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Abstract

Alzheimer’s disease (AD) is one of the most complex systematic malfunctions of the nervous
system that are known. The clinical symptoms of this neurodegenerative disease are alter-
ations in cognition and behaviour that can lead to the onset of a dementia syndrome. Disease
mechanisms that lead to neurodegeneration and cognitive impairment in sporadic AD are
not well understood yet, making it difficult to predict the clinical progression of patients at
the early stages of the AD continuum. Currently, no single biomarker or exam is sufficient
to diagnose AD and existing standard instruments are not sensitive enough to detect subtle
changes, predict the clinical course, and recognize heterogeneous forms of AD. This thesis
presents two computational anatomy strategies aiming to identify and quantify neurode-
generation patterns associated with different clinical stages along the AD continuum using
two different modalities of magnetic resonance imaging. A third contribution consists of a
data-driven strategy to develop a set of domain-specific scores that result useful to estimate
the risk of and predict the progression from mild cognitive impairment to dementia. Evalua-
tion of these strategies with machine-learning and statistical inference methods demonstrate
the potential of the proposed quantitative tools to help patients’ clinical management and
monitoring and could be used to improve the evaluation of potential disease-modifying in-
terventions.

Keywords: Alzheimer’s Disease, Neuroimaging, Medical Image Processing, Magnetic Res-
onance Imaging, Cognitive Impairment.
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Resumen

La enfermedad de Alzheimer (EA) es una de las fallas sistemáticas del sistema nervioso más
complejas que se conocen. Los śıntomas cĺınicos de esta enfermedad neurodegenerativa son
alteraciones de la cognición y el comportamiento que pueden conducir a la aparición de un
śındrome de demencia. Los mecanismos de la enfermedad que conducen a la neurodegen-
eración y al deterioro cognitivo en la EA aún no se conocen bien, lo que dificulta la predicción
de la evolución cĺınica de los pacientes en las primeras fases de la EA. Actualmente, ningún
biomarcador o examen es suficiente para diagnosticar la EA y los instrumentos estándar
existentes no son lo suficientemente sensibles para detectar cambios sutiles, predecir el curso
cĺınico o reconocer presentaciones at́ıpicas de EA. Esta tesis presenta dos estrategias de
anatomı́a computacional destinadas a identificar y cuantificar los patrones de neurodegen-
eración asociados a diferentes etapas cĺınicas a lo largo del continuo de la EA utilizando
dos modalidades diferentes de imágenes de resonancia magnética. Una tercera contribución
consiste en una estrategia guiada por datos para desarrollar un conjunto de puntajes es-
pećıficas por dominio que resultan útiles para estimar el riesgo y predecir la progresión del
deterioro cognitivo leve a la demencia. La evaluación de estas estrategias con métodos de
aprendizaje automático y de inferencia estad́ıstica demuestra el potencial de las herramientas
cuantitativas propuestas para ayudar al manejo y el seguimiento cĺınico de los pacientes y
podŕıa utilizarse para mejorar la evaluación de posibles intervenciones que puedan modificar
el curso de la enfermedad.

Palabras clave: Enfermedad de Alzheimer, Neuroimágenes, Procesamiento de imágenes
médicas, Imágenes de Resonancia Magnética, Deterioro Cognitivo.
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Samenvatting

De ziekte van Alzheimer (AD) is een van de meest complexe systemische storingen van
het zenuwstelsel die bekend zijn. De klinische symptomen van deze neurodegeneratieve
ziekte zijn veranderingen in cognitie en gedrag die kunnen leiden tot het ontstaan van een
dementiesyndroom. De ziektemechanismen die leiden tot neurodegeneratie en cognitieve
stoornissen bij sporadische AD zijn nog niet goed begrepen, waardoor het moeilijk is om de
klinische progressie van patiënten in de vroege stadia van het AD continuüm te voorspellen.
Momenteel is geen enkele biomarker of onderzoek voldoende om de diagnose AD te stellen en
de bestaande standaardinstrumenten zijn niet gevoelig genoeg om subtiele veranderingen te
detecteren, het klinische verloop te voorspellen en heterogene vormen van AD te herkennen.
Dit proefschrift presenteert twee computationele anatomiestrategieën die gericht zijn op het
identificeren en kwantificeren van neurodegeneratiepatronen geassocieerd met verschillende
klinische stadia in het AD continuüm, gebruikmakend van twee verschillende modaliteiten
van magnetische resonantie beeldvorming. Een derde bijdrage bestaat uit een data-gestuurde
strategie om een reeks van domeinspecifieke scores te ontwikkelen die bruikbaar zijn om het
risico in te schatten op en de progressie te voorspellen van milde cognitieve stoornissen naar
dementie. Evaluatie van deze strategieën met machine-learning en statistische inferentie
methoden tonen het potentieel aan van de voorgestelde kwantitatieve instrumenten om het
klinisch management en de monitoring van patiënten te helpen en zouden gebruikt kunnen
worden om de evaluatie van potentiële ziekte-modificerende interventies te verbeteren.

Sleutelwoorden: Ziekte van Alzheimer, Neurobeeldvorming, Medische Beeldverwerking,
Magnetische Resonantie Beeldvorming, Cognitieve Stoornis.
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1 Introduction

1.1 Alzheimer’s disease dementia

Dementia is a syndrome characterized by the progressive deterioration of cognitive function
as a result of a brain disease. This syndrome can affect memory, thinking, judgment and
behavior up to the point people are unable to perform daily life activities and require constant
assistance for the rest of their life. The biggest known risk factor for a person to develop
dementia is ageing. A report combining multiple studies estimated the incidence of dementia
doubles with every 6.3 year increase in age [148]. The increased life expectancy and aging of
the general population have made of dementia a global public health concern. According to
global estimates, in 2016 there were 43.8 million individuals living with dementia worldwide
[135] and it is expected that by the year 2030 this number will reach 75 million [148]. In
addition to the associated mortality, most of the social and monetary impacts of dementia
stem from disability, posing an increasing burden on caregivers and healthcare systems.
The most common cause of dementia is Alzheimer’s disease (AD), a neurodegenerative dis-
order with no effective disease-modifying treatment currently available [67, 125, 166]. This
disease is pathologically defined by the presence of Amyloid-β plaques and neurofibrillary
tau deposits [171, 92] associated with neuronal and synaptic loss (Figure 1-1). Although
these processes might lead to cognitive impairment and dementia, Alzheimer’s pathology
can be present in people who did not show symptoms during their lifetime [50].

(a) AD pathology (b) Healthy neuron

Figure 1-1: Illustration of AD pathology compared with healthy neural tissue. AD is defined
by the abnormal accumulation of two proteins that form extracellular Amyloid-β
plaques (in dark yellow), and intracellular tangles of tau (in blue). Image source:
National Institute on Aging, National Institutes of Health (NIA-NIH).

Excluding the genetic mutations that cause the early-onset hereditary AD and account for
less than 5% of AD cases, the etiology of late-onset AD is complex and poorly understood
[67]. Experts believe that Alzheimer’s develops as a result of multiple factors such as genetic,
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lifestyle and environment. Besides ageing, other risk factors have been identified, including
vascular diseases (e.g. hypertension, obesity), genetic susceptibility, and life-style factors
such as diet, physical and mental activity, alcohol consumption, and education level [171].
Traditionally, AD has been recognized in terms of its typical clinical manifestation, that is
the multi-domain amnestic dementia. This typical expression of AD is characterized by the
progressive deterioration of episodic memory and other cognitive domains such as language,
executive function, attention, and visuospatial abilities [210]. Examination of the brain in
autopsy-confirmed cases of AD has shown a characteristic pattern for the location of AD
degeneration: initially, it appears in the entorhinal cortex progressing through the hippocam-
pus and medial temporal structures (Shown in Figure 1-2), to eventually affect association
cortices [19, 132]. This neuropathological pathway correlates with the clinical picture of
typical AD which starts as an amnestic syndrome of the hippocampal type accompanied by
some impairment in executive functions or naming abilities [48].

(a) Hippocampus

(b) Medial Temporal Lobe (MTL)

Figure 1-2: Characteristic AD lesions have been found in the hippocampus and medial tem-
poral lobe. Atrophy of these brain areas has been recognized as a “topographical”
biomarker of AD.

Although the typical AD is the most frequent, some atypical presentations of AD have been
recognized. These atypical forms vary from the amnestic syndrome presenting a predomi-
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nant executive function impairment [203], aphasia and visuospatial dysfunctions [50]. The
existence of such atypical forms of AD has been confirmed with neuropathological examina-
tions of brain tissue [132] and analyses of cortical atrophy patterns [46] finding cases with
spared hippocampal atrophy but posterior cortical atrophy.
All the known clinical signs and symptoms of AD are related to disturbances in cognition
and behavior. Depending on the presentation and stage of the disease, one or multiple
cognitive domains can be affected. Such symptoms are evaluated with the neuropsychological
examination consisting of tests to assess the overall level of Cognitive Impairment (CI),
specific tests to detect alterations in particular domains like memory, and interviews with
the patient and relatives to grade the severity of dementia-like symptoms. The clinical onset
of AD is determined by the clinical diagnosis of dementia (or major neurocognitive disorders),
requiring the cognitive deficits to interfere with the ability to perform everyday activities [8].
However, cognitive impairment can be detected before it compromises the daily functioning,
i.e. in a pre-dementia stage of the disease.

Mild cognitive impairment

When individuals show some cognitive decline in one or more cognitive domains, but this
decline does not interfere with their activities or behavior, they are diagnosed with mild
cognitive impairment (MCI). This broad category includes patients with similar clinical
features but a variety of different causes including neurodegenerative disease such as AD,
psychiatric conditions like depression, or even side effects of certain medications can be
responsible for the perceived cognitive impairment.
Traditionally, MCI has been classified into two sub-types: amnestic and non-amnestic [143],
depending on whether there is memory impairment or not. In non-amnestic MCI, cognitive
domains like language, visuospatial skills, or executive function show some impairment that
drives the distinction from normal ageing. Initially, amnestic MCI was thought to represent
a prodromal form of AD [143] but nowadays it is known that multiple pathologies can cause
amnestic MCI and not all AD cases show memory dysfunction at pre-clinical stages.
Although the group of subjects with amnestic MCI has a homogeneous clinical phenotype,
it is highly heterogeneous in terms of the underlying biology, compromise of other cognitive
domains, and specific domain decline trajectories [134, 54, 27]. This heterogeneity makes
it difficult to predict clinical progression for MCI patients because they can progress to
dementia, remain stable or even revert to cognitively normal. That is also the reason why
identifying which individuals with MCI are more likely to develop AD dementia is a research
priority [177] and an active field of study [1].

Clinical diagnosis of AD

Clinical diagnosis of Alzheimer has been guided by the NINCDS-ADRDA (National Institute
of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association) criteria published in 1984 [124], it stratifies the confidence
of the diagnosis in probable and definite depending on the level of certainty that dementia
syndrome is caused by Alzheimer’s pathology:
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• Probable AD: based on the diagnosis of dementia with progressive impairment of
memory and other cognitive functions with no presence of other diseases that can
cause cognitive deficits.

• Definite AD: based on a diagnosis of probable AD while the patient was alive and
evidence of AD pathology from tissue examination post-mortem [89].

According to these criteria, the amnestic syndrome was a core feature for the clinical diag-
nosis of probable AD, recognizing only the typical manifestation of AD. Update proposals
for diagnostic criteria acknowledge the atypical forms of AD by including other clinical phe-
notypes different from memory impairment [50].
Diagnosis criteria give the general guidelines to diagnose AD in clinical settings but the way
the guidelines are implemented is highly variable across medical facilities. The diagnosis of
dementia mainly relies on clinical examination and neuropsychological testing. However, the
diagnostic guidelines do not specify which tests or population standards should be applied,
therefore each medical center chooses the tests and cut-offs used to ascertain whether the
patient’s results are normal or abnormal. For example, a systematic analysis of the global
burden of dementia found 230 different diagnostic procedures across 237 studies in the de-
mentia literature [135] and the main source of this heterogeneity is the use of different tests
and cut-off scores during cognitive screening.
Given the research advances to prove Alzheimer’s pathology with in vivo biomarkers, there
have been various proposals to include the use of biomarkers for AD diagnosis in dementia
[49, 50, 92] and pre-dementia stages of the disease [5, 51]. These recommendations are
specially useful in research settings where early detection of Alzheimer’s pathology can be
part of the inclusion criteria for clinical trials.
The use of biomarkers for the “early” detection of AD pathology without symptoms of
dementia in clinical practice is a matter of current debate [172, 76, 90]. Considering that
there are not disease-modifying treatments available and it is not certain if the pathological
signs do inevitably lead to dementia syndrome, an early diagnosis of Alzheimer’s could create
a psychological burden in patients that may never develop dementia [172].

Biomarkers for AD

The definite diagnosis of AD is done by the assessment of characteristic structural lesions
through the pathological examination of brain tissue. These characteristic lesions are formed
by abnormal accumulation of proteins, specifically: extracellular deposit of amyloid-β and
neurofibrillary tangles of the protein tau. The two proteins define two groups of in vivo
pathophysiological markers of Alzheimer’s pathology [48, 92]:

• Markers of amyloidosis: low levels of amyloid-β peptide 42 (Aβ42) or Aβ42/Aβ02 ratio
in cerebrospinal fluid (CSF), and high cortical binding values for positron emission
tomography (PET) with Pittsburgh compound B (PiB).

• Markers of tauopathy: high CSF total tau (t-tau) and phosphorylated tau (P-tau),
and PET with tau ligands.



1.1 Alzheimer’s disease dementia 5

These CSF and PET biomarkers have demonstrated to be correlated with the pathological
marks of AD: amyloid plaques and neurofibrillary tau deposits, however, they are largely
static and give little information about disease stage or progression [48].
Other biomarkers assess subsequent pathological brain changes related with AD progression
such as synaptic and neuronal loss. These include Fluorodeoxyglucose (FDG) - PET, which
measures glucose uptake and it is sensitive to neuronal dysfunction, and structural Magnetic
Resonance Imaging (MRI) to detect atrophy in certain areas such as the medial temporal
lobe (MTL) and hippocampus. Although these “topographical” biomarkers are less specific
for AD, they do correlate with disease severity [48], and can improve disease characterization
[50] and prediction of cognitive decline in MCI patients [92].
Biomarkers give evidence of Alzheimer’s pathology and AD-related pathological changes in
any stage of the disease and MCI subjects with a combination of positive biomarkers are more
likely to progress to dementia than those with negative biomarkers [144, 171]. However, none
of them alone is sufficient enough to diagnose AD and the consistent finding across studies is
that the combination of different biomarkers significantly improves the diagnostic accuracy
and prediction of future cognitive decline [50, 92, 64].
Although the use of biomarkers is widely accepted and implemented in research settings,
there are important concerns that prevent their extended use in general clinical practice.
First, almost all of them are subject to methodologic variations [51], in particular, CSF
biomarkers are highly variable across laboratories and techniques [144, 67], which makes it
difficult to standardize cut-off points for abnormality. Secondly, validation of the clinical
usefulness of biomarkers is still incomplete because most of the studies have been conducted
in selected samples that might not be representative of real-world populations [64, 23]. Lastly,
CSF and PET biomarkers are invasive and expensive, therefore the access to them is limited
in different settings [5].
Biomarkers have opened up the possibility of detecting Alzheimer’s pathology before any
cognitive symptom, i.e. at the preclinical stage. It should be noted that recent studies have
shown that most individuals with positive biomarkers for AD are not symptomatic [94] and
might remain cognitively healthy during their lifetime [76]. Under biomarker-based criteria
these subjects would be diagnosed with the disease without certainty they will actually de-
velop the dementia syndrome. Although this group of individuals, the ones with “preclinical
AD” [92] or “at risk of AD” [50], might be useful in clinical trials to test possible early inter-
ventions, a clinical diagnosis based only on biomarker positivity would pose an unnecessary
burden on them and their relatives [51, 172].

Physiopathology: the underlying chain of events

Despite all the scientific efforts and advances during the last decades, there is little clarity
about the mechanisms that lead from the disease-defining proteinopathies to neurodegener-
ation and cognitive impairment [67, 203]. The underlying biological processes in AD are not
well understood and they are, probably, one of the most complex systematic malfunctions
of the nervous system that are known [86].
A large body of research, including disease-modifying trials, has been based on the amyloid
cascade hypothesis proposed almost 30 years ago [83]. According to this hypothesis, the
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abnormal aggregation of the amyloid-β peptide is the initial cause of a linear sequence of
pathological changes in AD: formation of macroscopic plaques and tau deposits, neurodegen-
eration, and cognitive impairment. Cross-sectional studies suggest that the entire process
from amyloid-β accumulation to the onset of dementia can take up to 20 years [194].
Aligned with the amyloid cascade hypothesis, a temporal model outlining the change of
biomarkers was postulated by Jack and colleagues [93]. According to this model, the first
biomarker to change is the CSF Aβ42 followed by amyloid PET and CSF tau, then FDG-PET
and structural MRI become abnormal indicating neuronal injury and atrophy, and finally,
the cognitive symptoms appear. Although this biomarker model recognizes that the two
proteinopathies might be initiated independently, it does incorporate the idea that amyloid-
β changes can accelerate antecedent tauopathy [93]. The basic structure of this model agrees
with the amyloid cascade hypothesis in the assumption that pathological changes occur in
a linear sequence initiated by amyloid-β accumulation.
The amyloid cascade hypothesis is supported by the observation that the genetic mutations
associated with the hereditary form of AD are also known to over-express amyloid-β [104].
Although this hypothesis might explain the physiopathology in hereditary AD, it is not
sufficient to explain the development of sporadic AD, which is the most prevalent form
of the disease (> 95% of cases). Growing evidence from animal models, human studies,
and failed clinical trials for disease-modifying therapies suggests that the relation between
amyloid-β accumulation and Alzheimer’s dementia is not as direct as stated in the amyloid
cascade hypothesis [86, 104]. Studies based on post-mortem tissue examination and in vivo
biomarker analysis have shown that a considerable amount of cognitively intact elder people
have amyloid aggregation in their brains that could be considered pathological [86, 94].
Additionally, the amount of amyloid-β plaques does not correlate with neurodegeneration
and cognitive decline [104]. With the available evidence, there is no definite explanation yet
for how the amyloid-β deposition could lead to neurodegeneration and cognitive impairment
[203].
Nowadays it is recognized that amyloid aggregation is not sufficient to cause AD and that
a complex interaction between multiple factors could be a better explanation than a simple
linear sequence model [86, 92]. The long list of evidence-based alternatives to the amyloid
cascade hypothesis favor other initial causes for AD (e.g., failure of autophagy, mitochondrial
function, cell cycle control, Ca2+ homeostasis) and consider multiple factors that may be
responsible for neuronal damage and cognitive impairment such as inflammation, glucose
metabolism and DNA damage [86, 203, 110]. More research is needed to disentangle and
understand the biological mechanisms and pathological processes involved in sporadic AD
physiopathology [51], closing those gaps in knowledge are important to develop successful
disease-modifying treatments [67] and make more accurate predictions about progression at
the early stages of the disease.

Neuroanatomical changes

The common characteristic among most of the possible disease models is the final pathway
in which neurodegeneration is the pathological feature most proximate to cognitive decline
[92]. Recent studies support the observation that neurodegeneration is not the result of
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a linear cascade of events but the result of the interaction between multiple mechanisms
involving positive and negative feedback loops [203]. Accepted neurodegeneration biomarkers
capture different scales of this process: FDG-PET and CSF total tau are indicators of
neuronal metabolism and damage [92, 48] while MRI biomarkers give information about
macro-structural atrophy of brain tissue. These MRI biomarkers are the ones that become
abnormal in the closest temporal proximity to the cognitive impairment, however, macro-
structural changes could be detected with structural MRI up to ten years before the onset
of clinical symptoms [196].

Early research with T1-weighted MRI established macro-structural landmarks of the disease
such as hippocampal and MTL atrophy [91, 170, 44], although these alterations are not
specific for AD [188, 61], they are nowadays accepted as topographical biomarkers for disease
staging and risk assessment [51, 92]. Longitudinal analyses of grey matter loss [193, 174] have
resulted in defined sequential patterns of cortical atrophy starting in temporal and limbic
cortices, particularly the entorhinal cortex, progressing with time to frontal and occipital
brain regions matching the trajectory of brain lesions observed post-mortem, this pattern of
atrophy is observed first in the left hemisphere and occurs faster than in its right counterpart
[193, 207]. In the advanced stages of the disease, there is noticeable shrinkage in most
neocortical areas accompanied by significant expansion of the ventricles.

Atrophy of the hippocampus and MTL are characteristic of typical AD that manifests pre-
dominately with memory impairment. Studies in relatively large samples of patients have
shown there is heterogeneity in cortical and subcortical grey matter atrophy patterns and
this heterogeneity is related to atypical manifestations or differences in compromised cogni-
tive domains [203, 209, 46, 55]. Research with structural MRI [213, 160, 190] has confirmed
the existence of atrophy patterns that are consistent with the three subtypes that were de-
fined pathologically [132]: typical AD, hippocampal-sparing AD, and limbic-predominant
AD. The observed heterogeneity supports the idea that there might be different pathways
that lead to neurodegeneration [203], thus restricting the anatomical markers to independent
volumetric measures of very specific regions might be an oversimplification that hampers the
identification of patient subgroups.

Alzheimer’s has been considered a grey matter disease because the defining brain lesions,
intra-neuronal neurofibrillary tangles and extracellular senile plaques, occur mainly in the
grey matter. However, there is evidence that pathological changes also occur in the white
matter [24], including abnormal levels of Aβ42 observed in post-mortem tissue examination
[28], regional atrophy [167], presence of lesions [169], reduction of microstructural integrity
[2, 9, 219, 74, 176, 128], and connectivity failures [100, 187]. White matter micro and
macro-structure can be examined in vivo using different modalities of MRI. Studies with
Diffusion Tensor Imaging (DTI) have revealed diffusion abnormalities in white matter regions
such as the splenium of the corpus callosum, superior, middle and inferior longitudinal
fasciculi, corticospinal tracts, and limbic system tracts including the fornix, cingulum bundle,
and parahippocampal gyrus [2, 47]. Although some works considered the white matter
changes a consequence of neuronal degeneration in the grey matter explained by Wallerian
degeneration, there is growing evidence suggesting that abnormalities in the white matter
might occur independently and could be detected before grey matter changes [28, 100]. These
findings support the idea that other pathological mechanisms like neuroinflammation and
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prion-like propagation might play an important role in disease physiopathology [24, 100, 110].
Some MRI-based analyses have found that neuroanatomical changes in AD are related to
cognitive alterations. For instance, MTL atrophy is correlated with impairment in memory
and language [170, 81, 43, 190], and thickness of the parieto-occipital cortex is associated
with visuomotor speed [43], visuospatial and executive functioning [190]. Although such
correlations exist, and it is known that abrupt damage in certain brain areas can affect
specific cognitive functions, it would be inaccurate to attribute certain cognitive skills to a
single brain region. Nowadays it is recognized that complex brain functions involve a variety
of brain regions functionally connected, and that brain structures are involved in a wide
variety of cognitive and functional processes. In this context, the initial neurodegeneration
in particular areas might not be enough to cause the characteristic AD decline in specific
cognitive functions, and that failures in the functional networks could be the ones responsible
for clinical symptoms [100].

Measuring disease outcomes

Clinical stages of the disease are defined by the severity of the symptoms, i.e., the level of
cognitive and functional impairment. Therefore, evolution of AD is assessed with neuropsy-
chological tests which evaluate the cognitive abilities and behavior of the patient. Some
of the most used scales to determine the severity of the disease are the Clinical Dementia
Rating (CDR) [130], and the Alzheimer’s Disease Assessment Scale - Cognition (ADAS-Cog)
[162]. The neuropsychological test battery used for diagnosis and monitoring also includes
screening tests to measure the overall cognition such as the Mini–Mental State Examination
(MMSE) [60] and the Montreal Cognitive Assessment (MoCA) [133]; tests to assess the com-
promise of specific cognitive domains like the Rey auditory verbal learning test (AVLT), the
Logical Memory test [208], the Clock Drawing test [77], the Category Fluency test [131], and
the Trail Making test [158]; and tests to evaluate the ability to perform everyday activities
such as the Functional Assessment Questionnaire (FAQ)[145]. It is important to point out
that the neuropsychological tests are the first clinical tests a patient is subject to when there
are suspicions of cognitive decline or self-reported memory concern. Therefore these tests
are the entry point to other assessments such as evaluation of neuroimages, biomarkers, risk
factors, and longitudinal monitoring of cognition and behavior.
Level of cognitive decline determines the disease severity and marks two of the disease
milestones: diagnosis of MCI and dementia onset. Monitoring the small cognitive changes
consistent with disease progression is a challenging task due to the existence of a long clini-
cally silent phase in AD [76], combined with a large variety of temporary factors that could
also alter cognitive performance in individuals with or without the disease. This issue is
particularly relevant in the design of clinical trial for disease-modifying interventions where
outcome measures, or end points, are defined to assess the effectiveness of the intervention.
Indeed, one of the possible reasons for the long list of failed disease-modifying trials could be
the poor performance of outcome measures to detect cognitive changes due to low sensitivity
and high measurement variance [125, 166].
Although there are no standard measures for clinical outcomes, and different assessments
from the neuropsychological test battery have been used across clinical trials [67], one of the
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most widely used measures is the ADAS-Cog [166]. This test evaluates multiple cognitive
areas and combines the results to give a single number that should indicate the level of
overall cognitive impairment. However, some studies have showed that the ADAS-Cog has:
low reliability for measuring cognitive change [80], high variance due to measurement errors,
ceiling effects of its sub-scores, and it is insensitive for patients in mild stages [125, 106, 166].
Improved measures of disease outcomes should be:

• Robust and sensitive enough to detect cognitive changes at early stages [4].

• Include parts that would be sensitive for heterogeneous forms of AD [64].

• Useful to make predictions about patients’ progression and evaluate the risk of devel-
oping dementia.

Problem

A lot of unknowns

In sporadic AD, the causes of the disease are largely unknown, the biological mechanisms
that lead from proteinopathies to cognitive impairment are unclear [203, 172], the complexity
and heterogeneity of those mechanisms are not well understood yet [67], and the transition
between what is considered healthy, or normal, ageing and AD is not well defined [4]. There
is also no certainty about whether someone with the AD pathological signs will develop some
cognitive impairment during their lifetime [172], neither about whether a patient with MCI
could go back to cognitively normal, will remain as MCI or progress to dementia.
Although there are accepted biomarkers for diagnosis and monitoring, not a single one is
sufficient to diagnose AD or predict disease progression [50, 92, 64]. Moreover, it remains un-
clear what are thresholds, anatomical distributions, or combinations of abnormal biomarkers
that better predict the emergence and evolution of clinical symptoms [4].

What is needed

Existing instruments for patient evaluation and monitoring are not sensitive enough to detect
subtle changes, predict progression, and recognize heterogeneous forms of AD. Although
there have been several advances in this field, more research is needed to develop and validate
markers that help to identify disease patterns or profiles that could predict the clinical course
of the disease [177, 4].
Better markers and strategies to identify and quantify the pathological brain changes oc-
curring with disease progression have the potential to impact the clinical management of
patients, the design of clinical trials for disease-modifying treatments, improve the assess-
ment of effectiveness for those interventions, and will open the doors to precision medicine
[190, 76].



10 1 Introduction

1.2 Computational anatomy in AD

Thanks to their noninvasive nature and increasing availability, MR image modalities have
been a tremendous source of information to study brain anatomy abnormalities related with
neurodegenerative diseases [14]. As T1-weighted MRI provides good contrast between tissues,
it has been widely used to analyse and localize macrostructural changes in AD such as volume
loss or shrinkage of the cortex [65].

Regional volumetry

MR-based volumetry of the hippocampus and MTL are nowadays accepted as topographical
biomarkers for AD. Measuring the volume of specific structures is completely dependent
on their segmentation. In particular for the hippocampus, its manual segmentation is time
consuming, requires extensive training and suffers of high inter-observer variability [12]. For
this reason some studies have proposed automatic or semi-automatic segmentation methods
[29, 26, 114], or indirect measures of hippocampal atrophy [12], as alternatives to manual
delineation of this structure [44]. Volume measures of larger sets of regions can also give
information to better characterize the disease, several studies have used automated tools
to estimate the volume and cortical thickness of anatomical regions of interest, and analyse
which regions help better to discriminate between patients and healthy controls [112, 39, 149,
84, 173, 182]. Most of these strategies rely on pre-defined segmentation of an anatomical
template that is then registered to each brain image. Although this process could potentially
affect the accuracy of the segmentation, results have shown that volumetric and cortical
measures obtained with these approaches can be effectively used to distinguish between
patients and healthy controls using T1-weighted MRI acquired in realistic clinical settings
[39, 173, 215].

Voxel-based morphometry

Voxel-based morphometry (VBM) [13] is one of the most common frameworks to perform
statistical inference with brain images. The VBM approach can be divided in three key
steps:

1. Spatial Normalisation: Registration of all images to a common reference space
defined by a template image.

2. Tissue segmentation: Spatially normalised images are segmented into grey matter
(GM), white matter (WM), and CSF. Tissue segmentation maps are often smoothed
with a Gaussian kernel to boost the signal-to-noise ratio and alleviate the effect of
registration misalignments during spatial normalisation.

3. Statistical analysis: Test statistic values are computed at each image voxel resulting
in a “statistical parametric map”, and finally the corresponding p-values for the tested
hypothesis are calculated. This last step needs to take into account that multiple tests
are being performed simultaneously (one test per voxel) and resulting p-values need to
be corrected accordingly to control for false positives.
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These steps of standard VBM are illustrated in Figure 1-3.

Figure 1-3: Steps involved in voxel-based morphometry (VBM), originally described by Ash-
burner and Friston [13] to compare the local concentrations of grey matter (GM)
between groups of subjects. The VBM approach starts with the spatial normal-
isation of brain images by registering all of them to a template image. Having
the warping from subject to template (W ), spatially normalised GM map can
be obtained by segmenting normalised images or transforming the GM segmen-
tations [107]. Then, GM maps are filtered with a Gaussian kernel and finally
these smoothed GM maps are the inputs for voxel-wise statistical inference.

In AD research, VBM has been applied mainly to find GM differences between AD or MCI
patients and healthy controls [81, 126, 196]. Some studies have combined the VBM approach
with machine learning methods to automatically classify structural images between AD,
MCI and controls or predict progression from MCI to AD dementia. In these approaches,
the spatially normalised tissue segmentation maps have been used directly as the inputs of
a classifier [105, 32], or have served as an intermediate processing step before dimensionality
reduction and feature selection for classification [35, 204, 126, 117, 34, 129, 220, 17].
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Other features extracted from structural MRI

Multiple image-based markers for AD diagnosis and monitoring have been proposed and
tested in the literature employing traditional image processing methods. In 1998, Freebor-
ough and Fox published a study relying on texture analysis of T1-weighted MRI [62] using
texture features calculated from the grey level co-occurrence matrix (GLCM) [82] of 2D
image slices, this proposal showed promising classification performance when distinguish-
ing between AD patients and controls. Similar texture analysis in the corpus callosum
and thalamus also showed significant differences between patients diagnosed with mild AD,
amnestic MCI and normal ageing controls [36]. In the same direction, 3D texture markers of
the hippocampus have also showed good results classifying between AD, MCI and controls
[218, 185].

Shape analysis has been also proposed as a potential image-based marker for AD diagnosis
and prognosis. Particularly for sub-cortical structures such as the hippocampus, it was
demonstrated that shape features outperform volumetric measures in AD vs controls and
MCI vs controls classification tasks [68] and that shape asymmetries are better predictors of
dementia onset than size asymmetries [207]. An additional group of proposals includes those
inspired by pattern recognition methods such as saliency analysis to find scale-invariant
descriptors [195, 165], and pattern matching techniques [147]. All of these also reported
competitive classification performance between AD and controls.

Automatic classification of structural MRI

Markers for disease diagnosis and prognosis extracted from structural MRI are often eval-
uated by using them as inputs for one or more of the following binary classification tasks:
cognitively normal (CN) elderly subjects against MCI patients, CN against AD dementia pa-
tients, and stable MCI patients against patients who progressed from MCI to AD dementia
(sMCI/pMCI). A relatively recent review [157] summarised the reported classification per-
formance of different methods using T1-weighted MRI and other brain imaging modalities.
Table 1-1 present the reported accuracy in some of the previously mentioned works.

Most of the time, direct comparison of classification performance between proposed methods
is not possible due to their design and methodological differences in terms of sample size,
group selection, inclusion criteria, pre-processing pipelines, cross-validation schemes, and
reported evaluation metrics [168]. A couple of studies have performed a direct comparison
of different methods by using the same dataset and pre-processing to test pre-defined clas-
sification or prediction tasks [32, 21, 121]. For instance, Cuingnet et al. [32] evaluated the
classification performance of ten approaches using T1-weighted MRI of 509 subjects from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For CN vs AD classification, the
best performance metrics (81% sensitivity and 95% specificity) were achieved by using the
voxels of the GM probabilistic segmentation map directly as features for classification [105].
For CN vs MCI, the best classification results (73% sensitivity and 85% specificity) were
obtained by a method performing downsampling of the GM probability map and selection
of the voxel locations which better discriminate between AD and CN to finally use that in-
formation for classification [204]. A more recent challenge [21] compared several methods for



1.2 Computational anatomy in AD 13

Authors
Classification accuracy

CN/AD CN/MCI sMCI/pMCI

Klöppel et al., 2008 [105] 81.1 % - -

Fan et al., 2008 [59] 94.3 % - -

McEvoy et al., 2009 [123] 89.0 % - -

Magnin et al., 2009 [117] 94.5 % - -

Rueda et al., 2014 [165] 86.1 % - % -

Beheshti and Demirel, 2016 [17] 89.7 % - -

Davatzikos et al., 2008 [35] - 90.0 % -

Misra et al., 2009 [126] - - 81.5 %

Desikan et al., 2009 [39] 95.0 % 95.0 % -

Gerardin et al., 2009 [68] 94.0 % 83.0 % -

Sorensen et al., 2016 [185] 91.2 % 76.4 % 74.2 %

Table 1-1: Reported accuracy for each binary classification of some works in the literature
using structural MRI. Adapted from Rathore et al., 2017 [157].

multi-class classification in three diagnostic groups (AD, MCI, and CN) with 354 previously
unseen T1-weighted MRI, the best performance (63% accuracy and 78.8% Area under the
ROC-curve) was achieved by a method combining five types of features: volume of seven
bilaterally joined regions (including the whole brain), cortical thickness of four lobes and the
cingulate gyrus, and hippocampal volume, shape and texture scores. [184].

Examining the tissue microstructural properties

Macrostructural atrophy caused by AD is accompanied, or preceded, by microstructural
changes of tissue integrity. By measuring the diffusion of water molecules in different direc-
tions, Diffusion-weighted (DW) MRI provides information about the microstructural barriers
of diffusion such as myelin sheaths, axonal and cell membranes. This imaging modality has
the unique potential to reveal the organization of tissue at a cellular-scale in vivo and non-
invasively [197].

Early studies investigating disease-related abnormalities with DW-MRI used the apparent
diffusion coefficient (ADC), a parameter of the free diffusion model where isotropic Gaussian
diffusion is assumed. In this simple model, the diffusion signal S depends on the applied
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diffusion weight (b-value):

S(b) = S(0)e−b×ADC

ADC = −1

b
ln

(
S(b)

S(0)

)
(1-1)

The ADC summarizes at voxel level many microscopic processes that affect the diffusion
of water molecules [108], hence it captures the alterations resulting from microstructural
changes. In the case of AD, one particular study reported that higher ADC in the hip-
pocampus was related to a higher risk of progression from amnestic MCI to AD dementia
[101].
The diffusion tensor (DT) model [16] is an extension of the ADC model that incorporates
the dependency of the diffusion signal on the directions u ∈ S2 of the magnetic field gradient
applied during image acquisition, being able to describe anisotropic diffusion:

S(b, u) = S(0)e−bu
TDu (1-2)

Where the diffusion tensor D is a 3×3 symmetric positive-definite matrix that has associated
three orthogonal eigenvectors and three positive eigenvalues λ1, λ2 and λ3. This diffusion
tensor is often represented by a 3D ellipsoid as in Figure 1-4.

Figure 1-4: A diffusion tensor models the signal in each voxel of the Diffusion-weighted MRI,
this is commonly known as Diffusion Tensor Imaging (DTI).

The eigenvalues of the diffusion tensor are used to compute some measures such as the frac-
tional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity
(RD):

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ21 + λ22 + λ23)

MD =
λ1 + λ2 + λ3

3
AD = λ1

RD =
λ2 + λ3

2

(1-3)
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These metrics describe diffusion behavior allowing to infer some properties of underlying
brain tissue as illustrated in Figure 1-5.

Figure 1-5: Brain maps of metrics derived from the DT model.

The vast majority of research investigating microstructural differences between AD patients
and controls have used the diffusion tensor (DT) model and its derived metrics to describe
tissue diffusivity properties mostly in the WM [3, 47, 176, 219, 2, 189, 37, 109, 122], but also
in the GM [212, 113]. Consistent findings across tensor-based studies analyzing WM show
increased MD and reduced FA in the splenium, the cingulum bundle including the parahip-
pocampal gyrus, and the superior, middle and inferior longitudinal fasciculus; meanwhile
increased FA in crossing-fibre areas such as the corticospinal tract has also been reported
in AD patients compared with control subjects [176, 2, 47]. Fewer studies have used DT
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metrics to study differences in GM areas focusing in certain regions of interest, the common
finding among them is increased MD in the hippocampus and the posterior cingulate cortex
[212, 113, 85].
The DT model was the first diffusion model to be widely adopted in clinical and neuroscience
research due to its simplicity [38]. However, this simplicity comes with some important
limitations. For instance, it assumes the diffusion displacement probability distribution has
a Gaussian form (which is not necessarily true given the complexity of diffusion barriers
in the brain tissue), and it cannot represent crossing fibre configurations (which are highly
prevalent in WM [98]). Another important limitation comes from what the diffusion tensor
metrics are actually capturing given the limited spatial resolution of DW-MRI, in a given
voxel it is highly probable that the DT model is not only representing the diffusion of one
tissue type (WM or GM) but it is also accounting for the partial volume effects (PVE) with
surrounding CSF, therefore DT-derived metrics could be capturing macrostructural atrophy
effects rather than microstructural properties [139, 85]. Different extensions or alternatives
have appeared to overcome DT model limitations, with different acquisition requirements
regarding the number of gradient orientations and b-values that are needed to estimate model
parameters.
For example, diffusion kurtosis imaging (DKI) quantifies the non-gaussianity of diffusion
in biologic tissues [97] by adding an excess kurtosis term to the model. Then, the signal
attenuation along a certain diffusion direction u is modelled as:

ln

(
S(b, u)

S(0)

)
= −bDu +

1

6
b2D2

uK
2
u (1-4)

Where Du and Ku are estimates for the diffusion coefficient and diffusional kurtosis in the
direction u. Estimation of these parameters requires fitting a quadratic function of the b-
value, therefore data needs to be acquired with at least two non-zero b-values, being one of
them relatively high (≥ 1500 s/mm2) to allow better appreciation of non-gaussianity. This
type of DW-MRI, acquired with multiple non-zero b-values, is referred as “multi-shell” given
that the acquisition gradients lie in multiple spheres.
The constrained spherical deconvolution (CSD) method to model WM is related to the
notion of spheres in the space of acquisition gradients. Given a b-value, the diffusion signal
can be represented as a function over the unit sphere using spherical harmonics (SH) basis
functions (see Figure 1-6).
Then, the diffusion signal observed at a constant b-value is modelled as the spherical convolu-
tion of a fibre orientation distribution function (fODF) with a single fibre response function
[199], as illustrated in Figure 1-7.
The fODF can be “recovered” as the deconvolution of a single fibre response function (that
needs to be estimated) from the observed signal, while enforcing non-negativity of the fODF
lobes [198]. The fODF is a continuous function that could represent any underlying fibre
configuration, effectively overcoming the “crossing-fibre” problem [38], an example of fODF
map is shown in Figure 1-8.
These examples of more advanced models, DKI and CSD, have been recently used to investi-
gate AD-related changes by comparing their corresponding diffusion-derived metrics between
control subjects and AD patients. For instance, exploratory analysis suggested mean kurtosis
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(a) b = 700 s/mm2 (b) b = 1000 s/mm2 (c) b = 2800 s/mm2

Figure 1-6: Representation of the diffusion signal in spherical harmonics for three different
values of diffusion-weight (b-value).

Figure 1-7: When DW-MRI is acquired with a constant non-zero b-value, the observed signal
in a voxel can be modelled as the spherical convolution of a fibre orientation
distribution function (ODF) with a single fibre white matter response function.

could be more sensitive than FA or MD to detect initial degeneration of some WM structures
such as the splenium of the corpus callosum and the corona radiata [183]. Analysis of fibre-
specific measures derived from fODF showed differences of WM micro and macrostructure
between AD patients and controls in specific fibre tracts including the cingulum bundle, the
splenium and genu of the corpus callosum, the uncinate fasciculus, and arcuate fasciculus.
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Figure 1-8: The underlying white matter is modelled with continuous fibre orientation dis-
tribution functions (fODF) represented in spherical harmonic basis.

1.3 This Thesis

Exploration and evaluation of new markers to identify and quantify changes related to AD
progression is a highly relevant research path that could, in the mid-term, improve the man-
agement and monitoring of patients, and help the evaluation of potential disease-modifying
treatments.
It is recognized that alterations in brain anatomy are the pathological features most prox-
imate to cognitive decline [92]; therefore, neuroanatomical markers and neuropsychological
information provide direct information about disease progression.
In this context, this thesis presents a set of data-driven strategies that identify and quantify
anatomical and cognitive pathological patterns associated with different clinical stages along
the AD continuum. These strategies constitute the three main contributions of this thesis:

• In the first contribution, we propose a strategy that captures changes in brain anatomy
by comparing the content distribution in different anatomical regions using informa-
tion from T1-weighted MRI. We demonstrate this quantitative strategy is useful for the
automated classification of brain images between patients at different stages and con-
trols. Furthermore, this characterization automatically finds out a multidimensional
pattern of AD progression which is directly related to anatomical changes in specific
areas. This contribution is presented in Chapter 2 and has been published in a journal
article:

– Diana L. Giraldo, Juan D. Garćıa-Arteaga, Simón Cárdenas-Robledo, Eduardo
Romero. Characterization of brain anatomical patterns by comparing region in-
tensity distributions: Applications to the description of Alzheimer’s disease. Brain
and Behavior. 2018; 8:e00942. https://doi.org/10.1002/brb3.942 [71]

• The second contribution presents a comprehensive neuroimaging approach for the study
of AD-related abnormalities in brain anatomy combining multiple interrelated mea-
sures of tissue integrity derived directly from Diffusion weighted MRI. Differences of
WM properties and tissue compositions between MCI, ADD patients and age-matched
cognitively normal subjects are investigated, as well as the possible correlations of

https://doi.org/10.1002/brb3.942
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diffusion-derived measures with CSF biomarkers. This part of the thesis work is pre-
sented in Chapter 3. Part of this work was presented at a conference:

– Diana Giraldo, Hanne Struyfs, David A. Raffelt, Paul M. Parizel, Sebastiaan
Engelborghs, Eduardo Romero, Jan Sijbers, Ben Jeurissen. Fixel-Based Analysis
of Alzheimer’s Disease Using Multi-Tissue Constrained Spherical Deconvolution
of Multi-Shell Diffusion MRI. International Society of Magnetic Resonance in
Medicine. Honolulu, USA. 2017. [70]

A manuscript has been submitted for publication to a journal.

• The third contribution presents a data-driven method to characterize the cognitive
state of MCI patients with a set of domain-specific scores obtained by learning to com-
bine and weight sub-scores from the neuropsychological test battery. Using machine
learning methods, we show the developed scores highlight subgroups of MCI patients
who exhibit different risks of progression to AD dementia and have better classification
performance than standard outcomes when predicting conversion from MCI to demen-
tia up to 5 years after neuropsychological evaluation. This contribution is presented
in Chapter 4 and has been published in a journal and a conference:

– Diana L. Giraldo, Jan Sijbers, Eduardo Romero Quantification of cognitive im-
pairment to characterize heterogeneity of patients at risk of developing Alzheimer’s
disease dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease
Monitoring. 2021; 13(1):e12237. https://doi.org/10.1002/dad2.12237 [73]

– Diana L. Giraldo, Jan Sijbers, Eduardo Romero. Quantifying cognition and behav-
ior in normal aging, mild cognitive impairment, and Alzheimer’s disease. Proc.
13th International Conference on Medical Information Processing and Analysis.
San Andrés - Colombia, 2017. https://doi.org/10.1117/12.2287036 [72]

Finally, Chapter 5 presents some conclusions, discuss the potential impact of the contribu-
tions and suggest some possible research directions for future work.

https://doi.org/10.1002/dad2.12237
https://doi.org/10.1117/12.2287036


2 Comparing region intensity
distributions

2.1 Introduction

A large number of studies have proposed automatic methods to extract features and classify
T1-weighted MRI between controls, MCI, and AD patients [32, 21, 157]. In a relatively recent
review, Rathore et al. [157] established three automatic classification categories based on the
feature extraction method from structural MRI: density maps-based, cortical surface-based,
and pre-defined region-based. As pointed out by the authors, most investigations in the
latter category use only hippocampus features since changes in this region are well known.
These studies do not consider differences in other brain regions out of the MTL, ignoring
subtle changes and possible complex patterns of the disease compromising multiple regions.
On the other hand, density maps-based methods inspired by VBM classify structural MRI
using whole-brain information. However, their adoption in clinical practice remains limited
or almost not existing. One important reason is that, in many cases, the high-dimensional
features are not easily interpretable in terms of spatial patterns of anatomical changes and
cannot be related to the clinical picture, so they appear as “black boxes” to clinicians.
Despite the promising classification results of machine learning methods, their contribution to
the characterization and understanding of the disease progression remains limited. Another
drawback of these automatic classification approaches is that, although they do compare
brains, their notion of distance has no meaning in terms of the disease progression hampering
their use for exploring the pathways of the AD continuum.
In this work, we introduce a strategy that allows the quantification of brain differences
by comparing the intensity distributions of several anatomical regions in the whole brain.
An underlying hypothesis of this approach is that the differences between AD patients and
controls are correlated to tissue constituents, a feature mirrored by the composition of gray
level intensities in T1-weighted MRI. The guiding principle incorporated in this proposal is
that patients do not follow a single unique direction when transitioning from healthy ageing
to AD. Instead, AD patients are assumed to drift away from a healthy state in multiple
possible directions, i.e. control subjects form a relatively compact cluster whereas AD cases
tend to separate towards pathological states in more than one direction.

2.2 Methods

The basis for the method is the quantitative measurement of differences between subjects in
separate regions of the brain. The process can be roughly divided in two stages. First, each
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anatomical region is described by comparing its intensity histograms between all subjects
in the sample. The second part consists on extracting regional features and performing the
classification of subjects between AD/MCI patients and controls using ensemble classifiers
(See Figure 2-1).

Figure 2-1: Overview of the proposed methodology. First, each one of the considered regions
is described using structural MRI from all participants, including cognitively
normal (CN) controls and MCI/AD dementia patients. In the second part,
features for automated classification consist of the distances to the CN medoid
(chosen as the reference point), and ensemble classifiers are trained with all
regional features following a random undersampling boosting strategy to account
for class imbalance in the sample.

2.2.1 Region description

Coarse brain parcellation

The very first step is to parcellate each brain image into a set of anatomical regions. To
obtain a coarse parcellation, brain volumes were registered to the MNI152 structural template
with an affine transformation calculated using the FSL (FMRIB Software Library) linear
registration tool Flirt [95, 96], and then the Harvard-Oxford brain atlas (RRID:SCR 001476)
was used to partition each registered brain into 96 cortical regions (48 per hemisphere) and
17 subcortical regions. The linear registration approach results in slightly displaced inter-
subject anatomic regions, yet this is unlikely to affect the distribution of gray levels within
these regions. Such claim may be supported by the fact that overlap between partitioned
brains is at least 97%.
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Region similarity across subjects

Ultimately the objective of our analysis is to be able to quantify the level of similarity or
dissimilarity between subjects. Furthermore, it is expected that this distance is related to the
diagnostic groups subjects belong to, i.e. two control subjects should have a smaller distance
between them than a control and an AD patient. In this work, the tissue distribution of
each anatomical region was described by its intensity histogram, and differences of regional
tissue distribution between subjects were quantified by measuring the distances between
histograms (Figure 2-2).

Figure 2-2: Region characterization starts with extracting equivalent anatomical regions
(left). Regional information is represented the median-centered histogram of
intensities (center). Histograms of the same region for different subjects are
compared with the Earth-Mover’s Distance (right).

All intensity histograms describing region anatomy had 64 bins, however, the bin cuts were
defined individually for each case taking into account the intensity range for the whole brain
image. To make histograms comparable and eliminate differences due to image intensity
range, all histograms were shifted so that the center of mass was aligned to the central bin
of the histogram. Then, histograms corresponding to the same region for different subjects
were compared with the Earth-Mover’s Distance (EMD) [164].

Earth-mover’s distance formulation

The EMD calculates the minimum cost of transforming one histogram into another by solving
a linear optimization problem in which certain units of the S = {S1, . . . , Sn} histogram, have
to be moved to fill the m bins of histogram C = {C1, . . . , Cm}
The movement of one unit from bin i ∈ S to bin j ∈ C has an associated cost pij. The solution
consists in a set of movements {x∗ij}

n,m
i,j=1 that form C and minimize the total movement cost.

The optimization problem can be written in terms of the amount of “earth”, in this case
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units xij, that is moved from bin i ∈ S to bin j ∈ C, as follows:

minimize
X

n∑
i=1

m∑
j=1

pijxij

subject to
m∑
j=1

xij ≤ Si, for i ∈ {1, . . . , n}

n∑
i=1

xij ≥ Cj, for j ∈ {1, . . . ,m}

xij ≥ 0, for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

(2-1)

In this case, the cost of moving one unit is set to the absolute distance between bins, i.e.,
pij = |i − j|. Given the solution {x∗ij}

n,m
i,j=1, the EMD between S and C is the normalized

total cost:

EMD(S, C) =
1∑
x∗ij

n∑
i=1

m∑
j=1

|i− j|x∗ij (2-2)

When the compared histograms have the same integral, as in this work, the problem is
symmetric and the EMD is a metric equivalent to the Wasserstein’s distance. A minimal
example of the EMD between two histograms p and q is shown in Figure 2-3.

Figure 2-3: In this case the EMD between p and q is the cost of moving one unit from one
bin to the next divided by the total mass: 1/3. Note that, in this case, the
distance function is symmetric (EMD(p, q) = EMD(q, p)).

2.2.2 Automated classification of brain images

For each one of the considered anatomical regions, the result of the previous step is a matrix of
pairwise distances between subjects in the data sample. Taking distance to a reference point
incorporates the guiding principle that patients drift away from a healthy state, therefore
we chose the medoid of the control group as such reference point (Figure 2-4). The medoid
is the element of a set with the minimal mean distance to the other elements in the set, i.e.
for a given set A and a distance function δ the medoid is defined as:

medoid(A) = arg min
x∈A

∑
y∈A

δ(x, y) (2-3)
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Figure 2-4: Given the pairwise distances between histograms of the same region across all
subjects in the sample (left), a reference point was chosen by selecting the “most
central” case within the control group (middle), distances to that reference point
were taken as the regional features for classification (right).

Distance to the medoid of controls captures how much region anatomy is drifting away
from a group representing healthy anatomy. Distance values for all regions characterize the
whole-brain anatomy for each subject and constitute the features for classification. Two
binary classification tasks were considered: AD patients vs controls and MCI vs controls.
For this purpose, ensemble classifiers were trained with an Adaptative Boosting (ADABoost)
[63] approach that iteratively updates the weights of various weak classifiers, giving more
importance to samples misclassified in earlier rounds. Simple thresholds of the features
were used as weak classifiers. To alliviate the class imbalance in training data, random
undersampling of data was used during boosting, an strategy known as RUSBoost [175].
Once ensemble classifiers were trained, each the relative importance of each feature was
computed as the weighted sum of mislabeled classes for each predictor. The importance
of the features for each classification task says how much a regions helps to differentiate
between groups and therefore is an indicator of the degree to which each region is affected
by the disease.

2.3 Evaluation

2.3.1 Data

The proposed strategy was evaluated using T1-weighted MRI from a subset of cases in the
Open Access Series of Imaging Studies (OASIS-1) database [120]. The sample consisted
of 136 cases between 60 and 80 years old, from which 66 were the control group (CN), 50
corresponded to MCI patients, and 20 were patients diagnosed with mild AD. The description
of each diagnostic groups in terms of age, gender and cognitive scores is shown in Table 2-1.
Structural MRI in OASIS-1 database were acquired with 1.5 T Vision scanners (Siemens,
Erlangen, Germany), using magnetization prepared rapid gradient-echo (MP-RAGE) se-
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Group N Age Gender (F/M) CDR MMSE

CN 66 70.8± 5.6 48/18 0 29.1± 1.1

MCI 50 72.8± 5.0 28/22 0.5 26.0± 3.5

AD 20 74.3± 4.3 13/20 1 20.8± 3.7

Table 2-1: Description of diagnostic groups from OASIS including their scores for the Clin-
ical Dementia Rating (CDR) and Mini-mental state examination (MMSE).

quences. Raw T1-weighted MR images have a voxel size of 1× 1× 1.25mm3, with a resolu-
tion of 256× 256× 128. Images were spatially warped into the 1988 atlas space of Talairach
and Tournoux with a rigid transformation, averaged motion-corrected, skull-stripped, and
finally gain-field corrected [120]. Voxel size after pre-processing is 1 × 1 × 1mm3 with im-
age resolution of 176 × 208 × 176. For more detailed information about the database see
https://www.oasis-brains.org/.
Generalization of the presented method was tested with a different set of T1-weighted MRI
from the Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) database
[118]. This sample was composed of 23 healthy controls and 46 subjects diagnosed with
probable Alzheimer’s disease. The distribution of age, gender and clinical scores of this
dataset is presented in Table 2-2.

Group N Age Gender (F/M) CDR MMSE

CN 23 69.7± 7.1 11/12 0 29.4± 0.8

AD 46 69.3± 7.2 27/19 1± 0.4 19.2± 4.0

Table 2-2: Description of diagnostic groups from MIRIAD database.

Images in MIRIAD were acquired with a 1.5 T Signa MRI scanner (GE Medical systems,
Milwaukee, WI), using a T1-weighted Inversion Recovery Prepared Fast Spoiled Gradient
Recalled (IR-FSPGR) sequence. Other imaging parameters were: matrix size of 256 × 256
and 124 1.5mm coronal partitions. Pre-processing of these images included warping into the
Talairach and Tournoux atlas and skull-stripped using FSL tools [96].

2.3.2 Cross-validation

Two different cross-validation schemes were used to test the automated classification between
groups: the first evaluation was done only with data from OASIS following a leave-one-out
scheme, i.e. iteratively training with the whole set but one and then using the resulting clas-
sifier to classify the case set aside. The second scheme aimed to evaluate the generalizability
of the proposed characterization by training the classifier with data from OASIS database
and testing it with data from MIRIAD database.

https://www.oasis-brains.org/
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Classification performance was assessed via a receiver operating characteristic curve (ROC)
calculating its area under the curve (AUC) and equal error rate (EER). The instance of the
curve with the best trade-off between false-positive rate and false-negatives negative was
selected to report the sensitivity and specificity.

2.4 Results

2.4.1 Classification between patients and controls

The resulting ROC curves for classification experiments with OASIS data are shown in
Figure 2-5. When classifying between controls and AD cases, the EER is 0.1 and the AUC
is 0.92, as the EER indicates the best trade-off between false positives and false negatives,
the sensitivity and specificity of this classification is 0.9. Classification between controls and
MCI patients shows an EER of 0.3 and AUC of 0.74, implying a sensitivity and specificity
of 0.7.

Figure 2-5: Receiver operating characteristic curves for classification experiments within
OASIS database. Classification between controls and AD patients (blue line)
gave an AUC of 0.91 and EER of 0.1 (False positive rate = 0.1, True positive
rate = 0.9). Classification between controls and MCI (purple line) resulted in
an AUC of 0.74 and EER of 0.3 (False positive rate = 0.3, True positive rate
= 0.7).

Classification across databases resulted in the ROC curve shown in Figure 2-6, with an
AUC of 0.92. According to the decision threshold with the best trade-off between errors,
a sensitivity of 85% could be achieved with 91% of specificity. These results show a good
overall performance with a high accuracy. The errors consist mostly of False Positives (7
cases) whereas the number of False Negatives remains relatively low (2 cases).
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Figure 2-6: Receiver operating characteristic curve for the classification between controls
and AD patiens of MIRIAD cases when the classifier was trained with OASIS
cases. This classification showed an AUC of 0.92 while the best trade-off between
the two types of errors is achieved with a False positive rate of 0.09 with a True
positive rate of 0.85.

2.4.2 Region importance

For each classification task, anatomical regions were ranked according to the average of
importance across iterations of the leave-one-out validation scheme with OASIS data. The
ten most relevant regions to discern between controls, AD and MCI patients are shown in
Tables 2-3 and 2-4, respectively.
In the case of CN vs AD classification, the importance to distinguish between groups is con-
centrated in a few regions (shown in Figure 2-7), the top 10 most relevant features summed
more than 66.5% of the importance. It is reasonably expected that only the hippocampi
(ranked first and third) account for 24% of the importance.
Provided that anatomical changes in MCI are not expected as evident as they might be in
mild AD, differences are subtle and more regions need to be taken into account to distinguish
between MCI and controls. The top ten most relevant regions to classify between these two
groups account for less than 37% of the importance (shown in Figure 2-8). The observation
that importance is more spread across regions hints that early structural changes might be
more complex and not restricted to the already known anatomical areas.
It is worth mentioning that the feature importance value says how much information it adds
to the other features, that is to say a region with little relevancy is in any case informative,
but this information might be redundant and shared by other regions. This statement is il-
lustrated by the distributions of the two hippocampi feature values in Figure 2-9: although
features for both regions show similar distributions and strong inter-class separation, the
right hippocampus is more relevant than the left one, which shows almost half of the impor-
tance in Table 2-3. This difference appears during the classifier training phase: the weak
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Figure 2-7: The ten most relevant regions for automated classification between controls and
AD patients. Names of the regions and their relevance are presented in Table
2-3.

Rank Region Importance (%)

1 Right Hippocampus 15.51

2 Right Planum Temporale 13.35

3 Left Hippocampus 8.40

4 Left Thalamus 7.16

5 Right Paracingulate Gyrus 4.83

6 Right Middle Temporal Gyrus, anterior division 4.38

7 Left Insular Cortex 4.17

8 Right Putamen 3.59

9 Left Frontal Orbital Cortex 2.71

10 Right Amygdala 2.39

Table 2-3: Top ten most relevant regions for the classification between controls and AD
patients.

classifier, based on the left hippocampus, mostly confirms the results of its right counterpart,
i.e. since the same cases are discriminated by both left and right weak classifiers, the former
is considered redundant because it does not give much additional information and its weight
is decreased in the ensemble of classifiers. Because of this, regions showing prevalent differ-
ences between groups are ranked higher, whereas those regions useful to classify particular
cases are ranked lower.

When analyzing the distributions of the feature value for the most relevant regions and
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Figure 2-8: The ten most relevant regions for automated classification between controls and
MCI patients. Names of the regions and their relevance are presented in Table
2-4.

Region Importance (%)

Left Amygdala 6.35

Right Hippocampus 5.41

Left Hippocampus 4.78

Right Planum Temporale 3.56

Right Heschl’s Gyrus 3.24

Left Inferior Frontal Gyrus, pars triangularis 3.10

Right Middle Temporal Gyrus, anterior division 2.95

Right Amygdala 2.55

Left Paracingulate Gyrus 2.40

Left Parahippocampal Gyrus, anterior division 2.18

Table 2-4: Top ten most relevant regions for the classification between control subjects and
patients with mild cognitive impairment.

their opposite hemisphere equivalences (shown in Figure 2-9), there are strong observable
differences between CN, which form relatively compact groups, and AD patients, which
tend to be more scattered and diverge from CN, while the MCI group falls between them.
This trend is particularly remarkable in the amygdala, hippocampus, planum temporale and
thalamus, where the CN and AD feature value distributions look well separated.
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Figure 2-9: Distributions of distances to regional reference, the CN medoid, for the most
relevant regions together with their contralateral equivalent.

2.5 Discussion

This section presents a fully automated strategy that detects characteristic structural brain
patterns associated to the presence of the Alzheimer’s disease. The method derives a regional
descriptor that captures the changes in tissue constituency which is characteristic of any
neurodegenerative disease. This regional descriptor is based on the comparison of intensity
histograms between subjects, assuming gray levels in structural MRI correlate with tissue
composition, an assumption that is supported by the fact that image contrast in T1-weighted
MRI is the product of relaxation differences between tissue types.

The approach herein described has an advantage over other automated classification meth-
ods since it is clinically interpretable by standing out actual patterns of the disease. Ma-
chine learning based analyses have helped to move from the classical local approaches in
pre-defined regions to the exploration of more complex descriptors using artificial vision
techniques. Although such descriptors are useful to separate groups of individuals, most of
these features are not useful for finding out anatomo-physiological correlations that enhance
the understanding of a particular disease.

The characterization presented here also captures disease progression patterns in multiple
directions determined by anatomical changes in different brain regions. This is illustrated
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by Figure 2-10 which shows the median distance (per group) to the CN medoid for a group
of brain regions.

Figure 2-10: Group median distance to CN medoid for a group of anatomical regions. The
directions of these polar graphics correspond to the 8 most relevant regions in
the classification task: 1. amygdala, 2. hippocampus, 3. planum temporale, 4.
Heschl’s gyrus, 5. inferior frontal gyrus, 6. thalamus, 7. paracingulate gyrus
and 8. middle temporal gyrus (anterior division).

This figure also suggests that equivalent regions in the two hemispheres could not show the
same progression rate and then the level of discrimination between subjects is better when
the left and right equivalent regions are taken separately, this claim was corroborated with
additional classification experiments with the OASIS database in which left and right regions
were combined. As shown in Table 2-5, performance measures (AUC and EER) are slightly
worse when for both classification tasks.
The presented strategy did effectively discriminate between patients and controls. Two
previous works performed an automated classification between CN and AD using exactly
the same data and validation scheme but different feature extraction approaches. In the
first one, the work by Toews et. al. [195], they propose a technique to learn local scale-
invariant anatomical features by evaluating saliency in image scale-spaces and classify cases
depending on the occurrence of such features. Following this feature-based morphometry
approach, they achieved an EER of 0.2 when classifying between CN and AD. The second
work we can directly compare with is the one by Rueda et. al. [165] which presents a
strategy that fuses different feature-scale saliency maps and uses this information to feed
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CO vs. MCI CO vs. AD

AUC EER AUC EER

Separating hemispheres 0.74 0.30 0.92 0.10

Combining hemispheres 0.72 0.36 0.90 0.20

Table 2-5: Comparison of classification performance when information from the same region
in both hemispheres is combined

the classifier, classification between CN and AD following this strategy achieves an EER
of 0.14. The classification results presented in this chapter constitute an improvement over
both works with an EER of 0.1 in the same experiment.
Besides outperforming previous works using the same data and validation scheme, the clas-
sification between AD patients and controls achieved 90% sensitivity and specificity while
the best performing methods out of 10 compared in [32] reported up to 81% sensitivity and
95% specificity (using a different database). Similar or slightly worse classification results
were reported for methods relying on voxel-based morphometry, region volumetry or differ-
ent feature extraction methods [35, 217, 211, 59, 117, 147, 105, 216]. It should be noted that
beyond developing a fully automatic classification pipeline, this strategy finds out a multidi-
mensional expression of AD progression, which is directly related to anatomical changes in
specific brain regions. The quantitative measures of anatomical changes proposed here can
be used to describe and evaluate brain images in terms of this multidimensional pattern.
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3 Investigating tissue-specific
abnormalities in AD with DW-MRI

3.1 Introduction

Several studies have investigated the effect of AD on brain anatomy using MRI, most of them
focused on grey matter (GM) degeneration and cortical atrophy patterns [44, 29, 105, 112,
39, 68, 147, 32, 21, 137, 33, 191, 215]. In contrast to structural MRI, diffusion-weighted MRI
(DW-MRI) allows revealing microstructural effects of AD, mostly in the white matter (WM)
where the diffusion of water is shaped by the architecture of axonal membranes and myelin
sheaths. Most diffusion studies in AD and MCI have used the diffusion tensor model and its
derived metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), to detect WM
degeneration induced by the disease. Consistent findings across tensor-based studies reveal a
widespread increase of MD in the WM and decrease of FA in certain WM areas including the
splenium, the cingulum bundle, the superior longitudinal fasciculus, the uncinate fasciculus,
and the parahippocampal gyrus [176, 47, 2, 122, 45]. Research in the early stages of AD
has suggested that WM microstructural degeneration is not always secondary to neuronal
loss [24] and may be an early pathological feature preceding detectable hippocampal atrophy
[219, 87].
Some studies have also reported a naively counter-intuitive increase of FA in crossing fibre
areas such as the corticospinal tracts for AD patients compared to controls [47, 189]. The in-
crease of FA can be explained by the partial loss or degeneration of specific fibre populations
in WM regions where multiple fibre bundles with different directions meet, which are both
highly prevalent in the human brain white matter [98] and cannot be faithfully represented
by the diffusion tensor model. More complex models are therefore needed to infer fibre-
specific information from diffusion MRI. Constrained spherical deconvolution (CSD) was
introduced to overcome that limitation by modelling the WM in each voxel as a continuous
fibre orientation distribution function (fODF) [198]. To estimate these fODFs, traditional
CSD requires high angular resolution DW-MRI acquired with a constant non-zero diffusion
weight (b-value), also referred to as a single-shell acquisition. Fibre-specific measures de-
rived using CSD on single-shell data have been recently used to investigate WM differences
between healthy controls and patients with AD, finding degeneration along specific fibre
pathways such as the splenium of the corpus callosum, the cingulum bundle in its posterior
and parahippocampal aspects, the uncinate fasciculus and the arcuate fasciculus [128].
Given the limited spatial resolution of DW-MRI, the observed diffusion signal in a voxel might
originate from multiple tissue types and/or the surrounding cerebrospinal fluid (CSF). These
partial volume effects (PVE) can affect any diffusion measure of microstructural integrity.
For instance, when the PVE due to CSF contamination is corrected in the GM, differences
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in MD between controls and AD patients are attenuated [85], suggesting that previously
reported diffusion abnormalities in GM areas [212] were likely due to CSF contamination
caused by macroscopic atrophy rather than a change in GM microstructural properties.
The PVE also affects traditional “single-shell” CSD, where the diffusion-weighted signal
is modeled solely as WM content and thus spurious features and biases in quantitative
parameters are produced in the presence of GM or CSF [99].
The contribution of each tissue type to the signal can be quantified by exploiting their
distinct diffusion signal dependency on b-value. As CSF signal decays much faster than GM
and WM signals, it is possible to distinguish between CSF signal and tissue signal using
only one non-zero b-value in conjunction with the corresponding b = 0 data. Therefore,
diffusion measures can be corrected for CSF contamination at interfaces between WM/CSF
and GM/CSF in studies using single-shell data [85, 128, 52]. However, to also discriminate
between WM and GM signal profiles, more than one non-zero b-value is needed. When
DW-MRI is acquired with a multi-shell scheme, it is possible to separate the observed signal
in a voxel into the contributions from each tissue type. Multi-shell multi-tissue constrained
spherical deconvolution (MSMT-CSD) [99] exploits the different tissue signal dependencies
on the b-value to improve fODF estimation by quantifying the portion of the signal attributed
to each macroscopic tissue type (WM, GM, and CSF). Therefore, in addition to effectively
correcting for PVE in the WM modelling, this approach provides diffusion-derived measures
of tissue-like content within each voxel.
In this work, AD-related abnormalities in brain tissue were studied by performing a com-
prehensive analysis of tissue-specific measures derived from multi-shell diffusion MRI. Using
MSMT-CSD, the obtained multi-tissue model is composed of the PVE-corrected fODF along
with the total contributions of three tissue types, WM, GM, and CSF, also called tissue-
like fractions. Differences between control subjects, patients with MCI, and dementia due
to AD were investigated by comparing fibre integrity measures and tissue composition be-
tween groups following two parallel approaches: fixel-based analysis (FBA) [155] for the WM
fODF, and voxel-based analysis (VBA) [13, 180] for the tissue fractions. The comprehen-
sive analysis we present here constitutes a holistic neuroimaging approach for the study of
the AD continuum combining multiple interrelated measures of tissue integrity derived from
DW-MRI.

3.2 Study data

Participants

Patients with MCI due to AD (n = 29) and AD dementia (ADD) (n = 23), as well as cog-
nitively healthy controls (n = 27) were included in the study (see Table 3-1). The diagnosis
of MCI due to AD and ADD was done according to the NIA-AA research criteria [5] while
taking into account clinical data, neuropsychological examination, structural MRI, and, in
some cases, CSF biomarkers [183, 181]. Controls were selected from the research database of
the UAntwerp Reference Center for Biological Markers of Dementia (BIODEM) [181]. They
consisted of volunteers for biomarker research (n = 43), having a normal neuropsychological
examination and no evidence of central nervous system pathology after extensive investi-
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gation [136]. The study was approved by the local ethics committee and all subjects gave
written informed consent.

Image acquisition and pre-processing

Data were acquired on a Siemens 3T MRI scanner with a (32)-channel head coil using a multi-
slice, single-shot EPI, spin-echo imaging sequence. Diffusion weightings of b = 0, 700, 1000
and 2800s/mm2 were applied in 10, 25, 40 and 75 directions, respectively. Other imaging
parameters were: voxel size of 2.5 × 2.5 × 2.5mm3, matrix size of 96 × 96, and 40 axial
slices. During the study, the gradient set of the MRI scanner was upgraded from 40 to 80
mT/m; following this upgrade, the sequence TR and TE were changed from 6000/116ms to
5900/83ms, with all other parameters remaining fixed. The acquisition time was approx-
imately 16 min. A T1-weighted MR image was additionally acquired with a voxel size of
1× 1× 1mm3.

Each DW-MRI dataset was pre-processed using a state-of-the-art pipeline. Data were first
denoised using random matrix theory, thereby increasing the signal-to-noise ratio (SNR)
without spatially smoothing the data [205]. Then, Gibbs-ringing artefacts were suppressed
[103], head motion and eddy current-induced distortions were corrected [11, 10], and inho-
mogeneities of the B1 field were accounted for [202]. Finally, images were up-sampled to
1.25×1.25×1.25mm3 to improve the accuracy of subsequent spatial normalization [153, 53].
The T1-weighted image was used to compute the intracranial volume (ICV) with SPM12
[119].

CSF biomarkers

37 individuals underwent a lumbar puncture less than 3 months before or after image acquisi-
tion. This subset included 8 controls, 19 patients with MCI due to AD, and 10 patients with
AD dementia. CSF biomarker analyses were performed with single parameter ELISA kits
following standard procedures [181]. CSF levels of Amyloid-β of 42 amino acids (Aβ1−42),
total tau (T-tau), and phosphorylated tau at threonine 181 (P-tau181) were considered to in-
vestigate linear relations of these biomarkers with integrity measures derived from multi-shell
DW-MRI.

3.3 Methods

The methodology in this work can be divided into three parts. First, CSF and GM signal
contributions as well as the full WM fODF were extracted in each voxel using MSMT-CSD.
Second, the tissue decomposition maps were spatially normalized across the study subjects,
achieved by calculating a study-specific template and transforming all the subjects’ data
to this template using a multi-channel registration method. In the third step, spatially
normalised information was analysed with non-parametric hypothesis tests. A schematic
overview of the pipeline is presented in Figure 3-1.
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Group
Sample Sex Age in years Subjects with Scanner gradient strength

size F/M mean (sd) CSF biomarkers 40/80 mT/m

CO 27 12/15 70.3± 3.8 8 19/8

MCI 29 16/13 72.0± 3.6 19 15/14

ADD 23 10/13 71.4± 4.0 10 19/4

All 79 38/41 71.3± 3.8 37 53/26

Table 3-1: Description of data per group: cognitively healthy controls (CO), patients with
MCI due to AD, and AD dementia (ADD). Final column indicates the number
of subjects in each group for which data were acquired before vs. after scanner
hardware upgrade.
sd: standard deviation.

3.3.1 Multi-tissue decomposition

A multi-tissue model was obtained by applying MSMT-CSD to each DW-MR dataset. To
perform MSMT-CSD, a representative signal response for each of WM, GM, and CSF was
estimated using an unsupervised method based on specific tissue diffusivity properties [41,
40]. Average tissue responses were obtained across subjects (separate average responses
were calculated for the scans acquired before the upgrade and for those acquired after the
upgrade to facilitate consistent tissue decompositions before and after the upgrade), and
then, using these averaged tissue responses, MSMT-CSD was applied to each dataset. To
assure WM fODF, GM, and CSF contribution maps were comparable across subjects they
were normalised with a multi-tissue approach that minimizes the average difference between
1 and the sum of the three tissue-like contributions while simultaneously performing bias
field correction [151, 42]. The resulting multi-tissue decomposition consists of the WM
fODF along with the GM and CSF contributions to the signal, the WM contribution map
is extracted from the WM fODF as l=0 term of the spherical harmonic (SH) expansion [22].
The minimum contribution of each tissue-like component was set at 1e−8.

3.3.2 Spatial normalisation

Population template

A study-specific template was built from a set of 24 cases including 12 controls, 6 patients
with MCI and 6 patients with AD. These sub-groups were age-matched and balanced by gen-
der. This multi-tissue population template was constructed with an iterative atlas building
framework [152] that used a multi-channel nonlinear diffeomorphic registration algorithm
[146] to align the fODFs as well as the GM and CSF-like contribution maps (See Figure
3-2). The same registration algorithm was applied to align the multi-tissue decompositions
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Figure 3-1: Methodology overview. In the first step, a multi-tissue decomposition is ob-
tained from the multi-shell diffusion data. In the second part, the information is
spatially normalised to a population template calculated for the study popula-
tion, and each subject is represented by 6 feature maps: 2 fixel maps containing
the apparent fibre density (AFD) and fibre cross-section (FC), and 4 voxel maps
containing the tissue-like signal fractions for WM, GM and CSF, and 1 map with
the local volumetric changes induced by the spatial deformations. Finally, dif-
ferences of these measures between groups of subjects are investigated following
non-parametric statistical frameworks for fixel- and voxel-based analysis.

for all participant scans to the population template.

Diffusion-derived measures

The fODF is a continuous function represented in the SH basis, which can represent multiple
fibre populations crossing within a single voxel. To facilitate quantification and statistical
analysis, these are segmented to estimate within each voxel a finite number of discrete fibre
orientations [179]. The term fixel is used to refer to a specific population of fibres oriented
in a specific direction within a specific voxel [154]. The integral of the fODF ascribed to
each fixel is proportional to the volume of fibres aligned in the corresponding direction; this
measure is known as Apparent Fibre Density (AFD) [153] and it has been demonstrated to
effectively quantify specific fibre integrity in crossing fibre regions [161]. The AFD values
extracted from the fODF can be mapped to their respective fixels as shown in Figure 3-3.
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Figure 3-2: The study-specific population template is composed of a white matter fibre
orientation distribution function (WM fODF) template along with the voxel
templates containing the tissue-like contributions for grey matter (GM) and
cerebrospinal fluid (CSF).

During the spatial normalisation process, the multi-tissue model is warped to match the
population template. When applied to voxel maps, the warping causes expansion or con-
traction of regions in the spatially normalised image. In a particular voxel, this volumetric
change (with respect to the population template) is captured by the determinant of the
Jacobian matrix J . This concept has been extended to the fixel-based analysis framework
by accounting for the effect of the Jacobian transformation along different fibre directions
[153, 155]. Given the unitary vector corresponding to a fixel f , the change in scale along
this direction is ‖Jf‖, and the total volumetric change is the product between ‖Jf‖ and the
change in the area perpendicular to f ; the latter of these is a measure of the variation in
fibre bundle cross-section (FC) [153, 155] and is calculated as:

FC(f) =
det(J)

‖Jf‖
(3-1)

The determinant of the Jacobian as well as the fibre bundle cross-section measure are not
absolute measures of volume or area but rather measures of changes relative to the population
template. When one of these measures is smaller than one, the corresponding features are
smaller in the subject space than in the template space, and vice-versa.
In some neuroimaging analysis pipelines, a modulation step is carried out to combine the
model-derived normalised measures with the macroscopic changes induced by the spatial
normalisation to capture both mesoscopic and macroscopic changes. However, it has been
shown that the use of these modulated measures for hypothesis testing can lead to decreased
sensitivity, probably due to the introduction of multiplicative noise [150]. For this reason,
in our analysis we treat model-derived measures and morphological measures separately. To
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Figure 3-3: The fibre orientation distribution functions (fODF) can encode multiple fibre
populations within a single voxel; each of these fibre populations is described
with directional elements called “fixels”. Each fixel is here coloured according
to the value of Apparent Fibre Density (AFD).

ensure model-derived measures (tissue-like contributions and AFD) represent true fractions
of the signal, they were divided by the sum of the three tissue-like contributions at each
voxel. In template space, each subject is described by two fixel maps and four voxel maps.
Fixel maps contain the two fibre specific measures: AFD and the fibre cross-sectional (FC)
area. The set of voxel maps consist of the three tissue-like fraction maps accompanied by
the determinant of the Jacobian matrix.

3.3.3 Statistical Analysis

Hypothesis testing to detect differences of measures between controls, MCI and ADD pa-
tients was done using the General Linear Model (GLM) framework including age, gender,
intracranial volume (ICV), and scanner version as covariates. Non-parametric permutation
tests were performed to calculate family-wise error (FWE) corrected p-values for each hy-
pothesis by computing an empirical null distribution for the enhanced statistic [214, 6]. In
this study, permutation testing was conducted with 5000 permutations and the significance
level was set at α = 0.05.
Fixel measures were compared using FBA [155, 178], while voxel-wise measures were studied
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using VBA [13, 180]. Both approaches are closely related and include many equivalent
steps: data smoothing, statistical enhancement and calculation of p-values with correction
for multiple comparisons.

Fixel-based analysis of fibre-specific measures

Smoothing and statistical enhancement of fixel-wise quantitative parameters was based on
a fixel-fixel connectivity matrix, encoding fractional connectivity between fixels based on
streamlines tractography. A whole-brain tractogram of 10 million streamlines was generated
from the population fODF template using the iFOD2 algorithm [201]; from this a subset of
2 million streamlines was extracted using the Spherical-deconvolution Informed Filtering of
Tractograms (SIFT) method [179] to reduce density biases in the reconstruction. Elements of
the fixel-fixel connectivity matrix are calculated as the fraction of streamlines intersecting one
fixel that also intersect another fixel [154]. These data were used both for smoothing of fixel-
wise measures in conjunction with an isotropic Gaussian kernel with FWHM = 10mm, and
for performing statistical enhancement via Connectivity-based Fixel Enhancement (CFE),
for which the default parameters were used (E = 2; H = 3; C = 0.5).
An omnibus F -test was performed first to detect any effect across the three groups and the
two fixel measures: AFD and FC (first log-transformed for normality). Pairwise differences
for the two measures were interrogated by simultaneously testing multiple contrasts in a
GLM (3 pairs of groups × 2 measures × 2 effect directions) within the set of fixels that
showed significant group effects according to the omnibus F -test. Strong FWE-corrected
p-values were computed by generating a single null distribution for the 12 contrasts [6].

Voxel-based analysis of voxel-wise measures

Statistical analysis of the three tissue-like fractions {Tcsf , Tgm, Twm} should take into account
the compositional nature of this data: 0 < Ti < 1 and Tcsf + Tgm + Twm = 1. The latter
implies the three tissue-like fractions are not linearly independent with only two degrees
of freedom, therefore projecting them to a 2-dimensional space is more appropriate for the
statistical analysis than treating the three measures independently. At each voxel, the tissue-
like fraction values were mapped into a 2-dimensional space using the isometric log-ratio (ilr)
transformation [57], an approach that was recently adopted to study the tissue composition
of lesions in AD using DWI [127]. The two independent isometric log-ratios were calculated
as follows:

ilr1 =
1√
6

ln

[
Tcsf × Tgm
Twm

2

]
ilr2 =

1√
2

ln

[
Tcsf
Tgm

] (3-2)

The isometric log-ratios can capture changes in the relation between the three tissue-like
fractions, an example of resulting ilr is shown in Figure 3-4. Increasing ilr1 values could
reflect: decreased WM-like fraction, accompanied by increased GM or CSF-like fractions, or
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unchanged WM-like fraction with increased product of GM and CSF-like fractions. Increases
in ilr2 reflect an increase in the CSF-like fraction relative to the GM-like fraction.

Figure 3-4: The three tissue-like fractions are bounded and linearly dependent with only
two degrees of freedom, these fractions were transformed into two independent
isometric log-ratios following Equation 3-2.

Before statistical analysis, voxel maps containing the ilr were smoothed using a 3D Gaussian
kernel with FWHM = 5mm (voxel maps are smoothed with a narrower Gaussian filter than
the spatial kernel used in FBA due to the latter being additionally constrained by fixel-fixel
connectivity).
Voxel-based analysis also included an initial omnibus F -test to detect any effect across groups
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and voxel-wise measures. Post hoc testing for pairwise differences of isometric log-ratios and
Jacobian determinant (log-transformed for normality) were performed simultaneously while
applying strong correction of p-values over the 18 contrasts (3 pairs of groups × 3 measures
× 2 effect directions). Statistical enhancement was done using the Threshold-free cluster
enhancement (TFCE) method applied with default parameters (E = 0.5 and H = 2) [180].

Linear correlations with CSF biomarkers

Possible relationships between CSF biomarkers and tissue degeneration were explored by
testing the linear correlations of levels of CSF A-β1−42, total tau, and P-tau181 with the
extracted fixel- and voxel-wise measures. The CSF levels of each biomarker were considered
as a continuous regressor in a GLM that also included age, gender, intracranial volume (ICV)
and scanner as covariates. In these analyses, the relation of each biomarker with diffusion-
derived measures was tested with two omnibus F -tests, one for the two fixel measures, and
another one for the three voxel-wise measures. If any significant effects were detected, post
hoc testing was performed while applying strong FWE correction across contrasts. Effects
were considered significant when the FWE corrected p-values associated with the alternative
hypotheses are below the significance level (α = 0.05).

Implementation

All steps in the analyses were performed using MRtrix3 (version 3.0.2) [200] (https://www.
mrtrix.org/). During DW-MRI preprocessing, MRtrix3 scripts invoke the \eddy" tool
from FSL [11] and \N4BiasFieldCorrection" from ANTs [202].

3.4 Results

Specific tracts where fibre integrity measures decrease with the disease emerged from the
FBA approach. From the VBA pipeline, widespread areas in the brain showed differences
in tissue-like content and macroscopic volume changes.

3.4.1 Fixel-based analysis

The integrity of WM fibres was evaluated using two fixel-wise measures: apparent fibre
density (AFD) and fibre bundle cross-section (FC). The initial omnibus F -test identified an
extensive set of fixels where the fibre measures differ across disease stages (FWE-corrected
p < 0.05), Figure 3-5 shows the streamline segments corresponding to those fixels where
significant effects were detected. Effects are present in the splenium and tapetum of the
corpus callosum (CC), the inferior longitudinal fasciculus (ILF), the uncinate fasciculus, the
thalamo-occipital projection, the cortico-spinal tract (left), the cingulum bundle (right), the
parahippocampal part of the cingulum bundle (left), and the left arcuate fasciculus.
From post hoc pairwise comparisons of the two fixel measures, areas with significant differ-
ences were detected for 4 out of 12 tests when setting the significance level at 0.05 after
strong FWE correction. Patients with MCI and ADD show less AFD than controls in the

https://www.mrtrix.org/
https://www.mrtrix.org/
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Figure 3-5: Streamline segments in the population template tractogram corresponding to
fixels where the disease stage has a significant effect on any of the two fixel-
specific measures (FWE-corrected p < 0.05). Streamlines are coloured according
to their orientation.

splenium and tapetum of the CC (See Figure 3-6), while FC decreases in both groups of
patients (compared to controls) are present in other white matter tracts, including the sple-
nium, such as the left corticospinal tract, left uncinate fasciculus, and right ILF. For ADD
patients, decreased FC is also detected in the right cingulum, left arcuate fasciculus, left
parahippocampal gyrus, and left thalamo-occipital projections (see Figure 3-7). Many of
these fibre tracts overlap with the areas resulting from the F -test shown in Figure 3-5,
explaining most of the significant effects in the omnibus test. Pairwise differences of fixel
measures between ADD and MCI did not meet the level of statistical significance.

3.4.2 Voxel-based analysis

Widespread significant group effects across the three voxel-wise measures (2 ilr parameters
and the Jacobian determinant) were identified by the omnibus F -test across much of the
template analysis mask. As shown in Figure 3-8, voxel-wise measures differ across disease
stages in 44.1% of the analysed brain area.

After applying strong FWE correction across the 18 post hoc pairwise comparisons, voxels
with significant effects were detected for 9 of the tested contrasts. Increases of the first
isometric log-ratio (ilr1 in Equation 3-2) were detected in MCI and ADD patients compared
with controls, and in ADD compared with MCI. The increment of this ratio indicates: the
reduction of WM-like fraction accompanied by increased CSF or GM-like fractions, or the
increased product of CSF and GM-like fractions while WM-like remains constant. Significant
increases of the second isometric log-ratio (ilr2 in Equation 3-2) were revealed for both MCI
and ADD patients when compared to control subjects. Increased ilr2 could be the result of:
decreased GM-like fraction with increased or constant CSF-like fraction, or increased GM-
like fraction with also increased CSF-like and therefore decreased WM-like fraction. Figure
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Figure 3-6: Section of the corpus callosum where AFD is significantly reduced in both groups
of patients compared to control subjects (strong FWE-corrected p < 0.05).
Colour corresponds to the value of the difference between the mean AFD for
patients and the mean AFD for controls. No statistically significant differences
of AFD between ADD and MCI patients were detected.

3-9 shows the absolute variation of tissue-like fractions in areas where significant increases
in ilr1 or ilr2 were detected. When MCI subjects are compared against controls, significant
changes in tissue-like composition are detected in the intersection between the insular cortex
and planum polare, in the cingulate cortex, the amygdala, the hippocampus, the caudate,
and some WM areas such as the cingulum and inside the temporal lobe surrounding the ILF
(see Figure 3-9 top row). In the case of ADD patients when compared to controls, all of these
observations are recapitulated and expanded, along with changes in the temporal cortex, the
temporal pole, the CC, the superior and inferior longitudinal fasciculi, the parahippocampal
gyrus of the cingulum, and the thalamic radiations (see Figure 3-9 middle row). Significant
differences of tissue-like composition between ADD and MCI patients were also detected in
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Figure 3-7: Streamline segments corresponding to fixels where FC is significantly reduced
in patients compared to controls (strong FWE-corrected p < 0.05). Colour
corresponds to the percentage of change in each group of patients compared
with the control group. Given that analyses were performed with the log(FC),
this value was calculated as exp(βAD) − 1 with βAD representing the difference
between means of log(FC) for controls and AD dementia patients. No significant
differences of FC between ADD and MCI patients were detected.

the inferior temporo-occipital region of the right temporal lobe and in the right cingulum
(see Figure 3-9 bottom row).

Significant differences of local volume were detected in both MCI and ADD patients groups
when compared with controls. In Figure 3-10 are shown the resulting pairwise differences
in the determinant of the Jacobian matrix (which accounts for volumetric changes induced
by spatial normalisation). For both groups of patients, ventricles are significantly larger
and there is a significant shrinkage of the anterior part of the left temporal lobe. For ADD
patients, the significant reduction of the local volume in the temporal lobe was detected in
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Figure 3-8: Brain areas where the disease stage has a significant effect on any of the voxel-
wise measures (FWE-corrected p < 0.05).

both hemispheres, and it reached the angular gyrus where the posterior parts of the middle
and inferior longitudinal fasciculus are located.

3.4.3 Correlation between CSF biomarkers and diffusion-derived
measures

Significant effects of Aβ1−42 in fixel- and voxel-wise measures were detected with the omnibus
F-tests. From post hoc testing negative correlations between Aβ1−42 level and the fixel-wise /
voxel-wise measures of macroscopic area/volume change relative to the template were found
in the interface between the ventricles and the genu of the CC (shown in Figure 3-11). The
negative regression coefficient in this case means that the lower the CSF Aβ1−42 levels, and
thus the more pathological, the greater the volumetric change caused by the registration to
the population template.

Interestingly, but not surprisingly, a significant linear correlation between Aβ1−42 level and
ilr2 was found in the left hippocampus, and also in the anterior part of the cingulate cortex,
in the left dorsal anterior insula, and in the genu of the CC (see Figure 3-12). From the
F-tests for the other two CSF biomarkers, total tau and P-tau181, no significant correlations
were detected between them and diffusion-derived measures.

3.5 Discussion

In this work, we presented a comprehensive analysis of AD effects in brain tissue by com-
paring tissue decompositions from multi-shell DWI between groups of subjects belonging to
the AD continuum and cognitively healthy controls. To the best of our knowledge, this is
the first study that combines multi-shell multi-tissue CSD with both fixel and voxel-based
analysis approaches to detect changes of tissue diffusivity properties related to AD progres-
sion. With MSMT-CSD, we can obtain a multi-tissue model that estimates the contribution
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Figure 3-9: Brain areas where at least one of isometric log-ratios is significantly greater
(strong FWE-corrected p < 0.05) in patients than in controls, and in ADD
patients compared to MCI. The absolute value of the difference between mean
tissue-like fraction between groups is represented in a different colour channel
for each tissue type: red for CSF, green for GM, and blue for WM. The resulting
colour corresponds to the combination of change for multiple tissues.

of each tissue type to the diffusion signal while modelling the WM fibre configuration taking
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Figure 3-10: Brain areas where the Jacobian determinant is significantly different (strong
FWE-corrected p < 0.05) in patients compared to controls. The colourmap
represents the percentage of change in local volume compared to the control
group. Analogous to FC, analyses for this value were performed in the log
domain therefore this percentage of change was calculated as exp(βPT ) − 1
where βPT represents the difference between the mean value of the logarithm
of the Jacobian determinant for MCI/AD patients and the mean of those values
for controls.

into account the PVE.

Differences of fibre-specific measures

To study WM integrity, fibre specific measures, namely apparent fibre density (AFD) and
fibre bundle cross-section (FC), were investigated following the FBA approach [155]. The
integration of the MSMT-CSD within the FBA pipeline allows improving the estimation of
the mentioned fibre measures because it gives a more precise fODF in voxels where WM/GM
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Figure 3-11: Brain areas where there is a significant linear relation between CSF biomarker
for Aβ1−42 and measures of macroscopic change relative to the population tem-
plate. Colour corresponds to the percentage of change in these measures for 100
pg/mL increase in biomarker value. Given that analyses for fibre cross-section
and Jacobian determinant were performed in the log scale, the colour-coded
effects in significant areas were calculated as exp(β × 100) − 1 where β is the
GLM coefficient of Aβ1−42 for the corresponding measure.

and WM/CSF signals are mixed [99]. After applying the strong FWE correction to post
hoc pairwise one-sided comparisons in two directions, decreased AFD was detected in the
splenium and tapetum of the CC for both MCI and ADD patients compared to controls
(Figure 3-6), while macro-structural decreases of fibre bundle cross-section were found in
several WM tracts (Figure 3-7). A previous investigation applied the FBA framework to
study the WM integrity in AD and MCI patients using single-shell diffusion data [128] finding
specific fibre tracts with significant decreases of the WM integrity measures in AD patients
when compared to healthy controls. There are common findings such as reduced AFD in the
splenium and reduced FC the right cingulum, uncinate fasciculus, and ILF. Mito et al., 2018
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Figure 3-12: Significant linear relation between CSF biomarker for Aβ1−42 and the second
isometric log-ratio was found in the left hippocampus. Colourmap represents
the estimated GLM coefficient of Aβ1−42 (multiplied by 100) for the GM-like
and CSF-like fractions.

also reported a larger set of fibres tracts with decreased AFD in ADD patients, those tracts
include the parahippocampal cingulum, the inferior fronto-occipital fasciculus and the left
fornix.

Some of the tracts with macrostructural differences, which manifested as a significant reduc-
tion of fibre bundle cross-section, correspond with tracts that have previously been reported
to show differences in diffusion-based measures such as FA and MD. Our results suggest
some of those changes previously attributed to microstructural properties could in fact be
macroscopic effects captured by DTI metrics due to PVE [206]. The study of voxel-based
metrics derived from the diffusion tensor and diffusion kurtosis models has also reported
reduced WM integrity measures in the cingulum, the uncinate fasciculus, the arcuate fas-
ciculus, and the ILF [47, 2, 183, 109]. In the corticospinal pathway, previous works have
reported reduced mean kurtosis, increased free-water index, and increased FA in regions
where the corticospinal tracts cross with other ones [183, 52, 47, 189], which can be observed
when WM degeneration occurs in a subset of crossing fibre populations. This hypothesis is
consistent with the results herein presented, which show degeneration specifically along the
fibre bundles in the corticospinal tract in AD patients.
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Differences of tissue-like composition

Detected changes in tissue-like composition (Figure 3-9) in the ILF, cingulum, thalamic
radiations and superior temporoparietal areas correspond to reduction of WM-like fraction
(See Figure 3-13), these changes are concordant with previously reported decreased FA and
increased MD in such areas [122, 2, 47] suggesting a widespread degeneration of diffusion
barriers in WM. It is worth mentioning that WM-like reduction in temporal and parietal
structures coincides with a significant reduction of the local volume (See Figure 3-10),
meaning that the WM degeneration is also detectable at the macroscopic level and might
be more advanced than the degeneration observed in the frontal areas where no volumetric
differences were detected.
When looking at the GM-like fraction variation between groups, shown in Figure 3-14,
the decreases detected in the cortical and subcortical areas are consistent with the widely
reported landmarks of the disease: hippocampal atrophy and cortical atrophy in the temporal
lobe. Therefore, these differences most likely correspond to actual GM degeneration. Some
of the observed changes in tissue-like composition, manifested as increases in ilr, are the
result of increased GM-like fraction (Figure 3-14), from the calculation of ilr we know that
there must be an increase of the CSF-like fraction too, and therefore a reduction of the
WM-like fraction; as this effect is mostly observed in WM areas such as the longitudinal
fasciculi (cyan areas in Figure 3-9), this is a change consistent with degeneration of diffusion
barriers in WM. Increased CSF-like fraction accompanying these changes (See Figure 3-
15) is compatible with recent research reporting differences of the free-water index between
AD and MCI compared to controls [52]. Although their analyses use a different diffusion
model, the CSF-like signal fraction obtained in this work is conceptually close to the free-
water index, both being related to the part of the signal produced by isotropic unrestricted
diffusion.

Correlations with CSF biomarkers

We included an exploration of the relation between CSF biomarkers and the different diffusion-
derived measures, resulting in significant effects of Aβ1−42 levels in macroscopic measures
and tissue composition in certain areas. Negative correlations between measures of volumet-
ric change (with respect to the template) and CSF Aβ1−42 values were found in the interface
between the ventricles and the genu of the CC (Figure 3-11), indicating expansion of the
ventricles in the presence of decreased (i.e. pathological) values of this biomarker. All ef-
fects of CSF Aβ1−42 levels in fibre-specific measures detected with the omnibus F -test were
confirmed as macrostructural effects driven by the volumetric differences with respect to the
population template, and no significant correlations with AFD were detected at the signif-
icance threshold level after applying the strong correction for multiple comparisons during
post hoc testing; this is an important consideration because some of the previous findings of
significant correlations between CSF biomarkers and DTI measures of WM integrity have
been reported without proper adjustments for multiple comparisons [7].
The significant correlations between CSF Aβ1−42 levels and tissue-like composition come
from different combinations of tissue-like content variation depending on their location (seen
as different colors in Figure 3-12). As CSF Aβ1−42 levels are more pathological, GM-like
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Figure 3-13: Difference of mean WM-like fraction between groups in brain areas where at
least one of isometric log-ratios is significantly different between pairs of groups
(strong FWE-corrected p < 0.05).

fraction decreases in the left hippocampus and genu of the CC, WM-like fraction decreases
in the cingulate cortex and insula, and CSF-like fraction increases in all these areas.
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Figure 3-14: Difference of mean GM-like fraction between groups in brain areas where at
least one of isometric log-ratios is significantly different between pairs of groups
(strong FWE-corrected p < 0.05).

Limitations

One limitation of this work is the restricted field of view of the acquired DW-MR images.
As a result, the analysed area did not include the superior slices of the brain, where GM
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Figure 3-15: Difference of mean CSF-like fraction between groups in brain areas where at
least one of isometric log-ratios is significantly different between pairs of groups
(strong FWE-corrected p < 0.05).

changes might be ubiquitous. Geometric distortions due to field inhomogeneity were not
corrected, as no explicit image data tailored for this purpose were acquired; therefore high
variability in high susceptibility areas could limit the power to detect significant differences.
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Conclusions

This study demonstrates that there are widespread significant differences between the brains
of patients with AD dementia and MCI due to AD, and those of age-matched healthy
controls. The comprehensive analysis framework presented here facilitates simultaneous
macro- and microscopic assessment of CSF, GM, and WM, all from a single DW-MRI data
set. This study includes a strong control for false positives supporting the robustness of
reported findings. Abnormalities related to AD symptomatic stages were detected in specific
WM fibre pathways, cortical and subcortical GM, as well as macroscopic patterns such as
temporal lobe atrophy and ventricle expansion.
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4 Improving the quantitative
characterization of cognitive
impairment

4.1 Introduction

Currently, there is no cure for AD and the vast majority of clinical trials for disease-modifying
drugs, designed to slow down AD progression from MCI to dementia, have so far failed [125].
Aside the questioned efficacy of the tested treatments, other possible reasons for failures may
come up from two sources. First, heterogeneity of recruited participants, including advanced
AD and variable MCI manifestations, or participants without any underlying pathology
[125]. Second, standard cognitive outcomes, set as endpoints, might be highly variable and
not sensitive enough to detect subtle cognitive performance changes [125, 166]. This is
the case of the widely used Alzheimer’s disease Assessment Scale - Cognitive (ADAS-Cog),
that has shown high variability and poor sensitivity, likely by measurement errors, patient
heterogeneity, and ceiling effects of its sub-scores, making some sub-scores uninformative in
patients at early stages [166, 156, 80].

Composite outcomes computed with informative sub-scores from one or multiple tests have
demonstrated to be more robust and sensible measures to detect cognitive and functional
changes in MCI [166, 156]. However, single composite scores may mask the heterogeneity of
cognitive impairment.

Patients diagnosed with MCI show varying levels of impairment in different cognitive do-
mains beyond memory, including language, visuospatial skills, attention and executive func-
tion [116, 210, 66]. This heterogeneity is likely linked to differences in the clinical evolution
[186, 78]. Therefore, evaluation of domain specific changes could help to identify individ-
uals at greater risk of progressing to dementia. Composite scores for measuring specific
domain impairment have been proposed for memory [30] and executive function [69]. These
scores mitigate the effect of measurement errors for individual items while combining infor-
mative sub-scores from multiple tests. Evaluation of these two previously proposed scores
demonstrated they show better performance than individual test scores in detecting domain
changes over time and predicting conversion from MCI to dementia [30, 69].

This chapter presents a data-driven framework which learns to combine and weight sub-scores
from the neuropsychological test battery to calculate a set of domain-specific composite
scores that quantify impairment in 6 domains: memory, language, visuospatial abilities,
executive functioning, orientation and attention. The weighting scheme was obtained by
estimating the parameters of a multi-factor model with Confirmatory Factor Analysis (CFA).
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The usefulness of the developed composite scores in MCI was evaluated in two different tasks
using machine learning methods. First, the set of composite scores was taken as input for
unsupervised cluster analysis, aiming to identify different sub-groups of individuals in the
MCI sample. Second, we tested the ability of composite scores to predict progression from
MCI to dementia within specific time windows, ranging from 1 to 5 years, and compared the
performance against standard outcomes.

4.2 Methods

The data-driven methodology presented here is divided in two parts (Figure 4-1). The first
part consists in learning the parameters for sub-score standardization and domain scores cal-
culation. The second part evaluates the composite scores in two automated tasks: clustering
of patients diagnosed with MCI, and predicting progression to dementia.

Figure 4-1: The proposed data-driven methodology can be divided in two blocks: learning
and evaluation. During the learning phase, the parameters for sub-score stan-
dardization and domain composite calculation are estimated using a data sample
including cognitively unimpaired participants and MCI patients. In the second
part, the calculated domain scores for a separate sample of MCI are evaluated in
terms of two tasks: unsupervised clustering of patients and prediction of future
progression to dementia within different time windows.
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4.2.1 Participants data

Data was provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
The ADNI is a public-private partnership with the primary goal of testing whether magnetic
resonance imaging (MRI), positron emission tomography (PET), biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of
MCI and early AD. For additional and up-to-date information, see www.adni-info.org.
The dataset herein used comprised 680 patients with MCI and 668 cognitively unimpaired
(CU) participants. The demographics and characteristics of these groups are presented in
Table 4-1, corresponding to the first visit with the available information.

Data partition

The ADNI sample was split following the two methodological parts: learning and evaluation.
For the learning set, 60% of the CU sample (n = 400) was taken as normative data for sub-
score standardization while the remaining 40% (n = 268) and 40% of the MCI sample
(n = 272) were used to learn the parameters for calculating the composite scores with CFA.
The evaluation set corresponded to the remaining 60% of MCI participants (n = 408), for
which composite scores were calculated using the parameters from the learning set.

Learning set Evaluation set

CU (n = 668) MCI (n = 680)

Normative data CFA CFA Evaluation

(n = 400) (n = 268) (n = 272) (n = 408)

Sex (% female) 54.5 59.3 44.5 40.7

Age (mean ± sd) 73.4± 6.9 72.6± 8.0 72.6± 8.2 72.8± 7.8

APOE-ε4 (% carriers) 31.0 28.9 43.8 46.7

CDR-SOB (mean ± sd) 0.1± 0.2 0.1± 0.2 1.5± 1.0 1.5± 1.0

MMSE (mean ± sd) 29.2± 1.1 28.9± 1.2 27.9± 1.8 28.0± 1.7

ADAS-Cog (mean ± sd) 10.0± 4.7 11.1± 4.5 16.4± 6.8 15.0± 6.8

Table 4-1: Description of sets used in each step of the methodology, including the percentage
of carriers of the ε4 allele of the apolipoprotein E (APOE) gene, and distributions
of total scores for the Mini-Mental State Examination (MMSE), Clinical Demen-
tia Rating - Sum of Boxes (CDR-SOB), and the Alzheimer’s Disease Assessment
Scale - Cognition (ADAS-Cog). *sd: standard deviation.

www.adni-info.org
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Neuropsychological data

Sub-scores from nine different tests were used in the present study, namely: the Alzheimer’s
Disease Assessment Scale - Cognition (ADAS-Cog) [162], Mini-Mental State Examination
(MMSE) [60], Montreal Cognitive Assessment (MoCA) [133], Rey auditory verbal learning
test (AVLT), Logical Memory test immediate and delayed [208], Clock Drawing test [77],
Category Fluency test [131], Trail Making A and B [158], and one of the naming tests
depending on its availability: Boston Naming test [102] or Multilingual Naming test [75].
The initial list of 50 sub-scores is presented in Table 4-2.

Sub-score code Test Description

Q1SCORE ADAS-Cog Word Recall

Q2SCORE ADAS-Cog Commands

Q3SCORE ADAS-Cog Constructional Praxis

Q4SCORE ADAS-Cog Delayed Word Recall

Q5SCORE ADAS-Cog Naming

Q6SCORE ADAS-Cog Ideational Praxis

Q7SCORE ADAS-Cog Orientation

Q8SCORE ADAS-Cog Word Recognition

Q9SCORE ADAS-Cog Remembering Test Instructions

Q10SCORE ADAS-Cog Comprehension

Q11SCORE ADAS-Cog Word-finding Difficulty

Q12SCORE ADAS-Cog Language

Q13SCORE ADAS-Cog Number cancellation

MMORITIME MMSE Orientation to time

MMORISPACE MMSE Orientation to space

MMREGI MMSE Three word registration

MMRECALL MMSE Three word recall

MMSPELLBKW MMSE Spelling a 5 letters word backwards

MMNAM MMSE Naming 2 objects

MMCOMMAND MMSE Following a verbal command

MMREPEAT MMSE Repeating a short sentence

MMREAD MMSE Reading a sentence wit an instruction

MMWRITE MMSE Writing a sentence about anything
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MMDRAW MMSE Copying a drawing

TRAILS MoCA Trails

CUBE MoCA Copying a cube drawing

MOCACLOCK MoCA Drawing a clock

MOCANAM MoCA Naming 3 animals

MOCADIG MoCA Repeating digits forward and back-
wards

MOCALET MoCA Tapping with the hand when a letter is
read from a list

MOCASERIAL MoCA Serial subtraction starting at 100

MOCAREP MoCA Repeating 2 sentences

MOCAFLUEN MoCA Naming words that beginwith the letter
F

MOCAABS MoCA Abstraction of similarities between
words

MOCADLREC MoCA Five word recall

MOCAORI MoCA Orientation to time and space

CLOCKSCOR Clock Drawing test Drawing a clock with details

COPYSCOR Clock Drawing test Copying the drawing of a clock

TRAASCOR Trail Making test Time to complete Part A

TRABSCOR Trail Making test Time to complete Part B

LIMMTOTAL Logical Memory test Immediate recall of a story read by the
examiner

LDELTOTAL Logical Memory test Delayed recall of a story read by the
examiner

CATANIMSC Category Fluency test Naming animals

RAVLT.IMMED Rey AVLT Repeating a list of 15 words 5 times

AVTOT6 Rey AVLT Recall of the first list of words after a
second list was read

AVTOTB Rey AVLT Repeating words from the second list

AVDEL30MIN Rey AVLT Recall of words from the first list after
30 minutes

AVDELTOT Rey AVLT Delayed recognition of written words
from the first list
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BMNOCUE
Boston /

Multilingual Naming test
Naming objects in pictures

BMCUED
Boston /

Multilingual Naming test
Naming objects in pictures after se-
mantic cues

Table 4-2: The set of 50 sub-scores from 9 neuropsychological tests initially considered for
the analysis.

4.2.2 Learning domain composite scores

Sub-score standardization

Given the heterogeneous scales of neuropsychological tests, some of the scales were inverted
to ensure that increasing values correspond to poorer performance. The initial set of 50
sub-scores were transformed into standardized regression based (SRB) z-scores using the
parameters learnt from a normative sample. Specifically, each sub-score x was modelled as
linear function of age and years of education:

x = β0 + βed × Education + βage × Age + ε (4-1)

Linear regression parameters β0, βed, βage and σ2 = var(ε) were estimated with data from
400 CU participants. Then, the corresponding SRB z-score for each participant i (denoted
yi for consistency with upcoming formulations) was calculated as:

yi =
xi − x̂i
σ

=
xi − (β0 + βed × Educationi + βage × Agei)

σ
(4-2)

The sub-score from the naming test after a semantic clue (BMCUED) was dropped from
further analysis because higher values, after scale inversion, can be associated with poor
performance or perfect performance without the cue.

Derivation of domain scores

The estimation of composite measures for 6 different domains was done by proposing and
testing a factor model which links a set of sub-scores from multiple tests with six domains:
memory, language, visuospatial abilities, executive functioning, orientation and attention
(See Figure 4-2). Before establishing a factor model, variability of sub-scores and pairwise
correlations were examined in the data partition used for CFA. Sub-scores whose variance
was inflated by a few outliers were not included in the model, neither were the sub-scores
showing no significant correlation (greater than 0.25) with any other one and were not eval-
uating a similar task. The factor model was proposed taking into account what sub-scores
evaluate, but also the number of previous works that performed Factor Analysis on similar
neuropsychological test batteries [30, 69, 138, 72].
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Figure 4-2: Proposed factor model connecting 6 cognitive domains with 35 sub-scores from 9
different neuropsychological tests. Sub-scores code and description is presented
in Table 4-2.

Factor analysis formulation

Factor analysis methods exploit the correlations between observed measures y to quantify
the influence of unobserved factors z [31]. Let the vector yi ∈ Rm×1 be the i-th observation
of m variables, and zi ∈ Rp×1 the unobserved measures of p factors. The common factor
model states:

yi = Fzi + ei (4-3)

Or component-wise:

yij =
m∑
k=1

fjkzik + eij (4-4)

Matrix F ∈ Rm×p contains the factor loadings, also known as the factor structure. Residuals
e.j ∈ R1×m contain the portion of the j-th variable that is not defined by the factors and
matrix of residuals correlations Ce ∈ Rm×m is assumed diagonal. Therefore, components of
the correlation matrix between observed variables Cy ∈ Rm×m are given by:

[Cy]jl = corr(y·j, y·l)

=
m∑
s=1

m∑
t=1

fjsflt [Cz]st for j 6= l
(4-5)
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In Exploratory Factor Analysis (EFA) the matrices F, Cz, and Ce are estimated without any
assumptions about the underlying factor structure. On the contrary, Confirmatory Factor
Analysis (CFA) estimates those matrices for an hypothesized factor model from Equation
4-5. CFA was performed with the lavaan package [163] in R (v.3.6.3) using the unweighted
least squares estimator. Model fit was evaluated by the Root Mean Square Error of the Ap-
proximation (RMSEA) and the Tucker-Lewis index (TLI), these measures evaluate a model
in relation to a baseline model which assumes all variables to be independent.

Domain scores calculation

The factor structure matrix F ∈ Rm×p quantifies the influence of the p unobserved factors
over the m observed variables. The set of unobserved factors zi for a particular case i can
be calculated as linear combinations of its observations yi [15, 79]. That is, the estimated
vector of factors, ẑi, is given by:

ẑi = Wyi (4-6)

With W ∈ Rp×m a weight matrix that needs to be estimated. A solution that minimizes the
sum of squares of the uniqueness [15], i.e., the portion of the observations variance that is
not explained by the factors, is given by:

W =
(
FTCe

−1F
)−1

FTCe
−1 (4-7)

The resulting estimated factor values quantify dysfunction of the different domains included
in the model. The learnt set of weights can be used to calculate the domain specific scores
of new observations once they have been transformed into SRB z-scores.

4.2.3 Evaluation

Clustering the MCI sample

By exploring the existence of MCI subgroups with an unsupervised clustering method, the
six composite scores expose different cognitive profiles in the MCI sample. Specifically, the
Partition Around Medoids (PAM) method, also known as k-medoids, iteratively splits the
data set in k clusters, being the k representative points the most central points (medoid) in
each cluster, and the remaining points assigned to the cluster with the nearest representative
point [111, 159].
Here we incorporated the inherent relations between domains by including the covariance
matrix Cz in the calculation of distance between subjects, the distance between a pair of
subjects i and j, described by their domain scores zi and zj, was defined as:

d(zi, zj)
2 = (zi − zj)Cz(zi − zj)

T (4-8)
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Unlike the Mahalanobis distance, the distance between two subjects is weighted by the
covariance between factors, thereby ensuring that the largest variance dimensions contribute
more to the differences between subjects. The matrix used for this step was the estimated
covariance matrix between domains Cz resulting from the CFA.

The number of clusters was set by revising a collection of 30 indices [25] for multiple options
of k from 2 to 10. Cluster stability for these possible partitions (2 ≤ k ≤ 10) was also
evaluated following a bootstrap approach. For a given partition in k subgroups, this process
consists in partitioning a sub-sample of the data (80%), calculating the subset of observa-
tions that remains in their initial cluster and repeating this process multiple times (1000
iterations). The overlap between the initial clusters and bootstrap clusters was assessed
via the Jaccard coefficient and the mean value of this index over the total of repetitions is
reported for all clusters.

Differences between MCI subgroups

Resulting subgroups of MCI participants were compared in terms of their composite scores
per domain and their risk of progression to dementia. Pairwise domain score differences
between sub-groups were examined with Wilcoxon-Mann-Whitney U tests while applying
the Bonferroni correction for multiple comparisons. A multivariate Cox proportional hazard
regression model tested the sub-group effect in the progression from MCI to AD dementia
while controlling for age, gender and years of education. Kaplan-Meier survival curves illus-
trated progression to dementia of the different MCI sub-groups, and curves were compared
using omnibus and pairwise log-rank tests. A multivariate Cox proportional hazard regres-
sion model was used to evaluate the effect of the cognitive profile on the progression from
MCI to AD dementia while controlling for age, gender and years of education. The resulting
hazard ratios (HR) account for the risk difference of each MCI sub-group with respect to a
reference group.

Prediction of progression to dementia

Domain specific scores were also evaluated in the automated prediction of progression from
MCI to AD dementia. This evaluation consisted in classifying MCI patients as either stable or
converters following the time window approach[141] fixing five different time periods: 12, 24,
36, 48, and 60 months. The 6 composite scores along with age, gender and years of education
were used to train random forest classifiers [20]. A Random forest (RF) is an ensemble of
decision trees constructed using a bootstrap aggregating approach. To create each decision
tree, a new training set is generated by sampling, uniformly and with replacement, the
original training set. This procedure ensures the collection of trees comes from independent
identically distributed samples. The prediction is given by the majority voting of the decision
trees in the ensemble, effectively improving the prediction accuracy [20].

Classification performance was assessed by constructing the Receiver Operating Character-
istic (ROC) curve and calculating its Area Under the Curve (AUC). Depending on the time
window, data for training the classifier might be highly unbalanced. This was taken into ac-
count when designing the cross validation scheme: at each iteration, a random forest classifier
was trained with a balanced subset by randomly selecting the 70% of the underrepresented
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class with an equal number of samples from the other class. The classifier was tested with
the remaining observations, in some cases reaching a larger number of samples. This process
was repeated 1000 times per time window.

4.3 Results

4.3.1 Parameters for composite scores calculation

Sub-score standardization

Parameters to calculate the SRB z-scores (Equation 4-2), obtained from the linear regression
with a sample of 400 cognitively unimpaired individuals are presented in Table 4-3.

Sub-score Intercept (β0) Education (βed) Age (βage) σ

Q1SCORE 1.044 -0.045 0.034 1.294

Q2SCORE 0.072 -0.001 0 0.353

Q3SCORE 0.178 -0.015 0.006 0.55

Q4SCORE -0.549 -0.065 0.06 1.811

Q5SCORE -0.094 -0.001 0.002 0.265

Q6SCORE 0.145 -0.001 -0.001 0.231

Q7SCORE 0.258 -0.009 0 0.321

Q8SCORE 5.095 0.035 -0.037 2.375

Q9SCORE -0.042 -0.006 0.002 0.148

Q10SCORE -0.203 0.001 0.003 0.148

Q11SCORE -0.266 0 0.004 0.257

Q12SCORE -0.138 0.001 0.002 0.171

Q13SCORE -0.405 -0.001 0.015 0.819

MMORITIME -0.024 0.001 0.001 0.301

MMORISPACE 0.432 -0.009 -0.002 0.351

MMREGI -0.02 -0.001 0.001 0.1

MMRECALL -0.556 -0.016 0.015 0.621

MMSPELLBKW 0.529 -0.032 0.002 0.492

MMNAM -0.05 0.001 0.001 0.05

MMCOMMAND 0.103 -0.007 0.001 0.244

MMREPEAT 0.252 -0.005 -0.001 0.264
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MMREAD 0.028 0 0 0.05

MMWRITE -0.02 0.001 0 0.05

MMDRAW 0.183 -0.01 0.001 0.241

TRAILS -0.078 -0.008 0.004 0.27

CUBE 0.451 -0.03 0.004 0.447

MOCACLOCK -0.058 -0.003 0.005 0.483

MOCANAM -0.102 0 0.003 0.276

MOCADIG -0.001 -0.008 0.003 0.26

MOCALET -0.113 -0.002 0.003 0.177

MOCASERIAL 0.153 -0.016 0.003 0.385

MOCAREP 0.14 -0.018 0.005 0.454

MOCAFLUEN 0.198 -0.016 0.003 0.385

MOCAABS 0.457 -0.029 0.002 0.393

MOCADLREC -2.029 -0.049 0.074 1.691

MOCAORI 0.271 -0.005 -0.002 0.254

CLOCKSCOR 0.092 -0.012 0.005 0.536

COPYSCOR 0.167 0.003 -0.001 0.42

TRAASCOR 2.772 -0.099 0.42 9.601

TRABSCOR 9.705 -1.968 1.386 39.867

LIMMTOTAL 15.084 -0.242 -0.012 3.086

LDELTOTAL 15.238 -0.234 -0.002 3.27

CATANIMSC 36.053 -0.62 0.174 5.35

RAVLT.IMMED 2.848 -0.473 0.456 9.81

AVTOT6 -0.858 -0.15 0.123 3.248

AVTOTB 4.328 -0.072 0.089 1.988

AVDEL30MIN -1.107 -0.075 0.129 3.9

AVDELTOT -1.478 -0.042 0.058 2.267

BMNOCUE 2.035 -0.134 0.026 1.995

BMCUED 29.761 0.032 -0.007 0.592

Table 4-3: Parameters for sub-score standardization estimated from normative data. Com-
plete description of each sub-score code is presented in Table 4-2.
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Factor analysis

The proposed factor model was constructed with 35 sub-scores linked to 6 cognitive domains:
memory, language, executive function, visuo-spatial, orientation and attention. Fit statistics
given by Confirmatory Factor Analysis indicate a good model fit (RMSEA = 0.09, TLI
= 0.95). Once the factor model parameters are estimated, dysfunction measures for each
domain are obtained as linear combinations sub-scores, the resulting set of weights for domain
score calculation are presented in Table 4-4.

Domain

Sub-score Memory Language Executive Visuospatial Orientation Attention

Q1SCORE 0.126 0 0 0 0 0

Q4SCORE 0.125 0 0 0 0 0

MOCADLREC 0.061 0 0 0 0 0

RAVLT.IMMED 0.15 0 0 0 0 0

AVTOT6 0.128 0 0 0 0 0

AVTOTB 0.052 0 0 0 0 0

AVDEL30MIN 0.068 0 0 0 0 0

AVDELTOT 0.052 0 0 0 0 0

LIMMTOTAL 0.085 0 0 0 0 0

LDELTOTAL 0.113 0 0 0 0 0

MMRECALL 0.039 0 0 0 0 0

Q5SCORE 0 0.097 0 0 0 0

MOCANAM 0 0.093 0 0 0 0

BMNOCUE 0 0.291 0 0 0 0

CATANIMSC 0 0.306 0 0 0 0

Q13SCORE 0 0 0.026 0 0 0

TRAASCOR 0 0 0.065 0 0 0

TRABSCOR 0 0 0.224 0 0 0

MOCASERIAL 0 0 0.036 0 0 0

TRAILS 0 0 0.025 0 0 0

CLOCKSCOR 0 0 0 0.395 0 0

COPYSCOR 0 0 0 0.229 0 0

MOCACLOCK 0 0 0 0.448 0 0
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Q3SCORE 0 0 0 0.157 0 0

CUBE 0 0 0 0.164 0 0

MMDRAW 0 0 0 0.048 0 0

Q7SCORE 0 0 0 0 0.331 0

MMORITIME 0 0 0 0 0.313 0

MMORISPACE 0 0 0 0 0.114 0

MOCAORI 0 0 0 0 0.418 0

Q9SCORE 0 0 0 0 0 0.074

Q10SCORE 0 0 0 0 0 0.092

Q11SCORE 0 0 0 0 0 0.204

Q12SCORE 0 0 0 0 0 0.148

Q2SCORE 0 0 0 0 0 0.085

Table 4-4: Weight of each sub-score in the calculation of the 6 domain scores (Matrix WT ).
Complete description of each sub-score code is presented in Table 4-2.

Domain dysfunction scores of all subjects were calculated using the learnt parameters while
differences between cognitively normal subjects and MCI patients were tested using Mann-
Whitney U tests. As one test was performed per domain, p-values were adjusted using the
Bonferroni correction for the 6 tests. The 6 domains differ significantly between these groups:
memory (r = 0.59, p < 0.00005), language (r = 0.34, p < 0.00005), executive functioning
(r = 0.33, p < 0.00005), visuospatial abilities (r = 0.20, p < 0.00005) , orientation (r =
0.25, p < 0.00005), and attention (r = 0.21, p < 0.00005).

4.3.2 Sub-groups of MCI patients

The cognitive state of MCI participants was characterized by the six domain scores and
different impairment profiles were found in the MCI patient sample by cluster analysis.
Once the distance between subjects is estimated, there are multiple criteria to choose the
number of clusters (k) in which data could be divided. After examining 30 different indices
[25], data partition in 4 clusters was suggested by 13 of these indices. Additionally, the mean
cluster stability index was checked for multiple values of k resulting in values above 0.85 for
2 ≤ k ≤ 4. Partition around medoids (PAM) was applied to divide the sample of 408 MCI
patients in 4 different subgroups. The description of these subgroups is presented in Table
4-5 along with the description of the entire group of cognitively unimpaired participants as a
reference. Figure 4-3 shows the distributions of domain dysfunction scores for each one of the
MCI subgroups. A total of 60 pairwise tests were performed to compare domain composite
scores between MCI subgroups and against the CU group, effect size r was computed for each
test and p-values were adjusted for multiple comparisons using the Bonferroni correction.
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Two profiles were observed at the extremes of the dysfunction spectrum: group 1 exhibits
the lowest impairment in all domains, with all score distributions being comparable with the
CU group, and group 4 has the highest average dysfunction scores in 5 out of 6 domains.

Cognitively

unimpaired

MCI subgroup

MCI 1 MCI 2 MCI 3 MCI 4

N 668 159 129 88 32

Age (years) 73.1±7.4 72.4±7.8 72.2±7.8 74.6±7.5 72.9±7.7

Sex (% female) 56.4 43.4 34.9 43.2 43.8

APOE-ε4 (% carriers) 30.2 35.9 47.3 55.2 75.0

Memory -0.59±0.70 -0.04±0.63 0.57±0.72 0.95±0.73 1.51±0.67

Language -0.26±0.56 -0.18±0.49 0.39±0.72 0.50±1.01 0.66±1.00

Executive -0.14±0.26 -0.09±0.26 0.13±0.47 0.19±0.44 0.31±0.62

Visuospatial -0.27±0.96 -0.71±0.43 0.83±1.09 0.49±1.40 1.22 ± 1.35

Orientation -0.51±0.82 -0.70±0.41 -0.59±0.45 1.60±0.98 5.06±1.84

Attention -0.15±0.35 -0.08±0.38 0.11±0.72 0.28±1.00 0.22±0.89

Mean CSI - 0.97 0.94 0.90 0.85

Cox proportional HR - ref. 2.57 3.84 7.68

95% CI - ref. 1.59 - 4.20 2.33 - 6.30 4.32 - 13.70

Table 4-5: Description of MCI subgroups, along with the CU sample for reference. De-
mographic information, mean and standard deviation (sd) of domain composite
scores, mean cluster stability index (CSI), and proportional hazard ratios (HR)
with their 95% confidence intervals (CI).

In the control-like subgroup 49 out of 159 individuals progressed to dementia on the course
of the follow-up, those participants converted on average 44.5 months after evaluation. This
particular sub-group supports previous findings which suggest a considerable number of false
positives in the diagnosis of MCI in ADNI database [54, 58].
Characterization of MCI participants with the 6 proposed domain dysfunction scores revealed
4 different cognitive profiles in the sample of ADNI participants diagnosed with MCI:

• The first subgroup (MCI 1) with the lowest mean dysfunction scores for all 6 domains
compared to the other MCI subgroups. When compared to controls, this group shows
significantly higher memory dysfunction (r = 0.31, p < 0.00005) and lower visuospatial
dysfunction score (r = 0.17, p = 0.00008). Indeed, these participants should have
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Figure 4-3: Distribution of domain dysfunction scores per MCI subgroup including the com-
plete group of cognitively unimpaired (CU) participants as reference.

exhibited some memory impairment during the neuropsychological evaluation to be
diagnosed with MCI according to the ADNI criteria.

• Subjects in MCI 2 show higher impairment in memory than MCI 1 (r = 0.39, p <
0.00005), language (r = 0.44, p < 0.00005), executive function (r = 0.25, p = 0.0012),
and visuospatial abilities (r = 0.75, p < 0.00005). Although the attention dysfunction
does not differ from MCI 1, the difference of this domain with respect to the CU group
is significant but small (r = 0.18, p = 0.00001).

• The third subgroup (MCI 3) differs from MCI 2 only in memory (r = 0.25, p = 0.015)
and orientation (r = 0.81, p < 0.00005).

• The last subgroup MCI 4 differs from MCI 3 in memory (r = 0.32, p = 0.026) and
orientation (r = 0.73, p < 0.00005).

Kaplan-Meier survival curves for the 4 subgroups of MCI are illustrated in Figure 4-4,
according to the omnibus log-rank test, survival curves for the 4 subgroups differ significantly
(χ2

3 = 64.2, p ≤ 0.001). According to the pairwise comparison between curves, MCI subgroup
1 exhibits significantly lower progression probability than subgroup 2 (χ2

1 = 15.61, p =
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0.0001), and subgroup 4 has significantly higher progression probability than subgroup 3
(χ2

1 = 5.74, p = 0.02). Although the difference between subgroups 2 and 3 does not reach
the significance level of 0.05 after false discovery rate correction, the adjusted p-value is still
relatively low (χ2

1 = 3.65, p = 0.056). The resulting MCI subgroups show with distinctive
survival curves confirming that the different cognitive profiles are related with different
progression risk.

Figure 4-4: Kaplan-Meier curves for the found MCI sub-groups

Differences of progression risk across MCI sub-groups were quantified using multivariate Cox
models taking the control-like subgroup (MCI 1) as reference and including gender, age and
years of education as covariates. The resulting proportional HR are presented in Table 4-5,
HR estimates for MCI subgroups 2 and 3 compared with the control-like subgroup are 2.57
(95% CI [1.59 − 4.20]) and 3.84 (95% CI [2.33 − 6.30]), respectively. Significantly higher
hazard ratio results for MCI subgroup 4 which have a risk of progression to AD dementia
around 7.7 (95% CI [4.32− 13.70]) times higher than the risk for the control-like subgroup.
From the Cox model, age, years of education and gender had no effect.

4.3.3 Automated prediction of progression to AD dementia

Random Forest classifiers were trained to classify between MCI patients who remained stable
(sMCI) and the ones who converted to dementia (cMCI) using data from the evaluation set.
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The number of cases in each one of these two groups depended on the time window being
considered, Table 4-6 presents the number of cases used for training and testing the classifiers
for the 5 time windows considered 4-6.

Total Training RF Testing RF

Time window sMCI cMCI sMCI cMCI sMCI cMCI

12 months 356 46 32 32 324 14

24 months 263 82 57 57 206 25

36 months 206 99 69 69 137 30

48 months 159 114 80 80 79 34

60 months 109 122 76 76 33 46

Table 4-6: Number of MCI subjects that remained stable (sMCI) and converted to dementia
(cMCI) within each time window, along with the number of subjects per class that
were used to train and test the Random Forest (RF) classifier at each iteration
of the cross-validation scheme.

Included features for classification were the six domain scores and years of education, age,
and gender. To compare with standard outcome measures, at each iteration of the validation
scheme, two additional classifiers were trained while including the same covariates. The first
one was trained with the scores of commonly used neuropsychological tests, namely the
ADAS-Cog, MMSE, MoCA, and AVLT while the second was trained only with the ADAS-
Cog. The number of trees for all RF was set at 200. The distribution of AUC values per
time period across the 1000 iterations for the three classifiers is shown in Figure 4-5, mean
AUC for classification with domain scores are 0.68, 075, 0.74, 0.74, and 0.76 for prediction
within 12, 24, 36, 48, and 60 months, respectively.
Classifier performance is significantly higher when trained with domain scores rather than
with the set of test totals, including the ADAS-Cog. When predicting MCI conversion within
12 months, resulting mean AUCs are 0.68 and 0.63 (Cohen’s d = 0.73, p ≤ 0.00001) for
classifiers trained with dysfunction scores and total tests, respectively. When the conversion
prediction is done within 60 months, these mean AUC values are 0.76 and 0.69 (Cohen’s
d = 1.59, p ≤ 0.00001), respectively.
Although it might be counter-intuitive that prediction performance is better for the long
term than for the short term, this is likely due to the varying number of cases used for
training and testing at each time window. With longer time windows, the number of stable
MCI subjects decreases while the number of MCI who converted to dementia increases.
Although all RF classifiers were trained with balanced sets of cases, classifiers within 1 year
were trained with fewer samples and tested with larger and more unbalanced sets, making
this experiment more challenging than the classification within longer time windows (See
Table 4-6).
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Figure 4-5: Distribution of AUC values for prediction of progression from MCI to dementia
within 12, 24, 36, 48 and 60 months. Classifiers trained with composite domain
scores consistently outperform classifiers trained with the ADAS-Cog, and with
the set of total tests scores from ADAS-Cog, Mini-Mental State Examination
(MMSE), Montreal Cognitive Assessment (MoCA), and Rey auditory verbal
learning test (AVLT).

Direct comparison with state-of-the-art predictors

To compare the prediction of MCI progression to dementia with domain scores against other
composite scores and predictors in the literature, nine different sets of features were used
to train the RF classifiers following a random sampling cross-validation scheme with 200
iterations. The nine sets of predictors are:

1. PROPOSED domain-specific composite scores.

2. PROPOSED domain-specific composite scores, with the Clinical Dementia Rating
(CDR) - Sum of Boxes, and the Functional Assessment Questionnaire (FAQ).

3. ADAS Tree [115] = 1.05*Q1SCORE + 0.38*Q2SCORE + 0*Q3SCORE + 1.17*Q4SCORE
+ 0.61*Q5SCORE + 0.13*Q6SCORE + 1.13*Q7SCORE + 0.41*Q8SCORE +
0.54*Q9SCORE + 0.49*Q10SCORE + 0.69*Q11SCORE + 0.39*Q12SCORE + 0.68*Q13SCORE.

4. Composite [88] = Q1SCORE + Q4SCORE + Q7SCORE + CDRSB + FAQTOTAL.
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5. Cognitive composite 1 [156]: CC1 = ADAS3 + (75-RAVLT.IMMED) + (30 - MMTO-
TAL).

6. Cognitive composite 2 [156]: CC2 = ADAS3 + CDMEMORY.

7. Cognitive–functional composite 1 [156]: CFC1 = CC1 + FAQTOTAL.

8. Cognitive–functional composite 2 [156]: CFC2 = CC2 + FAQTOTAL.

9. Selected features [140]: TRABSCOR, Forget.index, RAVLT.IMMED, TOTAL13, TRAAS-
COR, AVTOT6, LIMMTOTAL, CATANIMSC, AVDEL30MIN, FAQTOTAL, LDEL-
TOTAL, MOCADLREC, AVDELTOT, BNTTOTAL, Q4SCORE, Q8SCORE, MM-
TOTAL, Q1SCORE, MOCAFLUEN, CDORIENT, CDHOME, AVTOTB.

The distribution of the AUC values for the 9 classification experiments along the 5 time
windows is presented in Figure 4-6. The proposed domain composite scores outperform the
other predictors that rely only on cognitive measures. When functional measures such as
the FAQ and CDR are included in the set of predictors, AUC values improve for all the time
windows. In particular, MCI conversion prediction with the domain composite scores and
functional measures is slightly better than the prediction with 22 selected features from the
battery of cognitive and functional assessments.

4.4 Discussion

This work has introduced a data-driven methodology to characterize the cognitive state of
patients diagnosed with MCI by developing specific domain scores using sub-scores from the
neuropsychological tests battery applied to the ADNI participants. These domain scores
highlight sub-groups of MCI patients who exhibit different risks of progression to AD de-
mentia, and show better performance than standard outcomes when predicting conversion
from MCI to dementia up to 5 years.

Factor model and composite scores

A 6 factor model estimates simultaneously composite scores for all the domains. By learning
the weights for domain score calculation from a sample containing both CU and MCI in simi-
lar proportions, we can capture a more general statistical structure of the cognitive evaluation
than if we had used a narrower sample within the spectrum of impairment. This is an exten-
sion of previous works that establish single factor models to obtain a composite measure for
particular domains such as memory [30] and executive functioning [69]. Memory composite
score in this work strongly agrees with the one hypothesized for ADNI-Mem [30], resulting
therefore in highly correlated memory measures (r = −0.943, p < 0.00005). Executive func-
tion score proposed here is also correlated with ADNI-EF [69] (r = −0.818, p < 0.00005),
even though sub-scores from ADAS-Cog and MoCA, not considered in ADNI-EF, were herein
included.
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Figure 4-6: Distribution of AUC values for MCI conversion prediction within 12, 24, 36, 48
and 60 months using different sets of features.

MCI heterogeneity

As weights for domain score calculation were obtained as a solution that minimizes the por-
tion of the variance that is not explained by the factors [15], the obtained composite scores
do mitigate the effect of individual measurement errors, leading to more robust measures of
impairment for each domain. This is a methodological advantage over previous works that
studied MCI heterogeneity with separate neuropsychological scores per domain [18, 54, 58].
Another methodological advantage consists in adapting the notion of distance between sub-
jects by including the domain covariance in the metrics. Most of the state-of-the-art research
performs the cluster analysis [142, 18, 54, 56] using the euclidean distance to compare sets
of cognitive variables between individuals. However, this distance relies on the assumption
of orthogonality between dimensions and therefore each measure is considered independent
from the other ones, an assumption hard to hold and far from the given nature of the data.
The cognitive characterization presented here produced a partition of the MCI group into
4 different sub-groups. Beyond the methodological differences, the obtained division is, to
some extent, consistent with previous works investigating cognitive heterogeneity in MCI
with ADNI data [18, 54, 58]. All these works also identified a sub-group of control-like
individuals in the group of participants diagnosed with MCI according to ADNI criteria,
and 2 or 3 MCI sub-groups which vary in the level of impairment of memory, executive
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functions[18], and language[54]. In this work, the separation between the remaining three
MCI sub-groups is guided by two domains that covariate closely, memory and orientation,
while showing relatively similar levels of impairment in language, executive functioning, visu-
ospatial abilities, and attention to the CU and the control-like MCI sub-group. Examination
of future progression to dementia for the different MCI sub-groups in this study resulted in
well differentiated survival curves, providing evidence for the usefulness of the proposed
characterization to stratify the risk of progression to dementia during the upcoming 5 years.
Therefore, the progressive risk of progression from MCI 1 to MCI 4 seems to be driven by
memory and orientation. Although the important role of orientation might be unexpected, it
is coherent with previous works that have identified orientation sub-scores among the most
sensitive measures of cognitive change [156, 88]. The four MCI subgroups are similar in
terms of age and sex distribution, but they exhibit differences in terms of the percentages
of APOE-e4 carriers. Although the relation between APOE status and risk of AD dementia
is widely known, the fact that this known pattern was exposed, in an unsupervised way, by
orientation impairment might be worthy of further analysis in future work.

Predicting progression from MCI to dementia

The domain scores were also evaluated at automatically predicting future progression from
MCI to AD dementia. Cross-validated results demonstrate that classifiers trained with our
composite scores consistently outperform classifiers trained with the ADAS-Cog and multiple
standard cognitive measures in addition to the ADAS-Cog, such as the MMSE, MoCA, and
the AVLT.Prediction with domain scores also outperforms prediction with other cognitive
composite scores in the literature [115, 156, 88]. When the domain scores are accompa-
nied by the Clinical Dementia Rating (CDR) and the Functional Activities Questionnaire
(FAQ), prediction performance is slightly better than the prediction with a set of 22 selected
neuropsychological features [140].
Considering that psychiatric conditions may play an important role in the development of
cognitive impairment, we tested if the addition of psychiatric information improved the
performance of progression prediction. Classification experiments adding the Geriatric De-
pression Scale (GDS) and the abbreviated version of the Neuropsychiatric Inventory (NPI-Q)
to the composite domain scores result in a very modest improvement of AUC values (Com-
parative results shown in Figure 4-7). It suggests psychiatric symptoms give little additional
information that could be used to distinguish between MCI patients that will or will not
progress to dementia.

Limitations

One important limitation of this study is that only data from ADNI was used, so general-
ization to other samples of population was not tested. The main reason for this is that the
proposed methodology needs the sub-scores from neuropsychological tests and information
with this level of detail is not available in other public databases. Survival analysis and
progression prediction were based on data labels provided by ADNI, however recent studies
have highlighted some flaws of the MCI diagnosis in ADNI database. First, it relies on a
single test to evaluate memory leading to a high number of false positives [55]. Secondly, the
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Figure 4-7: Distribution of AUC values for MCI conversion prediction within 12, 24, 36, 48
and 60 months. Classifiers were trained with domain scores, age, sex, years of
education, with and without assessments of psychiatric symptoms.

MCI diagnostic criteria was not applied consistently after the first visit [192] and around 35%
of subjects considered as stable MCI after a year did not meet all criteria so the continuation
of MCI diagnosis appeared to be driven only by the CDR score.

Conclusions

The presented set of composite scores leads to a quantitative characterization of cognitive
state for MCI patients. The presented results demonstrate that, relying only in the neuropsy-
chological assessment, these composite domain scores are useful to stratify MCI patients and
predict their future progression to dementia. Therefore, those scores could be easily included
for patient monitoring or clinical trials. Future work should include longitudinal evaluation
of domain dysfunction, along with AD biomarkers, that could improve understanding of the
continuum between MCI and AD dementia.

4.5 Products

Journal paper

• Diana L. Giraldo, Jan Sijbers, Eduardo Romero. Quantification of cognitive impair-
ment to characterize heterogeneity of patients at risk of developing Alzheimer’s disease
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dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring.
2021; 13(1):e12237. https://doi.org/10.1002/dad2.12237 [73]

Conference papers

• Diana L. Giraldo, Jan Sijbers, Eduardo Romero. Quantifying cognition and behavior
in normal aging, mild cognitive impairment, and Alzheimer’s disease. Proc. 13th
International Conference on Medical Information Processing and Analysis. San Andrés
- Colombia, 2017. https://doi.org/10.1117/12.2287036

• German A. Pabón, Diana L. Giraldo, Eduardo Romero. Mining relations between
neuropsychological data to characterize Alzheimer’s disease. Accepted to the joint con-
ference: 17th International Symposium on Medical Information Processing and Anal-
ysis (SIPAIM) - 10th Symposium on Medical Instrumentation and Imaging (SIIM). To
be held in November 2021.

All methods and analysis in this section were implemented in R (version 3.6.3), code for
processing ADNI data, reproducing the reported results, and calculate composite scores in
new data is available in https://github.com/diagiraldo/neuropsycho_adni .

https://doi.org/10.1002/dad2.12237
https://doi.org/10.1117/12.2287036
https://github.com/diagiraldo/neuropsycho_adni


5 Conclusions

This thesis has presented three strategies that address relevant needs in AD research. In
Chapters 2 and 3 we present two contributions in the field of computational anatomy using
different modalities of magnetic resonance imaging:

• We introduced a method to quantitatively describe regional anatomy extracting grey
scale intensity information from T1 weighted MRI and used this description in the au-
tomatic classification of whole-brain images. Previous works have included information
from a predefined set of anatomical regions or have used whole-brain information lead-
ing to high-dimensional features that have no direct interpretation in terms of disease
progression. The approach we presented falls in between these two kinds of analysis
by quantifying changes in a set of anatomical regions covering the whole brain cortex
and subcortical structures. The proposed metric quantifies how much regional tissue
constituency is drifting away from what is considered normal, resembling the way clin-
icians evaluate anatomy with structural MRI but expanding this evaluation to several
brain regions. This quantitative description of multiple brain areas exposes multi-
dimensional patterns of AD progression that could be used to describe or evaluate
anatomical changes along the AD continuum in clinical scenarios.

The use of ensemble classifiers allows the assessment of how much additional infor-
mation each region gives for the classifier to decide whether a case is a control or a
patient. Although the presented methodology explored a set of anatomical regions
covering the whole brain without giving preference to certain areas, the resulting set
of most informative regions agrees with the widely reported changes in the temporal
lobe.

• We presented a comprehensive analysis of micro- and macrostructural differences be-
tween groups using multi-shell DW-MRI data. Although several works have investi-
gated the microstructural differences between AD or MCI patients and controls, most
of them have used the diffusion tensor model to capture the underlying tissue prop-
erties, suffering from the known limitations of this model. The analysis pipeline we
presented integrates: i) advanced models for the diffusion signal that represent cross-
ing fibre configurations in WM and effectively separate tissue diffusivity properties for
different tissue types, ii) the fixel-based analysis framework to investigate changes in
specific fibre pathways along with the voxel-based analysis to investigate tissue compo-
sition and volumetric changes, and iii) appropriate statistical inference methods that
support the robustness of the results.

Results of the analyses revealed that patients with MCI and dementia due to AD ex-
hibit degeneration of microstructural diffusion barriers in both white and grey matter
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in several brain areas such as the splenium of the corpus callosum, the cingulum and
cingulate cortex, the insular cortex, and in the temporal lobe including its cortex,
withe matter connections and subcortical structures. Volumetric changes, indicat-
ing macrostructural atrophy, were detected in temporal and parietal areas suggesting
tissue degeneration might be more advanced than the one observed in superior and
frontal areas. In addition to the investigation of group differences, we also applied the
analysis pipeline to the exploration of linear relations between CSF biomarkers and
diffusion-derived measures of micro- and macrostructural changes, finding significant
correlations between CSF Aβ1−42 levels and GM degeneration in the left hippocampus
and expansion of the frontal horn of the lateral ventricles.

The presented methodology is a holistic neuroimaging approach that can be used to
test linear hypotheses about tissue constituency and morphology. Beyond the study
of group differences, it can be employed to interrogate correlations with disease quan-
titative markers, being also a methodological contribution to the investigation of AD-
related neurodegeneration processes. The proposed approach relies on an advanced
imaging acquisition technique (high angular resolution, multi-shell DW-MRI), which
is not widely available out of research contexts, thus the potential implementation of
presented diffusion-derived measures of tissue integrity in clinical scenarios is very un-
likely. However, they could be used to evaluate the effect of potential disease-modifying
treatments in preventing, slowing down, or even reversing microstructural degeneration
of diffusion barriers.

Additionally to the contributions in computational anatomy, in Chapter 4 we presented a
data-driven strategy aiming to improve the quantitative assessment of cognitive abilities in
MCI patients:

• We developed a methodology to calculate a set of composite scores that quantify the
level of impairment in six different cognitive domains: memory, language, visuospatial
abilities, executive functioning, orientation and attention. These composite scores were
obtained by combining and weighting sub-scores extracted from commonly used neu-
ropsychological tests. This strategy incorporates the advantages of composite scores,
e.g. robustness and sensitivity, with a domain specificity that facilitates the study of
cognitive impairment heterogeneity. The proposed composite scores demonstrated to
be useful for finding subgroups of MCI patients with different risks of progression to
dementia and were able to better predict progression than standard outcomes. These
results supports the idea that assessing domain-specific impairment could help to de-
lineate cognitive profiles linked with differences in the clinical evolution.

Domain-specific composite scores calculation could be easily included in the routine
neuropsychological evaluation, giving useful information about the cognitive progres-
sion pattern and risk of progression to dementia within certain time. Furthermore,
these scores could give more precise measures of the effects of therapeutic interven-
tions designed to alleviate the cognitive consequences of AD.

In summary, this thesis presented a set of computational strategies with a common aim, the
identification and quantification of pathological changes associated with AD. These contri-
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butions use information from neuroimages and cognitive evaluation to characterize patterns
of disease progression. Assessment of pathological brain patterns with quantitative tools,
like the ones herein developed, help patients’ clinical management and monitoring and could
improve the evaluation of potential, and urgently needed, disease-modifying treatments.

Perspectives

The contributions of this thesis have great potential for the study of AD-related patholog-
ical processes. There is still some work that could be done to validate each one of those
strategies and evaluate how they compare to traditional methods in AD research in terms of
providing better insights about AD progression patterns and patients’ evolution along the
AD continuum.
The first methodological contribution, the description of regional changes with distances be-
tween image intensity histograms, could be compared with traditional descriptions of regional
anatomy: volume and cortical thickness. Such comparison could evaluate if the proposed
description discriminates better between groups of subjects or if it is more sensitive to subtle
longitudinal changes in brain anatomy. Regarding the second contribution, the comparison
of tissue diffusivity properties between groups, the reported findings could be compared with
results of investigating traditional diffusion tensor metrics such as FA and MD. Moreover,
it would be interesting to examine how the diffusion-derived maps of tissue-like content re-
late to the tissue ”concentration” maps used for VBM with structural images. The domain
composite scores, presented in the third contribution, could be applied to longitudinal data
to test how sensitive are these scores to longitudinal changes and explore the progression
trajectories of different profiles of cognitive impairment.
A straightforward next step would be to integrate the computational anatomy descriptors
with the domain-specific scores to explore the relationship between profiles of cognitive
impairment and different neurodegeneration pathways. Investigation of the relationship be-
tween regional anatomical differences and levels of compromise per domain is possible with
the available data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). However,
investigation of the relations between cognitive impairment and degeneration of diffusion
barriers with the proposed strategies would require multi-shell DW-MRI paired with infor-
mation from neuropsychological tests with an adequate level of granularity. To the best of
our knowledge, only very few cases from ADNI satisfy those conditions.
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los. Incorporating outlier detection and replacement into a non-parametric framework
for movement and distortion correction of diffusion MR images. NeuroImage, 141:556
– 572, 2016.

[11] Jesper L.R. Andersson and Stamatios N. Sotiropoulos. An integrated approach to
correction for off-resonance effects and subject movement in diffusion MR imaging.
NeuroImage, 125:1063–1078, 2016.

[12] Babak A. Ardekani, Antonio Convit, and Alvin H. Bachman. Analysis of the miriad
data shows sex differences in hippocampal atrophy progression. Journal of Alzheimer’s
Disease, 50(3):847–857, Feb 2016.

[13] John Ashburner and Karl J. Friston. Voxel-based morphometry—The methods. Neu-
roImage, 11(6):805 – 821, 2000.

[14] Ravi Bansal, Lawrence H. Staib, Andrew F. Laine, Xuejun Hao, Dongrong Xu, Jun
Liu, Myrna Weissman, and Bradley S. Peterson. Anatomical brain images alone can
accurately diagnose chronic neuropsychiatric illnesses. PLoS ONE, 7(12):1–21, 12 2012.

[15] M. S. Bartlett. The statistical conception of mental factors. British Journal of Psy-
chology. General Section, 28(1):97–104, jul 1937.

[16] Peter J. Basser and Carlo Pierpaoli. Microstructural and physiological features of tis-
sues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance,
Series B, 111(3):209–219, 1996.

[17] Iman Beheshti and Hasan Demirel. Feature-ranking-based Alzheimer’s disease classi-
fication from structural MRI. Magnetic Resonance Imaging, 34(3):252 – 263, 2016.

[18] Mark W. Bondi, Emily C. Edmonds, Amy J. Jak, Lindsay R. Clark, Lisa Delano-Wood,
Carrie R. McDonald, Daniel A. Nation, David J. Libon, Rhoda Au, Douglas Galasko,
and David P. Salmon. Neuropsychological criteria for mild cognitive impairment im-
proves diagnostic precision, biomarker associations, and progression rates. Journal of
Alzheimer’s Disease, 42(1):275–289, 2014.

[19] H. Braak and E. Braak. Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathologica, 82(4):239–259, September 1991.

[20] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[21] Esther E. Bron, Marion Smits, Wiesje M. van der Flier, Hugo Vrenken, Frederik
Barkhof, Philip Scheltens, Janne M. Papma, Rebecca M.E. Steketee, Carolina Méndez
Orellana, Rozanna Meijboom, Madalena Pinto, Joana R. Meireles, Carolina Gar-
rett, António J. Bastos-Leite, Ahmed Abdulkadir, Olaf Ronneberger, Nicola Amoroso,
Roberto Bellotti, David Cárdenas-Peña, Andrés M. Álvarez Meza, Chester V. Dolph,
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mann, Jaroslav Rokicki, Aldo Córdova-Palomera, Torgeir Moberget, Anne Brækhus,
Maria Lage Barca, Knut Engedal, Ole A. Andreassen, Geir Selbæk, and Lars T. West-
lye. Dissociable diffusion MRI patterns of white matter microstructure and connectiv-
ity in Alzheimer’s disease spectrum. Scientific Reports, 7:45131, mar 2017.

[46] Aoyan Dong, Jon B. Toledo, Nicolas Honnorat, Jimit Doshi, Erdem Varol, Aristeidis
Sotiras, David Wolk, John Q. Trojanowski, and Christos Davatzikos and. Heterogene-
ity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition,
progression and biomarkers. Brain, page aww319, dec 2017.
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Lista, José-Luis Molinuevo, Sid E. O’Bryant, Gil D. Rabinovici, Christopher Rowe,
Stephen Salloway, Lon S. Schneider, Reisa Sperling, Marc Teichmann, Maria C. Car-
rillo, Jeffrey Cummings, and Cliff R. Jack. Preclinical Alzheimer’s disease: Definition,
natural history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3):292–323, mar
2016.

[52] Matthieu Dumont, Maggie Roy, Pierre-Marc Jodoin, Felix C. Morency, Jean-
Christophe Houde, Zhiyong Xie, Cici Bauer, Tarek A. Samad, Koene R. A. Van Dijk,
James A. Goodman, Maxime Descoteaux, and Alzheimer’s Disease Neuroimaging Ini-
tiative . Free water in white matter differentiates MCI and AD from control subjects.
Frontiers in Aging Neuroscience, 11:270, 2019.

[53] Tim B. Dyrby, Henrik Lundell, Mark W. Burke, Nina L. Reislev, Olaf B. Paulson,
Maurice Ptito, and Hartwig R. Siebner. Interpolation of diffusion weighted imaging
datasets. NeuroImage, 103:202–213, 2014.

[54] Emily C. Edmonds, Lisa Delano-Wood, Lindsay R. Clark, Amy J. Jak, Daniel A.
Nation, Carrie R. McDonald, David J. Libon, Rhoda Au, Douglas Galasko, David P.
Salmon, and Mark W. Bondi. Susceptibility of the conventional criteria for mild cogni-
tive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4):415
– 424, 2015.



Bibliography 89

[55] Emily C. Edmonds, Joel Eppig, Mark W. Bondi, Kelly M. Leyden, Bailey Goodwin,
Lisa Delano-Wood, and Carrie R. McDonald. Heterogeneous cortical atrophy patterns
in MCI not captured by conventional diagnostic criteria. Neurology, 87(20):2108–2116,
2016.

[56] Emily C. Edmonds, Carrie R. McDonald, Anisa Marshall, Kelsey R. Thomas, Joel Ep-
pig, Alexandra J. Weigand, Lisa Delano-Wood, Douglas R. Galasko, David P. Salmon,
and Mark W. Bondi. Early versus late MCI: Improved MCI staging using a neuropsy-
chological approach. Alzheimer’s & Dementia, 15(5):699 – 708, 2019.
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anagi, Kristopher J Krohn, Giancarlo Logroscino, Stefan Lorkowski, Marek Majdan,
Reza Malekzadeh, Winfried März, João Massano, Getnet Mengistu, Atte Meretoja,
Moslem Mohammadi, Maryam Mohammadi-Khanaposhtani, Ali H Mokdad, Stefa-
nia Mondello, Ghobad Moradi, Gabriele Nagel, Mohsen Naghavi, Gurudatta Naik,
Long H Nguyen, Trang H Nguyen, Yirga L Nirayo, Molly R Nixon, Richard Ofori-
Asenso, Felix A Ogbo, Andrew T Olagunju, Mayowa O Owolabi, Songhomitra Panda-
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