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Abstract—The 5G ecosystem is comprised of the cellular 5G
System, as well as a managed and orchestrated infrastructure
providing virtualized network and service functions. The auto-
motive industry with its stringent requirements for connected
vehicles is a promising and yet challenging consumer of such
5G ecosystem. Deployment of service instances at distributed
cloud resources of cellular network infrastructure edges enables
localized low-latency access to these services from moving vehicles
but comes along with challenges, such as the need for fast recon-
figuration of the distributed deployment according to mobility
pattern and associated service and resource demand. In this
paper, we investigate a solution for the collaborative orchestration
of services for Connected, Cooperative and Automated Mobility
(CCAM) within such 5G ecosystem. A key objective is the service
continuity for a highly dynamic automotive scenario, achieved by
the associated management and orchestration of these services
in distributed edge clouds. The proposed solution leverages a
multi-tier orchestration system as well as localized management
and protocol operations for collaborative edge resources. By
means of both analytical and experimental evaluations, the paper
draws conclusions on the gain in accelerating orchestration
decisions and enforcements, while balancing associated protocol
and computational load over the highly distributed and multi-
layered orchestration system.

Index Terms—collaborative multi-tier orchestration, 5G
ecosystem, CCAM, distributed service deployment, orchestrated
network edges

I. INTRODUCTION

The 5th generation of the cellular mobile communication
system (5G) is being deployed stepwise in the mobile op-
erators’ infrastructures, thereby promising low-latency and
high bandwidth communication services to not only mobile
devices but also to vertical industries with diverse service
requirements in a resource and energy efficient manner. The
Network Function Virtualization (NFV), being one of the
main technology enablers of 5G, affords the 5G core network
architecture to follow a clear control-/data plane separation.
This separation enables automated and agile deployment and
Life-cycle Management (LCM) of the associated Virtualized
Network Functions (VNFs), constituting to deliver customized
network services catering to a variety of use cases over the
same 5G network infrastructure. Furthermore, Multi-Access
Edge Computing (MEC) systems are being widely deployed
in the edge networks to deliver a low-latency and localized
access to virtualized services by deploying them in close
proximity to the users. However, due to the fact that 5G Core,
NFV and MEC technologies are being developed by different
standardization bodies, the deployment, integration and inter-
play of these solutions in support of the expected features and
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Fig. 1: High-level overview of collaboration between orchestrated
network edges that host edge services for vehicles.

end-to-end performance figures of such 5G ecosystem is not
coordinated.

The challenge is thus to develop an integrated framework
for the automated deployment and orchestration of an end-
to-end network in support of the expected service quality.
Such framework should span i) the provisioning of virtualized
service instances in a centralized cloud, ii) the configuration
of a transport network, which connects the service cloud with
the cellular network of a mobile network operator, and iii)
the configuration of the mobile radio access. The resulting
architecture enables full control of the network in between
centrally deployed services, and mobile devices, which con-
nect to these services through the cellular 5G network. The
automotive industry represents a promising yet challenging
consumer of such 5G ecosystem that has the potential of
enabling novel and performance critical use cases that were
not possible with the previous generations of mobile network
systems. This is especially true in the domain of assisted
and autonomous driving that primarily relies on real-time
and enhanced situation awareness involving high-density, low-
latency, and complex processing, of the vehicular sensor data.
This entails for consistent quality and low-latency communi-
cation with infrastructure service functions. As MEC systems
enable low-latency due to exposing resources to the network
edge, decentralization and distribution of the virtualized ser-
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vice functions towards the cellular network edge help to deploy
services topologically closer to vehicles (as depicted in Fig.
1). Such deployment enables the collection, processing, and
provisioning, of data locally where they are generated and
needed, at the same time shortening the communication path
and contributing to a reduced latency as well as to core net-
work traffic offload. However, in such highly agile automotive
environment, service continuity in low latency communication
with distributed services at the cellular network edge requires
real-time monitoring and seamless reconfiguration as well as
relocation of the connection to a service instance closer to the
vehicle. To enable service continuity and promised Key Per-
formance Indicators (KPIs) (e.g., high reliability, low latency,
and high throughput), management and orchestration systems
need to be effective to provide distributed service deployment,
and seamless service reconfiguration and relocation in such
highly mobile and resource constrained ecosystem. Reactive
approaches for service continuity, which adjust a configuration
after an event happened, such as a vehicle’s move to a location
which can be served by a closer network edge, are more and
more complemented or even replaced by proactive solutions,
which leverage data analytics, machine learning, and artificial
intelligence for the anticipation of such event and the in-
advance preparation of the network.

In this paper we propose and investigate in detail an
architecture of a multi-tier orchestration platform for Con-
nected, Cooperative and Automated Mobility (CCAM), and
associated operations in support of orchestrated distributed
mobile edge networks, in order to enable service continu-
ity for vehicles, which connect to distributed mobile edge
services (see Fig. 1). The presented solution extends prior
work [1,2] on the end-to-end orchestration in the autonomous
operation of orchestration tasks at mobile edge network as
well as the connectivity between edge orchestration functions
of geographically and topologically adjacent mobile edge
networks, aiming at optimized edge-to-edge service continuity
by enabling collaboration between mobile edge networks. The
proposed orchestration platform aligns with specifications of
relevant standardization bodies (i.e., 3rd Generation Partner-
ship Project (3GPP), European Telecommunications Standards
Institute (ETSI) MEC, and ETSI NFV) and builds on top of the
5G System specification, which, when compared to previous
generations of the mobile communication system, provides
various advantages at architectural, protocol, and operational
levels. This includes i) the support of a decentralized data
plane and edge computing by means of the already men-
tioned clean control/data plane separation, and ii) the adop-
tion of service-based communication principles and the use
of web communication protocols (such as REpresentational
State Transfer (REST), and Google Remote Procedure Calls
(gRPC)) at the 5G control plane, which eases the integration
of and inter-working with control and management functions
of accompanying systems, such as edge computing systems
and orchestration systems. Specifying the 5G architecture as a
set of service producer and service consumer functions, which
apply service-based communication, matches a cloud-native
design and suits a deployment on top of an NFV infrastructure
with automated management and orchestration, as described
in this article, with the focus on distributed edge clouds. The
promised benefits of 5G system in terms of e.g., the ultra-
low latency and high bandwidth depend on the efficiency of
the management and orchestration of resources and service,
as if there is no collaboration between distributed edge clouds
established by orchestration layers, service performance and

service continuity will be affected, thereby leading to service
performance degradation. The flexible deployment and use
of the 5G System’s data plane functions and the specified
support for Service and Session Continuity (SSC) [3], which
permits changes and adjustments in the data plane config-
uration without disrupting the mobile data session, enables
local breakout of mobile data plane traffic and maintains
access to edge computing resources and hosted edge services
(Fig. 1). The presented solution provides new extensions
for MEC-5G System coupling, management and orchestration
reference points between mobile edge network orchestration
functions, as well as for automated local orchestration at and
between edge networks per customized policy for autonomous
orchestration tasks, denoted as Management Level Agreements
(MLAs) [4].

The analytical and experimental evaluation of the perfor-
mance of collaborative orchestration is presented to substan-
tiate the design choices that are made to tackle highly mobile
use cases with intrinsically distributed service deployments.
The evaluation is based on the KPIs associated with a de-
ployment per the proposed architecture. These KPIs are i)
the average response time needed for performing orchestration
operations, ii) the load of the orchestration entities that needs
to be balanced across distributed and multi-layered orches-
tration systems, and iii) the average power consumption of
the performed orchestration requests. In the context of the
aforementioned KPIs, it is of utmost importance to assess the
load that any orchestration entity is exposed to, making sure
that these entities can handle all the orchestration requests in a
required response time frame. In particular, with the analytical
and experimental evaluation presented in Sections IV and V,
respectively, we aim to achieve the following goals:

• To determine how the number of available instances of
reference points in the orchestration platform impacts the
communication delay in the average response time of an
orchestration request, as well as the amount of resources
available for performing this request.

• To assess how the number of available instances of
reference points between the distributed orchestration
components affects the load of the orchestrators at differ-
ent hierarchical tiers, and how this load further impacts
the average response time.

• To showcase the benefits of direct interfaces between
orchestrators.

• To determine the impact of orchestration operations on
the overall power consumption in the system.

• To showcase how the orchestration operations affect
service continuity.

The rest of the paper is organized as follows: in the next sec-
tion we present the related work and background, where we in-
vestigate the existing management and orchestration solutions
first, and then provide an overview of today’s deployments for
connected vehicles, thereby pointing out how the orchestration
solutions can support CCAM service deployments. In Section
III, we present the collaborative orchestration platform for
CCAM, providing its functional overview, followed by the
key design features, operational aspects, and software design
principles. In Sections IV and V, the analytical model, and
experimental evaluation of the orchestration platform for col-
laborative edges, are presented respectively. In Section VI, we
discuss the main findings. Finally, we conclude the paper in
Section VII.
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II. BACKGROUND AND RELATED WORK

A. Existing Management and Orchestration solutions

As the focus of our paper is on the management and
orchestration of collaborative edges in the 5G ecosystem
with distributed service deployments, this Section provides an
insight in the existing research efforts within related projects,
reflecting on the features of existing NFV Management and
Orchestration (MANO) solutions that need to be considered
in order to properly design an orchestration platform.

According to the overviews provided by Taleb et al. [5] and
de Sousa et al. [6], some of the open source orchestration tools
that attracted significant attention in past few years are Open
Network Automation Platform (ONAP), Open Source MANO
(OSM), Open Baton, Sonata (5GTango), Tacker, Cloudify,
X-MANO, TeNoR, and Escape. The thorough analysis of
NFV MANO solutions, which are either developed or utilized
in most of the related projects, is presented in [7–9]. Such
analysis is notably important for the development of our
orchestration platform for CCAM, and associated network ser-
vice and resource orchestration operations, because it provides
a summarized information on the orchestration platforms,
such as ONAP, OSM, Cloudify, among others, which are
widely recognized in both industry and academia, serving as
guidelines for future extensions of existing orchestrators.

Tackling virtualization environment, the cloud-native de-
ployment of services in the orchestration platform for CCAM
is following the principles of containerization, which is gain-
ing momentum due to the opportunities to deploy services
and applications in a lightweight manner that is particularly
important for resource-constrained MEC platforms [7]. The
support for containerization makes NFV MANO solutions
(such as Open Baton, Sonata from 5GTango, latest version of
OSM, Tacker, Cloudify, and Escape [7]), the valid candidates
for orchestration and management of the latency constrained
applications. Due to the support for various monitoring tools to
be integrated in the orchestration platform for CCAM, and to
provide orchestration entities with real-time information on the
running edge services, it is possible to provide the VNF self-
healing capabilities, decreasing the delay in communication
between external monitoring tools and orchestration entities
within platform. For example, similar feature is available in
ONAP, as well as Sonata from 5GTango.

Since ETSI is the leader in standardizing NFV and MEC,
a corresponding NFV MANO tool should be designed and
developed with reference to the ETSI NFV MANO framework.
This in particular means that, although designed and developed
by different vendors/operators/developers, different MEC plat-
forms and applications can cooperate if they are following the
standards. Therefore, our orchestration platform is carefully
designed with respect to ETSI NFV MEC framework [10],
aiming at extending current standards by defining reference
points between mobile edge network orchestration functions.

The multi-domain capabilities represent a strong contribut-
ing factor to filter the orchestration solutions, being able
to establish a connection with MEC platforms from the
other edge domains using technologies such as OpenVPN
and REST, and to enable communication among different
orchestration entities in multiple domains. This feature is
of particular importance for our orchestration platform, as
it provides distributed service deployment and collaboration
between edges in 5G ecosystem. For instance, X-MANO
solution [11] introduces the federation over multiple domains
through the following core components: 1. Federation Agent

(FA), associated to a particular domain in which it interacts
with the domain orchestrators, and other modules which are
in charge of the life-cycle management within a domain, 2.
Federation Manager (FM), which is interfaced with one or
more FAs, and 3. OpenVPN as a cross-domain link. Another
solution that also considers the federation aspects is ONAP,
as its modular and layered nature improves interoperability
and simplifies integration, allowing it to support multiple
VNF environments by integrating with multiple Virtualized
Infrastructure Managers (VIMs), VNF Managers (VNFMs),
SDN Controllers, etc. In particular, ONAP’s service orches-
trator performs orchestration at a high level, with an end-
to-end view of the infrastructure, network, and applications.
Moreover, ONAP’s multi-site state coordination module en-
ables scaling to multi-site environments to support global
scale infrastructure requirements. Certain process specifica-
tions and policies are geographically distributed to optimize
performance and maximize autonomous behavior in federated
cloud environments. Furthermore, Escapev2 Orchestrator [12]
provides multi-domain NFV orchestration by: i) performing
recursive orchestration via north and south Unify interfaces,
supporting different legacy technologies and migration be-
tween them, and ii) supporting Unify domains directly, and
several technological domains via adapters. Finally, TeNoR
[13] defines VNF orchestration as a multi-domain problem,
considering several Points of Presence (PoPs) in the NFV
infrastructure. The TeNoR orchestrator, as a product of FP7
T-NOVA project, is responsible for network services and
VNFs’ lifecycle management operations over distributed and
virtualized network/IT infrastructures.

Although the aforementioned management and orchestra-
tion solutions are mature and robust, tackling an end-to-end
perspective in virtualized network infrastructure, they are still
lacking the support for automated edge-to-edge service de-
ployment that anticipates highly challenging mobile scenarios,
thereby enabling fast orchestration operations across different
network edges. Another missing link is coupling with 3GPP
systems, such as 5G, and design of platform and its operations
in accordance with the overall 5G ecosystem. Thus, to enable
service continuity in such challenging 5G ecosystem, the
orchestration platform that we present in this paper responds
to the aforementioned challenges by enabling collaboration
between i) orchestrated network edges themselves, and ii)
between edges and the 5G System, while taking into account
high mobility, and resource and service demand. In such plat-
form, all orchestration tiers collaborate in their orchestration
operations for intrinsically distributed service deployments, via
fast and dynamic set-up of the management and orchestration
reference points between mobile edge network orchestration
functions, and by providing an automated orchestration at and
between edge networks within the same or different admin-
istrative domains (i.e., Mobile Network Operator (MNO)’s
domain, country, etc.).

B. Connected vehicles in distributed network edge environ-
ments

To extract the potential of providing the localized access
to virtualized network resources and services in the 5G
ecosystem, i.e., the ultra-reliable and low-latency service de-
ployments, challenges such as resource constraints in network
edges, and high user mobility, need to be properly addressed.
These challenges become even more severe when considered
in highly mobile environments with connected vehicles, since
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TABLE I: Overview of today’s deployments for connected vehicles.

Technology DSRC Cellular

Benefits scalability large range (i.e., service coverage increased), high capacity, and technological maturity

Challenges

narrow service coverage,
increased communication load,
inefficient congestion control,
insufficient reliability

additional delay due to the centralized control

Type
LTE V2X PC5 sidelink/NR V2X PC5 sidelink V2N - Uu based/

+ support from collaborative orchestration
mode 3/mode 1 mode 4/mode 2

Characteristics
radio resources
allocated via
cellular network

radio resources
allocated simultaneously

vehicles allocating radio resources
via cellular network, communication
performed via Uu interface

Suitable use cases
road context information sharing in a
close proximity

safety, non-safety, and infotainment
V2X use cases that span multiple
edge domains

Challenges

service coverage includes strongly
limited number of vehicles

V2N-Uu based only
V2N-Uu +

orchestration
dynamic provision
of V2X services
due to the high mobility

multi-edge
service
deployment

maintaining connectivity between
vehicles due to the high mobility

maintaining service
continuity

edge-to-edge
service continuity

burden for computing capabilities of a single
vehicle due to the broadcast mode of CV2X
messages

achieving application
portability
and immutability

cloud-native
service
deployment

insufficient information for
network (re)selection

they require continuous monitoring of network and comput-
ing resources, fast reconfiguration of service deployments in
distributed edges, and following the user mobility patterns, as
well as their associated service and resource demand, which
all fall under the umbrella of network resource and service
management and orchestration tasks.

Since connected vehicles are a valid representative of highly
mobile users, in this Section we focus on the automotive class
of use cases, as a 5G ecosystem vertical, and investigate the
challenges that need to be properly tackled by collaborative
service management and orchestration platforms to enable
service continuity. As illustrated in Fig. 2, virtualized network
services are deployed on top of the distributed edge clouds,
and there are different communication technologies that enable
connectivity between vehicles and services, and between ser-
vices themselves. Thus, in Table I we provide an overview
of these network technologies, focusing on the benefits of
cellular networks and their coupling with orchestrated edge
service deployments, and identifying the bottlenecks that can
be mitigated by collaborative orchestration (as shown in the
top right column of the Table I).

To alleviate issues on the roads imposed by insufficient
cooperation between vehicles, a significant effort is being
invested by automotive industry, MNOs, and research insti-
tutions, toward enabling vehicles and surrounding infrastruc-
ture with the communication capabilities. If equipped with
communication engines, vehicles can share information about
different events not only with surrounding vehicles (i.e., via
Dedicated Short Range Communication (DSRC) and PC5
sidelink), but also with those in a larger vicinity, thanks to the
cellular networks and distributed service deployments (Fig. 2).

As presented in Table I, the DSRC based on IEEE 802.11p
technology, as well as cellular PC5-based communication,
impose constraints to realistic Vehicle-to-Everything (V2X)
scenarios in comparison to Vehicle-to-Network (V2N) Uu-
based communication. Due to the short range that is covered
by internet gateways in case of DSRC [14], and communi-
cation only with the vehicles in close proximity in case of
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Fig. 2: 5G V2X vehicular communications supported by
collaborative orchestration.

PC5 [14–17], it is challenging to cope with high mobility of
vehicles on the highways, and to handle the use cases that
require extended awareness that spans multiple administrative
domains (e.g., countries). Such gaps can be efficiently bridged
by utilizing cellular network infrastructure [14,18–20].

The cellular infrastructure provides sufficient information
for: i) central controllers to efficiently decide on the handover
timing [14], and ii) service orchestrators to perform proactive
service deployment and service migration from one edge to
another. This is not possible in the case of DSRC and PC5
where the local information that each vehicle contains does not
involve a broad view of the overall network, thereby leading
to inefficient network (re)selection, and reactive service in-
stantiation and migration, which lead to disruptions in service
performance. Despite the improved KPIs promised by 5G (i.e.,
ultra-low latency, high bandwidth, etc.), if management and
orchestration of resources and services are not present in the
cellular systems, service continuity will not be ensured due to
the lack of collaboration between network edges. Thus, Fig. 2
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illustrates the multi-edge deployment of cloud-native services
that can be efficiently migrated from one edge to another,
as a result of management and orchestration operations that
take into account the resource constraints, as well as high
user mobility. In the second column of Table I, we emphasize
how collaborative orchestration can further improve V2N -
Uu based communication and to support connected vehicles
by mitigating the challenges of i) dynamic provision of V2X
services due to high mobility by performing multi-edge service
deployment (as described in Section III-C), ii) maintaining
service continuity by enabling edge-to-edge service continuity
(as described in Section III-C), and iii) achieving application
portability and immutability by applying cloud-native service
deployment (as described in Section III-D), which further
facilitates service relocation. The aforementioned benefits for
5G V2X systems are the outcome of collaborative orchestra-
tion, thus, it needs to be efficient and robust, as any delay
or interruption in performing an orchestration task (e.g., ser-
vice instantiation, scaling, and termination) can significantly
impact the deployment and operation of services used by
vehicles, thereby leading to e.g., uncoordinated manoeuvre
recommendations, or outdated instructions. Thus, it is essential
to carefully study the orchestration concepts, and to build
efficient orchestration solutions, to be able to make use of
multi-edge deployments and edge-to-edge relocation of cloud-
native services, performed in a timely manner.

III. ORCHESTRATED AND COLLABORATIVE EDGES AS

ENABLER OF SECURE AND FEDERATED CCAM

Despite the low latency benefits for CCAM services enabled
by deploying services close to the vehicles, MEC deployments
pose acute challenges in terms of the management and orches-
tration of virtualized services in a resource constrained and
highly distributed environment, which if not properly managed
can have adverse impact on the end-to-end service latency
and service reliability. This is because of the distributed
nature of the multi-domain MEC environment, where even
a single domain (e.g., PoP) may have multiple geographi-
cally dispersed MEC sites. Each MEC site offers an NFV
Infrastructure (NFVI) with limited compute/network/storage
resource footprint (i.e., MEC host), managed by a local plat-
form manager/orchestrator. To manage the distributed service
deployments across MEC sites i) a coordination between the
respective platform managers/orchestrators is required, with
an additional coordination in case the service deployment
encompasses MEC sites belonging to different administrative
domains (e.g., countries), and ii) as service deployments may
belong to different tenants, strict isolation between service
instances need to be ensured without compromising Quality
of Service (QoS).

The aforementioned challenges can be mitigated by en-
abling collaboration between orchestrated edges via the hi-
erarchical distribution of orchestration tasks, which provides
proactive multi-domain service deployments with support
for service continuity. Thus, in this section we present the
functional overview of the orchestration platform for CCAM
among collaborative edges, its design features, operational as-
pects, and the software design principles. A platform prototype
is being deployed in an automotive-related pilot of the 5G-
CARMEN project1, on top of the MNOs’ NFV and wireless
network infrastructure.

15G-CARMEN: https://5gcarmen.eu/

A. Functional Overview

In Fig. 3, we illustrate the high-level functional architecture
of the orchestration platform for CCAM in a federated con-
figuration, indicating the main components that enable secure
and federated cross-domain management and orchestration of
5G collaborative edges.

The orchestration platform for CCAM is designed following
the cloud native principles while being aligned with the
standardization framework provided by ETSI MEC [10], ETSI
NFV [21], and 3GPP [3,22]. This design enables collaboration
between 5G edges, thereby extending the range of the ser-
vices/applications running on top of these edges, and allowing
them to collaborate with peering service/application instances
in different domains in order to enable service continuity.

As illustrated in Fig. 3, the MANO tasks, such as service
on-boarding, instantiation, scaling, migration, and termination
(more details provided in Section III-C), are performed by
hierarchically organized orchestration platform elements that
are distributed in two following tiers [23]: i) top-level ser-
vice orchestration, and ii) edge-level service orchestration.
Such functional split enables offloading, or delegating, the
orchestration tasks from top-level orchestrator to the edge-
level orchestrators in order to decrease the processing load at
the top-level orchestrator while enabling low-latency MANO
operations directly at the network edges. The top-level or-
chestrator, characterized by the NFV Service Orchestrators
(NFV-SOs), is a centralized service orchestrator that represents
larger network domains on the MNO level. On the other
hand, the distributed edge-level orchestrators, characterized by
a combination of NFV Local Orchestrator (NFV-LO), MEC
Application Orchestrator (MEAO), and Edge Controller, are
in charge of particular edge domains, within a larger MNO
domain, in which the virtualized functions/applications are
running. There is a 1:N relationship between the NFV-SO and
NFV-LO/MEAO, while there is further a 1:M relationship be-
tween the NFV-LO/MEAO and Edge Controller (N,M ∈ N ).

The orchestrators interface with each other, and federate
with their peer orchestrators in another MNO domain over
well-defined reference points. Following are the three main
reference points: i) the Or-Or reference point, which is based
on the ETSI NFV standard [21], and is responsible for federat-
ing between the NFV-SOs in different administrative domains,
ii) the Lo-Lo reference point, which is derived from the Or-
Or reference point, and enables the coordination between the
NFV-LOs for supporting state migration, service continuity,
and low-latency service orchestration requirements, and iii)
the Or-Lo reference point for coordinating the orchestration
tasks between NFV-SO and NFV-LO. The interfaces on these
reference points inherit from the standard ETSI NFV/MEC
reference point interfaces with relevant extensions, such as
Lo-Lo and Or-Lo as described above.

Within a single edge domain, the NFV-LO and MEAO
coordinate the LCM of virtualized applications related to low-
latency and mission critical services that are deployed in MEC
platforms at same or different MEC-sites within an MNO
domain. These applications consume MEC Value-added Ser-
vices (VASs) (e.g., geolocation services, and Radio Network
Information Service (RNIS)) to enhance their operation. Each
MEC platform, which offers an NFVI, is managed by an Edge
Controller which, according to ETSI MEC [10], is in charge
of MEC Platform Management, and enforces orchestration
and LCM operations as per the directives of the orchestration
tiers (i.e., NFV-LO/MEAO). The Edge Controller also supports
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Fig. 3: High-level functional architecture of the orchestrated platform for CCAM in a federated configuration.

coupling with the 5G mobile network infrastructure for align-
ment of connectivity to edge services with device mobility.

B. Key Design Features

Aiming at orchestrated mobile edge networks within a 5G
ecosystem, we define and comply with the following key
design features:

a) Coupling of 5G and MEC/NFV: In the view of an
intrinsically sound 5G ecosystem, the so far separately treated
specifications for a 5G System, MEC, and NFV MANO, need
to interface and interact for complete end-to-end system man-
agement and control. This is to ensure alignment of policies
and configurations associated with a mobile subscriber and its
data plane on the one hand side, but to keep a certain level of
independence between the two systems for the decision and
enforcement of local policies. For this purpose, an Application
Function (AF) per the 3GPP architecture specification [22]
is co-located with the Edge Controller to connect to the 5G
System’s Control Plane through service-based communication
per the 5G architecture’s Naf reference point. This reference
point enables the retrieval of a mobile subscriber’s data plane
configuration and to subscribe to events in the 5G Control
Plane for receiving event notifications, e.g., from the 5G
Session Management Function (SMF) after a change in a
mobile subscriber’s User Plane Function (UPF) per SSC mode
3 operations during mobility. The Edge Controller holds the
control function of a programmable data plane to enforce
traffic treatment rules in alignment with the 5G data plane
and to enable, for example, metering and traffic steering within
the MEC System’s network domain, e.g., for load balancing,
failover handling or traffic forwarding towards a different MEC
Platform or MEC System.

b) End-to-end mobile data plane control: Complemen-
tary to the previously described design feature, this fea-
ture leverages the MEC System’s awareness of a mobile
subscriber’s data plane policy and configurations to enforce
aligned traffic treatment rules in between the UPF and the

MEC service. This feature builds on top of the 5G System
SSC mode 3, which enables mid-session relocation of a mobile
subscriber’s UPF without breaking the Packet Data Network
(PDN) session by a MEC System that is able to follow a
relocated UPF of a mobile subscriber connected to a MEC
service. Meeting this design feature enables the maintenance
of an optimized routing path between a mobile subscriber
and its device, i.e., the vehicle, and the mobile network edge
service to which it connects. A resulting continuity in a service
with short communication paths contributes to the raised low-
latency requirement.

c) Delegation of MANO operations in a federated envi-
ronment: In order to optimize the performance of the MANO
operations, one of the design features is the introduction of
the concept of MLA [4], which allows for the delegation
of MANO tasks/operations between the top-level and edge-
level orchestration systems, and also between the peering edge
platforms in same and/or different domains. The MLA is ne-
gotiated over the Or-Lo reference point between the two tiers
within the MNO domain. The MLA also governs the coordina-
tion between the peering NFV-LOs over the Lo-Lo reference
point. MLA enables the offloading of LCM operations from
the top-level to the edge-level orchestrators. Such negotiated
agreement determines the operations and functions that the
edge-level orchestration entities are allowed to perform within
their edge boundaries, thereby executing LCM operation on
the relevant service applications and their respective resources
[23]. Moreover, the prerequisite for establishing cross-domain
federation interface, such as Or-Or and Lo-Lo, is an MLA
negotiated between administrative domains, i.e., relevant NFV-
SOs. Developing federation over Lo-Lo enables the inter-
working of edge/MEC and associated edge/MEC platforms,
in order to provide a cross-edge on-demand management and
orchestration in a collaborative manner, while enabling and
maintaining low-latency edge-to-edge CCAM service/session
continuity and seamless state migration of users.
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Fig. 4: Message sequence chart of orchestration operations in the
orchestrated multi-domain MEC system.

d) Application-specific support for orchestration oper-
ations: The edge-level orchestrators constantly monitor the
deployed edge services, i.e., edge applications, and allow
these application instances to send notifications, as well as
triggers for certain orchestration operations. To facilitate and
enhance the orchestration operations (e.g., proactive service
instantiation, and service migration), the application itself can
proactively send notifications to orchestration entities. These
notifications may reflect some application-specific data, e.g.,
retrieved from the data plane packets from users, which are
not known by orchestrators. The orchestration entities receive
such notifications (e.g., by subscribing to the notification
topics with pub/sub, or by receiving them on-demand with
request/response), and map them to the policies and neces-
sary orchestration operations. For vehicular applications, such
notification might signal that a vehicle is moving out of the
range of a specific MEC host, and that proactive deployment
of another application instance, including service migration,
will be needed. Thus, this feature is significantly important for

Steps 1-4: This operation assumes that NFV-SOs a
priori advertise their respective NFV-LOs and

establish MLA via Or-Or interface on a set of
orchestration operations to be delegated to the
respective NFV-LOs to collaborate via Lo-Lo
interface.

→֒

→֒

→֒

→֒

→֒

Step 5: On-board network service packages, i.e.,
VNFDs and NSDs in participating MEC domains→֒

Steps 6-8: Deploy first instance in domain 1 and

perform LCM operations as required→֒

Steps 9-12: While user is about to move to the next

domain deploy instance in the new domain→֒

Step 13: Perform data sharing between two peering
application instances→֒

Steps 14-17: Migrate important user state
information to next instance to take over the
service, and seamlessly relocate the service
endpoint of the user to the new instance

→֒

→֒

→֒

Step 18: Terminate instances that are not in use

any longer→֒

Step 19: Notify respective NFV-SOs about
termination→֒

Step 20: Repeat steps 9 to 19 as required

Step 21: End

Listing 1: Proactive deployment of peering services, and
maintaining service continuity in a multi-domain MEC system.

our platform as it can leverage the applications for receiving
additional information and event notifications in support of
orchestration tasks, i.e., to trigger suitable orchestration oper-
ations that will enhance the support for service continuity.

C. Operational Aspects of the Orchestrated Platform

As outlined in Section III-B, our orchestration platform
supports cross-edge/cross-domain management and orchestra-
tion, and thus, NFV/MANO operations that are standardized
by ETSI [10,21] need to be optimized to support multi-
domain/cross-edge operation. The baseline set of NFV/MANO
operations, which our orchestration platform for CCAM sup-
ports, consists of: i) application on-boarding, ii) application
instantiation, iii) application scaling, iv) application state mi-
gration, and v) application termination. Our platform extends
beyond these baseline operations to additionally support and
enable a) multi-edge service deployment, and to maintain
b) edge-to-edge service continuity, the process of which is
summarized below with reference to Fig. 4. Listing 1 describes
high-level steps of multi-edge service deployment operation,
and maintaining edge-to-edge service continuity, presented in
Fig. 4 (steps 1-19).

1) Multi-edge service deployment: The operation is de-
picted in the Phase 1 of Fig. 4. It starts with the top-
level orchestrators (i.e., NFV-SO) selecting the edge-level
orchestrators (i.e., NFV-LO) that is most appropriate to the
service needs (see step 1 in Fig. 4). Note that the NFV-LO
selection process is out of scope of this paper. An MLA is
negotiated between the NFV-SOs and the selected NFV-LOs
within the respective domains in order to grant management
autonomy to the NFV-LOs (see step 2 in Fig. 4). For inter-
domain operation, a federation is established between the
two domains characterized by the establishment of the Or-
Or and Lo-Lo reference points between the NFV-SOs and
the NFV-LOs respectively [24]. Moreover, the MLAs are also
negotiated between the federating NFV-SOs over the Or-Or
reference point in order to inform, determine, and harmonize,
the scope of management autonomy required between the
peering NFV-LOs in order to directly exercise granted LCM
operations on the multi-domain deployed application instance
over the Lo-Lo reference point (see steps 3 and 4 in Fig. 4).
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Prior to the application instantiation, the orchestration platform
performs application package (i.e., VNF Descriptors (VNFDs)
and Network Service Descriptors (NSDs)) on-boarding as
per ETSI NFV rules (step 5 in Fig. 4). In a multi-domain
service deployment scenario, the application package can also
be proactively on-boarded in the selected peering domains
if an MLA exists between these selected platform domains.
Afterwards, the NFV-SO will send a service instantiation
request, triggered by an authorized external client (e.g., traffic
management authority), to the NFV-LO and the service is
instantiated (steps 6-8 in Fig. 4). Based on the change in user’s
location, which is being tracked by the application instance,
the NFV-LO will receive notification from the application
about the need of a peering application instance in the target
domain (step 9). This will prompt the NFV-LO 1 to trigger
NFV-LO 2 over the Lo-Lo reference point to instantiate the
peering application instance in its domain (see steps 10-12
in Fig. 4) while the vehicle is still in domain 1. Thus, such
proactive instantiation of service in the target domain by
direct interaction between the peering NFV-LOs and bypassing
the NFV-SOs decreases latency in orchestration operation
execution.

2) Edge-to-edge service continuity: In view of the stringent
QoS requirements imposed by 5G in terms of ultra-low latency
(of 1ms-10ms), high capacity (above 100Mbps per user), and
reliability (99.999% availability) [25], it becomes imperative
for the network service management systems to follow the user
mobility, and to place network services always at the most
suitable MEC platforms (e.g., the closest one) [26,27], while
maintaining edge-to-edge service continuity. In this context,
having in place efficient means for service migration and
data plane steering is a challenging proposition where ser-
vice/application instances or users’ session states of ongoing
services are relocated from one edge to another as the user
moves. Since network edges are usually resource constrained
(both network and computing), migrating the application or
a user’s state needs to be network and resource aware and
thoroughly orchestrated. To enforce a smooth service reloca-
tion strategy, our orchestration platform enables meta-data and
state-data sharing between the multi-edge deployed service
instances. This enables application instances to share meta-
data (step 13), and to transfer application state (e.g., security
token) in case of stateful applications (see steps 14-17 in
Fig. 4), before a user/vehicle reconnects from source to target
instance. The shared meta-data can include the information
about the general context of the mobile user/vehicle (i.e.,
parameters of users’ context/session state), such as user’s
location [28], or Generic Public Subscription Identifier (GPSI)
as an identifier in 3GPP, which can further share this data with
the target instance, thereby enabling a smooth re-connection
of user from one application instance to another. The commu-
nication between service instances themselves, and between
service instances and vehicles, is accomplished by two types of
communication principles, i.e., i) through service based com-
munication leveraging service communication proxies, e.g., to
transfer users’ session state information to peering instances
in adjacent edges, and ii) through fast data I/O interfaces and
a programmable data plane to steer and forward data plane
traffic to a new location for seamless service continuity (Fig.
3).

D. Software design principles of the orchestration platform

As mentioned above, the design of the orchestration
platform for CCAM follows the cloud native principles,

which means that all functional elements are implemented as
container-based pieces of software rendering a highly modular
design. The modularity enables a mix and match of different
open source software solutions. For instance, the NFV-SO is
based on existing OSM, for the reasons discussed in Section
II [8]. The interfaces between orchestration components (i.e.,
Or-Or, Lo-Lo, Or-Lo, Mv1, and NFV-LO-Edge Controller, as
presented in Fig. 3) are implemented following the service
based architecture. These interfaces use REST based commu-
nication.

For the purpose of developing architecture elements, we
use the Kubernetes (k8s)2 platform. As depicted in Figure 3,
the MEAO/NFV-LO are implemented as separate containers
within a k8s Pod3, thereby managing the MEC applications
and services via a message broker. Similarly, the MEC appli-
cations and services are implemented as container applications
in different k8s Pods within each MEC host. The on-boarding
procedure, described in Section III-C, practically entails the
preparation of Docker images for the MEC applications and
services on all required edges. Each Pod with an instance of
a CCAM service application can be equipped with one or
multiple customized network interfaces, such as for service
based communication and data sharing with other application
instances, or for fast data plane I/O and associated low-
latency communication with other application instances or
service clients, as described in Section III-C2. These MEC
applications and services are grouped in different namespaces
to ensure isolation for performance reasons. Moreover, a
monitoring service comprising Prometheus and Grafana are
configured in a separate monitoring namespace for collecting
real-time metrics and usage statistics for all MEC hosts
belonging to the edge domain and to be consumed by the
orchestration entities. For the management and orchestration of
the MEC applications/service an Edge Controller is configured
a separate namespace running as k8s Pod.

IV. ANALYTICAL MODEL OF RESOURCE MANAGEMENT

AND ORCHESTRATION OPERATIONS

In this section we provide the analytical model of resource
management in multi-tier hierarchical orchestration platforms
that are designed for the 5G ecosystems. We first present the
resource assignment problem for the distributed service de-
ployments across network edges, and then provide the latency
performance analysis for the orchestration tasks performed
by orchestration entities in different tiers. Such analytical
approach followed by experimental assessment in Section V
can be applied to different orchestrated edge solutions, and
here we substantiate our design choices, defined for highly
mobile use cases with distributed service deployments.

In particular, the impact of the number of available instances
of reference points in a collaborative orchestration platform on
latency of an orchestration operation, and on a number of hops
for an orchestration request, is further studied and presented
in Section V, by analyzing the response time and the load of
different orchestration tiers. Thus, in Section V we analyze
KPIs in a greater detail, while in Section VI we discuss both
the analytical model and the results obtained in experimental
assessment. As introduced in Section I, the main evaluation
goals that we target to achieve with the analytical evaluation

2Kubernetes: https://kubernetes.io/
3Kubernetes Pod is the smallest deployable unit of computing that can be

created and managed in k8s.
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TABLE II: Parameters in the resource management model.

Parameter Description
Resource assignment problem

s top-level service orchestrator (NFV-SO)
l edge-level orchestrator (NFV-LO)
i application implementation
n MEC host/node

NL(s) number of NFV-LOs in the domain of NFV-SO s
r resource
k type of resource

ρnk
amount of resources of type k that are available
on the n-th MEC host

ci cost vector for application implementation i

cik
cost of resources of type k needed for application
implementation i

d(l) administrative domain of l-th NFV-LO

xsl
indicates the relation between s-th NFV-SO
and l-th NFV-LO

xslin

decision variable that indicates the ability of
l-th NFV-LO to
perform orchestration operations on the application
implementation i, which is hosted on the
n-th node in s-th NFV-SO’s domain

Latency performance
aorch request for orchestration operation
Norch number of different orchestration operations

f(aorch)
traffic generated by orchestration operation request
aorch

t
unit time-slot for transmission of an orchestration
request via network link

αl1,l2 overall transport network latency
αtl1,l2

tranmission delay

αpl1,l2
propagation delay

αcl1,l2
computing delay

αql1,l2
queueing delay

β, γ weighting factors that balance network characteristics

l
(l1,l2)
i,j

length of the link segment (i, j) that is chained
to form the overall link between local
orchestrators l1 and l2

B
(l1,l2)
i,j bandwidth of the link segment (i, j)

s speed of light

TABLE III: Sets of elements in the resource management model.

Parameter Description
NS number of NFV-SOs, NS ∈ N
NL number of NFV-LOs, NL ∈ N
NI number of implementations, NI ∈ N
NH number of MEC hosts/nodes, NH ∈ N
NK number of resource types, NK ∈ N
S set of NFV-SOs (s ∈ S, S = {1, . . . , NS})
L set of NFV-LOs (l ∈ L, L = {1, . . . , NL})
I set of implementations (i ∈ I, I = {1, . . . , NI})
H set of MEC hosts (n ∈ H, H = {1, . . . , NH})
R set of resource types (k ∈ R, R = {1, . . . , NK})

in this, and experimental evaluation in the next section, are
summarized as follows:

• To determine the impact of the number of available
instances of reference point in the orchestration platform
on the average response time of an orchestration request,
as well as on the amount of resources available for
performing this request.

• To assess how the number of available instances of refer-
ence points affects the load of the top-level orchestrator,
and how this load further impacts the average response
time.

• To show the benefits of direct links between edge-level
orchestrators.

• To test the power efficiency of the orchestration platform.
• To study how the orchestration operations affect service

continuity.

TABLE IV: Scenarios for calculating the total number of reference
points.

Scenario
Number of
NFV-SOs

Number of
NFV-LOs

in NFV-SO 1
domain

Number of
NFV-LOs

in NFV-SO 2
domain

I 2 2 1
II 2 1 1
III 2 3 2

A. Resource assignment problem

The analytical model of our collaborative orchestration
platform defines the resource assignment problem as an integer
program. In the Table II, we present the parameters that
are utilized in the analytical model. The resource assignment
problem refers to the resources that can be assigned to edge-
level/local orchestrators, i.e., NFV-LOs, in order to perform
orchestration operations for the requested MEC applications.

In this analytical model, we consider the orchestration
platform for CCAM as a hierarchical NFV management and
orchestration architecture that consists of the top-level, and
the edge-level orchestrators, i.e., NFV-SOs and NFV-LOs,
respectively, and as described in Section III, we consider three
types of reference points that connect them, i.e., Or-Or, Lo-Lo,
and Or-Lo. The sets of elements used in our analytical model
are shown in Table III.

Depending on the MLAs that are agreed between NFV-SOs
and NFV-LOs in all edge and administrative domains, there
is a different number of interfaces that are established on-
demand between different orchestration entities. Therefore, the
equation (1) represents the total number of interfaces that are
established on-demand between: i) all existing NFV-LOs and
NFV-SOs (Or-Lo), enabled by MLA type m1, ii) all existing
NFV-SOs between themselves (Or-Or), enabled by MLA type
m2, and iii) all existing NFV-LOs between themselves (Lo-
Lo), enabled by MLA type m3.

The value calculated in (1) is smaller or equal than the
maximum number of interfaces that can be established (e.g.,
all NFV-LOs from all edge and administrative domains are
connected directly to each other, being at the same time con-
nected to their respective NFV-SOs). In particular, the MLAs
that enable the establishment of particular reference points
in the orchestration platform can be considered as a triplet,
i.e., (m1,m2,m3). Such a triplet refers to a permutation of
the three types of MLAs, i.e., m1, m2, m3, which enable
establishment of Or-Lo, Or-Or, and Lo-Lo, reference points,
respectively. In Fig. 5, we illustrate the three examples of
arrangement of the architectural elements (i.e., NFV-LOs and
NFV-SOs), and pair them with the corresponding triplet. Each
triplet in practice means that certain permutation of agreements
(i.e., MLAs) has been achieved between the top-level and
edge-level orchestrators from different edge and administrative
domains, thereby allowing edge-level orchestrators to consume
resources from different domains to perform orchestration
operations. In particular, the simplest scenario is shown in
Fig. 5 a), which depicts the case when there is only one
administrative domain, e.g., no collaboration between MNOs
from different countries is present, and edge-level orchestrators
are allowed to orchestrate only those resources that belong to
their edge domains.

Both b) and c) in Fig. 5 depict the collaboration between the
top-level orchestrators, but these two scenarios differ in terms
of agreements between the edge-level and the top-level orches-
trators, and between the edge-level orchestrators themselves.
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Fig. 5: The example of hierarchical NFV management and
orchestration in the orchestration platform for CCAM (Scenario III

from Table IV)

However, some of the triplets/permutations are not possible,
such as (m1,m2,m3) = (1, 0, 1), because it is required to
first establish federation between the top-level orchestrators,
i.e., Or-Or reference points, in order to enable the direct Lo-
Lo links between the edge-level orchestrators. This means
that two NFV-LOs cannot cooperate via Lo-Lo link unless
the federation between different administrative domains has
been established. Hence, the complete list of MLA triplets for
our orchestration platform is given as follows (m1,m2,m3) =
{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}, where the most
complete case, i.e., (m1,m2,m3) = (1, 1, 1), means that all
instances of reference points are established between com-
ponents in the architecture of our orchestration platform, as
illustrated in example shown in Fig. 5 c).

Objective 1: To maximize utility function U1(i) that deter-
mines the number of available instances of reference points in
the orchestration platform.

U1(i) =

NS
∑

s1=1

NS
∑

s2=1,s1 6=s2

xs1s2 ·m2s1s2+

NS
∑

s=1

NL(s)
∑

l=1

xsl ·m1sl +

NL
∑

l1=1

NL
∑

l2=1,l1 6=l2

xl1l2 ·m3l1l2 ,

U1(i) ≤
1

2
· (NS(NS − 1) +NL(NL − 1) + 2NL),

xs1s2 =
1

2
, xl1l2 =

1

2
,

d(l) = d(s) → xsl = 1,

d(l) 6= d(s) → xsl = 0.
(1)

To exemplify the number of instances of reference points that
can be established in the orchestration platform, we consider
three different scenarios that are defined in Table IV. Applying
the equation (1) on these three scenarios, Fig. 6a shows the
total number of instances of reference points that can be
established for different MLA triplets, with the assumption
that if m1 = 1, then m1 = 1, ∀l ∈ L ∧ ∀s ∈ S. With
reference to MLAs that are previously described in the form

of triplets, we can draw an important conclusion about the
number of hops that a request for a certain orchestration
operation needs to pass to reach the final destination. For
example, if NFV-LO from one administrative domain needs to
extend the scope of application implementation that is running
under its scope (i.e., the edge domain), it will send a request
for application instantiation in other edge domain, either in
the same or in other administrative domain. Thus, the level
of agreement between the administrative domains, as well as
the edge domains within their scope, defines the number of
hops, i.e., nh (equation (2)), which needs to be minimized in
order to ensure lower latency while maintaining the service
continuity.

nh =















2, m1 = 1 ∧m3 6= 1 ∧ d(l1) = d(l2)

1, m1 = 1 ∧m3 = 1 ∧ d(l1) = d(l2)

3, m1 = 1 ∧m2 = 1 ∧m3 6= 1 ∧ d(l1) 6= d(l2)

1, m1 = 1 ∧m2 = 1 ∧m3 = 1 ∧ d(l1) 6= d(l2)
(2)

Whether both edge-level orchestrators belong to the same
administrative domain d(l1) = d(l2), or to different admin-
istrative domains d(l1) 6= d(l2), Fig. 6b shows the number of
hops for an orchestration request from an arbitrarily defined
edge-level orchestrator NFV-LO, which needs to reach another
NFV-LO.

If we consider now the resources that can be assigned to
a particular NFV-LO to perform orchestration operations, the
variable xslin represents a decision variable that is equal to
one, if an instance of application implementation i has been
assigned to l-th NFV-LO. Thus, the l-th NFV-LO can consume
resources from n-th MEC host in s-th NFV-SO domain (i.e.,
MEC hosts that are available in NFV-SO domain). Otherwise,
if the aforementioned combination is not allowed by MLA,
the value of decision variable xslin is equal to zero.

The amount of resources of type k that are available on n-th
MEC host that is orchestrated by l-th NFV-LO, in s-th NFV-
SO domain, is defined as ρslnk. Hence, if the federation and
MLAs are agreed (either only Or-Or, or both Or-Or, and Lo-
Lo, are established), the scope of resources, which l-th NFV-
LO orchestrator is allowed to consume in order to perform
orchestration operations, is extended to multiple domains.

In inequation (3), the overall amount of resources of type
k, which are given at disposal for performing orchestration
operations on the i-th application implementation that is
deployed on the n-th MEC host, cannot exceed the maximum
amount of available k-type resources on this node. Let us
assume that the system consists of two NFV-SOs, as described
in Scenario III from the Table IV, and illustrated in Fig. 5 c),
thereby spanning three, and two edge domains, respectively.
Each of these edge domains is orchestrated by one of the
NL NFV-LO orchestrators. If n-th MEC host is located in the
domain of a particular top level orchestrator, i.e., the s-th NFV-
SO, then the non-negative integer m1sl determines whether
l-th NFV-LO is allowed to consume k-type resources of n-th
node located in the domain of s-th NFV-SO. Therefore, in the
system that we previously described and illustrated in Fig. 5 c),
if n-th MEC host is located in the domain of s1 (e.g., MEC
host 1, i.e., n = 1), then m1s1l1 determines whether NFV-
LO l1 can consume k-type resources from this node or not.
For example, the sum member for the combination (s2, l1) is
equal to zero in that case, because the resource will be already
given to l1 by s1, as the selected MEC host is in the domain of
s1. Furthermore, for the combination (s1, l4), the sum will be
non-zero in case there is at least Or-Or interface established
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Fig. 6: Number of instances of reference points and number of hops for orchestration requests depending on different combinations of
(m1, m2, m3), and latency of transmission and propagation.

between s1 and s2. Thus, all NFV-SOs allow any NFV-LO
to consume resources from their domains, but if m1 = 1 for
the li-th NFV-LO that is not in the domain of sj-th NFV-SO
(i.e., d(li) 6= d(sj)), this means that m2sjsj∗ = 1, i.e., the
federation between the top-level orchestrators is established.

Objective 2: To maximize utility function U2(i) that de-
termines the amount of resources, which are distributed in
the hierarchical orchestration platform for CCAM, and given
at disposal for performing orchestration operations on the
application implementation i.

U2(i) =

NS
∑

s=1

NL
∑

l=1

NK
∑

k=1

rslink(m1sl)

NS
∑

s=1

NL
∑

l=1

rslink(m1sl) ≤ ρnk

(3)

NS
∑

s=1

NI
∑

i=1

NH
∑

n=1

xslin(m1sl) · cik ≤
NH
∑

n=1

ρnk, ∀i ∈ I, k ∈ R (4)

The left side of inequation (4) expresses the amount of
resources of type k, which are available in all MEC hosts (from
all NFV-SO domains) and given at disposal to the l-th NFV-LO
to perform orchestration operations. As it can be seen from (3)
and (4), the resource availability is bounded by agreed level of
MLA (i.e., m1sl). The utility function illustrated by equation
(5) models the overall utility Uslin(xsl) that the system gains
by assigning ci resources to l-th NFV-LO, allowing it to deploy
i-th instance of application implementation to its assignment
vector xsl. The assignment vector xsl ∈ {0, 1}NH×NI refers to
the combination of l-th NFV-LO and s-th NFV-SO, which has
a task to deploy the instances of application implementations
on top of the MEC hosts, and to perform orchestration
operations on these instances.

Objective 3: To maximize utility function, which depends
on: i) the MLAs that allow NFV-LOs to operate in a resource
extended manner, which means that NFV-LOs can rely on the
resources from other edge networks/domains to perform their
orchestration operations, ii) the selected NFV-LO in particular
NFV-SO domain to perform the orchestration operations, iii)
the chosen implementation for the application instance, and
iv) the selected MEC host for the deployment.

U =

NS
∑

s=1

NL
∑

l=1

NI
∑

i=1

NH
∑

n=1

Uslin(xsl) · xslin(m1sl) (5)

Therefore, aiming to achieve the Objective 3 that refers to the
overall orchestration platform for CCAM, there is a need to

achieve Objective 1, and Objective 2, for all NFV-LOs in the
orchestration platform.

B. Latency performance

Here we tackle the system model for describing latency
performance over the Lo-Lo, i.e., the direct link between
edge-level orchestrators (i.e., NFV-LOs). This direct link is
used to transfer a request for any orchestration operation
that is allowed to be requested or recommended from one
local orchestrator to another, as described in Section III.
Henceforth, the overall transport network latency for such
request can be defined as a cost function (equation (6)) that
consists of the transmission delay, the propagation delay,
the computational delay, and the queuing delay [29,30]. If
we define the request for orchestration operation as aorch,
where aorch ∈ O, O = {1, . . . , Norch}, then the traffic
that is generated by this request can be denoted as f(aorch).
Therefore, the transmission delay is defined as a time needed
for processing an orchestration request on the transmitter side
(NFV-LO in domain 1), and it can be expressed as a fraction of
the traffic that this request generates and the bandwidth (Bl1,l2 )
of the processing link between two local orchestrators (i.e., l1-
th and l2-th). As the fraction of the traffic and the capacity
determines only the number of time-slots that are required by
processing link to start transferring the request, it needs to be
multiplied by a unit duration of a time-slot, i.e., t, in order to
calculate the overall transmission delay. In the overall transport
network latency αl1,l2 , parameters β and γ are weighting
factors that balance the networking characteristics [30]. The
propagation delay depends on the length of the link between
two orchestrators, and the overall propagation speed over the
wireless link.

αl1,l2 = αtl1,l2
+ αpl1,l2

+ αcl1,l2
+ αql1,l2

αl1,l2 =
∑

i,j∈Ll1,l2

β ·
f(aorch)

B
(l1,l2)
i,j

· t+

∑

i,j∈Ll1,l2

γ·
l
(l1,l2)
i,j (msl1l2)

s
+ αcl1,l2

+ αql1,l2

(6)

Let us consider that the link, which is used for transmission of
the request for orchestration operation, is consisted of multiple
segments, i.e., (i, j) with the length li,j , where i, j ∈ Ll1,l2 .
In particular, Ll1,l2 is the set of all link segments that can
be chained to form the link between the local orchestrators
l1 and l2, i.e., (l1, l2). The length of the link between two
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TABLE V: System characteristics

System information
Type Virtual Wall node CityLab node
Reference Node 1 Node 2
CPU (GHz) 2.252 1
System
memory

48GB RAM 4GB DDR3-1333 MHz

Processor
2x 8core Intel E5-2650v2

(2.6GHz) CPU
AMD GX-412TC

1GHz Quad-core CPU
Storage 250GB 240 GB

Disk
250GB HGST
HTS725025A7

240GB Samsung SSD 850

local orchestrator depends on the msl1l2 parameter, which
determines whether there is a direct link between orchestrators
or this link consists of the link segments that also include top-
level orchestrators in the chain. Thus, taking into account the
definition of the parameter msl1l2 (m1lilj , m2lilj , or m3lilj ),
it is intuitive to conclude that the overall length of the link
between NFV-LOs, i.e., ll1,l2 will be larger if the request
from one local orchestrator needs to be passed to the top-level
orchestrators first, and not directly via the Lo-Lo link. With
regards to the aforementioned, the main contributing factors
to the overall transport network latency are the network band-
width (Bl1,l2 ), and the distance that orchestration operation
request needs to propagate to reach NFV-LO 2 from NFV-LO
1, or vice versa. In Fig. 6c, we show the latency that consists
of transmission and propagation delay defined in equation (6),
which is calculated for a simple orchestration request (simple
request carrying 13KB of data, as described in Section V),
depending on the bandwidth of the network links, and the
distance between respective orchestrators. Hence, the latency
will be higher in case of the lower network bandwidth, but
also in the case of larger distances between local orchestrators
(i.e., links NFV-LO 1 - NFV-SO 1 - NFV-SO 2 - NFV-LO 2, or
NFV-LO 1 - NFV-LO 2). For example, Maheshwari et al. [29]
show that the average response time of servers in cloud and
edge also increases with an increase in system load, which is of
course affected by computation, i.e., processing of the request
on the orchestrator side in our case. Thus, in Section V, we
assess the overall latency, i.e., the average response time for
orchestration requests generated by edge-level orchestrators.

V. EXPERIMENTAL ASSESSMENT OF THE ORCHESTRATION

PLATFORM

In this section, we present the experimental assessment
of the orchestration platform for collaborative edges, thereby
demonstrating the relevance of the design choices that we
made for the architecture itself, but also for the operational
aspects of such orchestration platform.

A. Experimental setup

In order to conduct experiments that assess their perfor-
mance, as well as the capacity to perform the orchestration
operations, we defined and performed a set of tests for both
top-level and edge-level orchestrators in the testbed environ-
ment.

1) Testbed environment: The system characteristics of com-
puting machines that we used in experimentation are listed in
Table V. Taking into account the characteristics of the top-level
orchestrator (presented in Section III), it is expected to run on
top of the resourceful computing machines (such as Node 1
in Table V), as it serves all underlying edge domains while
covering the whole administrative domain (e.g., one country).

Thus, in our experiments, we leveraged on the computing
capabilities of the Virtual Wall4 testbed [31] (Fig. 7) for the
purpose of testing the response to orchestration requests of the
top-level orchestrator, as well as to evaluate its average load.
The Virtual Wall testbed, located in Gent, Belgium, consists of
more than 550 powerful bare metal and GPU servers, which
are software and hardware configurable, i.e., configurable in
terms of software installation (e.g., operating systems, and
drivers), and networking via configuring the physical intercon-
nection between network interfaces. All these machines forge
a generic environment for advanced networking, distributed
software, cloud, big data, and scalability research and testing.

On the other hand, the edge-level orchestrator is designed
to cover smaller areas, i.e., edge domains, while performing
management and orchestration operations of the deployed
edge services, but also responding to the requests that are
coming from adjacent or other edge domains. Thus, for testing
the capabilities of an edge-level orchestrator, we utilized the
CityLab5 testbed [32] (Fig. 7), i.e., the resource constrained
Node 2 presented in Table V. In particular, CityLab is a
smart city large-scale wireless networking testbed, which is
located in Antwerp, Belgium, whereas the experimentation
nodes are attached to buildings and streetlamps providing the
opportunities for experimentation at a city neighborhood level
in the unlicensed spectrum. We have used public internet
to establish the connectivity between different orchestration
entities in this testbed environment, i.e., Lo-Lo reference point
between edge-level orchestrators, and Or-Lo between top-level
and edge-level orchestrators.

2) Types of tests: For both the top-level and edge-level
orchestrators, we performed different types of tests, as de-
scribed in Table VI. The local tests refer to the tests in which
server (i.e., the orchestrator) and client (i.e., load testing tool)
are deployed on top of the two separate bare-metal machines
that are connected by wire. Accordingly, in the remote test,
server and client are dislocated, and there is an additional
contributor to the overall latency, which is imposed by sending
orchestration requests via public Internet (Fig. 7).

For the local tests, we conducted experiments with different
test variants, which differ in complexity of the orchestration
request. With reference to the software design of our orches-
tration platform presented in Section III, each orchestration
request is generated, received, and processed, as a REST
Application Programming Interface (API) request. Therefore,
we differentiate the complexity of different requests by per-
forming: i) only simple GET requests, containing relatively
small body (i.e., average content size), ii) only GET requests
that involve certain transactions and checkups in database, and
iii) a combination of GET and PUT requests, where PUT
requests usually refer to those requests that require changes
in the service deployments, reflected by applying changes in
database as well. We designed the combined test in a way it
generates three times more GET requests than PUT requests,
as there are usually more query types of orchestration requests,
where different orchestration entities ask other orchestrators
about the state of a deployed service, and some of its particular
parameters, than those requests that involve actions on appli-
cation/service as an outcome of the orchestration algorithms
(e.g., scaling up/down/in/out).

3) Load tester Locust: To generate orchestration requests
and test performance of the orchestrators, we used a python-

4Virtual Wall testbed: https://www.ugent.be/ea/idlab/en/research/
research-infrastructure/virtual-wall.htm

5CityLab testbed: https://doc.lab.cityofthings.eu/wiki/Main Page
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Fig. 7: The nodes used for local and remote tests on top of the Virtual Wall and CityLab testbeds.

TABLE VI: Description of the tests.

Type of
machine

Platform
component

Test Type of request
Average
content
size (B)

Node 1
Top-level
orchestrator

Local

simple - only GET 13
only GET 400

GET & PUT
GET 140
PUT 54

Remote simple - only GET 13

Node 2
Local
orchestrator

Local

simple - only GET 13
only GET 400

GET & PUT
GET 140
PUT 54

based performance testing tool Locust6. As Locust is widely
used for performing stress and load tests on web servers, it
is suitable for our experiments as both top-level and edge-
level orchestrators are here deployed and tested as web-based
servers, using python web framework Flask.

Locust enables defining the behavior of users in a regular
Python code, running each of the users inside its own greenlet,
i.e., a lightweight process, without the need for using call-
backs. In the case of top-level orchestrator, users that generate
requests are its underlying local, i.e., edge-level orchestrators,
which are sending the orchestration requests. Similarly, in the
case of edge-level orchestrators, users are other (adjacent or
not) edge-level orchestrators that are directly connected to each
other via low-latency Lo-Lo link.

4) Metrics: In all the tests that are executed, a several
important KPIs are measured, which are relevant because they
reflect the capability of an orchestrator to perform orchestra-
tion operations efficiently, as well as the amount of resources
that it consumes for its work. These KPIs are: i) average
response time per orchestration request, ii) average Central
Processing Unit (CPU) load, iii) average Random-Access
Memory (RAM) load, and iv) average power consumption,
and they are described as follows. For instance, the average
response time of both top-level and edge-level orchestrators
is the overall latency of performing a particular orchestration
request, from the moment when the request is generated in
the edge-level or top-level orchestrator, to the moment when
this request is processed. With reference to our analytical
model presented in Section IV, the latency performance model
includes an orchestration request aorch that generates a certain
amount of traffic f(aorch). In the case of this evaluation, the

6Locust: https://docs.locust.io/en/stable/

response time in remote tests also includes the propagation and
transmission latency as a result of sending an orchestration
request aorch through the communication link between two
orchestrators, as well as the aforementioned time to process
the upcoming traffic f(aorch).

We need to make sure that both the top-level and edge-
level orchestrators can handle the load of orchestration re-
quests. Hence, the CPU and RAM load refer to the load
that orchestrator can expect and experience when certain
number of orchestration requests are received, which is a direct
implication of the MLAs that determine a number of estab-
lished interfaces between orchestration entities as described
in Section IV-A (Objective 1). The goal of measuring these
KPIs is to assess the average behavior of both resourceful,
and resource-constrained machines, which can host top-level
and edge-level orchestrators, respectively. As we presented
in Section IV, in case no direct link between edge-level
orchestrators is established by MLA, it ultimately results in
an increase in number of orchestration requests towards the
top-level orchestrator. That is why in our tests we aim to
assess the impact of such increase in number of requests, on
the performance of the top-level orchestrator, and to evaluate
the burden it imposes to the operations in the lop-level
orchestrator.

In the experimental evaluation we also measure the av-
erage power consumption of the top-level and the edge-
level orchestrators, while they are performing orchestration
requests. Since energy efficiency is considered as one of the
ultimate goals of 5G ecosystem [33], the applications and
processes that are executed on the edge and cloud computing
devices need to be energy efficient. According to the European
Commission’s final study report on energy efficient cloud
computing technologies [34], the design of any application has
a high impact on its energy consumption. This becomes even
more evident when similar applications may require different
consumption of CPU load, and memory load, and ultimately
different energy consumption. Therefore, in [34] it is stated
that software is a major factor for energy-efficiency when
the energy consumption is measured for a cloud computing
product. Thus, it is important to measure the impact of or-
chestration operations on the energy and power consumption,
thereby designing orchestration solutions to be low energy
consuming techniques.

The experiments that we described in this section enabled us
to evaluate a relative average response time, and CPU/RAM
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TABLE VII: Average RAM load.

Orchestrator Type of test
Waiting time (s)

1 0.5 0.1
Average RAM (%)

Top-level
orchestrator

local simple - only GET 0.2 0.2 0.2
local only GET 0.5 0.5 0.5
local GET & PUT 0.2 0.51 0.68
remote simple - only GET 0.2 0.2 0.2

Edge-level
orchestrator

local simple - only GET 0.7 0.7 0.7
local only GET 0.8 0.8 0.8
local GET & PUT 0.8 0.8 0.8

load, and average power consumption, for orchestration re-
quests that originate at the edge-level orchestrator for example,
and terminate on another edge-level orchestrator in case there
is a direct link between these two edge-level orchestrators,
and in case the orchestration requests need to be forwarded
via top-level orchestrators. All the results that we present
in the following section reflect the relative behavior of or-
chestration entities within our orchestration platform, because
this behavior depends on the type of machine that hosts the
orchestrator, the type of the orchestrator, and the complexity
of orchestration operations that this orchestrator performs.

B. Results

Let us consider a scenario with one top-level orchestrator
per whole administrative domain (e.g., country), and multiple
edge-level orchestrators, with no direct Lo-Lo link established
between them as per definition in equation (1) (Section IV-A).
In such case, all the traffic that edge-level orchestrators
generate in their domains by sending orchestration operation
requests towards other edge domains, first reaches their re-
sponsible top-level orchestrator. In Figures 8a and 9a, and
Table VIII, we can clearly see the increasing trend in CPU
load and average response time, respectively, for the top-level
orchestrator with the number of edge-level orchestrators that
are simultaneously sending orchestration requests towards it.
The same trend applies to the edge-level orchestrators (Figures
8b and 9b, and Table IX) with the increase in total number of
direct Lo-Lo connections.

For each total number of edge-level orchestrators, and direct
Lo-Lo connections, shown on the x-axis of all graphs shown
in Figures 8, and 9, and Tables VIII, and IX, we run tests
for different waiting time between successive requests that are
coming from a single edge-level orchestrator. It means that in
case of waiting time equal to 1s, each edge-level orchestrator is
generating one orchestration request per second. Accordingly,
each of them is generating 10 orchestration requests per second
in case of waiting time equal to 0.1s. Therefore, in case there
are 100 edge-level orchestrators distributed across a single
administrative domain, the top-level orchestrator needs 68ms
in average to process a simple orchestration request (e.g.,
response to a query about resource availability in a certain edge
domain). In practice, that means that edge-level orchestrator
will wait 68ms only for the first top-level orchestrator to
process its request, which will then include also an additional
latency that propagation and transmission of this request, as
per equation (6) in Section IV, take from i) local to the
top-level orchestrator, ii) from the top-level orchestrator in
domain 1 to the top-level orchestrator in domain 2, and iii)
from the top-level orchestrator in domain 2 to the target
edge-level orchestrator in domain 2. On the other hand, if a
direct Lo-Lo link is established from originating to the target
edge-level orchestrator, Fig. 9b shows that one edge-level
orchestrator (although resource constrained) will take only

19ms to process the same orchestration request. Taking into
account the propagation latency in equation (6), we can assume
that the overall latency via link Lo-Lo will be lower than in
case when request is sent through the top-level orchestrators
(Section IV-B), which in total results in a at least three times
lower latency in processing orchestration request in case of
having Lo-Lo link.

If we now reflect on the remote test for the top-level or-
chestrator, which is depicted in Fig. 7, the increase in average
response time per orchestration request can be seen in Fig. 9c
in comparison to Fig. 9a. For example, in the case 10 edge-
level orchestrators are simultaneously sending two requests
per second towards the top-level orchestrator, we can see
that in remote test the average response time is 527ms while
being only 20ms in the local test. Such an increase in average
response time is expected due to delay in sending orchestration
requests via public internet, as well as queuing in the gateways,
highly depending on the number of the network links between
orchestrators, their length and of course bandwidth. As such
result might severely disrupt the performance of vehicular
applications, especially the latency constrained ones, due to
the increase in orchestration execution, we emphasize the
importance of the direct low-latency Lo-Lo links that should
significantly decrease the overall delay. A further reduction
of the latency, caused by congested network nodes, can be
achieved also by dedicating more processing power, or more
network adapters, to a particular orchestrator.

Tackling the load that the top-level orchestrators need to
handle in case the MLA do not allow edge-level orchestrators
to directly collaborate via low-latency links, we assess the
average CPU load (Fig. 8, and Tables VIII, and IX), as well
as the average RAM load (Table VII). The average RAM
load remains stable in all tests, being slightly increased with
complexity of orchestration requests, whereas the average CPU
load is highly affected by the amount of orchestration tasks to
process. In particular, Figures 8a and 8b, and Tables VIII and
IX, show that for both top-level and edge-level orchestrators,
the average CPU load increases with the number of edge-
level orchestrators generating requests, and with the number
of requests per second. One specific case when this load
decreases is the GET & PUT test, in which the average
CPU load for 100 and 300 edge-level orchestrators (Table
VIII) is smaller than in case of less complex tests (Fig. 8a).
This decrease happens due to request queuing that signifi-
cantly increases average response time (Table VIII), which
also results in failed requests, i.e., with rate of 2.27% for
GET, and 7.35% for PUT requests, in case of 100 edge-
level orchestrators, and 8.27% for GET, and 35.52% for PUT
requests, in case of 300 edge-level orchestrators. To measure
the average power consumption of different orchestration
components while performing orchestration operations, the
same set of experiments has been executed for local tests as
for measuring the average response time and CPU/memory
load. We have utilized the Linux-based command-line program
PowerTOP7, which provides an estimate of the total power
consumption of the overall system, but also individual power
consumption for individual processes, devices, kernel workers,
etc. The obtained results are shown in Fig. 10, and we can
see an increasing trend in average power consumption of
both top-level and edge-level orchestrators with the increasing
number of orchestration requests in the simple - only GET
test. However, when number of edge-level orchestrators that

7Managing Power Consumption with PowerTOP: https://red.ht/2T9ZF3z
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(b) Edge-level orchestrator, local test.
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(c) Top-level orchestrator, remote test.

Fig. 8: Average CPU load in Simple - only GET test.

1 2 10 100 300

Total number of edge-level orchestrators

0

50

100

150

200

A
ve
ra
ge

re
sp
on

se
(m

s)

6 6 6 6

25

6 6 6

20

68

6 6
15

68

220

simple - only GET

waiting time = 1

waiting time = 0.5

waiting time = 0.1

(a) Top-level orchestrator, local test.
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(b) Edge-level orchestrator, local test.
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(c) Top-level orchestrator, remote test.

Fig. 9: Average response time per orchestration request in Simple - only GET test.
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(a) Top-level orchestrator, local test.
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(b) Edge-level orchestrator, local test.
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(c) Top-level orchestrator, local test.

Fig. 10: Average power consumption in Simple - only GET test (a and b), and only GET test (c).

simultaneously send orchestration requests towards the top-
level orchestrator increases above 100, we can see that average
power consumption drops. The same happens also in the
case of more complex orchestration operations, as Fig. 10c
shows. As described for CPU and memory load, average power
consumption also decreases due to the request queuing that
significantly increases average response time.

VI. DISCUSSION

With reference to analytical evaluation of the collaborative
orchestration platform in Section IV, and its experimental
assessment in Section V, here we briefly pinpoint a few main
aspects to consider for an orchestration platform that reinforces
the orchestrated mobile edge networks.

1) Number of instances of reference points impacts the
communication delay and resource availability: The number
of available instances of reference points (equation (1), Fig.

TABLE VIII: Results for the top-level orchestrator in local tests.

Top-level
orchestrator

only GET test
waiting time

GET & PUT test
waiting time

Average CPU load (%)
Total number of
local orchestrators

1 0.5 0.1 1 0.5 0.1

1 0.4 1 3.6 0.4 0.8 2.9
2 0.8 1 7.9 0.8 1.3 6.4
10 3.8 8.6 29.7 3.9 23.9 24
100 31.9 52.9 123.8 19.9 24.2 26.1
300 71.7 114.4 127.9 34.1 35.8 39.7

Average response time (ms)
1 7 7 7 17 18 18
2 7 10 10 20 20 22
10 7 10 10 23 27 70
100 10 17 68 370 64 1139
300 35 69 408 2050 2238 2410

6a) in the orchestration platform reduces the overall number
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TABLE IX: Results for the local orchestrator in local tests.

Local
orchestrator

only GET test
waiting time

GET & PUT test
waiting time

Average CPU load (%)
Total number of
direct Lo-Los

1 0.5 0.1 1 0.5 0.1

1 0.9 1.7 7.7 1.02 1.96 8.83
2 1.7 3.6 17.3 2.67 3.9 18.23
3 3.4 5.4 26.3 2.99 7.21 23.3
4 3.6 8.5 33.9 4.04 9.01 34.74
5 4.3 10.2 42 5.68 11.35 42.71
10 10.4 21 89.7 11.29 22.05 79.9

Average response time (ms)
1 22 22 23 25 25 25
2 22 23 26 25 25 30
3 22 23 27 26 27 30
4 22 24 32 26 27 35
5 23 24 32 26 32 43
10 23 30 56 27 32 61

of hops (equation (2), Fig. 6b) that certain orchestration
request, originating from an edge-level orchestrator, needs to
pass in order to reach target edge-level orchestrator. Thus,
such number of instances of reference points needs to be
increased, as it not only reduces the communication delay
in orchestration requests but it also increases the amount of
available resources, given to each edge-level orchestrator at
disposal to efficiently perform orchestration operations (equa-
tion (3), with the maximum amount of available resource in all
domains expressed by inequation (4)). Considering diversity in
resource availability on the edges from the same or different
administrative domains, it is important for orchestrators to
have more resources at disposal for deploying CCAM services.
On the contrary, if orchestrators running on different edges
do not establish agreements for collaboration, CCAM services
might suffer from performance degradation due to the limited
amount of resources at the available edges. Due to the lack of
resources in its own domain, an orchestrator might not be able
to deploy e.g., a relevant safety CCAM service (e.g., change
the lane warning, brake warning, slow down warning) that
needs to support emergency situations on the road.

2) Number of instances of reference points impacts the
orchestration load: The negotiated MLAs increase the number
of used instances of reference points, thereby significantly
reducing the load of the top-level orchestrator, as the upcoming
requests from the edge-level orchestrators do not need to
be transferred via the top-level orchestrator to other edges.
Otherwise, the increase in number of requests increases the
CPU load (Fig. 8a), which then causes a significant increase
in average response time per orchestration request (Fig. 9a).
Such an increase in average response time might significantly
delay e.g., the instantiation of a CCAM service, or any runtime
operation such as scaling up/out. Let us consider that vehicle
is driving on the highway with the speed of 80km/h, thereby
consuming the CCAM service that sends notifications about
the conditions on the road. If CCAM service is unavailable
due to the scale-up operation, which is triggered to improve
service resource utilization and decrease service latency, and
if scaling-in lasts for approximately 500ms, it will result in
at least 500ms delay in road information update. Such an
increased response time will imply an outdated or delayed
notification sent to the vehicle that needs to change its ma-
noeuvre, i.e., vehicle will already pass the additional 11,1m,
which can prevent it from changing the lane in time.

3) Direct Lo-Lo links impact the average response time:
Given the aforementioned importance of the average response
time of orchestration for the CCAM services, the design

choices might include more direct links between edge level
orchestrators to decrease the response time, i.e., to fasten the
runtime orchestration operations such as scaling and service
relocation (Objective 3, i.e., equation (5)). Although deployed
on resource-constrained edge clouds, if low-latency links are
established, and used as per MLA, the edge-level orchestrators
process the orchestration requests with a reduced average
response time comparing to the top level orchestrators (Fig. 9),
due to i) the decreased load, and ii) the decreased propagation
and transmission latency over the direct link (Fig. 6c). With
respect to results presented for the average response time, and
CPU load, one reasonable design choice for the orchestration
can enforce using direct Lo-Lo links for those orchestration
operations that directly affect the runtime of the service (e.g.,
scaling from the previous example, or service migration),
while other operations such as instantiation/termination can
be performed via top-level orchestrators to balance the load
properly.

4) Orchestration operations impact the overall power con-
sumption on the edges: Albeit neither the top-level orches-
trators, nor the edge-level orchestrators, are intended to run
on low-energy Internet of Things (IoT) devices, their power
usage is still relevant for the overall energy consumption plan
in the 5G ecosystem, especially due to the evident increase
in consumption with the increase and complexity of orches-
tration requests. As shown in Fig. 10a, average consumption
increases for more than 100mW in case number of edge-
level orchestrators increases from two to 10, with two requests
per second from each. Thus, balancing the orchestration load
across multiple edge-level orchestrators is essential, as it also
balances the energy consumption across edges, making the
resource and service orchestration an energy-aware technique
for 5G ecosystem.

5) Orchestrators’ response time affects the service continu-
ity: We learnt that it is important to carefully consider the
number of hops presented in Section V, as it significantly
impacts the average response time per orchestration request,
which is also seen in the results presented in Section V. The
load on the orchestrators needs to be balanced in order to keep
their response time low. As we presented in Section III-C, and
illustrated in Fig. 3, achieving edge-to-edge service continuity
is possible if orchestration entities i) deploy a peering service
instance in the target domain towards which the vehicle is
driving, ii) relocate the application state from the source to
the target domain, and iii) relocate the user endpoint to the
target application instance. All these operations are performed
by the orchestration entities, thus, their response time is critical
for achieving timely relocation of the service, and maintaining
service continuity when vehicle is moving from one domain
to another.

VII. CONCLUSION

The 5G ecosystem is comprised of the cellular 5G system
along with a properly managed and orchestrated deployment of
virtualized network and service functions in distributed cloud
resources. Such ecosystem enables customized deployment
and operation of services for different sectors of the vertical
industry, and the automotive industry is a promising consumer
due to the high mobility and service demand with stringent
QoS requirements. In this paper, we propose a solution for the
orchestration of CCAM services within such 5G ecosystem to
meet the stringent requirements of moving users, which con-
nect to services in the network infrastructure. A key objective
is the availability and continuity of low-latency services at the



17

network infrastructure edges for a highly dynamic automotive
scenario and the associated management and orchestration
of these services in distributed edge clouds. Our proposed
solution leverages a multi-tier orchestration system as well
as localized management- and protocol operations for con-
nected and collaborative edge resources. With the analytical
and experimental evaluation, we draw conclusions on the
gain in accelerating orchestration operations while balancing
associated protocol and computational load over the distributed
and multi-layered orchestration platforms. Considering the
results, we signify the importance of the overall number of
instances of reference points in the orchestration platform,
which are established on-demand, and used as per MLA,
because it reduces the number of hops for an orchestration
request, thereby facilitating the access of edge-level orchestra-
tion entities to required resources for performing orchestration
operations. Also, our results show that the more instances
of reference points are set up and authorized between edge-
level orchestrators, the lower load is offloaded to the top-
level orchestrators, which ultimately results in the decrease
in their overall response time. A prototypical implementation
of the described solution is currently being deployed in an
automotive pilot of the H2020 5G-CARMEN project, on top
of the MNOs’ NFV and wireless network infrastructure, and
it will be also leveraged in the 5G-Blueprint project.
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IX. ANNEX

ACRONYMS

3GPP 3rd Generation Partnership Project
AF Application Function
API Application Programming Interface
CCAM Connected, Cooperative and Automated Mobility
CPU Central Processing Unit
DSRC Dedicated Short Range Communication
ETSI European Telecommunications Standards Institute
FA Federation Agent
FM Federation Manager
GPSI Generic Public Subscription Identifier
gRPC Google Remote Procedure Calls
IoT Internet of Things
k8s Kubernetes
KPI Key Performance Indicator
LCM Life-cycle Management
MANO Management and Orchestration
MEAO MEC Application Orchestrator
MEC Multi-Access Edge Computing
MLA Management Level Agreement
MNO Mobile Network Operator
NFV Network Function Virtualization
NFV-LO NFV Local Orchestrator
NFV-SO NFV Service Orchestrator
NFVI NFV Infrastructure
NSD Network Service Descriptor

ONAP Open Network Automation Platform
OSM Open Source MANO
PDN Packet Data Network
PoPs Points of Presence
QoS Quality of Service
RAM Random-Access Memory
REST REpresentational State Transfer
RNIS Radio Network Information Service
SSC Service and Session Continuity
UPF User Plane Function
V2N Vehicle-to-Network
V2X Vehicle-to-Everything
VAS Value-added Service
VIM Virtualized Infrastructure Manager
VNF Virtualized Network Function
VNFD VNF Descriptor
VNFM VNF Manager
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[7] N. Slamnik-Kriještorac, E. de Britto e Silva, E. Municio, H. Carvalho
de Resende, S. Hadiwardoyo, and J. Marquez-Barja, “Network Service
and Resource Orchestration: A Feature and Performance Analysis within
the MEC-Enhanced Vehicular Network Context,” Sensors 2020, vol. 20,
2020. doi: https://doi.org/10.3390/s20143852.

[8] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez,
“Benchmarking open source NFV MANO systems: OSM and ONAP,”
Computer Communications, vol. 161, pp. 86 – 98, 2020. doi: https:
//doi.org/10.1016/j.comcom.2020.07.013.

[9] P. Trakadas, P. Karkazis, H. C. Leligou, T. Zahariadis, F. Vicens,
A. Zurita, P. Alemany, T. Soenen, C. Parada, J. Bonnet, E. Fotopoulou,
A. Zafeiropoulos, E. Kapassa, M. Touloupou, and D. Kyriazis, “Com-
parison of Management and Orchestration Solutions for the 5G Era,”
Journal of Sensor and Actuator Networks, vol. 9, no. 1, 2020. doi:
http://dx.doi.org/10.3390/jsan9010004.

[10] ETSI, “Multi-Access Edge Computing (MEC); Framework and Refer-
ence Architecture,” ETSI ISG MEC, ETSI GS MEC 003 V2.1.1, 2019.
Online [Available]: https://www.etsi.org/deliver/etsi gs/MEC/001 099/
003/02.01.01 60/gs MEC003v020101p.pdf.

[11] G. Baggio, A. Francescon, and R. Fedrizzi, “Multi-domain service
orchestration with X-MANO,” in 2017 IEEE Conference on Network
Softwarization NetSoft), pp. 1–2, 2017. doi: http://dx.doi.org/10.1109/
NETSOFT.2017.8004259.

[12] B. Sonkoly, J. Czentye, R. Szabó, D. Jocha, J. Elek, S. Sahhaf,
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