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Abstract 

Well-designed and properly implemented Building Automation and Control Systems (BACS) can 

contribute to a reduction of the energy consumption in buildings, while increasing comfort and 

convenience for the occupants. For design and planning purposes, there is a need to quantify the 

potential impacts of implementing BACS, especially related to their capability for reducing the 

operational energy demand of a building. The simplified BAC factor method defined in standard EN 

15232 aims to provide a generic estimation of expected energy savings. Alternatively, dynamic energy 

performance simulations can provide more detailed insights on a particular building design.  

Comparing energy savings from BACS in different sources in literature reveals significant discrepancies 

between various studies and assessment methods. This paper aims to clarify and discuss the 

differences between the various assessments and to identify the parameters that could affect BACS 

(i.e. heating, domestic hot water supply, lighting and shading control systems) performance in 

residential buildings. It is concluded that simplified methods as the EN 15232 BAC factor method do 

not provide a reliable estimate of achievable energy savings. The results obtained by more detailed 

simulations reported in literature show a significant variation in BACS performance. Two main causes 

are identified. Factors such as building and installation design parameters, occupant behaviour, 

context (e.g. climate) and baseline energy demand affect the energy saving potential but are not 

explicitly taken into account in the BAC factor method. Next, a significant part of the variation in 

reported energy saving potential can be attributed to discrepancies in modelling methods. 

Highlights  

• Relative energy saving due to BACS are sensitive to case-dependent parameters. 

• Relative energy savings are higher when the absolute energy consumption is larger. 

• BACS performances are often compared to an inappropriate reference scenario.  

• Energy savings of BACS are overestimated in simulations due to modelling errors. 

• EN 15232 BAC factor method is poorly suited to define BACS energy saving potential. 
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BAC Building Automation and Control 

BACS Building Automation and Control System 

BAS Building Automation System 

BEMS Building Energy Management System 

BMS Building Management System 

DHW Domestic Hot Water 

EMS Energy Management System 

EPB Energy Performance of Buildings 

EPBD Energy Performance of Buildings Directive 

EU European Union 

HVAC Heating, Ventilation and Air Conditioning 

KPI Key Performance Indicator 

RES Renewable Energy Sources 

SBA Smart Buildings Alliance 

SRI Smart Readiness Indicator 

TBM Technical Building Management 

TES Thermal Energy Storage 

WWR (-) Window to Wall Ratio  

 

1 Introduction 

Reducing the energy demand of new and existing buildings is an objective in international energy and 

climate related policy initiatives. Traditionally, efforts have been focused on energy conservation 

measures (e.g. thermal insulation, window to wall ratio (WWR), airtightness) and modulation (e.g. 

shading) to reduce net demand. Highly efficient Heating, Ventilation and Air Conditioning (HVAC) units 

are installed to supply the remaining energy efficiently [1]. In more recent years, the integration of 

renewable energy is also explicitly taken into account, e.g. through the obligation to integrate 

renewable energy systems for deep energy retrofit and new buildings in the European Union (EU) as 

of 2014 [2–4]. Building Automation and Control Systems (BACS), on the other hand, have traditionally 

been less of a focus. Nevertheless, many sources underpin that BACS can be a cost-effective alternative 

or additional energy efficiency measure for the building stock [5–7]. The 2018 recast of the European 

Energy Performance of Buildings Directive (EPBD) recognises this, and puts explicit focus on better 

integration of BACS and other smart technologies in the buildings sector, amongst others through the 

introduction of a Smart Readiness Indicator (SRI) for buildings [8,9].  

In general, BACS, also known as Building Management Systems (BMS), Building Automation Systems 

(BAS), Energy Management Systems (EMS) or Building Energy Management Systems (BEMS), have the 

intention to provide an energy-efficient, economical and safe operation of building services. The 

European Commission defines it, therefore, as a system that includes all products, software and 

engineering services for automatic controls, monitoring, optimisation, operation, human intervention 

and management [10–15]. In residential buildings, BACS range from a simple thermostatic valve to 

more sophisticated control systems like home automation systems. In non-residential buildings, BMS 

with programmable or dedicated functions and outstations have become commonly implemented 

[15]. The European standard EN 15232 classifies BACS according to seven overarching control functions 

[10]:  

• heating control; 

• Domestic Hot Water (DHW) control; 

• cooling control;  
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• ventilation and air conditioning control;  

• lighting control;  

• blind control;  

• technical home and building management.  

The REHVA Guidebook 22 uses the same definition, but adds one more category: auxiliary energy, 

while other authors apply a wider interpretation: they categorise also services for life safety, alarm 

security, leakage detection and other smart functions under BACS [15–22].  

BACS do not only improve the energy performance of buildings, they can also contribute to a more 

comfortable, healthy and safe environment. As the energy consumption of buildings is strongly related 

to the occupants consumption patterns, improved comfort might even unlock additional energy 

savings [23,24]. Furthermore, an automated control system provides an optimal operation of all 

system components and accordingly extends their lifetime. As the operation costs are reduced while 

the real-estate value of the building also increases, many studies show that their implementation is a 

profitable financial investment; BACS often results in a payback period of less than 5 years 

[11,15,25,26]. In addition, the implementation of BACS has the benefit of requiring less space and time 

in comparison to traditional energy reducing measures which is especially important in a retrofitting 

context, while in a professional environment, the productivity of workforce can also significantly 

increase [13]. Furthermore, the implementation of more advanced BACS can contribute to the 

connection and communication with external grids; thus enabling to harness the energy flexibility 

potential of the building to better match demand and supply in a smart grid context [14]. 

The energy performance of BACS, in specific, is described in the EN 15232 standard. This standard is 

part of the Energy Performance of Buildings (EPB) set of standards, which is a series of standards 

considering the methodology for the assessment of the energy performance of buildings within the EU 

[10]. EU Member States can opt for using the EN 15232 approach for representing the energy saving 

potential of BACS within the national energy performance certification methods, but using this 

approach is not enforced [27]. In this standard, technology neutral functions are defined, e.g. a 

function pertaining to pump control of the heating supply system. Such function can be implemented 

with different levels of automation, expressed as a Building Automation and Control (BAC) efficiency 

class. For residential and non-residential buildings four classes (A-D) are defined. Class A corresponds 

to high-energy performance function, whereas class D corresponds to a non-energy efficient control. 

By default it is assumed that existing buildings have systems that correspond to BAC efficiency class C 

[10]. 

The EN 15232 standard describes two methods to calculate the energy saving potential of BACS: a 

detailed calculation method (i.e. detailed energy performance analysis with case detailed information) 

and a factor based calculation method (i.e. BAC factor method) [10]. The BAC factor method has the 

advantage of being simple and relatively straightforward to implement in conjunction with energy 

performance certification schemes. The relative energy savings reported in this method have been 

derived from a limited set of building performance simulation models.  

This paper sets out to review the actual achievable impact of energy performance benefits of BACS, 

specifically for residential buildings. Results from either measurement campaigns or more detailed 

parametric simulation studies will be structurally collected and compared with the EN 15232 BAC 

factor method, in order to assess its capability of providing sound insights on BACS performances for 

designers and investors. 

Firstly, several easy assessment tools are discussed and their strengths and weaknesses are identified. 

Consequently, the main part of this paper is devoted to detailed analyses of the energy performance 
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improvements by BACS. This paper focusses on individual BAC functionalities: heating, DHW supply, 

artificial lighting and shading control within residential case study buildings. Those functions are 

selected considering their absolute energy consumption and mutual relationship [6,28–34]. The 

parameters that cause the variation on the relative savings are identified, as well as some average 

values and intervals are proposed. To conclude, the paper compares the results of the BAC efficiency 

factor and the detailed energy performance analyses and identifies some shortcoming in current 

assessment and reporting methods. Moreover, an overview of the important parameters which 

influence the relative energy savings is given and advice for future research is formulated.  

2 Methods 

This review paper discusses simplified and more detailed assessments of BACS in residential buildings, 

with a focus on their energy performance. Relevant papers were collected through articles’ search in 
databases and search engines, including Web Of Science, Science Direct, IEEE Xplore, Springer Link, 

MDPI and Google Scholar. In a first step, a bread database search was initiated; combining the main 

key words (“residential buildings”, “domestic buildings”, “houses”, “energy performance” and “energy 
savings”) with more specific terms per chapter (see keywords included in Figure 1). The identified 

records were screened on relevance, based on their title, abstract and highlights, resulting in a reduced 

set of records. Depending on the methodology used, these papers were further categorized into two 

subdivisions: (i) simplified assessment tools and their application in case studies and (ii) detailed energy 

performance simulations and measurements. Especially for this latter group, the collected articles 

were further filtered using paper- and experiment-related exclusion criteria, including: 

• Topic: The scope of this paper is limited to the energy performance of BACS (i.e. heating, DHW 

supply, lighting and shading control) in residential buildings. Articles that not fit this scope 

were excluded from the selection, as well as case studies with simultaneously improvement of 

multiple BACS functions.  

• Publication year: Due to the fast technological progress, only case studies that are published 

between 2014 and now (2021) were included in the review paper.  

• Methodology: Only articles with a clear and detailed description of their research methodology 

and case study object were added to the sample.  

The list of papers was iteratively expanded by also reviewing the relevance of papers cited by the 

selected papers, as well as papers citing the selected papers. These papers were also subject to the 

selection process as described above, in order to potentially include them in the final selection. 

Duplicate records were discarded. An overview of the included case studies and main selection criteria 

is given in Figure 1. The information and case studies of these papers are complemented with articles 

that provide additional background information. 
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Figure 1. Overview of the collection and selection process of the included case studies (n=number of 

selected case studies).  

For each of the selected papers, the reported energy saving potentials were collected to be mutually 

compared. In order to enable further processing of this data and evaluation of parameters affecting 

variation in reported performances, the following information was also registered:  

• Type of control system and if possible, their classification according to EN 15232; 

• Case study object properties, e.g. location, building type, surface area; 

• Methodology: type of calculation/simulation/experiment; 

• Benchmark to which the reported energy savings were compared.  

Whereas the BAC factor method represents energy performance of BACS as a single figure, it is 

expected that building and installation characteristics can affect the achievable relative energy savings 

[35–37]. The energy savings of the EN 15232 BAC factor method are compared to the energy savings 

of comparable detailed analyses using average and extreme values. The data stemming from the 

review will be structured so to also provide insights on the variability of energy performance impacts 

and potential parameters affecting this variation.  

3 The assessment of BACS performance in buildings 

To report realistic energy savings of control systems, the resulting energy consumption must be 

assessed relative to an appropriate baseline. This baseline is strongly case depended, as there is a wide 

range of household comfort preferences and schedules [38]. Detailed measurements before and after 

BACS installations are hardly ever available in studies and would still require further processing to 

normalise data with regard to user behaviour and boundary conditions such as local weather 

conditions. Therefore, most studies rely on performance simulations rather than actual 

measurements. This introduces another cause of deviations, as simulation studies inevitably deploy 

synthetic models which are a simplification of a complex physical reality.  

Evaluating the energy performance of buildings (including its BACS) is becoming more common in 

commercial building design and engineering practice [10,36]. Performing relevant building simulations, 

however, requires a significant amount of experience, time and effort, which is reflected in its cost 

[39]. Especially for residential buildings, the expected savings of detailed simulations for BACS will 
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often not outweigh the cost of detailed calculations. Instead, simplified assessment methods 

concerning the energy performance and opportunities of BACS in (residential) buildings are proposed.  

3.1 BAC factor method 

The BAC factor method, as proposed in EN 15232, formulates BAC efficiency factors for seven different 

types of energy: two global factors concerning the thermal and electric energy and more specific, three 

detailed factors concerning the thermal energy for heating, cooling –only for non-residential buildings– 

and DHW supply and two factors with regard to the electric energy for lighting and auxiliary energy, 

both specific for non-residential buildings. This BAC efficiency factor expresses the energy 

consumption of a specific system, categorized in a BAC efficiency class, in relation to a reference 

scenario (BAC efficiency class C). Furthermore, those relative energy savings depend on the building 

type: the standard makes a distinction between residential and non-residential buildings. As a result, 

this method introduces no differentiation in BAC factors for various residential building typologies such 

as single family houses and apartment blocks. This in contrast to the method for the non-residential 

building sector, where EN 15232 reports distinct BAC factors for various building types such as offices, 

education buildings, hotels, restaurants, etc. In Table 1 an overview of the BAC efficiency factors that 

can be applied in residential buildings is given.  

Table 1. Overview of BAC efficiency factors (fBAC) for residential buildings [10]. 

  D C B A 

Overall 
fBAC,th 1.10 1.00 0.88 0.81 
fBAC,el 1.08 1.00 0.93 0.92 

Detailed 
fBAC,H 1.09 1.00 0.88 0.81 
fBAC,DHW 1.11 1.00 0.90 0.80 

 

Table 2. Abbreviations. 

th thermal energy 
el electric energy 
H heating energy 

DHW domestic hot water 
class D non-energy efficient BAC 
class C standard BAC 
class B advanced BAC and some specific TBM functions 
class A high-energy performance BAC and TBM functions 

 

Ippolito et al. (2014, 2016) and Felius et al. (2020) showed that the BAC factor method is an effective 

and easy way to estimate the energy savings in residential and non-residential buildings when the BAC 

efficiency class increases [40–42]. However, the proposed methodology is limited in scope and 

accuracy. Bonomolo et al. (2020) proposed, for example, to expand the BAC factor approach by also 

introducing a BAC efficiency factor for outdoor lighting. Furthermore, they showed that related BAC 

savings are strongly influenced by the latitude and the corresponding time schedules [43]. In contrast, 

the BAC factor method neglects the influence of different climate conditions on the relative energy 

savings. Moreover, the standard formulates for each building type only one profile for occupancy and 

internal heat gains while those factors also affect the energy consumption of the building [10].  

3.2 eu.bac classification system 
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The eu.bac system aims to inform on level of expected performance of a particular installation in a 

specific building through issuing certificates with a score ranging from AA to E. The classification 

method is based on the principles of EN 15232 as all individual functions are rated in relation to their 

BAC efficiency class. During an audit, all functions of this standard are examined and points are 

accordingly assigned. Moreover, the eu.bac system considers three additional domains: Key 

Performance Indicators (KPI), extended functionality and the use of certified products. All individual 

functions, their functionalities and domains are combined by weighting factors to achieve a global 

score. This global score is related to the energy performance of the building as an increase of 10 points 

corresponds to a reduction of the energy consumption of approximately 5%. Furthermore, the audit 

and certification process has to be repeated in time, with the aim to result in continuous improvements 

and an optimal performance of the system [11,44].  

According to the eu.bac assessment, the energy performance of a university building in Odense, 

Denmark could reduce with 13.5% to 28.5% by upgrading the BACS from eu.bac method category E to 

a class C and class AA system, respectively. However, this methodology provides only an estimation of 

the energy performance of the system as all European regions are covered by a global climate zone. 

Next to the building type, this parameter affects, in reality, the relative energy distribution between 

the investigated domains [25].  

3.3 Smart Readiness Indicator (SRI) 

In the 2018 revision of the EPBD a new common EU assessment scheme for smart buildings was 

introduced: the smart readiness indicator (SRI) [8]. The SRI aims to assess the ability of a building (i) to 

adapt to the needs of the users, (ii) to facilitate maintenance and efficient operation and (iii) to adjust 

to the situation of the energy grid. The SRI is developed to raise awareness on the benefits of smart 

controls in buildings in order to stimulate the investments and implementation of BACS by building 

owners and to support technical innovation in the building industry [12].  

Technical support studies have further developed the methodology of this indicator and suggested and 

evaluated potential implementation pathways [12]. In October 2020, a Commission Delegated 

Regulation and Commission Implementing Regulation were adopted, officially introducing the SRI as a 

common Union scheme [45,46]. The methodological framework of the SRI is a multi-criteria 

assessment scheme, evaluating the potential for smart services in a building. The score is normalised, 

compared to the maximum impacts that could be achieved in a particular building. In the evaluation 

nine technical domains and seven impact criteria are evaluated. Within a domain, each functionality 

has various levels of smartness and two to five corresponding functionality levels are formulated. 

During an audit all available services in the building are reviewed and accordingly, weighting factors 

are applied to combine all services into a global parameter. Those weighting factors are case specific 

as they are related to the building type and climate zone. Two type of audits are proposed: a simplified 

method where 27 services are considered and a detailed method, taking 54 services into account. As 

the simplified method only evaluates half of the functionalities, the procedure is mainly applied for 

residential buildings, while the smart readiness of non-residential buildings is preferably evaluated by 

the detailed method [12]. 

During the development process of the SRI by the technical support studies, stakeholders were given 

the opportunity to test the methodology and provide feedback to the study team. Various authors 

have reported their experiences with the draft methodology. They concluded that for all investigated 

building types, the proposed indicator provides clear and understandable information about its 

smartness [47]. They also perceive a need for detailed assessment protocols to increase the 

replicability of the assessment, and point towards the dependency of available information for legacy 
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systems [48–50]. Some authors suggest to extent the SRI with more quantitative data, e.g. proposing 

to quantify the load shifting potential of smart buildings and their interaction with the energy grid [51]. 

In such case, it is not solely the potential (or readiness) that is assessed, but also the actual in-use 

performance, e.g. based on the evaluation of an extended period of monitoring data.  

3.4 Alternative assessment tools 

Next to the aforementioned assessment methods, various researchers have proposed their own 

indicators to provide insights on the smartness of buildings and the corresponding energy 

performance. Within the BuildCOM project, the IBACSA tool is developed. This rating is based on the 

principles of EN 15232 and consists of a qualitative and quantitative assessment, where 60 services are 

evaluated for five criteria, i.e. energy efficiency and flexibility, maintenance and fault prediction, 

comfort and provided information to the occupants. The result allows to compare and to select the 

most appropriate BACS alternative for a specific building during the design stage [52]. Furthermore, 

the Smart Buildings Alliance (SBA) has created more advanced certification labels for smart buildings 

(i.e. ready2services and ready2grids) that are commercially available [53,54]. The more traditional 

building rating and certification systems, like LEED and BREEAM, do not explicitly account for BACS. 

Some other sustainability assessment tools like DGNB recently added an additional criterium with 

respect to advanced building technologies [11,55–57]. However, none of them is intended to estimate 

the energy savings that can be achieved by the implementation of BACS.  

In conclusion, various simplified assessment schemes for BACS performance in buildings exists 

including BAC factor method, eu.bac classification and the SRI. The main purpose of those assessment 

tools is to compare various building design based on smartness and energy consumption. The methods 

require minimal input and their results are presented so that they are easy comprehensible for a non-

technical audience. These approaches are mainly based on a checkbox approach, and due to the 

simplified nature of these assessment methods do not or only very limitedly quantify the BACS impacts. 

4 Evidence of BACS energy saving potential 

This chapter reviews scientific literature with respect to detailed performance analysis of BACS in 

residential buildings. The analysis is focussed on four main functions of BACS systems in domestic 

buildings, namely (i) heating control, (ii) domestic hot water control, (iii) lighting control and (iv) 

shading control.  

4.1 Heating control 

Heating demand in buildings is governed by many parameters, related to outdoor environmental 

conditions, building characteristics, heating systems setup, user behaviour and control features. Table 

3 lists a selection of studies which focus specifically on the impact of automation and control on the 

space heating energy consumption in domestic buildings.  

Rodríguez-Pertuz et al. (2020) reported that 7% to 95% of the heating energy could be saved due to 

zoned-control compared to central heating control. The broad variation within the reported relative 

savings can be attributed to the various scenarios that are simulated for this study. They investigated 

the influence of the apartment size, characteristics of the building envelope, different climate zones, 

occupancy patterns with corresponding heating schedules and door opening percentages (i.e. rate of 

air exchange) on the energy savings that are realised by improving central heating control. Of those, 

the amount of air exchange is reported to have the most significant influence on the relative energy 

saving potential of individual heating control with differences until 19% between the simulated 

variations [58]. Nevertheless, only the two extreme door opening situations (i.e. always open and 
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always closed) are simulated, while in realistic situations the position of the door varies through the 

day. Cockroft et al. (2017), furthermore, have investigated four variations of this specific parameter 

and it can be concluded that the achievable relative energy savings of individual room heating control 

compared to central heating control are strongly correlated to the amount of air exchange between 

the rooms [59]. Moreover, both studies concluded that the relative energy saving increases for smaller 

families and lower occupancy rates [58,59]. In contrast, the influence of the heat resistance of the 

building envelope only has a minor effect on the relative magnitude of savings from automated 

control. More specific, improving the heat resistance of the building envelope results in lower relative 

energy savings. This impact is found to be more pronounced for a detached building (bungalow) than 

for a semi-detached building. In general, this study reported a reduction of 8% to 37% after the 

implementation of individual room control in comparison to traditional central heating control [59]. 

Next to simulations, a measurement campaign of 8 weeks was conducted in a semi-detached house. 

Extrapolating the data resulted in a predicted relative annual energy reduction of the same order, i.e. 

12%-13%, with small variations due to different climate data, while the experienced indoor comfort 

remains the same. Hereby, the energy consumption of a pair of comparable semi-detached buildings 

with similar synthetic occupant behaviour are compared. The introduced occupant behaviour neglects 

the occupant-building interactions and as a consequence higher energy savings could be expected 

when those actions are included [60].  

The impact of various heating control strategies on the realised energy savings and comfort level is 

explored as well. The energy consumption of an occupancy driven smart thermometer with fixed 

setpoint can reduce the energy consumption by 11% to 34% compared to continuous heating, whereas 

an adaptive occupancy driven control even lowers the energy demand with 20% to 64%. However, the 

relative savings depend on the climate zone: both algorithms have a higher potential in hot climates 

than in cold regions [61]. The effect of thermostat control is also explored by Kull et al. (2020). Based 

on simplified simulations, they showed that smart thermostats have the highest relative saving 

potential when a lower setpoint is selected in cold climates: a reduction of 8% is found when the 

temperature setpoint is 21°C, while only 6% energy is saved when a temperature of 23°C was targeted, 

in comparison to a fixed temperature setpoint of 21°C and 23°C respectively. Additionally, the 

concluded that also the presence of a ventilation system with heat recovery causes an increase of 1% 

to 4% in the relative energy saving that are attributed to the smart thermostat. In general, energy 

savings of 5-11% are reported when the temperature setpoint is scheduled room specific. 

Nevertheless, there is significant variation between the rooms and more specific, a linear correlation 

(R²=0.9674 and R²=0.9471, respectively without and with ventilation) can be found between the 

relative energy savings and the time at lowest setpoint [62]. Kleiminger et al. (2014) found a similar 

relation as they concluded that the performance of predicting occupancy control systems is linearly 

correlated to the occupancy rate for poorly insulated buildings, while this relationship is less 

pronounced for buildings with an improved heat resistance of the building envelope. This resulted in 

reduced efficiency gains for colder and cloudier climate zones. Thus, the realised energy savings are 

also here subject to the building structure, occupancy schedules and climate conditions, resulting in 

an interval between 6% and 17% for the relative energy savings. Contrary, within the predicting 

occupancy control systems, the applied algorithm appears to not significantly affect the efficiency gain 

[63].  

All papers and control systems presented discuss the upgrade of emission heating control system from 

a traditional central heating system (EN 15232 BAC class D) to a central smart thermostat (class D) or 

an individual room control with communication (class A). Although all kind of central heating control 

systems are categorized in class D in accordance to EN 15232, energy savings up to 25% of the yearly 

heating energy are reported when an intelligent thermostat is installed. Similarly, the applied 
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occupancy control algorithm can affect the energy consumption. In general, the standard only distinct 

three classes (class B does not exist for domestic heating emission control), grouping various control 

systems within the same class although they affect the energy performance differently. The achieved 

energy savings can even further increase when individual room control is implemented, with reported 

values ranging between 5% and 95% in the discussed case studies. This spread can be attributed to 

different building and installation properties, for example air exchange rates, building type and thermal 

resistance of the building envelop, and various boundary conditions and usage patterns. Those 

parameters mutually influence each other so that it is impossible to characterize the impact of a sole 

parameter in all situations. Two of those parameters (i.e. air exchange and occupant presence) are 

simplified in the discussed case studies. In the reviewed papers, the occupant behaviour is presented 

as a returning deterministic model and consequently, an occupancy-based thermostat can easily 

predict the preheating time. However, realistic presence models include unexpected attendance. The 

comfort is, therefore, reduced as warm-up time is required to match the predefined setpoint. 

Furthermore, human-system interactions are not included in any of the discussed studies. Occupants 

can override the settings, but override behaviour does not significantly affect the energy savings as 

they have a short duration or are frequently adjusted [64].  

In the reviewed literature, both simulation based studies and measurement campaigns yielded similar 

results [59,60]. Nevertheless, all proposed models are a simplification of the intricate nature of the 

build environment. 



11 
 

Table 3. Overview of residential case studies with respect to heating control. 

study location methodology building 

control mechanism 

conform EN 15232 

(reference) 

energy savings 

Rodríguez-Pertuz 
et al. (2020) [58] 

Almeria, Bilbao and Burgos 
Spain 

simulations in 
EnergyPlus 

apartments of 52 m² and 
103 m² 

emission control A 
(central heating control) 

7%-95% of the annual 
heating energy 

Cockroft et al. 
(2017) [59] 

London and Glasgow 
United Kingdom 

simulations in 
ESP-r 

semi-detached house and 
detached bungalow 

emission control A 
(central heating control) 

8%-37% of the annual 
total energy 

Beizaee et al. 
(2015) [60] 

Loughborough 
United Kingdom 

measurements 
during 8 weeks 

and extrapolation 

semi-detached house of 
91.2 m² 

emission control A 
(traditional control) 

12%-13% of the 
annual heating energy 

Wang et al. (2020) 
[61] 

Fairbanks, New York City, 
San Francisco, Miami and 

Phoenix 
USA 

simulations in 
EnergyPlus 

house of 223 m² 
emission control D 

(fixed setpoint) 
25% of the annual 

total energy 

Kull et al. (2020) 
[62] 

Tallinn 
Estonia 

simulations in  
IDA ICE 

house of 100 m² 
emission control A 
(constant heating 

setpoint) 

5-11% of the annual 
energy 

Kleiminger et al. 
(2014) [63] 

Lausanne 
Switzerland 

simulations 
studio flat of 52 m² and 

house of 176 m² 
emission control D 

(fixed setpoint) 
6% to 17% of the 

annual energy 
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4.2 Domestic hot water supply control 

Domestic hot water supply represented 16% of the energy consumption for an European residential 

building in 2012, but can amount up to 50% of the energy demand of an energy-efficient dwelling and 

therefore its relative share is expected to increase the next years [65,66]. Improving the control of a 

DHW supply could result in significant energy savings.  

By introducing a simple scheduled control for a horizontal-oriented electric water heater, 29% of the 

input energy can be saved compared to temperature control, reducing the effective usage and 

standing losses [67]. However, the temperature and energy were not matched with the reference 

scenario, overestimating the achievable energy savings. In a second laboratory experiment with 

extended heating periods, matching the outlet temperature of the heater for both scenarios 

corresponded to a reduction of the relative energy savings with 10% (i.e. 16% to 6%) [68]. Both studies 

reported a mismatch between the results of various assessment methods: the results of the 

simulations underestimated the standing losses in comparison with the lab and field measurements 

[67,68]. Moreover, Booysen et al. (2019) investigated the performance of three different control 

systems: (i) the temperature-matched scheduled control is defined as the optimal control of the 

heating element switching sequence, thus minimizing the thermal losses while ensuring that water is 

drawn at the same temperature and volume, (ii) the energy-matched schedule control lowers the 

target temperature when water is drawn, while the volume of tapped water increases to deliver the 

same amount of energy and (iii) the energy-matched schedule control with daily Legionella sterilisation 

adds a daily increase of the water temperature to 60°C during 11 minutes to the energy-matched 

scheduled control. The temperature-matching method was found to save about 8% of the energy 

consumed by a classic thermostat control, while the energy-matching control even reduces the energy 

demand with 18%. This latter methodology combined with Legionella sterilisation still lowers the 

energy consumption by 13%, whereas it significantly reduces the risk of Legionella infections. For the 

energy-matched control strategies, the standing losses have almost been halved. Furthermore, they 

investigated 30 different heaters, which resulted in a range of energy savings for each control and only 

median values are here reported. In general, the installation and applied control algorithm have a 

significant influence on the achieved energy savings [69]. In a next paper, this model was further 

refined to include stratification (i.e. two-node model) and probabilistic water use patterns for a vertical 

electric hot water heater [70]. In general, this results in lower energy savings: the median electrical 

energy reduction of 77 electrical water heaters was only 2% for the temperature-matched optimization 

and 10% for both energy-matched schedules. More extreme cases of 34% savings are reported as well, 

depending on the investigated water heater and water usage pattern. The use of unpredictable hot 

water draw schedules leads to a decrease of the potential up to 56% compared to perfect 

foreknowledge [71]. The same conclusion is reported by Sonnekalb et al. (2019) as they propose a 

DHW storage charging control that predicts automatically the individual human behaviour with neural 

networks and Gaussian Process models. This kind of predictive control results in energy savings 

between 19% and 34% when they are compared to a default schedule. This variation is caused through 

errors in the prediction models and is closely linked to the predictability of the user behaviour. As a 

result of the prediction models, the discomfort, moreover, increases since the waiting period increases 

when hot water is demanded between the operating times [72]. This impact of the water draw profiles 

is also recognised by Kepplinger et al. (2015). They reported energy savings of 11%-12% for an energy-

driven optimization, compared to night-tariff switched DHW heater with only small difference caused 

by variances within the user scenarios (i.e. variation in maximal water temperatures and draw-off 

volumes) [73].  
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In conclusion, the performances of traditional charging control systems of classes A and C, in 

compliance with EN 15232, are discussed and an overview of all investigated papers is given in Table 

4. Since the respective authors have each formulated their own baseline scenario to compare the 

improved controls to, their findings are not directly comparable by the lack of a common reference. 

Moreover, they are expressed in different energy types and they refer to different time periods. 

Reducing the total heating loss corresponds to a smaller decrease of the total electric energy and there 

is no (linear) correlation between annual and daily energy savings. Furthermore, a mismatch between 

various assessment methods is reported and can be attributed to simplifications (e.g. stratification is 

neglected or simplified, perfect foreknowledge of the water usage schedules) in energy performance 

simulations. Higher relative energy savings are, therefore, reported in comparison to field 

measurements.  

Further differentiation in the energy performances of BACS can be attributed to the heater properties, 

hot water draw patterns and heating settings [74]. Next to this, the applied control algorithm affects 

the energy performance as various control algorithms within one BAC efficiency class lead to different 

results. Moreover, the inlet and outlet water temperature will probably affect the performances of 

advanced DHW supply control as well, but information about this is not mentioned in any of the 

studies. In contrast, the DHW supply control is not sensitive to building design features and other 

contextual factors, such as the climate zone and consequently, their performances are not evaluated 

within specific case study buildings. In general, introducing predicting schedules and control systems 

decreases the DHW heating energy in all reviewed studies, however at the risk of decreasing comfort 

and increasing Legionella contamination risks.
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Table 4. Overview of residential case studies with respect to DHW supply control. 

study location methodology building 
control mechanism conform EN 15232 

(reference) 
energy savings 

Booysen et al. 
(2019) [69] 

- simulations - 

control of DHW storage charging with direct 
electric heating or integrated electric heat 

pump A 
(continuous charging) 

4%-26% of daily 
the domestic 

electric energy 

Booysen et al. 
(2016) 

Cloete et al. (2017) 
[67,68] 

- 
lab and field 

experiments and 
simulations 

- 

control of DHW storage charging with direct 
electric heating or integrated electric heat 

pump C 
(temperature control) 

up to 29% of the 
daily input energy 

Ritchie et al. (2021) 
[71] 

- simulations - 

control of DHW storage charging with direct 
electric heating or integrated electric heat 

pump A 
(traditional thermostat control) 

1.3%-34% of the 
daily electric 

energy 

Sonnekalb et al. 
(2019) [72] 

- 
simulations and 

calculations during 
winter months 

- 

control of DHW storage charging with direct 
electric heating or integrated electric heat 

pump A 
(default schedule) 

 

19%-34% of the 
daily heating 

energy  

Kepplinger et al. 
(2015) [73] 

- 
simulations in 

MATLAB 
- 

control of DHW storage charging with direct 
electric heating or integrated electric heat 

pump A 
(night-tariff switched) 

11%-12% of the 
annual heating 

energy 
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4.3 Lighting control 

As stated by Simpson (2003), office buildings are the most important application of automated lighting 

control systems, and thus, their performances are mostly investigated in such an environment [75–
77]. Fewer researchers also examined their impact in residential buildings. The investigated automated 

lighting systems can be divided in occupancy-based and daylight-linked control systems. 

Occupancy-based control systems have the highest saving potential as they are implemented in 

irregular occupied rooms [78,79]. In residential buildings, a stairwell (of an apartment building) fits the 

requirements to achieve high energy efficiency due to the installation of motion sensors as it has an 

infrequent and unpredictable occupancy pattern. Lighting energy savings up to 98%, compared to a 

situation with continuous lighting modus, are reported in an apartment building in Ukraine [80]. This 

is probably a significant overestimation of the reality as manual lighting will probably not be switched 

on continuously, especially with eco-conscious residents. Lee et al. (2017) and Soheilian et al. (2019) 

investigated the performance of an occupancy-based control strategy in an apartment. A relative 

energy saving of 12% of the total lighting energy is reported in comparison with a manual on/off 

control. For this manual control, it is assumed that the residents do not turn off the lights as they return 

within about 15 minutes to the room. Limitations to this study are that it only covers a time span of 

three days and that the presence of daylight is ignored [81]. Soheilian et al. (2019) started their 

performance analysis with the same assumption. This resulted in energy savings of 27% and 34% for 

the kitchen, living room and bedroom, depending on the defined occupancy patterns. In this respect, 

the energy reduction increases as the occupancy becomes more irregular or increases [82]. 

Nevertheless, the potential of smart lighting systems is overestimated as dimming in only included for 

the occupancy-based lighting control and illumination by daylight is neglected. Furthermore, it is not 

clear of the energy use of sensors is included in the calculations: the automated lighting is scheduled 

based on the perfect foreknowledge of the occupant behaviour.  

More realistic simulations can be performed by implementing the daylight presence and adjust the 

light control accordingly. Dimming daylight-linked control systems are often combined with occupancy 

sensors to realise more optimal lighting control. In simulations, the combination of occupancy and 

daylight-driven lighting systems resulted in a reduction of the electric lighting energy with 

approximately 10% without delay. Only small differences between a single-, two- and three-person 

household are reported. In contrast, the delay time has a major impact on the energy consumption of 

automated lighting applications, increasing the energy consumption with 6%-10% to 19%-30% for a 5 

minutes and 15 minutes delay respectively. As a consequence, the initial energy savings of the 

advanced control systems are here neutralized when the delay exceeds 5 to 8 minutes [83]. 

Nevertheless, the setting of such a delay is a trade-off between achievable energy savings and the 

comfort perception of the residents [84]. Higher energy savings are probably achievable as it was 

assumed that building residents immediately turn on and off the lights when the illuminance level 

exceeds a predefined limit value [83].  

The impact of dimming control is also separately evaluated by some authors. Bonomolo et al. (2017) 

evaluated the lighting electricity consumption and lighting parameters for ten summer days in Italy. 

The implementation of a daylight-linked control system resulted in daily lighting energy savings 

between 0% and 36%, with an average of 20% in relation to a reference scenario with simulated on/off 

control. They assumed that the lights have equal operation hours for the automated and on/off 

control, but the lights cannot be dimmed in case of the on/off control. The differences between the 

energy savings can be explained by variations in daylight conditions and different schedules, although 

no correlation can be found between the reported occupancy patterns and relative energy savings 

[85]. Furthermore, Beccali et al. (2017) & Bonomolo et al. (2021) examined the performances of control 
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systems of BAC efficiency class C, i.e. a manual on/off control per room, and an automatic dimming 

light of class A, in accordance to EN 15232, at the same location. The results of a 13 month 

measurement campaign were extrapolated in order to obtain annual results: only 4%-17% (average of 

9%) of the lighting energy was saved over a central manual on/off control when a system of class C 

was implemented, whereas those savings increase to 19%-25% (average of 22%) when the system is 

upgraded to BAC efficiency class A. The differences between the energy savings can be here attributed 

to various daylight conditions (i.e. seasonal variations in daylight illuminance), applied control system 

and sensor position and light efficiency. Less energy efficient energy sources only resulted in an 

increase of about 1% of the relative energy savings, while differences up to 5% were noticed for 

different sensor locations and control systems. Those difference are also noticed for a class C systems, 

which the standard EN 15232 describes as manual control per room. In normal circumstances, there 

are hereby no sensors or advanced control algorithms. Furthermore, the baseline scenario, a manual 

control system of class D, is not further specified as well and consequently, those values have a low 

reliability [86,87].  

In all reviewed cases (Table 5), the implementation of automated lighting control resulted in a 

reduction of the lighting energy consumption compared with traditional manual control. The potential 

to decrease the lighting energy consumption with occupancy or daylight-dimming control systems is 

of the same order, while combining both will lead to the lowest energy savings. It must be noted that 

the results are here combined to a more realistic baseline scenario. The methodology that was 

followed to estimate those energy savings is in all cases a simplification of the complex reality: for 

instance, the impact of occupancy-driven lighting was researched neglecting the daylight illuminance, 

manual control was simplified and measurement campaigns were only performed for limited time 

spans. Furthermore, only lighting energy is here considered, while lighting produces additional internal 

heat gains. This affects also the thermal, i.e. heating and cooling, energy performances, while those 

performances are here not evaluated [6,88,89]. Especially for the occupancy-driven control systems, 

the made assumptions resulted in a major overestimation of the achievable energy savings. In general, 

this additional energy waste of manual control is a result of human imperfections as they forget to turn 

off the light when leaving. As a consequence, the amount of unnecessary activated hours in the 

reference scenario also influences the gained profit. Next to the human control behaviour, the 

presence of the residents affects the results as higher occupancy rates (especially average and peak 

occupancy rates) and irregular patterns increase the potential of smart lighting [79,90]. Moreover, the 

energy reduction is also sensitive to control-related properties like the applied control algorithm, 

sensor location, time of delay. In this regard, a shorter time delay for switch-off reduces the energy 

consumption of occupancy-driven control. However, the minimal time delay is defined to be 7 minutes 

in order to achieve an acceptable lighting comfort [75,78]. As this time delay was set in the case study 

by Hafezparast Moadab et al. (2021), the combined occupancy- and daylight-driven control system will 

no longer positively affect the lighting energy demand [83]. It can be expected that also other boundary 

conditions have their impact, although those are not investigated in the discussed studies [90–92]. 
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Table 5. Overview of residential case studies with respect to lighting control. 

study location methodology building 
control mechanism conform 

EN 15232 (reference) 
energy savings 

Burmaka et al. (2020) 
[80] 

Ternopil 
Ukraine 

observations of the lighting 
pattern during 4 weeks and 

calculations 

stairwell of apartment 
building 

occupancy control A 
(continuous lighting mode) 

94%-98% of the 
lighting energy 

Lee et al. (2017) [81] - measurements during 3 days 
apartment (residential 

model) 
occupancy control A 

(manual control) 
12% of the daily 
lighting energy 

Soheilian et al. (2019) 
[82] 

Sweden calculations in excel one bedroom apartment 
occupancy control A 

(manual control) 

27%-34% of the 
annual lighting 

energy 

Hafezparast Moadab 
et al. (2021) [83] 

Gothenburg 
Sweden 

simulations in DIALux 
two-room apartment of 75 

m² 

occupancy control A 
light level/daylight control A 

(manual control) 

-10%-10% of the 
annual electric 
lighting energy  

Bonomolo et al. (2017) 
[85,93] 

Palmero 
Italy 

measurements during 10 
days 

laboratory of 106 m² 
(apartment: residential 

model) 

light level/daylight control A 
(manual (on/off) control) 

0%-36% of the 
daily electric 

lighting energy 

Beccali et al. (2017)  
Bonomolo (2021) 

[86,87,93] 

Palmero 
Italy 

measurements during 13 
months 

laboratory of 106 m² 
(apartment: residential 

model) 

light level/daylight control C 
and A 

(manual control) 

4%-17% and 19%-
25%, respectively, 

of the annual 
lighting energy 



18 
 

4.4 Shading control 

Another type of building automation and control systems with an important relevance to domestic 

buildings is the control of shading devices. The EN 15232 standard takes a narrow view on this topic, 

only treating blind controls. In this review, the scope is broadened to also include other types of 

shading systems. Most of the research on the topic of shadings and their control is focussed on non-

residential buildings, and in particular office buildings, because the higher internal gains and the direct 

impact of thermal comfort on productivity of the employees [94–102]. Nevertheless, the 

implementation of shading in residential buildings can also improve the thermal indoor and visual 

comfort and lower the thermal energy consumption.  

Several papers, see Table 6, investigated the effect of different control strategies on the energy 

performance of a residential model. The first study showed that venetian blinds with an automated 

control strategy reduce the annual energy consumption with 15% compared to fixed shading with an 

inclination angle of 80°. More specifically, the savings incline to 30% till 60% in summer, whereas the 

energy demand in winter decreases with 10% till 20% through additional solar gains. Those energy 

savings are achieved for a simplified one-room model of only 25 m² with one window in each 

orientation. Furthermore, the lighting is assumed to be switched on as the residents are present and 

awake, not profiting of daylight illuminance. Through this assumption, the position of the blinds have 

no impact on the lighting energy consumption [103]. Yao et al. (2016) simulated the energy 

performance of four automated control strategies and concluded that relative heating and cooling 

energy reductions with 5% to 11% are possible, only by changing the applied algorithm and 

corresponding sensor: solar radiation driven control reduces the energy consumption more than 

systems that react on indoor temperature sensors, combined solar radiation and indoor temperature 

sensors and outdoor temperature sensors. However, the orientation of the windows has an impact on 

the ranking of those control strategies. Furthermore, it must be noticed that only heating and cooling 

energy are included in the comparison; thus excluding effects on artificial lighting energy use [104]. 

San Martin et al. (2017) also recognized that a simplified solar radiation-based control system achieves 

equal energy savings as more complex control systems, expanding the analysis by including the 

influence of the type of blinds and the window properties. They found that four of the five investigated 

control strategies resulted in a reduction of the energy consumption, ranging from 15% till 35% 

compared to a scenario where the blinds are only closed during night. Taking into account the 

competing interests (i.e. energy consumption and natural illuminance), the thermal energy 

consumption increases again with 2%-5% for half open blinds compared with the thermal energy 

optimization with closed blinds. However, this study only takes into account heating, cooling and 

dehumidification energy, while shading also influences the consumed lighting energy [97,98]. 

Furthermore, the energy reduction is related to the thermal characteristics of the windows since the 

relative energy savings realised with automated control strategies by triple glazed windows are 

approximately 10% smaller compared to the savings realised by double glazing windows. Moreover, 

two types of shutters, i.e. massive and non-massive, are investigated, resulting in an additional 

decrease of the thermal energy by about 12% when double glazed windows are installed, while this 

difference is almost neglectable when high efficient triple glazing is applied [105]. Moreover, Firlᶏg et 

al. (2015) found savings between 8% and 20%, with an average of 13%, of the total energy consumption 

when automated control is installed compared to manual control. The energy consumption that 

corresponds to the manual control is calculated based on a survey that identified the state of the blinds 

during the day. Hereby, the manual control is simplified to three different states and only three periods 

during day and two seasons were distinguished. The human behaviour is really simplified as responders 

only could choose one option for a whole season [106]. Furthermore, the variance in relative energy 

savings is attributed to different control algorithms and climatic conditions. In this respect, automatic 
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shading has more potential in cooling dominated climates as they mainly affect the consumed cooling 

energy [107]. 

In conclusion, by introducing automated control algorithms, the annual energy consumption is 

reduced with 8%-35% compared to conventional manual control. However, it is important to notice 

that the reviewed studies not all refer to the total energy consumption. Firstly, this broad range can 

be explained in relation to the various reference scenarios: Yao et al. (2016) only investigated control 

strategies which are classified in BAC efficiency class B, whereas there is also referred to manual control 

and operation, respectively, classes C and D. The lowest energy reduction is expected when is 

compared to the most performant baseline scenario, while other factors (e.g. building characteristics 

and location) also affect the achieved energy savings. The intricacy of comparing results of BACS 

savings reported by authors using different methods and benchmarks is also apparent here: while San 

Martin et al. (2017) report 26% energy savings when improving from BAC efficiency class C to B; the 

savings reported by Firlᶏg et al. (2015) are lower (13%) although here the class B performance is 

compared to manually operated shading (class D). Nevertheless, the differences between manual 

operation and control are almost neglectable in a simulation as both make an assumption that the 

occupants not actively react on solar radiation and overheating. Furthermore, the different studies 

also indicate that the highest energy reductions are achieved for well-insulated massive buildings with 

a high WWR. Next to the building characteristics, the realised profit also depends on the investigated 

control algorithm and shading type.  
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Table 6. Overview of residential case studies with respect to shading control. 

study location methodology building 
control mechanism conform 

EN 15232 (reference) 
energy savings 

Nicoletti et al. (2020) 
[103] 

Cosenza 
Italy 

simulations in 
EnergyPlus 

square room of 25 
m² (residential 

model) 

blind control B 
(fixed shading) 

15% of the annual heating, 
cooling and lighting energy 

Yao et al. (2016) 
[104] 

China 
simulations in 

EnergyPlus 
apartment building 

of 3168.9 m² 
blind control B 

(outdoor temperature sensor) 
5%-11% of annual the 

heating and cooling energy 

San Martin et al. 
(2017) [105] 

Madrid 
Spain 

simulations in 
TRNSYS 

residenatial building 
of 67 m² 

blind control B 
(closed during the night and 

open when there is radiation) 

15%-35% of the annual 
heating, cooling, 

humidification and 
dehumidification energy 

Firlᶏg et al. (2015) 
[107] 

Anlanta, Phoenix, 
Minneapolis and 
Washington DC 

USA 

simulations in 
EnergyPlus 

residential building 
of 223 m² 

blind control B 
(manual operation) 

8%-20% of the annual total 
energy 
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5 Discussion  

The results of more detailed energy performance assessments are compared to the simplified 

procedures of EN 15232, i.e. the BAC factor method. This factor method is the underlying evaluation 

method of the eu.bac certification system and the SRI.  

The methods to assess the impacts of the implementation or upgrade of BACS in residential building 

can mainly be divided into three groups. First of all, (i) simplified energy performance assessments 

allow to estimate the energy savings without any difficult computation. In this regard, the BAC factor 

method provides guide values that may be applied for all types of residential buildings. The selection 

of the appropriate BAC factor is only subject to the level of automation (i.e. different BAC efficiency 

classes) and the energy type. Moreover, this standard is often implemented in complete ratings and 

certification tools who judge the energy performance and the potential of implementing BACS within 

a building. The results of those assessment tools are expressed as a number or classification and 

therefore, comprehensible without any foreknowledge. They are thus helpful to illustrate the potential 

for a non-technical audience, and instigate them to further upgrade the BACS.  

Next to simplified methods, the relative energy savings can be determined by (ii) measurements. Those 

measurement campaigns are often limited in time and, only daily or monthly results are accordingly 

obtained. In order to achieve annual information, extrapolation is applied, but this adds a secondary 

uncertainty to the results. Moreover, there are differences reported between the measurements of 

the reference case and improved situation as both are integrated in various buildings or are tested at 

different moments, for example. Hereby, the human behaviour is a parameter that is out of control 

for the researchers. Fictive internal heat gains could be included in measurement campaigns as 

workaround, but this implies simplifications in human-building and human-system interactions.  

A third assessment method to predict savings attributed to BACS is by making use of (iii) detailed 

numerical energy performance simulations. Such an assessment results in detailed time-series data 

and annual information about the energy performance. Simulations allow parameter analysis thereby 

supporting decision making in the design process. Nevertheless, in order to perform such a dynamic 

simulation with sufficient detail, a significant amount of experience and effort is required. In general, 

it is difficult to include the unpredictability of the human behaviour and as a consequence, the results 

of simulations do not fully coincide with the achieved savings. Accordingly, there could be a mismatch 

between the results of the simulations in comparison to the results that are found with measurement 

campaigns. Especially for DHW supply control, this is reported and can be attributed to simplifications 

in the simulation model and perfect foreknowledge of the occupant behaviour 
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Table 7. Overview of the average energy savings. 

 BAC efficiency class energy savings  

 reference improved  
BAC 

factor 
detailed analyses 

difference 

    minimum maximum average  

emission 
control 
heating 

D A 26% 5% 95% 20% -6% 

occupancy 
control 
lighting 

C A 8% 12%  34% 24% +16% 

shading 
control  

D/C B 14/7% 8% 35% 17% +3/10% 

        

 

Table 7 provides an overview of three discussed BACS improvements and their energy performance, 

according to the BAC factor method and an average value for the savings reported in more detailed 

analysis in scientific literature. The BACS that are investigated in the detailed case studies are assigned 

BAC efficiency classes and subsequently, average annual energy savings for all functionalities are 

calculated. This average is not an absolute value since results of various studies are compared and 

consequently the sampling is not proportional. Besides this, the interval of the reported energy savings 

is given as well to give an idea of the spread on those results. Furthermore, it is here impossible to 

report one single value for DHW storage charging control since the various case studies refer to 

different baseline scenarios and both, annual and daily energy savings are reported, while only annual 

results can be compared with the BAC efficiency factor.  

The results show that there are small to moderate differences between the average energy savings of 

the detailed studies and the corresponding BAC efficiency factors. For the case studies investigated, 

the BAC factor for heating energy is an overestimation of the energy savings for emission control by 

heating with 6%, but the variation on those results is considerable. On the other hand, the BAC factor 

for electric energy underestimate the energy savings that can be achieved by upgrading the BACS to 

occupancy controlled lighting with 16%. The energy savings that are reported here all exceed the 

prediction of the BAC factor. Furthermore, the same BAC factor corresponds to the average energy 

savings that are achieved when shading control is upgraded from class D to B in detailed computations 

and here a small underestimation of 3% is reported. Manual operation and control were here 

combined as the underlying control algorithm is almost the same for both. When those results are 

consequently compared with BAC efficiency class C (manual control) the BAC factor underestimate the 

results with 10%.  

In general, the BAC factor can be used as rough first estimation, although those energy savings can 

show substantial deviations with more realistic case studies. This is caused, inter alia, by differences 

within the considered energy types. EN 15232 propose separate BAC efficiency factors for thermal and 

electric energy types, while the relative energy savings that are reported in the more detailed case 

studies refer to a combination of energy types. The BAC factor for electric energy is, for instance, 

applied for blind control, whereas a significant part of the energy savings are related to heating and 

cooling energy. Moreover, interpretation is required to categorize BACS in the various BAC efficiency 

classes and when an inaccurate class is selected, a wrong BAC factor is applied. Lastly, the building 

properties and contextual factors that are considered have an influence on the calculated results. 
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Originally, the BAC efficiency factor was based on the analysis of a ‘shoe-box model’, which is not a 

realistic building model, while only one occupancy pattern is taken into account and the influence of 

the climate zone is neglected [10].  

Table 8. Overview of the factors affecting the relative energy savings. 

parameter heating 
DHW 

supply 
lighting shading 

building design 

building/room type X  X  

building/room dimensions X  X  

characteristics of the building envelope X  X X 

amount of air exchange between rooms X    

installation design 

type of installation  X X X 

design properties of the installation  X X  

settings X X X  

control algorithm X X  X 

contextual factors 

occupant behaviour X X X  

climate zone X X1  X 

latitude and orientation X X1 X X 

 

In reality, the achieved energy savings are subject to different building characteristics and boundary 

conditions. An overview of the identified parameters for each control system is given in Table 8. This 

overview is probably not comprehensive as only a limited number of parameters are yet investigated 

for each function in scientific literature. All mentioned parameters could be divided in three categories. 

Firstly, the building design features influence the energy performances of heating, lighting and shading 

control systems. Moreover, the two remaining groups of parameters, the installation properties and 

contextual factors, affect the relative energy savings of the four investigated functionalities. In general, 

it can be concluded that higher relative energy savings are achieved when the absolute energy 

consumption of the related energy types is increased, although the influence of the occupancy rates 

on all control systems is not that clear. Furthermore, the implementation of more advanced control 

systems results in the highest relative energy savings in moderate and hot climate zones, whereas the 

highest absolute savings of advanced heating control are achieved in colder places. The geological 

location, and more specific the latitude, affects the performances of all investigated control systems. 

Especially for lighting, daylight conditions strongly impacts the potential of automated control, while 

the sun irradiance affects the operation of renewable energy sources and produces internal heat gains.  

Since the relative energy savings are influenced by case-dependent parameters, they have to be 

calculated for an appropriate scenario in order to achieve realistic results. Realistic occupant behaviour 

and human-building interactions seems difficult to implement correctly in simulations and 

measurement campaigns. As they can affect the achieved energy savings, those simplifications affect 

the retrieved savings, often reducing the extreme values. 

Moreover, since the various authors did not use a common approach to define the baseline scenario, 

results obtained for different case study buildings are very difficult to compare. Moreover, only part 

 
1 Only for renewable energy devices [108] 
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of the reviewed papers contains detailed information, e.g. characteristics of the building, occupancy 

patterns, etc., about their case study, while this information is required to interpret the reported 

energy performances and also an prerequisite to repeat some of the analyses by other authors.  
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6 Conclusion 

There are various assessment methods available for BACS nowadays. Simplified assessments as the 

BAC factor method of EN 15232, SRI and the eu.bac method give insights in BACS performances for a 

non-expert audience and can encourage the uptake of advanced systems. This work set out to review 

the achievable energy performance savings as reported in measurement campaigns or more detailed 

simulation studies, and compare this to the relative energy savings as defined in the BAC efficiency 

factor method of EN 15232, with a focus on residential applications. The analysis shows that the energy 

performances of BACS reported in more detailed calculations deviate by 6% to 16% from the relative 

energy savings obtained with the simplified BAC factor method. An interval of energy reductions is 

reported for each of the improvements as the relative energy savings are sensitive to three groups of 

boundary conditions: building design features, installation characteristics and contextual parameters. 

The performances of heating, lighting and shading control are affected by the three categories, while 

only the installation design and context influence the performance of DHW supply control. The impact 

of each investigated parameter can be investigated in dynamic building energy performance 

simulations. Nevertheless, those results can also slightly differ from the reality as simplifications and 

assumptions are included in the evaluation. Often, the occupant behaviour is modelled in a highly 

simplified way, e.g. through the use of deterministic schedules. In reality, user behaviour is much less 

predictable; leading to less optimal control in actual operation conditions, which results in lower 

comfort and higher absolute energy consumption. 

This study explored some of the potential factors affecting the relative energy savings, but more work 

is to be done in order to complete this list and to clarify and quantify their relation with the energy 

performance. It appeared that the formulation of realistic and unpredictable occupant behaviour is 

crucial to estimate those energy savings. Additional parameters as thermal and visual comfort should 

be included as well to improve the human comfort perception and energy performance 

simultaneously.  
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