicated by the red parallelogram, is shown in Fig. 1(a).
This structure contains 6 atoms per primitive unit cell in which P3m1 stands
for the Space Group 164 included in the hexagonal crystal system. In Cu2Si
with its 6-fold symmetry, each Si atom is coordinated with six Cu atoms
and each Cu is coordinated with three Cu atoms and three Si atoms. After
structure optimization the lattice constant was found 4.18Å, while the Cu-Si
bond length and bond angels are 2.41 Å and 120◦, respectively. These results
are in agreement with a previous report.[178] Which also found, from the
phonon dispersion that Cu2Si monolayer is dynamically stable. [178] The
difference and total charge densities are shown in Fig. 1(b) and Fig. 1(c),
respectively. The blue and yellow regions represent charge accumulation and
depletion, respectively. The difference charge density shows a high charge
density around the Si atoms, indicating charge transfer from Cu to Si atoms.
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Figure 5.1: (a) Geometric atomic structure of Cu2Si monolayer, with its hexag-
onal primitive unit cell indicated by the red parallelogram. Orange (blue)
balls are Cu (Si) atoms. (b) Difference and (c) total charge densities. Blue and
yellow regions represent charge accumulation and depletion, respectively. (d)
Simulated STM image of Cu2Si overlayered with the Cu2Si lattice.

In order to provide visible guidance for experimental observations, first-
principles DFT calculations were performed to calculate the STM image
which is shown in Fig. 1(d). Our result shows that Si atoms are larger brighter
spots than the Cu atoms. To correlate the STM image with the corresponding
atomistic structure, we overlayered it with the Cu2Si lattice structure.

The orbital-projected electronic band structure of Cu2Si monolayer is
shown in Fig. 2. The contributions of the orbitals px, py and pz are shown by
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Figure 5.2: Orbital-projected electronic band structure of Cu2Si monolayer.
The zero energy is set to the Fermi level energy (dashed-line).

different colors. Two nodal lines are created by the intersection of three bands
formed by the px, py and pz orbitals centered at the Γ point in the Brillouin
zone.

5.2 Tight-binding model

Now we construct a tight-binding model to reproduce the DFT band energies.
We include only the potentials of atoms which are sensed by the neighboring
atoms. To construct a TB model we consider the following matrix elements

Hiν,i′ν′ =<φν(r−ri)|H|φν′(r−ri′)> . (5.1)

Here H is the single electron Hamiltonian and the integrals are evaluated
over the unit cell in real space and i and ν run over all atoms in the unit cell.
We only take the orbitals px, py and pz into account because we are searching
for band energies near the Fermi level (see Fig. 2). The eigen energy equation
for a single electron in the orthogonal basis can be written as follows
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∑
ν′

∑
i′

[Hiν,i′ν′ −εk]c i′ν′(k)= 0 . (5.2)

The interatomic matrix elements are found by fitting the known DFT band
energies [186]. The matrix elements can be represented by the expectation
values of the Hamiltonian in the basis of the directed orbitals in terms of four
integrals (vssσ, vspσ, vppσ, vppπ) defined as follows

< s|H|s >= vssσ ,

< s|H|p i >= nivspσ , (5.3)

< p i|H|p j >= (δi j −nin j)vppπ+nin jvppσ .

It should be noted that one needs to use the equation: < l|H|l′ >= (−1)l+l′ <
l′|H|l > to evaluate the complex conjucate hopping matrix elements. In Eq.
(5.4) ni is the directional cosines defined by the following equation

n i = r.ei

|r| , (5.4)

where r is the vector along the corresponding bond and i runs over different
Cartesian directions (x, y and z). The unknown parameters are determined
by a best fitting of the energy bands that are obtained by the DFT method.
We calculate the values of the integrals up to distances of the first nearest
neighbor sites.

The Cu2Si lattice is a structure with a basis of two Cu and one Si atom.
We assume a basis containing three px, py and pz orbitals per atom, which
generates a band structure with 9 bands. To calculate the TB Hamiltonian
by using the eight Slater-Koster integrals one needs the distances and the
directional cosines in Eq. (5.4) for the different bonds.

Using the Levenberg-Marquardt nonlinear fitting algorithm [187] we find
the optimal Hamiltonian and overlap matrices. The Slater-Koster coefficients
for the different copper-silicon bonds are given in Table 5.1 and the on-site
energies for the atoms in Table 5.2.

Using Eq. (5.4) with the coefficients presented in Tables 5.1 and 5.2 one
obtains the band structure shown in Fig. 5.3 which is compared to the band
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Figure 5.3: The fitted band structure of the TB model compared with the one
obtained from DFT.

energies calculated by DFT. The tight-binding model closely fits the band-
structure calculated by DFT in the energy range (-2,+2)eV and gives insight
in its nodal line structure.

Most importantly, the Cu2Si structure exhibits two Dirac nodal lines with
a Fermi velocity comparable to that of graphene. Fig. 5.4 shows a 3D plot of
the band structure of Cu2Si calculated from the TB model near the Fermi
level around the Γ point. The non-flat thick curves are two nodal lines around
the Γ point which are enlarged in the inset zoom. Each nodal line exhibits
a 0.22eV dispersion in energy. Fig. 5.5 shows the density plot of the second
TB band. The blue contour line indicates the first nodal line which is due to
the intersection between second and third TB bands and the red contour line
is the second nodal line made of the crossing of the first and the second TB
bands (see also Fig. 5.4).

To calculate the Hamiltonian and overlap matrix in terms of atomic
orbitals we expand the Bloch functions as linear combinations of the orbitals
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Figure 5.4: 3D plot of the band structure of Cu2Si calculated by TB model
near the Fermi level around the Γ point.

Table 5.1: The Slater-Koster parameters for Cu2Si in eV .

bond type ppσ ppπ
Cu-Cu 0.360 -0.516
Cu-Si -2.105 1.868

Table 5.2: The on-site energies of the copper and silicon atoms for the Cu2Si
structure in units of eV .

px py pz

Cu 5.223 3.581 20.613
Si 2.849 3.054 1.467

ϕ as follows

ψk(r)=∑
ν′

∑
i′

c i′ν′(k)φν,k(r−ri) (5.5)

with

φν,k(r)= ∑
n∈Z

∑
m∈Z

eik.Rn,mϕν(r−Rn,m) (5.6)
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Figure 5.5: Density plot of the band n = 2 in first Brillouin zone. The blue and
the red contours are the first and the second nodal lines. a∗ and b∗ are the
reciprocal lattice unit vectors.

in which Rn,m is the discrete translation vector of the unit cell at (m,n) of the
Bravais lattice. In principle, m and n run over an infinite array of discrete
points, in this work the TB model includes only the first nearest unit cell. In
orthogonal TB modeling the overlap matrix S is an identity matrix and the
mono-electronic Hamiltonian H may be rewritten as

H=
1∑

n=−1

1∑
m=−1

hn,meik.Rm,n , (5.7)

where Rm,n is the translation vector of the unit cell (m,n). Since H is Hermi-
tian therefore

h−1,0 =h†
1,0 ,h0,−1 =h†

0,1 ,

h−1,−1 =h†
1,1 ,h−1,1 =h†

1,−1 , (5.8)

hence, we have only five independent matrices. We only need to determine
the matrices h for the cells at (0,0), (1,0), (0,1), (1,1) and (−1,1) and so the
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other elements of the coupling matrices can be found from Eq. (5.8). Note that,
in first nearest neighbor TB model for this structure there is no interaction
between the primitive cell and the cell (1,−1) and so h1,−1 is zero. The SK
values are presented in units of eV and so the Hamiltonian matrix is also
in eV. Since the number of atoms in the unit cell is 3 and each atom has 3
orbitals the Hamiltonian and the overlap matrix are of size 9×9. We use
the SK coefficients presented in table 5.1 and calculate the Hamiltonian and
extract respectively, the matrices h0,0, h1,0, h0,1 and h1,1 as follows

py pz px py pz px py pz px



3.05 0 0 0.87 0 −1.72 0 0 0 py

0 1.47 0 0 1.87 0 0 0 0 pz

0 0 2.85 −1.72 0 −1.11 0 0 0 px

0.87 0 −1.72 3.58 0 0 −0.30 0 0.38 py

0 1.87 0 0 20.61 0 0 −0.52 0 pz

−1.72 0 −1.11 0 0 5.22 0.38 0 0.14 px

0 0 0 −0.30 0 0.38 3.58 0 0 py

0 0 0 0 −0.52 0 0 20.61 0 pz

0 0 0 0.38 0 0.14 0 0 5.22 px

py pz px py pz px py pz px



0 0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 0 pz

0 0 0 0 0 0 0 0 0 px

0.87 0 1.72 0 0 0 0 0 0 py

0 1.87 0 0 0 0 0 0 0 pz

1.72 0 −1.11 0 0 0 0 0 0 px

−2.11 0 0 −0.30 0 −0.38 0 0 0 py

0 1.87 0 0 −0.52 0 0 0 0 pz

0 0 1.87 −0.38 0 0.14 0 0 0 px
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py pz px py pz px py pz px



0 0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 0 pz

0 0 0 0 0 0 0 0 0 px

−2.11 0 0 0 0 0 0 0 0 py

0 1.87 0 0 0 0 0 0 0 pz

0 0 1.87 0 0 0 0 0 0 px

0.87 0 1.72 0.36 0 0 0 0 0 py

0 1.87 0 0 −0.52 0 0 0 0 pz

1.72 0 −1.11 0 0 −0.52 0 0 0 px

py pz px py pz px py pz px



0 0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 0 pz

0 0 0 0 0 0 0 0 0 px

0 0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 0 pz

0 0 0 0 0 0 0 0 0 px

0.87 0 −1.72 0 0 0 0 0 0 py

0 1.87 0 0 0 0 0 0 0 pz

−1.72 0 −1.11 0 0 0 0 0 0 px

5.3 Data Availability

The supporting information for tight-binding model and its results are avail-
able in TBStudio software developed based on the Slater-Koster method. The
software has been made available at tight-binding.com. The results of b-AsP
is accessible in example folder of TBStudio. The supporting codes are gives
in additional programming languages i. e. Matlab, Mathematica, Python, C,
C++ and Fortran which are also accessible through Code Generator tools in
TBStudio.

https://tight-binding.com
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6
GALLENENE a100 AND b010 MONOLAYERS

Following the successful synthesis of graphene [188, 189] from its bulk crys-
tal, graphite, two-dimensional (2D) materials have gained a lot of interest in
nanodevice applications owing to their extraordinary properties [190–193]. In
recent years, researchers have paid special attention to the synthesis of mono-
layers of other mono-atomic crystals such as silicene [194–196], germanene
[197–200], stanene [201, 202], phosphorene [203] and borophene [204] due to
their specific electronic properties [205–209].

A wide range of 2D materials ranging from graphene to topological insula-
tors [67–72] share the extraordinary phenomenon that electrons behave as
relativistic particles in their low-energy excitations. This emergent behav-
ior of fermions in condensed matter systems has been classified as "Dirac
materials" which have attracted both experimental and theoretical interest.
Recently, fully metallic gallium-based 2D crystals, named as ’Gallenene’ have
been synthesized on different substrates [210].

Gallium is a metallic element and it is known to exhibit metallicity in
its bulk crystal [211]. It was also reported to be a non-toxic liquid metal at
room temperature [212, 213]. In its bulk form, gallium exhibits various types
of phases such as boron-like molecular and close-packed metallic which are
known to exist under non-standard pressure and temperature [212, 214, 215].
Moreover, the extreme covalent bonding character of the Ga2 pairs causes the
pairs to exhibit dimer-like behavior. The α-Ga, a phase of bulk-gallium, is

65
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known as the only one which reveals both metallic and molecular character
at zero pressure [212, 216, 217].

We construct a tight-binding (TB) model whose parameters are determined
through a nonlinear fitting algorithm of the energy bands that are obtained
by ab-initio methods. The TB model can provide us the hoppings and overlaps
between different orbitals of the atoms. The Slater and Koster scheme (SK)
[35] and the Naval Research Laboratory (NRL) method [85], as an extension
of the SK approach, are two powerful methods for reproducing the first-
principles data in terms of a set of non-interacting single-particles. The SK
method gives the hopping between the orbitals for each bond separately while
NRL also gives the hoppings as a function of distance up to a certain cut-off
radius. In 1954 J. C. Slater and G. F. Koster [85] represented the expectation
values of the matrix elements of the Hamiltonian in the basis of the directed
orbitals in terms of eight integrals (vssσ, vspσ, vppσ, vppπ, sssσ, sspσ, sppσ, sppπ).

The understanding of electronic transport of materials is one of the inter-
esting fields of research among 2D systems. A significant exploratory research
in 2D materials has been done using Green’s function theory for which we
need the TB model. Here, we apply the SK method and present the coefficients
for different bonds.

The Slater-Koster integrals for different Ga-Ga bonds are found up to the
second nearest neighbors. The b010-Gallenene structure is more compact than
the a100-Gallenene and consequently the orbitals are substantially different
from the pure atomic like shape. Compaction of structures can affect signifi-
cantly the overlap between orbitals and result in a non-unitary overlap matrix.
a100-Gallenene exhibits a graphene-like planar structure and can be modelled
by an orthogonal basis while for the b010-Gallenene a non-orthogonal basis
set is needed.

6.1 Computational Methodology

For structural optimization and electronic-band structure calculations of
monolayers of a010- and b100-Gallenene crystals, first principle calculations
were performed in the framework of density functional theory (DFT) as im-
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plemented in the Vienna ab-initio simulation package (VASP) [38–40]. The
Perdew-Burke-Ernzerhof (PBE) [93] form of generalized gradient approxima-
tion (GGA) was adopted to describe electron exchange and correlation. The
electronic-band structures were calculated at the GGA level.

The kinetic energy cut-off for plane-wave expansion was set to 500 eV
and the energy was minimized until its variation in subsequent steps became
10−8 eV. The Gaussian smearing method was employed for the total energy
calculations and the width of the smearing was chosen as 0.05 eV. Total
Hellmann-Feynman forces in the primitive unit cell was reduced to 10−7 eV/Å
for the structural optimization. 19×19×1 Γ centered k-point samplings were
used in the primitive unit cells. To avoid interaction between the neighboring
layers, our calculations were implemented with a vacuum space of 15 Å.

6.2 Structural and Electronic Properties

In this section, the structural and electronic properties of mono-atomic mono-
layers of gallium, a100- and b010-Gallenene, are discussed in detail. The op-
timized unit cell of each crystal structure has four Ga atoms as shown in
Figs. 6.1(a) and (b). As mentioned by Kockat et al. [210], the relaxed crystal
structures of both monolayers exhibit imaginary frequencies through the
whole Brillouin Zone (BZ) which reveals the dynamical instability in their
free-standing forms. However, it was also demonstrated that both of the
monolayer crystals can be stabilized upon application of a biaxial strain (6%
and 2% for a100- and b010-Gallenene, respectively). Therefore, in this work
we consider biaxially straining, i.e. we investigate the dynamically stable
structures, which can be realized by using an appropriate substrate.

The monolayer of a100-Gallenene has a honeycomb structure with a rect-
angular primitive unit cell. The lattice constants a and b are found to be 7.87
and 4.65 Å, respectively. The Ga-Ga bond lengths are nearly equal because
the two nearest neighbors of a Ga atom are both at 2.66 Å (δ1) and the third
one is at 2.67 Å (δ2). These bond lengths are larger than those between other
group-IV atoms in a group-IV mono-atomic monolayer that is attributed to
the larger atomic radius of Ga. Moreover, different interior angles (122.43◦
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and 118.80◦ for θ1 and θ2, respectively) in a100-Gallenene suggest that the
hybridization in the crystal structure is not completely sp2 despite the planar
structure. Different from the 2-atom primitive hexagonal unit cell of graphene
which belongs to the space group symmetry of P6̄/mmm, the primitive unit
cell of a100-Gallenene is slightly distorted which belongs to Pbam space group
symmetry. In addition, the point symmetry of a100-Gallenene turns into D2h

which is known to be D6h for graphene.

The monolayer b010-Gallenene resembles a zigzag rhombic lattice which
exhibits lower symmetry than a100-Gallenene. The lattice constants a and
b in this case are calculated to be 4.74 and 4.92 Å, respectively. The Ga-Ga
bond length is 2.73 Å which is larger than that of a100-Gallenene due to the
buckled structure of b010-Gallenene. In the quasi-2D multi-decker structure
the vertical direction between Ga-dimers, or the buckling height, is calculated
to be 1.19 Å. Such buckling can also be seen in other mono-atomic monolayer
crystals such as silicene, germanene, stanene, and black phosphorus.
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Figure 6.1: The optimized structure of (a) a100-Gallenene and (b) b010-
Gallenene. The unit cell is given by the dotted box. R i denotes the distance
between the Ga atoms.
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Figure 6.2: The electronic-band structure of a100-Gallenene (left side) and
b010-Gallenene (right side). The different colors of the bands refer to the
different orbital contribution. The dashed rectangle indicates the BZ with the
high symmetry points.

In order to analyze the electronic properties of monolayers of a100- and
b010-Gallenene, the orbital projected electronic-band structures are calculated
within DFT-based methods (see Figs. 6.2(a) and (b)). It is clear that both
monolayer crystals exhibit metallic character because of the finite number
of bands crossing the Fermi level. As shown in Fig. 6.2(a), the unoccupied pz

orbitals in planar a100-Gallenene creates the bands which lie above the Fermi
level. In the case of b010-Gallenene, the pz orbitals are hybridized with the
in-plane orbitals due to the buckled crystal structure. Therefore, the bands
are highly dispersive in monolayer b010-Gallenene.
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6.3 Tight-binding model
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Figure 6.3: The band structure of a100-Gallenene (left side) and b010-Gallenene
(right side) calculated within DFT (dashed blue lines) and from the TB model
(solid red lines).

In DFT, we have in principle an infinite number of atoms with an infinite
number of orbitals to explain the electronic structure of the different crystal
structures. With the linear combination of atomic orbitals (LCAO), we are
able to limit the system up to a finite number of atoms and a finite number
of orbitals per atom and thus, the Bloch theorem can be effectively applied
through a TB model. We use these orbitals as the basis set to represent
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the wave function. The Bloch function with a well-defined k vector can be
generally expanded as linear combinations of the orbitals ϕ as follows

ψk(r)=∑
ν′

∑
i′

c i′ν′(k)φν,k(r−ri) (6.1)

in which i and ν run over the atoms in the unit cell and the orbitals s, px

,py and pz, respectively. In the case of a100-Gallenene and b010-Gallenene we
have four orbitals per atom and so 16 orbitals per unit cell. φν,k(r) is defined
as follows

φν,k(r)= ∑
n∈Z

∑
m∈Z

eik.Rn,mϕν(r−Rn,m) (6.2)

where Rn,m is the discrete translation vector of the unit cell at (m,n). We limit
the interactions up to the first nearest unit cell. We follow the SK scheme in
combination with the usual Levenberg-Marquardt nonlinear fitting algorithm
[86] to find the best hoppings for both Hamiltonian and overlap matrices.

For both structures, we have a basis of four Ga atoms and we assume a
basis of four orbitals (s, px, py and pz) per atom, which generates a band
structure with 8 valence and 8 conduction bands. So, we have in total 16
bands and we focus on the first 11 bands in the case of a100-Gallenene and
the first 10 bands for b010-Gallenene. The generalized eigenvalue equation for
the TB model may be written as follows [88];

∑
ν′

∑
i′

[Hiν,i′ν′ −εkSiν,i′ν′]c i′ν′(k)= 0 , (6.3)

in which H is the mono-electronic Hamiltonian and S is the overlap matrix
which is dimensionless. The basis can be formed not orthonormal [89–91], but
in the case of an orthogonal basis set (b100-Gallenene) the overlap matrix is a
unity matrix and can be ignored from the expression. The expectation values
for the Hamiltonian and overlap matrix can be written in terms of distances
in real space as follows

Hiν,i′ν′ =<φν(r− r i)|H|φν′(r− r i′)> ,

Siν,i′ν′ =<φν(r− r i)|φν′(r− r i′)> . (6.4)

The integrals are calculated over the whole unit cell and i and ν run over
the atoms in the unit cell and the orbitals s, px, py and pz, respectively.
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Theoretically, the inter-atomic matrix elements in Eq. (6.4) can in principle
be calculated directly from the known wave functions, but alternatively we
can use the fitting algorithm to find the best values for the integrals. The
expectation values may be written in terms of the directional cosines (ni =
r.ei/|r|) as follows;

< s|H|s >= vssσ,

< s|H|p i >= nivspσ,

< p i|H|p j >= (δi j −nin j)vppπ+nin jvppσ,

where r is the vector along the bond while i is x, y and z. The corresponding
expressions for the overlap matrix can be found by replacing H by S and v
by s. Note that one should consider the rule of angular quantum number
(< l|H|l′ >= (−1)l+l′ < l′|H|l >) to evaluate complex conjugated hopping matrix
elements.

R Vssσ Vspσ Vppσ Vppπ Sssσ Sspσ Sppσ Sppπ

R1 -1.304 -1.605 2.313 -0.579 0 0 0 0
R2 0.016 0.034 0.227 -0.058 0 0 0 0

R Vssσ Vspσ Vppσ Vppπ Sssσ Sspσ Sppσ Sppπ

R1 -1.003 -2.167 1.944 -0.662 0.030 0.205 -0.334 0.270
R2 -0.147 -0.113 0.608 -0.030 0.027 0.015 -0.071 0.055
R3 -1.176 -2.353 1.300 -0.795 0.017 0.141 -0.367 0.082
R4 0.303 -0.146 0.636 -0.063 -0.034 -0.003 -0.035 -0.025

Table 6.1: The Slater-Koster parameters for a100-Gallenene (top) and b010-
Gallenene (bottom). The V parameters are in eV , and the S parameters are
dimensionless.

a100-Gallenene b010-Gallenene
s px py pz s px py pz

Ga -3.934 2.969 2.992 1.377 -4.378 -0.099 0.601 0.682

Table 6.2: The on-site energies for a100-Gallenene and b010-Gallenene in units
of eV .

To calculate the TB Hamiltonian by using the eight Slater-Koster integrals,
one needs to know the inter-atomic distances. In Fig. 6.1 the distance between
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two Ga atoms is shown by R i where i refers to different types of bonds. After
optimizing the atomic positions we find the distances R1 = 2.655Å, R2 =
2.656Å, R3 = 4.572Å and R4 = 4.654Å for a100-Gallenene and R1 = 2.732Å,
R2 = 4.744Å, R3 = 2.876Å and R4 = 4.649Å for b010-Gallenene.

The complicated electronic dispersion bands and the compact structure of
b010-Gallenene exhibit a sp3 hybridization. By making a comparison between
atomic packing factor (APF) [218] of a100-Gallenene and b010-Gallenene one
can find APFb010 = 1.71APFa100, which is the reason why we choose a non-
orthogonal basis set for the structure of b010-Gallenene. For both structures
we have found the Slater-Koster integrals of Ga-Ga bonds up to the second
nearest neighbors which result in a satisfactory fitting of the band structure
(see Fig. 6.3). In Table 6.1, we list the Slater-Koster parameters of both
systems in terms of bond length and bond type as obtained by fitting the
DFT energy bands shown in Fig. 6.3. The on-site parameters of Ga atoms are
presented in Table 6.2. The TB model for b010-Gallenene can be also defined
orthogonally but with taking more neighbors into acount. To explain the
system orthogonally we should add the hopping between the orbitals of Ga
atoms with the distance R5 and R6 (see Fig. 6.1). The SK parameters and
onsites of the orthogonal TB model of b010-Gallenene are presented in Tables
6.3 and 6.4.

R Vssσ Vspσ Vppσ Vppπ

R1 -0.612 -1.855 0.966 -0.634
R2 -0.176 0.042 -0.163 0.126
R3 -0.771 -1.433 1.148 -0.831
R4 0.013 0.073 -0.431 0.126
R5 -0.025 0.098 -0.100 0.108
R6 -0.249 -0.175 0.156 0.019

Table 6.3: Orthogonal Slater-Koster parameters for b010-Gallenene in eV .

The bandstructure of orthogonal TB model of b010-Gallenene is presented
in Fig. 6.4. It can be seen that taking more neighbors into account is equiva-
lent to a define non-orthogonal basis set for orbitals that both cases can result
in more real interactions between Ga atoms.

Using the Slater-Koster parameters one can calculate the coupling ma-
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Figure 6.4: The electronic-band structure of b010-Gallenene using orthogonal
SK parameters.

a100-Gallenene
s px py pz

Ga -3.188 1.052 1.907 1.393

Table 6.4: The on-site energies orthogonal TB model of b010-Gallenene in units
of eV .

trices between different unit cells in terms of hoppings between different
orbitals.

6.4 Transmission and Density of states

Electronic transport is one of the most interesting properties of 2d materials.
The method used in this study is based on the Green’s function approach in
the tight-binding approximation calculated in aforementioned sections. For a
2D system, transmission and density of states (DOS) have been calculated
in x and y directions. Green’s function method is a powerful method to study
the electronic properties in which the most important property of physical
observables in transport, such as electrical current, is the transmission. The
tight-binding description of transmission through a junction has been inter-
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esting for scientists to observe how much an electron wave packet would
transmit in a specific energy. One needs the hamiltonian of the system which
is expressed in the tight-binding approximation. The routine method based
upon a formulation for the conductance in terms of Green’s functions G is the
well known Fisher-Lee linear-response [219] for the conductance of a finite
lattice embedded between the leads. We represent the result of a100-Gallenene
and b010-Gallenene for x and y directions separately. At this point it is neces-
sary to discuss that, for a ribbon which is studied in the current work, the
transmission T(ε) can be calculated as follows

T(ε)= Re(Tr(Σl.G.Σr.G†)) (6.5)

To truly have complete information about a solid, we should know all pos-
sible states. The number of states as a function of energy that are available
to be occupied is important for calculations of the effects based on the band
theory like transition probability [220], conductivity calculation and comput-
ing scattering rates [221, 222]. The Green’s function of the hamiltonian of the
system is a key concept with important links to the concept of density of state
as follows

DOS(ε)= −1
π

Im(Tr(G)) (6.6)

Using the SK parameters mentioned in Sec. 6.3 one can calculate the TB
Hamiltonian. Note that the Hamiltonian matrix for a ribbon can be generated
from the blocks of a 2D Hamiltonian matrix. Fig 6.5 shows the band structure
of the ribbon of the structures in x and y directions. a100-Gallenene in both
x and y directions show metal bihavior while b010-Gallenene ribbons are
semiconductor.

Using Eq. 6.5 and Eq. 6.6 we calculated the transmission and density of
states of the corresponding ribbons. Fig. 6.6 indicates the transmission of
the ribbons of a100-Gallenene and b010-Gallenene in x and y directions. b010-
Gallenene in x direction shows an interesting linear transmission related to
the conduction band in Fig. 6.5 (c) near the Fermi level. The zero transmission
comes from the 0.35(eV ) band gap in its band-structure. As shown in Fig. 6.5
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Figure 6.5: The electronic-band structure of the ribbons of a100-Gallenene in
x (a) and y (b) directions and b010-Gallenene in x (c) and y (d) directions.

(d) b010-Gallenene in y direction has a 0.97(eV ) band gap which is three times
of its ribbon in x direction.

Also the density of states for the ribbons are presented in Fig. 6.7. a100-
Gallenene in x direction shows a linear density of states near the Fermi level
which is an evidence to have a Dirac point in Fermi level. As shown in Fig.
6.5 (a) the x direction ribbon of a100-Gallenene has a Dirac point around X
point in reciprocal lattice. The gaps for the ribbons b010-Gallenene in x and y
directions are in agreement with the band-structures shown in Figs. 6.5 (c)
and (d). It should be noted that the linear transmission related to the ribbon
b010-Gallenene in x direction shows a constant density of state in Fig. 6.7 (c)
near the Fermi level.
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Figure 6.6: Transmission of the ribbons of a100-Gallenene in x (a) and y (b)
directions and b010-Gallenene in x (c) and y (d) directions.

6.5 Data Availability

The supporting information and several examples are available at tight-
binding.com. The examples and the supporting codes in additional program-
ming languages, i.e. Matlab, Mathematica, Python, C, C++ and Fortran are
also accessible through Code Generator tools in TBStudio.

https://tight-binding.com
https://tight-binding.com
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Figure 6.7: Density of states for the ribbons of a100-Gallenene in x (a) and y
(b) directions and b010-Gallenene in x (c) and y (d) directions.
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MACHINE LEARNING APPROACH

In the last three decades, machine learning has become more and more
important for different processes. The role of artificial intelligence (AI)
and machine learning is steadily increasing and is expected to further

increase in the near future. Traditionally, people use machine learning for
feature selection which can be performed independently with learning of
classifier parameters [223]. Identification, classification, clustering or inter-
preting massive datasets are only some examples which show the power of AI
and the ability of machines to learn.

Depending on the purpose of use, machine learning is a tool which can be
used based on a wide range of theories [224], but generally machine learning
has two types of generating outputs: a) identifying group membership which
predicts the class of objects that may correspond to some range of values.
In other words we are not searching for an exact value and b) estimating a
response which predicts a value from a continuous set.

Machine learning algorithms have been used for a number of purposes
in condensed matter physics [225–227]. For example, there are a number
of reports on prediction and analyzing the band gap of materials [228, 229].
Several novel approaches have been presented as a correction to energy bands
based on density functional theory (DFT) [230, 231]. Also some efforts have
been made using machine learning together with neural networks to identify
phase transitions [232].

79
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Occasionally, a set of sequential training examples can help us to predict
a new state much faster and more precisely. Such a learning technique is
called supervised learning [233, 234]. Supervised learner is a model including
a learning approach which maps a set of inputs to a set of outputs based on a
sequential input-output pair trainings. Sequential supervised learning infers
new information from the training data consisting of a set of labeled training
examples which can be used for mapping new unseen instances.

Here, we show how one can use a supervised learning model to calcu-
late the band structure of a material. Linear combination of atomic orbitals
(LCAO) [235] is a good candidate to setup our approach because this method is
powerful, fast and easy to establish. The most important justification to setup
LCAO is that the combination of this method with Green’s function theory
can be also used for non-periodic systems. Besides, in the case of systems
with a huge number of atoms there are a variety of cost and time efficiency
motivations which can lead one to use the LCAO method.

This paper is organized as follows. Sec. 7.1 describes the physical back-
ground behind this paper. Sec. 7.2 explains our neural network in details and
in Sec. 7.3 we show how to use and train it. As an example, we construct a
tight-binding (TB) model for the BiTeCl structure using the neural network
in Sec. 7.4.

7.1 Physical support

The system can be described by a set of non-interacting single-particles
using the LCAO technique. Slater and Koster (SK) have shown [35] that
it is possible to reproduce first-principles data using SK integrals. The SK
integrals for Hamiltonian and overlap matrix elements can be expressed as
follows

hmm′
ll′ (~r)=

〈
ϕm

l (~x+~r)|H(~x+~r)|ϕm′
l′ (~x)

〉
,

smm′
ll′ (~r)=

〈
ϕm

l (~x+~r)|ϕm′
l′ (~x)

〉
, (7.1)

in which ϕm
l is the real spherical harmonic which can be explained in terms

of complex spherical harmonic Y m
l . The bond between two atoms is defined by
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the vector~r. The SK scheme has been successfully applied to construct tight-
binding Hamiltonian of different systems [236, 237]. The integrals (7.1) will
be taken over the whole 3D space. Respectively, hmm′

ll′ (~r) and smm′
ll′ (~r) stand for

the Hamiltonian and overlap matrix elements defined between two orbitals
related to two different atoms as a function of~r. So we need to design a neural
network which works with the distance between two atoms as input. We need
to find a good set of parameters to explain the physics of the system. We
claim here that a neuron with an exponential activation function describes
orbital interactions very well and a single layer neural network made of these
neurons can describe the TB model of a structure. The input of ANN s shows
the strain factor which is directly connected to the separation between two
typical atoms. Using the input parameter one can control the size of unit-cell
from one step (a(s i)) to the next step (a(s i+1)). The free parameters wi and b i

are weights and bias values of the neural network.

7.2 Artificial neural network

Inspired by the structure of the brain, it is possible to design artificial neural
networks (ANN) which are able to learn from a specific training for a specific
purpose. Generally, ANNs include some artificial neurons with a bias value
and some links between the neurons with a weight. Weights and biases are the
learnable parameters of the designed model. The aim of our paper is different
from learning a concept or comparison-based learning. According to the fact
that the electronic energy dispersion is closely related to the coefficients of the
periodic potential, we need an associated learning algorithm which analyze
data used for regression.

One can use DFT results to train the ANN and find a set of weights and
bias values in order to compute outputs which match the desired outputs
for a collection of labeled training data items. We found that we can make
simple training examples using strain as a label. In other word we train the
ANN using different structures which are the strained version of the original
or target structure. The strain factor is defined by s i = a

′
i/a i where a and

a′ are, respectively, the optimized lattice parameters and that of training
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example in ith direction. s i can be chosen from one to infinity. The strain can
be uniform or non-uniform in each direction. Besides, we need a supervised
learning algorithm to generalize from the training data to unseen situations
in a reasonable way. During the training it can be seen that the atoms are
gathered from infinity and form the original structure. It should be noted
that infinity refers to a strain factor in which the atoms have the smallest
overlap but not that small that it will result in flat bands. When the atoms
are far from each other the bands are orthogonal and the SK parameters
can be found easily resulting in reliable weights and biases. That is why we
should train the ANN from infinity to one.

The behavior of SK parameters as a function of strain factor are non-
linear. A single layer multi-output neural network technique was used to
describe a TB model. Fig. 7.1 shows schematically the ANN which can learn
from different structures generated by different strain values. The input of
the ANN is the strain factor s i labeled by training step i and the distance
between atoms will be controlled by the strain factor. The presented ANN
have m outputs for a structure including m different bond types and (yj)
is the norm (Rn) of the n-vector SK parameters of the jth defined TB bond
type. For instance, we need only one output for a carbon-carbon bond in first
nearest neighbor TB model of graphene.

The presented ANN is based on a collection of connected nodes with its
bias b i. Each connection, like the synapses in a biological brain, transmit
a signal from one artificial neuron to other nodes depending on its weight
wi and its activation function. Branches indicate one bond in the structure
including its SK parameters that can be the input of the Hamiltonian or
the input of the overlap matrix. Once a set of good weights and bias values
have been found, the resulting ANN model can make predictions on any new
strained structure or the optimized structure obtained from experimental or
first-principles approaches.
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Figure 7.1: Architecture of the proposed neural network. The links with zero
weight between the layers are not shown. s i and yj are input and outputs of
the network, respectively.

7.3 Training ANN and Genetic Algorithm to
Overcome Local Minima

In setting up a supervised learning we need a set of labeled training examples
as (s1,ε1

nkσ), . . . , (sN ,εN
nkσ) in which εnkσ is the energy of nth band and kth wave

vector with spin σ. Respectively, s and N are the factor of strain and the
number of training examples.

As mentioned the input of the ANN is the factor of strain which changes
the distance between the atoms and as a result there is no need to care
about the optimization of the example structures during the training. In each
training step the weights and the bias variables would be changed.

For the case of pure mathematical problems the initial weights and bias
values of a typical neural network may be initialized as random numbers to
break the symmetry of the problem, but when we encounter a non-physical
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Figure 7.2: a) Local minimums for graphene with different strain factors.
Green path shows the machine learning path. Rn is the radius of an n-
dimensional sphere in energy space in unit of eV. The best fitting of the TB
model for an optimized graphene is located on the surface of a 4D sphere with
11.5 eV energy. b) The radius of the 4-vector SK parameters of graphene first
nearest bond in different training steps and the output of the trained ANN. c)
The convergence of the weight and bias of the neuron corresponding to the
graphene C-C bond during the training procedure.

result, it is better to initialize them from the physics of the problem. The
weights and bias values was initialized to zero using the fact that the overlap
between two atoms which are far from each other is negligible.

After initialization the ANN, one should calculate the TB model bands
using the outputs of the ANN using the SK table. In Appendix C, one can find
how to calculate SK parameters for any orbital. In this step, the difference be-
tween predicted energies and actual ones will be measured through the usual
mean square loss function. The loss function gives us the square deviation, in
each n and k, which is a function of the internal parameters of the ANN.

During the training, the ANN should be modified by backward prop-
agation of errors via an optimization algorithm. We work with the usual
back-propagation methods to generate new weights and bias values and
consequently, we are limited to generate training examples using only uni-
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form strain. Using the Levenberg-Marquardt optimization algorithm [86] we
generate modified SK parameters as follows

~vs+1 =~vs − (JT
s .Js +µI)−1Js~r(~vs) , (7.2)

where~r is the residuals vector which is referred to deviation from the refer-
ence data and~v is a vector including those onsite energies, Hamiltonian and
overlap SK parameters are not set to be constant by the user.

In machine learning there is always the possibility of converging to a local
minimum. The lack of training examples can be the cause of the appearance
of local minima and one should prepare enough examples to avoid such a
problem. Note that a local minimum in band structure fitting happens when
a band made of a typical orbital calculated by the TB model is mistakenly
converged to another orbital. It means one should be aware of the contribution
of different orbitals in forming the band structure.

This problem can also be seen as a misshapen orbital in non-orthogonal
basis functions [89]. For instance, during regression, the shape of an orbital
may be reshaped to generate a band formed by the mixing of two orbitals. In
such cases, despite the fact that we could find a set of orbitals that regenerate
the energies, the model can not explain the quiddity of the solid and may
result in wrong physical behaviors.

Our supervised learning algorithm allows the user to change the opti-
mizing performance via the validation-testing process. During the training,
one can adjust the parameters of regression and determine the trust region.
Because, in dissimilar training examples, the quality of regression and the
number of bands to fit may be different. Also the validation-testing process
allows the user to change the number of nearest neighbors and to switch
between the orthogonal and non-orthogonal basis functions.

The complexity of an optimization problem depends on the number of
independent variables. For instance, an orthogonal (S = 1) TB model for
graphene including s and p orbitals has four unknown SK integrals. To
train the corresponding ANN, we change the strain factor from s = 3.0 to
s = 1.0. We found that the local minimums are located near the surface of
an n-dimensional sphere in the parameter space that n is the number of
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SK integrals for a typical bond. Fig. 7.2 (a) represents the local minimums
during the search for a good TB model for graphene in which we mapped the
error function to a 2D figure. Each point in Fig. 7.2 corresponds a 4-vector SK
parameters. It is practically impossible to find adequate SK parameters using
random numbers in such a large parameter space, because there are too many
local minimum points. For a structure including more atoms and orbitals,
the problem is clearly very difficult, as the number of local minimums may
be exponential in the number of independent variables which corresponds
to the number of defined TB bonds. With that in mind, we need a local
minimum escaping technique. The aforementioned information lead us using
Genetic algorithm (GA), in each step of the ANN training algorithm. GA is
effective when very little is known about the search space. GA repeatedly
modifies a population of individual solutions that in each step, individuals
at random is selected from the current population to be parents and uses
them to produce the children for the next generation. Basically, solutions of a
problem are evolved over the generations, and the solutions are allowed to
compete, crossover and mutate.

Mutation is an important operation in GA that helps to maintain the
genetic diversity of the population in order to achieve a good solution to an
optimization problem. Normally, people generate solutions randomly to form
initial population, but we propose the machine learning approach to find
the values of independent variables near the best fit. So the solution will be
located in a good n-dimensional sphere in unit of (eV). With this we prevent
seeking an n-vector SK parameters in vain and searching blindly in the dark.
This kind of directed mutation introduces new points in the population guided
by the information acquired from the previous machine learning steps. The
green path in fig. 7.2 shows the location of the suggested SK parameters by
machine learning approach in the surface of different (n)-dimensional spheres
for different strain factors. The value of ppπ=−2.503 eV , at the end of the
green path, is the famous pz carbon-carbon hopping of graphene in its first
nearest neighbor TB model.

In the case of finding a TB model we need to predict the next steps from
some training steps. Mathematically, it means we need to extrapolate the
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next steps using the training steps which are done before. Fig. 7.2 (b) shows
the output of a trained ANN for graphene TB model using the last results
of w and b. The evolution of w and b values are presented in Fig. 7.2 (c)
which shows that, during the training procedure, the weight and bias values
improve. After training the values are converged to w =−2.310 and b = 4.719.
Note, the final TB model can be practically predicted after 8th training step.
The whole story can be explained by the fact that it is impossible to find the
SK parameters directly for the optimized structure only using a randomly
chosen SK parameters and searching blindly without having any information
about the order of their energies, specially for a TB model including large
number independent fitting parameters. In next section, we show the results
of machine learning for an example of 55 unknown parameters for a non-
orthogonal TB model of BiTeCl including SOC.

7.4 Application to find TB model for BiTeCl

We illustrate how the ANN works by applying it to on example. We show how
one can find the TB model for BiTeCl structure. Regardless the importance
of this material because of its topological behavior, BiTeCl has a complex
structure made of three different atoms including more than thirty valence
bands which makes it very difficult to find a reliable TB model by using the
usual fitting methods. We pick this example to illustrate how powerful is our
method.

The properties of topological insulators has been of interest and impor-
tant for application and the lack of a TB model for BiTeCl motivated us to
study this example. Promising applications of topological insulators range
from spin transistors in quantum based computers and spintronic devices to
optoelectronic and magnetoelectronic devices [238, 239] and quantum spin
Hall effect and quantum anomalous Hall effect in such materials show the
importance of the role of spin-orbit coupling in their properties [240, 241].

From first-principles calculations using the OpenMX package [37] we
obtain the band structures of BiTeCl. Numerical integrations in the Brillouin
zone were evaluated with the Monkhorst-Pack mesh (15×15×1). We applied
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Figure 7.3: a) Top and b) side view of the structure of BiTeCl. The black box
indicates the unit cell. a, b and c are lattice vectors and Ri show the nearest
neighbor atoms which are used in constructing the TB model.

the generalized gradient approximation for the exchange-correlation energy,
using PBE functional [93, 94] with a cutoff energy of 400 eV for the plane-
wave basis. Fig. 7.3 represents the optimized structure of BiTeCl. The nearest
neighbor atoms which should be included in the TB model are shown by the
vectors Ri and the black box is the unit cell.

Let’s return to the algorithm by taking the strain factor as sx = sy = sz = 2.0
and the weights and bias values are zero. This is the beginning point to train
the ANN. One can construct the TB model using the outputs of the ANN and
find a new set of SK parameters, repeatedly, by changing the strain factor
step by step to sx = sy = sz = 1.0. To generate training examples, we decrease
the values of s i to 1.0 to gather the atoms in all directions. In each step we
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Figure 7.4: The band structures calculated by the TB model for BiTeCl struc-
ture using the SK parameters presented in Tables 7.1 and 7.2 which are
compared with the DFT results.

compress the three honeycomb lattices made of Bi, Te and Cl atoms and let
the atoms to be close enough to see each others.

In this work we found also overlap matrix S for BiTeCl. The band structure
of the TB models for BiTeCl is shown in Fig. 7.4 using the final SK parameters,
on-site energies and spin-orbit coupling for different atoms from Tables 7.1
and 7.2. Very good agreement with the DFT results is obtained. In Appendix
C the TB Hamiltonian and overlap matrix of BiTeCl structure are presented
explicitly including the hopping between all s and p orbitals.
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Table 7.1: The SK parameters for BiTeCl in eV .

Bond type R SK integrals Overlap integrals
ssσ spσ ppσ ppπ ssσ spσ ppσ ppπ

Bi-Bi R1 -1.867 -0.076 0.484 0.037 0.144 -0.022 -0.056 0.005
Te-Te R2 -1.038 -0.639 0.431 0.031 0.074 0.060 -0.029 0.007
Cl-Cl R3 0.086 0.005 -0.111 -0.186 -0.008 -0.010 0.064 0.070
Bi-Te R4 -1.917 0.992 1.867 -0.679 0.141 -0.030 -0.246 -0.027
Bi-Cl R4 4.744 -0.655 -2.100 0.116 -0.327 0.117 0.213 -0.060

Table 7.2: The onsite energies and spin-orbit coupling for BiTeCl in eV .

Atom s px py pz α
p
so

Bi -11.130 -0.994 -1.138 -0.243 -1.348
Te -11.121 -2.052 -2.244 -1.964 -0.634
Cl -14.207 -1.375 -1.488 -1.840 0.005

7.5 Training Example

The contribution of the orbitals and atoms in different bands helps one to
construct the TB model in a reasonable way. Fig. 7.5 shows nine bands near
the Fermi level for BiTeCl without SOC in sx = sy = sz = 1.6. The nine bands
are made of the orbitals px, py and pz. Note that when the atoms are far
from each other the orbitals have an atomic-like shape and consequently the
orbitals are distinguishable in the band structure. One can constuct the TB
model as a function of SK integrals. Thease integrals can be generated using
our proposed ANN. The output of the ANN in the main paper is an array
(y1, y2, ..., y5) which are related to Bi-Bi, Te-Te, Cl-Cl, Bi-Te and Bi-Cl bond
types. If the exact coefficients (w1, ...,w5 and b1, ...,w5) for the TB ANN (which
includes 5 neurons) are known one can find hopping for a pair of atoms with
the distance r. So the aim is finding w1, w2 and etc. coefficients. Training a
neural network refers to finding weights and bias values. Normally, neural
networks are capable of discovering latent structures within unstructured
data and there are a lot of ways to find the unknown coefficients that are
a kind of regression. The goal in using an ANN is to arrive at the point of
least error as fast as possible. A labeled dataset can help our training process
since we have a regularity trend which is supported by the physics behind
the orbitals. A supervised learning, which means some examples that are



7.5. TRAINING EXAMPLE 91

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

M K G M

E
n

e
rg

y
 (

e
V

)

Bi
Te
Cl

K G M

s
px
py
pz

Figure 7.5: The bandstructure of BiTeCl without SOC showing the contribu-
tion of Bi, Te and Cl atoms by the different colors.

labeled, can be chosen to be fast and accurate enough. The training examples
are tagged by the strain which in the case of BiTeCl we start from s=1.6 to
s=1 and fit the band structure of training examples. Fig. 7.6 shows some steps
of the training proccess. One can see how the TB band structure varies to the
target DFT band stucture.
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7.6 Explicit Form for the Tight-binding
Hamiltonian of BiTeCl

To calculate the Hamiltonian in terms of atomic orbitals we expand the Bloch
functions as linear combinations of the orbitals ϕ as follows

ψk(r)=∑
ν′

∑
i′

c i′ν′(k)φν,k(r−ri) (7.3)

with

φν,k(r)= ∑
n∈Z

∑
m∈Z

eik.Rn,mϕν(r−Rn,m) (7.4)

in which Rn,m is the discrete translation vector of the unit cell at (m,n) of the
Bravais lattice. In principle, m and n run over an infinite array of discrete
points, in this work the TB model includes only the first nearest unit cell.
Table 7.3 represents the 2D lattice vectors of the BiTeCl structure. The atoms
of the unit cell can be identified by their indexes as presented in Table 7.4.

Vector x y z
a 2.147 3.729 0
b 2.147 -3.729 0

Table 7.3: The lattice vectors for BiTeCl structure in units of Å.

Index Atom x y z
1 Bi 2.147 -1.243 1.643
2 Te 2.147 1.243 3.408
3 Cl 0 0 0

Table 7.4: The indices and positions of the atoms in units of Å applied for
constructing the TB model in this work.

The mono-electronic Hamiltonian H and overlap matrix S may be rewrit-
ten as
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H=
1∑

n=−1

1∑
m=−1

hn,meik.Rm,n ,

S=
1∑

n=−1

1∑
m=−1

sn,meik.Rm,n , (7.5)

where Rm,n is the translation vector of the unit cell (m,n). Since H is Hermi-
tian therefore

h−1,0 =h†
1,0 ,h0,−1 =h†

0,1 ,

h−1,−1 =h†
1,1 ,h−1,1 =h†

1,−1 . (7.6)

And the same equations are valid for s. Hence, we have 10 independent
matrices. We only need to determine h and s for the cells at (0,0), (1,0), (0,1),
(1,1) and (−1,1). Note that the matrices h−1,1 and h1,−1 are zero for hexagonal
BiTeCl structure. Since the number of atoms in the unit cell is three and each
atom has four orbitals the Hamiltonian matrix is of size 12×12. Taking SOC
into accounts leads us to the total Hamiltonian of BiTeCl as follows

HTotal =H× I2×2+HSOC . (7.7)

One needs to calculate the second term using the SOC parameters pre-
sented in the main paper. We use the SK coefficients presented in the paper
and calculate H and S and extract the matrices h0,0, h0,1, h1,0, h1,1, s0,0, s0,1,
s1,0 and s1,1 for BiTeCl as following (respectively, h0,0, h0,1, h1,0, h1,1, s0,0, s0,1,
s1,0 and s1,1)
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s py pz px s py pz px s py pz px



−11.130 0 0 0 −1.917 0.809 0.575 0 4.744 −0.274 0.362 0.473 s

0 −1.138 0 0 −0.809 1.014 1.202 0 0.274 −0.271 0.511 0.668 p
y

0 0 −0.243 0 −0.575 1.202 0.174 0 −0.362 0.511 −0.559 −0.883 p
z

0 0 0 −0.994 0 0 0 −0.679 −0.473 0.668 −0.883 −1.037 p
x

−1.917 −0.809 −0.575 0 −11.121 0 0 0 0 0 0 0 s

0.809 1.014 1.202 0 0 −2.244 0 0 0 0 0 0 p
y

0.575 1.202 0.174 0 0 0 −1.964 0 0 0 0 0 p
z

0 0 0 −0.679 0 0 0 −2.052 0 0 0 0 p
x

4.744 0.274 −0.362 −0.473 0 0 0 0 −14.207 0 0 0 s

−0.274 −0.271 0.511 0.668 0 0 0 0 0 −1.488 0 0 p
y

0.362 0.511 −0.559 −0.883 0 0 0 0 0 0 −1.840 0 p
z

0.473 0.668 −0.883 −1.037 0 0 0 0 0 0 0 −1.375 p
x

s py pz px s py pz px s py pz px



−1.867 0.066 0 −0.038 −1.917 −0.405 0.575 0.700 4.744 0.547 0.361 0 s

−0.066 0.373 0 −0.194 0.405 −0.255 −0.603 −0.733 −0.547 −1.426 −1.019 0 p
y

0 0 0.037 0 −0.575 −0.603 0.177 1.041 −0.361 −1.019 −0.557 0 p
z

0.038 −0.194 0 0.148 −0.700 −0.733 1.041 0.587 0 0 0 0.116 p
x

0 0 0 0 −1.038 0.554 0 −0.319 0 0 0 0 s

0 0 0 0 −0.554 0.331 0 −0.173 0 0 0 0 p
y

0 0 0 0 0 0 0.031 0 0 0 0 0 p
z

0 0 0 0 0.319 −0.173 0 0.131 0 0 0 0 p
x

0 0 0 0 0 0 0 0 0.086 −0.004 0 0.002 s

0 0 0 0 0 0 0 0 0.004 −0.129 0 −0.032 p
y

0 0 0 0 0 0 0 0 0 0 −0.186 0 p
z

0 0 0 0 0 0 0 0 −0.002 −0.032 0 −0.167 p
x
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s py pz px s py pz px s py pz px



−1.867 −0.066 0 −0.038 0 0 0 0 0 0 0 0 s

0.066 0.373 0 0.194 0 0 0 0 0 0 0 0 p
y

0 0 0.037 0 0 0 0 0 0 0 0 0 p
z

0.038 0.194 0 0.148 0 0 0 0 0 0 0 0 p
x

−1.917 0.405 −0.575 0.700 −1.038 −0.554 0 −0.319 0 0 0 0 s

−0.405 −0.255 −0.603 0.733 0.554 0.331 0 0.173 0 0 0 0 p
y

0.575 −0.603 0.177 −1.041 0 0 0.031 0 0 0 0 0 p
z

−0.700 0.733 −1.041 0.587 0.319 0.173 0 0.131 0 0 0 0 p
x

0 0 0 0 0 0 0 0 0.086 0.004 0 0.002 s

0 0 0 0 0 0 0 0 −0.004 −0.129 0 0.032 p
y

0 0 0 0 0 0 0 0 0 0 −0.186 0 p
z

0 0 0 0 0 0 0 0 −0.002 0.032 0 −0.167 p
x

s py pz px s py pz px s py pz px



−1.867 0 0 −0.076 0 0 0 0 4.744 −0.274 0.362 −0.473 s

0 0.037 0 0 0 0 0 0 0.274 −0.271 0.511 −0.668 p
y

0 0 0.037 0 0 0 0 0 −0.362 0.511 −0.559 0.883 p
z

0.076 0 0 0.484 0 0 0 0 0.473 −0.668 0.883 −1.037 p
x

0 0 0 0 −1.038 0 0 −0.639 0 0 0 0 s

0 0 0 0 0 0.031 0 0 0 0 0 0 p
y

0 0 0 0 0 0 0.031 0 0 0 0 0 p
z

0 0 0 0 0.639 0 0 0.431 0 0 0 0 p
x

0 0 0 0 0 0 0 0 0.086 0 0 0.005 s

0 0 0 0 0 0 0 0 0 −0.186 0 0 p
y

0 0 0 0 0 0 0 0 0 0 −0.186 0 p
z

0 0 0 0 0 0 0 0 −0.005 0 0 −0.111 p
x
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s py pz px s py pz px s py pz px



1 0 0 0 0.141 −0.025 −0.018 0 −0.327 0.049 −0.065 −0.085 s

0 1 0 0 0.025 −0.173 −0.103 0 −0.049 −0.012 −0.063 −0.082 p
y

0 0 1 0 0.018 −0.103 −0.101 0 0.065 −0.063 0.023 0.109 p
z

0 0 0 1 0 0 0 −0.027 0.085 −0.082 0.109 0.082 p
x

0.141 0.025 0.018 0 1 0 0 0 0 0 0 0 s

−0.025 −0.173 −0.103 0 0 1 0 0 0 0 0 0 p
y

−0.018 −0.103 −0.101 0 0 0 1 0 0 0 0 0 p
z

0 0 0 −0.027 0 0 0 1 0 0 0 0 p
x

−0.327 −0.049 0.065 0.085 0 0 0 0 1 0 0 0 s

0.049 −0.012 −0.063 −0.082 0 0 0 0 0 1 0 0 p
y

−0.065 −0.063 0.023 0.109 0 0 0 0 0 0 1 0 p
z

−0.085 −0.082 0.109 0.082 0 0 0 0 0 0 0 1 p
x

s py pz px s py pz px s py pz px



0.144 0.019 0 −0.011 0.141 0.012 −0.018 −0.021 −0.327 −0.098 −0.065 0 s

−0.019 −0.040 0 0.026 −0.012 −0.064 0.052 0.063 0.098 0.130 0.125 0 p
y

0 0 0.005 0 0.018 0.052 −0.101 −0.089 0.065 0.125 0.023 0 p
z

0.011 0.026 0 −0.010 0.021 0.063 −0.089 −0.136 0 0 0 −0.060 p
x

0 0 0 0 0.074 −0.052 0 0.030 0 0 0 0 s

0 0 0 0 0.052 −0.020 0 0.016 0 0 0 0 p
y

0 0 0 0 0 0 0.007 0 0 0 0 0 p
z

0 0 0 0 −0.030 0.016 0 −0.002 0 0 0 0 p
x

0 0 0 0 0 0 0 0 −0.008 0.009 0 −0.005 s

0 0 0 0 0 0 0 0 −0.009 0.066 0 0.002 p
y

0 0 0 0 0 0 0 0 0 0 0.070 0 p
z

0 0 0 0 0 0 0 0 0.005 0.002 0 0.069 p
x
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s py pz px s py pz px s py pz px



0.144 −0.019 0 −0.011 0 0 0 0 0 0 0 0 s

0.019 −0.040 0 −0.026 0 0 0 0 0 0 0 0 p
y

0 0 0.005 0 0 0 0 0 0 0 0 0 p
z

0.011 −0.026 0 −0.010 0 0 0 0 0 0 0 0 p
x

0.141 −0.012 0.018 −0.021 0.074 0.052 0 0.030 0 0 0 0 s

0.012 −0.064 0.052 −0.063 −0.052 −0.020 0 −0.016 0 0 0 0 p
y

−0.018 0.052 −0.101 0.089 0 0 0.007 0 0 0 0 0 p
z

0.021 −0.063 0.089 −0.136 −0.030 −0.016 0 −0.002 0 0 0 0 p
x

0 0 0 0 0 0 0 0 −0.008 −0.009 0 −0.005 s

0 0 0 0 0 0 0 0 0.009 0.066 0 −0.002 p
y

0 0 0 0 0 0 0 0 0 0 0.070 0 p
z

0 0 0 0 0 0 0 0 0.005 −0.002 0 0.069 p
x

s py pz px s py pz px s py pz px



0.144 0 0 −0.022 0 0 0 0 −0.327 0.049 −0.065 0.085 s

0 0.005 0 0 0 0 0 0 −0.049 −0.012 −0.063 0.082 p
y

0 0 0.005 0 0 0 0 0 0.065 −0.063 0.023 −0.109 p
z

0.022 0 0 −0.056 0 0 0 0 −0.085 0.082 −0.109 0.082 p
x

0 0 0 0 0.074 0 0 0.060 0 0 0 0 s

0 0 0 0 0 0.007 0 0 0 0 0 0 p
y

0 0 0 0 0 0 0.007 0 0 0 0 0 p
z

0 0 0 0 −0.060 0 0 −0.029 0 0 0 0 p
x

0 0 0 0 0 0 0 0 −0.008 0 0 −0.010 s

0 0 0 0 0 0 0 0 0 0.070 0 0 p
y

0 0 0 0 0 0 0 0 0 0 0.070 0 p
z

0 0 0 0 0 0 0 0 0.010 0 0 0.064 p
x

Note that coupling matrices h1,−1 and s1,−1 are zero for our TB model.
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SUMMARY AND OUTLOOK

Using the simplified LCAO method in combination with first-principles calcu-
lations, we construct a tight-binding (TB) model in the two-centre approxi-
mation for two-dimensional materials. The Slater and Koster (SK) approach
are applied to calculate the TB Hamiltonian of these systems. We obtain ex-
pressions for the Hamiltonian and overlap matrix elements between different
orbitals for the different atoms and present the SK coefficients in orthogonal
and non-orthogonal basis sets. We present Tight-Binding Studio (TBStudio)
software package for calculating TB Hamiltonian from a set of Bloch energy
bands obtained from first principle theories such as density functional theory,
Hartree-Fock calculations or Semi-empirical band structure theory. This will
be helpful for scientists who are interested in studying electronic properties
of structures using Green’s function theory in TB approximation. TBStudio is
a cross-platform application written in C++ with a graphical user interface
design that is user-friendly and easy to work with. This software is powered
by Linear Algebra Package C interface library for solving the eigenvalue
problems and the standard high performance OpenGL graphic library for
real time plotting. TBStudio and its examples together with the tutorials are
available for download from tight-binding.com. Using this software we find
TB model for borophene and hydrogenated borophene (borophane) in a non-
orthogonal basis set. We also calculated the Dirac low-energy Hamiltonian of
borophane which describes the physics within the anisotropic Dirac cone and
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derived an analytical expression for the density of states. The full expression
for the Hamiltonian and overlap matrices for borophene and borophane are
given in the supplementary information. We also study Bilayer borphene.
Bilayer hexagonal borphene is bound together through pillars which is a
novel topological semimetal. Using density functional theory, we investigated
the origin of nodal line and identified its electronic properties as a Dirac
material. A TB model was constructed based on the Slater-Koster approach
in order to explain the band energies. In order to describe the nodal line
we presented an effective 4×4 low-energy model Hamiltonian near the K
point and presented an analytical equation for the nodal line as a function
of azimuthal angle around the center of the nodal line. The nodal line in the
spectrum is a result of two inter-penetrating Dirac cones. Due to the different
trigonal warping of the two Dirac cones the nodal line is not isoenergetic with
an energy dispersion.

Furthermore, a novel method is proposed to construct TB models for solids
using machine learning techniques. The approach is based on the LCAO
method and Slater-Koster (SK) integrals and a single layer multi-output
neural network in order to obtain the optimal SK parameters. A single layer
multi-output neural network model was designed to construct the TB model
for solids. The input variable for the proposed Artificial Neural Networks
(ANN) is the strain factor which is connected to the distance between two
typical atoms and the outputs are the SK parameters. By training the ANN
the weights and biases improve and the final result can predict the band
structure. We constructed the ANN for BiTeCl structure and studied the
values of weights and biases during the training including spin-orbit coupling
which plays an important role in their electronic properties. The proposed
ANN predicted successfully the band structures as shown by a comparison
with DFT results.

Also we studied the double Dirac nodal line found in Cu2Si monolayer. We
show that an effective four band model Hamiltonian describes the spectrum
near the nodal line accurately. The Dirac nodal lines in Cu2Si form two
concentric loops centered around the Γ point and are protected by mirror
reflection symmetry. Our results show that the nodal lines are created by
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edge states and are very robust against perturbations and impurities. Our
results establish Cu2Si as a new platform to study novel physical properties
in two-dimensional Dirac materials and provide new opportunities to realize
high-speed low-dissipation devices.
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SAMENVATTING

Met behulp van de vereenvoudigde LCAO-methode in combinatie met berekenin-
gen met de eerste principes, construeren we een Tight-Binding (TB) model
in de tweecenterbenadering voor tweedimensionale materialen. De Slater
en Koster (SK) -benadering wordt toegepast om de TB Hamiltoniaan van
deze systemen te berekenen. We verkrijgen uitdrukkingen voor de Hamil-
toniaanse en overlappende matrixelementen tussen verschillende orbitalen
voor de verschillende atomen en presenteren de SK-coëfficiënten in orthogo-
nale en niet-orthogonale basissets. Een nieuw softwarepakket Tight-Binding
Studio (TBStudio) werd geconstead voor het berekenen van TB Hamilto-
nianen uit een reeks Bloch-energiebanden die zijn verkregen op basis van
eerste principe theorieën zoals dichtheidstheorie, Hartree-Fock-berekeningen
of Semi-empirische bandstructuurtheorie. Dit zal nuttig zijn voor weten-
schappers die geïnteresseerd zijn in het bestuderen van elektronische eigen-
schappen van structuren met behulp van Green se functies in een TB be-
nadering. TBStudio is een platformoverschrijdende applicatie geschreven in
C++ met een grafisch gebruikersinterfaceontwerp dat gebruiksvriendelijk en
gemakkelijk is om mee te werken. Deze software wordt aangedreven door
de Linear Algebra Package C-interfacebibliotheek voor het oplossen van de
eigenwaardeproblemen en standaard hoogwaardige OpenGL grafische bib-
liotheek voor realtime plotten. TBStudio en zijn voorbeelden samen met de
tutorials kunnen worden gedownload van tight-binding.com. Met behulp van
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deze software vinden we het TB-model voor borofeen en gehydrogeneerd boro-
feen (borofaan) in een niet-orthogonale basisset. We berekenden ook de Dirac
lage-energie Hamiltoniaan van borofaan die de fysica binnen de anisotrope
Dirac-kegel beschrijft en er werd een analytische uitdrukking afgeleid voor de
dichtheid van toestanden. De volledige uitdrukking voor de Hamiltoniaanse
en overlappende matrices voor borofeen en borofaan worden gegeven in de
aanvullende informatie. We bestuderen ook bilaag borofeen. Bilaag zeshoekig
borfeen bestaad uit een dublede laag broofeen aan elkaar gebonden door
pijlers, dat een nieuw topologisch semimetaal is Met behulp van dichtheid
functionaal theorie, hebben we de oorsprong van knooppunten onderzocht en
de elektronische eigenschappen ervan geïdentificeerd als een Dirac-materiaal.
Een TB model werd gebouwd op basis van de Slater-Koster-aanpak om de
bandenergieën te verklaren. Om de knooplijn te beschrijven, presenteerden
we een effectief 4×4 laag-energiemodel Hamiltonian nabij het K punt en pre-
senteerden we een analytische vergelijking voor de knooplijn als een functie
van de azimutale hoek rond het midden van de knooplijn. De knooplijn in
het spectrum is een gevolg van twee doordringende Dirac-kegels. Vanwege de
verschillende trigonale kromming van de twee Dirac-kegels is de knooplijn
niet iso-energetisch en besit het een energiedispersie.

Verder wordt een nieuwe methode voorgesteld om TB modellen voor vaste
stoffen te construeren met behulp van machine learning-technieken. De aan-
pak is gebaseerd op de LCAO-methode en Slater-Koster (SK) -integralen en
een enkellagig multi-output neuraal netwerk om de optimale SK-parameters
te verkrijgen. Een enkellagig multi-output neuraal netwerkmodel werd ont-
worpen om het model voor vaste stoffen te construeren. De ingangsvariabele
voor de voorgestelde Artificial Neural Networks (ANN) is de spanningsfactor
die is verbonden met de afstand tussen twee typische atomen en de outputs
zijn de SK-parameters. Door de ANN te trainen verbeteren de gewichten en
het eindresultaat geeft o.a. de bandstructuur. We hebben de ANN voor BiTeCl-
structuur geconstrueerd en de waarden van gewichten bestudeerd tijdens de
training, inclusief spin-orbit-koppeling die een belangrijke rol speelt in hun
elektronische eigenschappen. De voorgestelde ANN voorspelde met succes de
bandstructuren, zoals blijkt uit een vergelijking met DFT-resultaten.
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We hebben ook de dubbele Dirac knooplijn bestudeerd in Cu2Si monolaag.
We laten zien dat een effectief vierbandsmodel Hamiltoniaan het spectrum
nabij de knooplijn nauwkeurig beschrijft. De Dirac knooppunten in Cu2Si
vormen twee concentrische lussen gecentreerd rond het Γ punt en die worden
beschermd door spiegelreflectiesymmetrie. Onze resultaten laten zien dat
de knooppunten worden gecreëerd door randtoestanden en zeer robuust zijn
tegen storingen en onzuiverheden. Onze resultaten voorspellen dat Cu2Si
gebruikt kan worden als een nieuw platform om nieuwe fysische eigenschap-
pen in tweedimensionale Dirac-materialen te bestuderen. Dit biedt nieuwe
kansen om hoge-snelheid-apparaten te realiseren.
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APPENDIX A: ANALYTICAL EXPRESSION FOR

THE GREEN’S FUNCTION FOR AN ANISOTROPIC

DIRAC HAMILTONIAN

Considering the Dirac equation mentioned in section 3.2, we calculate
the Green’s function for a general anisotropic Dirac cone which is
tilted in the x-direction. We are interested in finding an analytical

expression for the Green’s function which is needed to calculate the density of
states. We start from the definition of the Green’s function in the reciprocal
representation as follows

G(k,ε)= (ε I −Hk)−1 . (A.1)

The density of states is defined as the imaginary part of the diagonal elements
of the retarded Green’s function, one can evaluate these components by using
Eq. (??) and Eq. (A.1) as below

G1,1(k,ε)=G2,2(k,ε)= ε−kxνt

(ε−kxνt)2−k2
xν

2
x −k2

yν
2
y
. (A.2)

It is useful to evaluate the real space Green’s function G(r−r′,ε) by taking
the Fourier transform. One motivation for calculating the Fourier transform
of Green’s function comes from the fact that we can easily derive the density
of states from the imaginary part of the diagonal elements of Green’s function

107



108
APPENDIX A: ANALYTICAL EXPRESSION FOR THE GREEN’S FUNCTION FOR AN

ANISOTROPIC DIRAC HAMILTONIAN

in real space as follows

DOS(ε)= −1
π

Im(G1,1(r= r′,ε)+G2,2(r= r′,ε)). (A.3)

Corresponding real space Green’s function is defined by the two dimensional
Fourier transformation

G(r−r′,ε)= 1
Ω

∫
dk2eik.(r−r′)G(k,ε) (A.4)

where, Ω denotes the area of the first Brillouin zone. We define k2 = (νxkx)2+
(νyky)2 and νxkx = kcosϕ and transform cartesian to polar coordinates.

G1,1(0,ε)= 1
Ω

∫ 2π

0
dϕ

∫ kc

0
kdk

ε− νt
νx

kcosϕ

(ε− νt
νx

kcosϕ)2−k2 . (A.5)

Here, kc = εc/(1−νt/νx) where εc is the cut-off energy for evaluating the inte-
gral. After some simplifications one can derive the Green’s function expression
as follows

G1,1(0,ε)= 1
Ω

(g(ε)+ g(−ε)) (A.6)

with

g(ε)= iπνx

νy
(
ν2

t −ν2
x
)
√

−ε2 −
√√√√k2

cν
2
t

ν2
x

− (kc −ε)2 + ενx√
ν2

t −ν2
x

log
νx

√
ν2

t −ν2
x

√
k2

cν
2
t

ν2
x
− (kc −ε)2 +kc

(
ν2

t −ν2
x
)+εν2

x

p
−ε2 νx

√
ν2

t −ν2
x +εν2

x

 .

(A.7)

To extract the imaginary part of the Green’s function we applied the Cauchy
principal value 1

x+iη = P(1
x)− iπδ(x) in which η is an infinitely small quantity.

After using the property of the Dirac delta function for the integrals over k
and ϕ, the imaginary part of Eq. (A.6) becomes

Im(G1,1(0,ε))= −π2ν2
x

Ωνy(ν2
x −ν2

t )
3
2
|ε|Θ(εc −|ε|) (A.8)
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APPENDIX B: EXPLICIT FORM FOR THE

TIGHT-BINDING HAMILTONIAN OF BOROPHENE

S tarting from Eqs. (1) and (2) in the main article we are able to present
explicitly both the Hamiltonian and overlap matrix. We can expand
the Bloch functions as linear combinations of the orbitals ϕ as follows

ψk(r)=∑
ν′

∑
i′

c i′ν′(k)φν,k(r−ri) (B.1)

with

φν,k(r)= ∑
n∈Z

∑
m∈Z

eik.Rn,mϕν(r−Rn,m) (B.2)

in which Rn,m is the discrete translation vector of the unit cell at (m,n) of
the Bravais lattice. Although m and n run over an infinite array of discrete
points, in this work the TB model includes only the first nearest unit cell. Fig.
B.1 shows a schematic representation of the TB model 8×8 Hamiltonian. The
mono-electronic Hamiltonian H and the overlap matrix S may be rewritten
as

H=
1∑

n=−1

1∑
m=−1

hn,mei(nakx+mbky) (B.3)

and
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BOROPHENE

(1,1)(0,1)(-1,1)

(1,-1)(0,-1)(-1,-1)

(1,0)(0,0)(-1,0)

Figure B.1: Schematic representation of the TB model for borophene and
borophane. The white cells indicate independent unit cells.

S=
1∑

n=−1

1∑
m=−1

sn,mei(nakx+mbky) . (B.4)

Since H and S are Hermitian therefore

hn,m =h†
m,n ,

sn,m = s†
m,n . (B.5)

hence, we have only five independent matrices. As shown in Fig. B.1 we must
determine only the matrices h and s for the cells at (0,0), (1,0), (0,1), (1,1)
and (−1,1). Using the SK coefficients presented in the main paper we can
calculate the Hamiltonian and the overlap matrix and extract the matrices
h and s. In the case of borophene the elements of the Hamiltonian can be
written as follows
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h0,0 =

s px py pz s px py pz



−4.949 0 0 0 −2.410 1.624 2.851 −1.713 s

0 1.601 0 0 −1.624 0.030 1.483 −0.891 px

0 0 −1.298 0 −2.851 1.483 1.789 −1.565 py

0 0 0 2.998 1.713 −0.891 −1.565 0.126 pz

−2.410 −1.624 −2.851 1.713 −4.949 0 0 0 s

1.624 0.030 1.483 −0.891 0 1.601 0 0 px

2.851 1.483 1.789 −1.565 0 0 −1.298 0 py

−1.713 −0.891 −1.565 0.126 0 0 0 2.997 pz

h1,0 =

s px py pz s px py pz



−3.728 −4.391 0 0 −2.410 −1.624 2.851 −1.713 s

4.391 4.445 0 0 1.624 0.030 −1.483 0.891 px

0 0 −2.298 0 −2.851 −1.483 1.789 −1.565 py

0 0 0 −2.298 1.713 0.891 −1.565 0.126 pz

0 0 0 0 −3.728 −4.391 0 0 s

0 0 0 0 4.391 4.445 0 0 px

0 0 0 0 0 0 −2.298 0 py

0 0 0 0 0 0 0 −2.298 pz

h0,1 =

s px py pz s px py pz



−0.279 0 −0.825 0 −2.410 1.624 −2.851 −1.713 s

0 −0.543 0 0 −1.624 0.030 −1.483 −0.891 px

0.825 0 1.914 0 2.851 −1.483 1.789 1.565 py

0 0 0 −0.543 1.713 −0.891 1.565 0.126 pz

0 0 0 0 −0.279 0 −0.825 0 s

0 0 0 0 0 −0.543 0 0 px

0 0 0 0 0.825 0 1.914 0 py

0 0 0 0 0 0 0 −0.543 pz
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BOROPHENE

h1,1 =

s px py pz s px py pz



0 0 0 0 −2.410 −1.624 −2.851 −1.713 s

0 0 0 0 1.624 0.030 1.483 0.891 px

0 0 0 0 2.851 1.483 1.789 1.565 py

0 0 0 0 1.713 0.891 1.565 0.126 pz

0 0 0 0 0 0 0 0 s

0 0 0 0 0 0 0 0 px

0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 pz

and for the overlap matrix we have

s0,0 =

s px py pz s px py pz



1 0 0 0 0.019 −0.074 −0.129 0.078 s

0 1 0 0 0.074 −0.075 −0.067 0.040 px

0 0 1 0 0.129 −0.067 −0.154 0.070 py

0 0 0 1 −0.078 0.040 0.070 −0.079 pz

0.019 0.074 0.129 −0.078 1 0 0 0 s

−0.074 −0.075 −0.067 0.040 0 1 0 0 px

−0.129 −0.067 −0.154 0.070 0 0 1 0 py

0.078 0.040 0.070 −0.079 0 0 0 1 pz

s1,0 =

s px py pz s px py pz



0.213 0.287 0 0 0.019 0.074 −0.129 0.078 s

−0.287 −0.384 0 0 −0.074 −0.075 0.067 −0.040 px

0 0 0.063 0 0.129 0.067 −0.154 0.070 py

0 0 0 0.063 −0.078 −0.040 0.070 −0.079 pz

0 0 0 0 0.213 0.287 0 0 s

0 0 0 0 −0.287 −0.384 0 0 px

0 0 0 0 0 0 0.063 0 py

0 0 0 0 0 0 0 0.063 pz
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s0,1 =

s px py pz s px py pz



−0.034 0 −0.022 0 0.019 −0.074 0.129 0.078 s

0 0.034 0 0 0.074 −0.075 0.067 0.040 px

0.022 0 0.017 0 −0.129 0.067 −0.154 −0.070 py

0 0 0 0.034 −0.078 0.040 −0.070 −0.079 pz

0 0 0 0 −0.034 0 −0.022 0 s

0 0 0 0 0 0.034 0 0 px

0 0 0 0 0.022 0 0.017 0 py

0 0 0 0 0 0 0 0.034 pz

s1,1 =

s px py pz s px py pz



0 0 0 0 0.019 0.074 0.129 0.078 s

0 0 0 0 −0.074 −0.075 −0.067 −0.040 px

0 0 0 0 −0.129 −0.067 −0.154 −0.070 py

0 0 0 0 −0.078 −0.040 −0.070 −0.079 pz

0 0 0 0 0 0 0 0 s

0 0 0 0 0 0 0 0 px

0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 pz

Note that we construct the TB model up to the third nearest neighbor
sites and so there is no interaction between cells (0,0) and (−1,1), so h−1,1 =
s−1,1 = 0. Other elements of the coupling matrices can be found by the relation
mentioned in Eq. (B.5).

B.1 Explicit form for the tight-binding
Hamiltonian of borophane

In the case of borophane we should add two s atomic orbitals for the hydrogens
as follows

ψk(r)=∑
ν′

∑
i′

c i′ν′(k)φν′,k(r−ri)

+ cH1,s(k)φs,k(r−rH1)

+ cH2,s(k)φs,k(r−rH2) (B.6)
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in which H1 and H2 indicate the index of hydrogen atoms in the unit cell. So,
Eqs. (B.3) and (B.4) would not be changed and only the size of the Hamiltonian
and overlap matrix is changed to 10×10. The elements of the Hamiltonian
can be written as follows

h0,0 =

s px py pz s px py pz sH sH



−3.131 0. 0. 0. −2.822 −1.527 −2.228 1.275 4.523 0. s
0. 3.861 0. 0. 1.527 0.102 1.130 −0.647 0. 0. px

0. 0. 0.103 0. 2.228 1.130 0.976 −0.943 0. 0. py

0. 0. 0. −1.015 −1.275 −0.647 −0.943 −0.132 −3.941 0. pz

−2.822 1.527 2.228 −1.275 −3.131 0. 0. 0. 0. 4.523 s
−1.527 0.102 1.130 −0.647 0. 3.861 0. 0. 0. 0. px

−2.228 1.130 0.976 −0.943 0. 0. 0.103 0. 0. 0. py

1.275 −0.647 −0.943 −0.132 0. 0. 0. −1.015 0. 3.941 pz

4.523 0. 0. −3.941 0. 0. 0. 0. 7.575 0. sH

0. 0. 0. 0. 4.523 0. 0. 3.941 0. 7.575 sH

h1,0 =

s px py pz s px py pz sH sH



−0.742 1.710 0. 0. −2.822 1.527 −2.228 1.275 0. 0. s
−1.709 2.076 0. 0. −1.527 0.102 −1.130 0.647 0. 0. px

0. 0. −1.381 0. 2.228 −1.130 0.976 −0.943 0. 0. py

0. 0. 0. −1.381 −1.275 0.647 −0.943 −0.132 0. 0. pz

0. 0. 0. 0. −0.742 1.709 0. 0. 0. 0. s
0. 0. 0. 0. −1.710 2.076 0. 0. 0. 0. px

0. 0. 0. 0. 0. 0. −1.381 0. 0. 0. py

0. 0. 0. 0. 0. 0. 0. −1.381 0. 0. pz

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. sH

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. sH

h0,1 =

s px py pz s px py pz sH sH



−0.064 0. 0.692 0. −2.822 −1.527 2.228 1.275 0. 0. s
0. −0.428 0. 0. 1.527 0.102 −1.130 −0.647 0. 0. px

−0.692 0. 0.993 0. −2.228 −1.130 0.976 0.943 0. 0. py

0. 0. 0. −0.428 −1.275 −0.647 0.943 −0.132 0. 0. pz

0. 0. 0. 0. −0.064 0. 0.692 0. 0. 0. s
0. 0. 0. 0. 0. −0.428 0. 0. 0. 0. px

0. 0. 0. 0. −0.692 0. 0.993 0. 0. 0. py

0. 0. 0. 0. 0. 0. 0. −0.428 0. 0. pz

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. sH

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. sH
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h1,1 =

s px py pz s px py pz sH sH



0. 0. 0. 0. −2.822 1.527 2.228 1.275 0. 0. s
0. 0. 0. 0. −1.527 0.102 1.130 0.647 0. 0. px

0. 0. 0. 0. −2.228 1.130 0.976 0.943 0. 0. py

0. 0. 0. 0. −1.275 0.647 0.943 −0.132 0. 0. pz

0. 0. 0. 0. 0. 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 px

0 0 0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 0 0 pz

0 0 0 0 0 0 0 0 0 0 sH

0 0 0 0 0 0 0 0 0 0 sH

and for the overlap matrix we have

s0,0 =

s px py pz s px py pz sH sH



1 0 0 0 −0.049 0.003 0.005 −0.003 −0.113 0
0 1 0 0 −0.003 −0.031 −0.060 0.034 0 0
0 0 1 0 −0.005 −0.060 −0.077 0.050 0 0
0 0 0 1 0.003 0.034 0.050 −0.019 −0.347 0

−0.049 −0.003 −0.005 0.003 1 0 0 0 0 −0.113
0.003 −0.031 −0.060 0.034 0 1 0 0 0 0
0.005 −0.060 −0.077 0.050 0 0 1 0 0 0
−0.003 0.034 0.050 −0.019 0 0 0 1 0 0.347
−0.113 0 0 −0.347 0 0 0 0 1 0

0 0 0 0 −0.113 0 0 0.347 0 1

s1,0 =

s px py pz s px py pz sH sH



0.150 −0.212 0 0 −0.049 −0.003 0.005 −0.003 0 0 s
0.212 −0.421 0 0 0.003 −0.031 0.060 −0.034 0 0 px

0 0 0.049 0 −0.005 0.060 −0.077 0.050 0 0 py

0 0 0 0.049 0.002 −0.034 0.050 −0.019 0 0 pz

0 0 0 0 0.150 −0.212 0 0 0 0 s
0 0 0 0 0.212 −0.421 0 0 0 0 px

0 0 0 0 0 0 0.049 0 0 0 py

0 0 0 0 0 0 0 0.049 0 0 pz

0 0 0 0 0 0 0 0 0 0 sH

0 0 0 0 0 0 0 0 0 0 sH
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s0,1 =

s px py pz s px py pz sH sH



0.062 0 −0.102 0 −0.049 0.003 −0.005 −0.003 0 0 s
0 0.037 0 0 −0.003 −0.031 0.060 0.034 0 0 px

0.102 0 −0.056 0 0.005 0.060 −0.077 −0.050 0 0 py

0 0 0 0.037 0.003 0.034 −0.050 −0.019 0 0 pz

0 0 0 0 0.062 0 −0.102 0 0 0 s
0 0 0 0 0 0.037 0 0 0 0 px

0 0 0 0 0.102 0 −0.056 0 0 0 py

0 0 0 0 0 0 0 0.037 0 0 pz

0 0 0 0 0 0 0 0 0 0 sH

0 0 0 0 0 0 0 0 0 0 sH

s1,1 =

s px py pz s px py pz sH sH



0 0 0 0 −0.049 −0.003 −0.005 −0.003 0 0 s
0 0 0 0 0.003 −0.031 −0.060 −0.034 0 0 px

0 0 0 0 0.005 −0.060 −0.077 −0.050 0 0 py

0 0 0 0 0.003 −0.034 −0.050 −0.019 0 0 pz

0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 px

0 0 0 0 0 0 0 0 0 0 py

0 0 0 0 0 0 0 0 0 0 pz

0 0 0 0 0 0 0 0 0 0 sH

0 0 0 0 0 0 0 0 0 0 sH
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APPENDIX C: EXPLICIT FORM FOR THE

TIGHT-BINDING HAMILTONIAN AND OVERLAP

MATRIX OF B6MMM

To calculate the Hamiltonian and overlap matrix in terms of atomic
orbitals we expand the Bloch functions as linear combinations of the
orbitals ϕ as follows

ψk(r)=∑
ν′

∑
i′

c i′ν′(k)φν,k(r−ri) (C.1)

with

φν,k(r)= ∑
n∈Z

∑
m∈Z

eik.Rn,mϕν(r−Rn,m) (C.2)

in which Rn,m is the discrete translation vector of the unit cell at (m,n) of the
Bravais lattice. In principle, m and n run over an infinite array of discrete
points, in this work the TB model includes only the first nearest unit cell.
Table C.1 represents the 2D lattice vectors of the B6mmm structure. The
atoms of the unit cell can be identified by their indexes as presented in Table
C.2
and the top and bottom layers are distinguished by γ= 1 and γ=−1, respec-
tively.

The mono-electronic Hamiltonian H and the overlap matrix S may be
rewritten as
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x y z
a 1.422 2.471 0
b 1.422 -2.471 0

Table C.1: The lattice vectors for B6mmm structure in units of Å.

index γ x y z
1 -1 1.422 0.824 0.971
2 -1 1.422 -0.824 0.971
3 -1 0 0 1.887
4 1 1.422 0.824 4.510
5 1 1.422 -0.824 4.510
6 1 0 0 3.590

Table C.2: The indices and positions of the atoms in units of Å applied for
constructing the TB model in this work. γ= 1 and γ=−1 means the top and
bottom layers, respectively.

H=
1∑

n=−1

1∑
m=−1

hn,meik.Rm,n , (C.3)

where Rm,n is the translation vector of the unit cell (m,n) and

S=
1∑

n=−1

1∑
m=−1

sn,meik.Rm,n . (C.4)

Since H and S are Hermitian therefore

h−1,0 =h†
1,0 ,h0,−1 =h†

0,1 ,

h−1,−1 =h†
1,1 ,h−1,1 =h†

1,−1 ,

s−1,0 = s†
1,0 ,s0,−1 = s†

0,1 ,

s−1,−1 = s†
1,1 ,s−1,1 = s†

1,−1 . (C.5)

hence, we have only five independent matrices. We only need to determine
the matrices h and s for the cells at (0,0), (1,0), (0,1), (1,1) and (−1,1). Since
the number of atoms in the unit cell is six and each atom has four orbitals the
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Hamiltonian and the overlap matrix are of size 24×24. For simplicity, hn,m

and sn,m may be written as follows

hm,n =
(
am,n(γ=−1) b†

m,n

bm,n am,n(γ=1)

)
(C.6)

and

sm,n =
(
cm,n(γ=−1) d†

m,n

dm,n cm,n(γ=1)

)
(C.7)

in which a, b, c and d are 12× 12 matrices. We use the SK coefficients
presented in the main paper and calculate the Hamiltonian and the overlap
matrix and extract the matrices as follows (respectively, a0,0(γ), a1,0(γ), a0,1(γ),
a1,1(γ), b0,0, c0,0(γ), c1,0(γ), c0,1(γ), c1,1(γ) and d0,0)

s px py pz s px py pz s px py pz



−3.130 0 0 0 −6.667 0.001 −5.527 0 −0.974 −1.357 −0.782 −0.870γ
0 5.033 0 0 −0.001 −1.654 −0.002 0 1.357 1.077 1.389 1.545γ
0 0 4.713 0 5.527 −0.002 4.707 0 0.782 1.389 −0.532 0.891γ
0 0 0 1.797 0 0 0 −1.654 0.870γ 1.545γ 0.891γ −0.342

−6.667 −0.001 5.527 0 −3.130 0 0 0 −0.974 −1.357 0.784 −0.870γ
0.001 −1.654 −0.002 0 0 5.033 0 0 1.357 1.075 −1.392 1.544γ
−5.527 −0.002 4.707 0 0 0 4.713 0 −0.784 −1.392 −0.529 −0.892γ

0 0 0 −1.654 0 0 0 1.797 0.870γ 1.544γ −0.892γ −0.344
−0.974 1.357 0.782 0.870γ −0.974 1.357 −0.784 0.870γ −3.130 0 0 0
−1.357 1.077 1.389 1.545γ −1.357 1.075 −1.392 1.544γ 0 5.033 0 0
−0.782 1.389 −0.532 0.891γ 0.784 −1.392 −0.529 −0.892γ 0 0 4.713 0
−0.870γ 1.545γ 0.891γ −0.342 −0.870γ 1.544γ −0.892γ −0.344 0 0 0 1.797

s px py pz s px py pz s px py pz



0.100 0.046 0.080 0 −6.667 4.792 2.755 0 −0.974 −0.009 1.565 −0.873γ s
−0.046 −0.185 0.020 0 −4.792 3.126 2.749 0 0.009 −1.333 −0.018 0.010γ px
−0.080 0.020 −0.162 0 −2.755 2.749 −0.073 0 −1.565 −0.018 1.871 −1.788γ py

0 0 0 −0.197 0 0 0 −1.654 0.873γ 0.010γ −1.788γ −0.336 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
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s px py pz s px py pz s px py pz



0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz

−6.667 4.791 −2.757 0 0.100 0.046 −0.080 0 −0.974 −0.009 −1.564 −0.874γ s
−4.791 3.125 −2.749 0 −0.046 −0.185 −0.020 0 0.009 −1.333 0.019 0.011γ px
2.757 −2.749 −0.072 0 0.080 −0.020 −0.162 0 1.564 0.019 1.869 1.789γ py

0 0 0 −1.654 0 0 0 −0.197 0.874γ 0.011γ 1.789γ −0.334 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz

s px py pz s px py pz s px py pz



0.100 0.092 0 0 0 0 0 0 −0.974 1.350 −0.788 −0.877γ s
−0.092 −0.150 0 0 0 0 0 0 −1.350 1.050 −1.392 −1.548γ px

0 0 −0.197 0 0 0 0 0 0.788 −1.392 −0.520 0.904γ py
0 0 0 −0.197 0 0 0 0 0.877γ −1.548γ 0.904γ −0.327 pz
0 0 0 0 0.100 0.092 0 0 −0.974 1.349 0.790 −0.876γ s
0 0 0 0 −0.092 −0.150 0 0 −1.349 1.047 1.394 −1.547γ px
0 0 0 0 0 0 −0.197 0 −0.790 1.394 −0.516 −0.906γ py
0 0 0 0 0 0 0 −0.197 0.876γ −1.547γ −0.906γ −0.328 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz

s px py pz s px py pz s px py pz



0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
0 0 0 0 0 0 0 0 4.560 0 0 1.446 s
0 0 0 0 0 0 0 0 0 4.189 0 0 px
0 0 0 0 0 0 0 0 0 0 4.189 0 py
0 0 0 0 0 0 0 0 −1.446 0 0 −0.738 pz
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s px py pz s px py pz s px py pz



1 0 0 0 0.379 0 0.162 0 −0.126 0.006 0.003 0.004γ
0 1 0 0 0 0.165 0 0 −0.006 −0.229 −0.0495 −0.055γ
0 0 1 0 −0.162 0 0.202 0 −0.003 −0.050 −0.172 −0.032γ
0 0 0 1 0 0 0 0.165 −0.004γ −0.055γ −0.032γ −0.178

0.379 0 −0.162 0 1 0 0 0 −0.126 0.006 −0.003 0.004γ
0 0.165 0 0 0 1 0 0 −0.006 −0.229 0.050 −0.055γ

0.162 0 0.202 0 0 0 1 0 0.003 0.0496 −0.172 0.032γ
0 0 0 0.165 0 0 0 1 −0.004γ −0.055γ 0.032γ −0.178

−0.126 −0.006 −0.003 −0.004γ −0.126 −0.006 0.003 −0.004γ 1 0 0 0
0.006 −0.229 −0.0495 −0.055γ 0.006 −0.229 0.050 −0.055γ 0 1 0 0
0.003 −0.050 −0.172 −0.032γ −0.003 0.050 −0.172 0.032γ 0 0 1 0

0.004γ −0.055γ −0.032γ −0.178 0.004γ −0.055γ 0.032γ −0.178 0 0 0 1

s px py pz s px py pz s px py pz



0.035 −0.020 −0.034 0 0.379 −0.141 −0.081 0 −0.126 0 −0.006 0.004γ s
0.0196 0.0376 −0.042 0 0.141 0.193 0.016 0 0 −0.143 0.001 0 px
0.034 −0.042 −0.011 0 0.081 0.016 0.174 0 0.006 0.001 −0.257 0.064γ py

0 0 0 0.062 0 0 0 0.165 −0.004γ 0 0.064γ −0.179 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz

s px py pz s px py pz s px py pz



0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz

0.379 −0.141 0.081 0 0.035 −0.020 0.034 0 −0.126 0 0.006 0.004γ s
0.141 0.193 −0.016 0 0.020 0.038 0.042 0 0 −0.143 −0.001 0 px
−0.081 −0.016 0.174 0 −0.034 0.042 −0.011 0 −0.006 −0.001 −0.257 −0.064γ py

0 0 0 0.165 0 0 0 0.062 −0.004γ 0 −0.064γ −0.179 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
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s px py pz s px py pz s px py pz



0.035 −0.039 0 0 0 0 0 0 −0.126 −0.005 0.003 0.004γ s
0.039 −0.035 0 0 0 0 0 0 0.005 −0.228 0.050 0.055γ px

0 0 0.062 0 0 0 0 0 −0.003 0.050 −0.172 −0.032γ py
0 0 0 0.0617 0 0 0 0 −0.004γ 0.055γ −0.032γ −0.179 pz
0 0 0 0 0.035 −0.039 0 0 −0.126 −0.005 −0.003 0.004γ s
0 0 0 0 0.039 −0.035 0 0 0.005 −0.228 −0.050 0.055γ px
0 0 0 0 0 0 0.062 0 0.003 −0.050 −0.172 0.032γ py
0 0 0 0 0 0 0 0.062 −0.004γ 0.055γ 0.032γ −0.179 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz

s px py pz s px py pz s px py pz



0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
0 0 0 0 0 0 0 0 0 0 0 0 s
0 0 0 0 0 0 0 0 0 0 0 0 px
0 0 0 0 0 0 0 0 0 0 0 0 py
0 0 0 0 0 0 0 0 0 0 0 0 pz
0 0 0 0 0 0 0 0 −0.193 0 0 0.054 s
0 0 0 0 0 0 0 0 0 −0.047 0 0 px
0 0 0 0 0 0 0 0 0 0 −0.047 0 py
0 0 0 0 0 0 0 0 −0.054 0 0 −0.017 pz

and b1,0 =b0,1 =b1,1 =d1,0 =d0,1 =d1,1 = 0. The values are presented in unit
of eV and note that the indices of the elements of the Hamiltonian and
the overlap matrix are the same as the indices presented in table C.2. We
constructed the TB model up to the third nearest neighbor so there is no
interaction between cells (0,0) and (−1,1), and therfore h−1,1 = s−1,1 = 0. Other
elements of the coupling matrices can be found from the relation Eq. (C.5).
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LATEX Writing papers and thesis.



Mathematical Techniques

Technique Level Experiances
In TBStudio the aim is finding the best fitting between Tight-Binding

Nonlinear band-structure and the the first-principles band-structure. Also in EIS
Regression software we can find the equilibrium circuit of the measured impedance.

Finite-Difference I have written a manuscript entitled "Time evolution of nanoscale systems by
Method (FDM) finite difference method". https://arxiv.org/abs/1603.04214
Finite-Element Some exercises.
Method (FEM)

Numerical In CML project: calculating Current-Voltage characteristics. I know
Integration different methods.
Fast Fourier I have experience of this method in Matlab, Mathematica and Fortran. To
Transform transfer the time-dependent Green’s function to energy (frequency) space.

Programming Techniques and Software Developing

Subject Level Experiances
Git Version control and team working. The open-source TBStudio project is

placed in https://github.com/mohammadnakhaee/tbstudio
Multi-Threading TBStudio regression process was programmed in another thread

and the communication between two threads was implemented by custom events.
I have experiences of packaging for Windows, Debian based linux (.deb), Redhat

Packaging and package manager (.rpm) and Apple MacOS application (.app)
Deploying (see https://tight-binding.com/download)

Special Packages

Package Level Experiances
I have done some DFT calculations for some of my articles by using this package.

OpenMX Also TBStudio has a module to import the band-structure from the .band output of
this package.

VASP I have done some DFT calculations for some of my articles by using this package.
Also TBStudio has a module to import the band-structure from its xml output.

Quantum I have some experiences in this package. I have also used this package and Wannier90
ESPRESSO to find wannier functions.
Wannier90 I have some experiences in this package.

Publication
( 2019 ) Tight-Binding Studio: A Technical Software Package to Find the Parameters of

Tight-Binding Hamiltonian
Authors: M. Nakhaee, S. A. Ketabi, and F. M. Peeters
arXiv:1910.02917 – 7 Oct 2019 (under review)
https://arxiv.org/abs/1910.02917



( 2019 ) Single-layer structures of a100-and b010-Gallenene: a tight-binding approach
Authors: M. Nakhaee, M. Yagmurcukardes, S. A. Ketabi, and F. M. Peeters
PCCP 21, 15798 – 17 July 2019 (published)
https://www.ncbi.nlm.nih.gov/pubmed/31282510

( 2018 ) Dirac nodal line in bilayer borophene: Tight-binding model and low-energy effective
Hamiltonian
Authors: M. Nakhaee, S. A. Ketabi, and F. M. Peeters
Phys. Rev. B 98, 115413 – 6 September 2018 (published)
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.115413

( 2018 ) Tight-binding model for borophene and borophane
Authors: M. Nakhaee, S. A. Ketabi, and F. M. Peeters
Phys. Rev. B 97, 125424 – 21 March 2018 (published)
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.125424

( 2016 ) Condensed Matter Laboratory: new application for quantum simulation.
Authors: Mohammad Nakhaee, S. Ahmad Ketabi, Saeed Amiri, M. Ali M. Keshtan,
Mahmoud Moallem, Elham Rahmati, M. Taher Pakbaz
https://arxiv.org/abs/1605.08604, https://cml.du.ac.ir

( 2015 ) Influence of the soliton distributions on the spin-dependent electronic transport
through polyacetylene molecule
Authors: M. Nakhaee and S. A. Ketabi
PRAMANA J. Phys. - In Press, (published)
https://link.springer.com/article/10.1007/s12043-015-1077-6

( 2013 ) Numerical Simulation of Hall Effect in Magnetized Accretion Discs by using Pluto
Code
Authors: M. Nakhaei, G. Safaei and S. Abbassi
Research in Astronomy and Astrophysics 14, 93 (published)
https://iopscience.iop.org/article/10.1088/1674-4527/14/1/008/meta

Advanced courses
Many-body quantum theory condensed matter.
Advanced Statistical Mechanics.
Advanced Quantum Mechanics (1 and 2).
Electrodynamics.
Advanced Solid State Physics (1 and 2).
Computational Physics.
I have also written a solution to Many-body quantum theory, (link).

Activities
2015–Present Programmer, Nanoparticles and Coatings Laboratory (NCL), Tehran, Iran.



2013–2014 Researcher and Programmer, Institute for Research in Fundamental Sciences
(IPM), Damghan University, Tehran, Iran.

Fall 2014 Teaching, Computer programming, “Matlab Programming Chem. Sch.”, Damghan
University.

Fall 2014 Teaching, Computer programming, “Matlab Programming Geo. Sch.", Damghan
University.

Fall 2015 Teaching, Computer programming, “C Programming”, Damghan University.
Spring 2015 Teaching, Fundamental of physics 1, Damghan University.
Spring 2015 Teaching assistant, Electro Dynamics, Damghan University, Damghan, Iran.
Spring 2015 Teaching assistant, Statistical Mechanics, Damghan University, Damghan, Iran.

Fall 2015 Teaching assistant, Computational Physics, “Nanophysics”, Damghan University,
Damghan, Iran.

Fall 2015 Teaching assistant, Computational Physics, “Condensed Matter”, Damghan Uni-
versity, Damghan, Iran.

Fall 2015 Teaching assistant, Computational Physics, “Astrophysics”, Damghan University,
Damghan, Iran.

Spring 2014 Teaching assistant, Electro Dynamics, Damghan University, Damghan, Iran.
Spring 2014 Teaching assistant, Computational Physics, “Nanophysics”, Damghan University,

Damghan, Iran.
Spring 2014 Teaching assistant, Computational Physics, “Condensed Matter”, Damghan Uni-

versity, Damghan, Iran.
Fall 2014 Teaching assistant, Computational Physics, “Astrophysics”, Damghan University,

Damghan, Iran.
Fall 2013 Teaching assistant, Computational Physics, “Nanophysics”, Damghan University,

Damghan, Iran.
Fall 2013 Teaching assistant, Computational Physics, “Condensed Matter”, Damghan Uni-

versity, Damghan, Iran.
Fall 2013 Teaching assistant, Computational Physics, “Astrophysics”, Damghan University,

Damghan, Iran.
Fall 2013 Teaching assistant, Computer application in Physics, Damghan University,

Damghan, Iran.
Spring 2011 Teaching assistant, Computer application in Physics, Damghan University,

Damghan, Iran.
Fall 2011 Teaching assistant, Computer application in Physics, Damghan University,

Damghan, Iran.
Fall 2011 Teaching assistant, Computational Physics, Damghan University, Damghan, Iran.

Language
Persian, Native.
English, IELTS B2 level.
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