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Abstract

The interaction of diatoms with sunlight is fundamental in order to
deeply understand their role in terrestrial ecology and biogeochemistry,
essentially due to their massive contribution to global primary produc-
tion through photosynthesis and its e↵ect on carbon, oxygen and silicon
cycles. Following the journey of light through natural waters, its propaga-
tion through the intricate frustule micro- and nano-structure and, finally,
its fate inside the photosynthetic machinery of the living cell requires
several mathematical and computational models in order to accurately
describe all the involved phenomena taking place at di↵erent space scales
and physical regimes.

In this chapter, we review the main analytical models describing the
underwater optical field, the essential numerical algorithms for the study
of photonic properties of the diatom frustule seen as a natural metama-
terial, as well as the principal models describing photon harvesting in
diatom plastids and methods for complex EM propagation problems and
wave propagation in dispersive materials with multiple relaxation times.
These mathematical methods will be integrated in a unifying geometric
perspective.
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1 Introduction

Almost all aquatic habitats on Earth are colonized by diatoms [Seckbach and
Kociolek, 2011]. Being the most common type of phytoplankton, they con-
tribute massively to global primary production (up to 20-25%) [Leblanc et al.,
2018], fixing large amounts of carbon dioxide in the oceans, in freshwater, and
generally wherever water is at least occasionally present. Understanding the
mechanisms by which diatoms interact with sunlight is the key to unveil the
origin of their extraordinary photosynthetic e�ciency and evolutionary success.
The exchanges between diatoms and external environment are mediated by the
frustule, a porous, hydrated silica investment which encloses the cell and is
characterized by the presence of regular patterns of pores. Frustules are at the
basis of diatom taxonomy [Round et al., 1990], and their huge variety of shapes
and dimensions (ranging from some tens of microns to 1-2 millimeters) allows
distinguishing up to more than 103 genera and about 105 species [Smol and
Stoermer, 2010]. They basically consist in an epitheca overlapping a hypotheca
in a “petri-dish-like” arrangement. Every theca is formed by a valve and one or
more lateral bands (girdle bands) connected along the margins. Frustule func-
tionalities comprise mechanical protection [Hamm et al., 2003], gas exchange
[Emerson and Hedges, 2008], sorting of nutrients from noxious agents such as
viruses [Hale and Mitchell, 2001], and sinking rate control [Waite et al., 1997].
The impressive similarity of diatom frustules with artificial photonic crystals in-
duced to deepen also their optical properties, including the ability to couple light
in waveguided modes [Fuhrmann et al., 2004], to collect and focus photosyn-
thetic active radiation (PAR, 400-700 nm) [De Stefano et al., 2007, De Tommasi
et al., 2010], to support photonic pseudo-band gaps [Goessling et al., 2020], and
to protect the cell from detrimental ultraviolet radiation (UVR) [Aguirre et al.,
2018, De Tommasi et al., 2018]. All these features contribute to diatom high
e�ciency of sunlight harvesting also where it is not so easily accessible, and
have been exploited in several technological fields where light manipulation and
control are essential, such as super-resolution [De Tommasi et al., 2014], en-
hancement of e�ciency in dye-sensitized solar cells (DSSCs) [Bandara et al.,
2020], plasmonics and surface enhanced Raman spectroscopy [Managò et al.,
2018], optical sensing and biosensing [Rogato and De Tommasi, 2020], and ran-
dom lasing [Lamastra et al., 2014], to name a few.

Here, our aim is to describe the journey of sunlight through the atmosphere,
the water bodies, the intricate silica matrix of the frustule, and finally illustrate
its interaction with the photosynthetic machinery of the cell. We will mainly
focus on the mathematical depiction of all the involved phenomena, in particu-
lar analyzing the equations which rule underwater light propagation, describing
frustule morphology and shape by means of innovative geometrical approaches
based on Gielis superformula [Gielis, 2003b], introducing the main numerical
methods used to describe light propagation through the frustule seen as a peri-
odic dielectric medium, and deepening the behavior of plastids seen as e�cient
antennas.
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2 The underwater light field

Before analyzing the underwater optical field and its mathematical description,
we will briefly summarize the main characteristics of the solar radiation inci-
dent on Earth’s surface and transmitted by the air-water interface. We further
consider qualitatively light absorption and scattering in a water body. Finally,
the main equation governing underwater light propagation will be illustrated,
together with a representative computational method aimed at its solution.

2.1 The travel of light from the Sun into water bodies

Light irradiated by the Sun and propagating through atmosphere is partially
scattered by air molecules and dust particles and absorbed by water vapour,
oxygen, ozone and carbon dioxide, among others [Barlow, 1963]. Being much
smaller than the wavelength of solar radiation and according to Rayleigh’s law,
air molecules mostly scatter radiation in the visible and ultraviolet (UV) range of
the electromagnetic spectrum, while dust particles obey to Mie scattering which
is not so strictly dependent on wavelength and is predominant in forward direc-
tion. A higher proportion of infrared radiation in comparison to photosynthetic
active radiation (PAR) is absorbed by water vapours, thus PAR represents the
most abundant solar radiation which reaches Earth’s surface [Baker and Frouin,
1987]. Taking into account also the contribution of clouds, it has been estimated
that 34% of the incoming solar radiation incident on the northern hemisphere
over a year is reflected to space by atmosphere (25% reflected by the clouds and
9% scattered out to space by other constituents of the atmosphere); another
19% is absorbed (10% within the clouds and 9% by other components) [Gates,
1963].

The amount of solar radiation reflected back to the atmosphere at the air-
water interface depends on the zenith angle of the incident light in air. In first
approximation, in particular considering a flat water surface and unpolarized
incident light, it can be simply derived from the well-known Fresnel equation
[Born and Wolf, 2013]:

r =
1

2

sin2(✓a � ✓w)

sin2(✓a + ✓w)
+

1

2

tan2(✓a � ✓w)

tan2(✓a + ✓w)
(1)

where r stands for reflectance and ✓a and ✓w stand for the zenith angle of inci-
dent light in air and the angle to the downward vertical of the transmitted light
in water, respectively. When not considering absorption and scattering events,
conservation of energy requires that the sum of the reflected and transmitted
energy equals the incident energy, thus the quantity t = 1� r allows evaluating,
in first approximation, the amount of light penetrating in the water body. Ac-
tually, reflectance is partially reduced by roughening of water surface induced
by wind [Austin, 1974] and slightly increased by the formation of whitecaps
[Whitlock et al., 1982]. The unreflected portion of an incident light beam is
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refracted by water according to Snell’s law [Born and Wolf, 2013]:

sin ✓a
sin ✓w

=
nw

na
(2)

with nw and na refractive indices of water and air, respectively. Even though
the refractive index of water is a function of temperature, salt content and
wavelength of incoming radiation, for most practical analyses nw

na
ratio can be

considered equal to 1.33 for PAR radiation and at normal ambient tempera-
tures. Taking into account this value, it can be derived that most of the light
transmitted by water is refracted at an angle ✓w comprised between 0� and 49�.
On the other side, considering the case of light propagating upward from water
to air at an angle greater than 49�, total internal reflection takes place and all
the light is reflected back by the water-air interface.

In general, di↵usion of underwater light is enhanced by an increase in wind
speed as expressed by the following equations, empirically derived by Cox and
Munk [1954] starting from aerial data and the observation of Sun glittering
patterns:

�2
u = 0.003 · U ± 0.004 (3)

�2
c = 0.003 + 0.002 · U ± 0.002 (4)

with �2
u and �2

c mean square slopes of the waves measured in parallel and cross
directions of the wind, respectively, and U wind speed above the water surface.

When light passes through a medium, a certain fraction of it is attenuated
whenever absorption or scattering events take place. Transmittance T through
a homogeneous medium follows the well-known Lambert-Beer law:

T = exp (�cl) (5)

with c total attenuation coe�cient taking into account the probability of a
photon to be absorbed or scattered after a path length l. Pure water is ba-
sically transparent for wavelengths below 550 nm, while absorption starts to
be significant in red and mainly in infrared regions of the spectrum, where the
roto-vibrational bands, combination bands and overtone bands of water are lo-
cated [Hill et al., 2016]. Salts present in seawater such as nitrates and bromides
contribute to absorption only for wavelengths below 250 nm [Ogura and Hanya,
1966]. A natural source of light absorption, mainly in UV and blue regions, is
given by dissolved organic matter originating from plant tissue decomposition
(known as humic substances). It is estimated that at least 10% of the humic
material present in ocean waters is terrestrially derived from river discharges
[Meyers-Schulte and Hedges, 1986]. Absorption in UV-blue spectral range is
also partially ascribable to inanimate particulate matter (known as tripton).
Phytoplankton contribute to total absorption of natural waters both in visible
spectral range (mainly due to clorophylls, carotenoids and biliproteins) and in
near UV (due to the presence of UV-absorbing pigments such as mycosporine-
like amino acids, MAAs) [Kirk, 1994]. Solar radiation penetrating in a water
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body is thus progressively depleted in those spectral regions where the medium
mostly absorbs. In clear oceanic waters most of the visible light at depths below
⇠ 15 m is comprised in the blue-green spectral range (400-550 nm) and peaked
in the blue region (440-490 nm) , while UVB radiation has been detected in
depths down to 60-70 m [De Tommasi et al., 2018]. In turbid waters charac-
terized by high levels of humic substances, blue light is rapidly removed within
shallow depths and the available irradiance often results peaked around 580 nm
(yellow) [Kirk, 1994].

In general, the absorption coe�cient a of a medium can be defined starting
from the e↵ective absorption cross section �a (which quantifies the probability
of the absorption process) as:

a = ⇢a�a (6)

with ⇢a volume density of the absorbing particles.
Vertical penetration of light into a water body is also obstructed by scatter-

ing, which increases the total path length of propagating radiation and raises the
probability of photons to be absorbed by one of the components of the medium.
Scattering events can originate from interaction of light with localized micro-
scopic fluctuations of density in the medium. These inhomogeneities can be
regarded as induced dipoles which emit radiation at the same frequency of the
exciting one. In this case the angular distribution of scattered light is analogous
to that given by Rayleigh theory for gases, as well as the wavelength dependence
(/ ��4). When the scattering centers are bigger than the wavelength of light
(as in the case of mineral particles, phytoplankton, bacteria, dead cells and frag-
ment of cells), Mie theory of scattering has to be taken into account. Instead
of considering the scattering centers as single oscillating dipoles, in Mie theory
the scattering particle is modeled as the location of the additive contribution of
a series of electrical and magnetic multipoles. In this case most of the scattered
radiation takes place in forward direction and generally at small angles respect
to the propagation axis. In analogy with absorption, the scattering coe�cient
b can be defined as:

b = ⇢s�s (7)

with ⇢s volume density of the scattering particles in the medium and �s e↵ective
scattering cross-section (quantifying the probability of a scattering event). Re-
ferring to Eq.5, total attenuation coe�cient c can be thus expressed by c = a+b.

2.2 Numerical computation of the underwater optical field

In order to compute the underwater optical field, we have to find solutions to
the radiative transfer equation, which, in its time-independent, monochromatic
and one-dimensional form can be written as [Mobley et al., 1993] (see Table 1
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Symbol Units Definition

✓ deg Polar angle of photon travel
� deg Azimuthal angle of photon travel
z m Depth (defined positive downward)
⌧ - Optical depth (positive downward), ⌧ ⌘

R z
0 c(z)d(z)

L W m�2 sr�1 nm�1 Unpolarized spectral radiance
⌅ - Set of all downward and upward directions
� m�1 sr�1 Volume scattering function
�̃ sr�1 Scattering phase function, �̃ ⌘ �/b
Sin W m�2 sr�1 nm�1 Internal source of radiance

Table 1: Symbols, units and definitions of the quantities in Eq. 8

for symbols definition):

µ
@L(⌧ ; ✓,�)

@⌧
= �L(⌧ ; ✓,�)� b

c
(⌧)

ZZ

(✓0,�0)2⌅
L(⌧ ; ✓0,�0)⇥ �̃(⌧ ; ✓0,�0 ! ✓,�) sin ✓0d✓0 d�0 + Sin(⌧ ; ✓,�) (8)

It is worth noticing the dependence of the total attenuation coe�cient c
by depth z and the consequent definition of the optical depth ⌧ as its integral
with respect to distance. The radiance L = L(✓,�) leaving an elemental surface
dS at polar angle ✓ and azimuthal angle � is defined, at a fixed depth z and
wavelength �, as:

L(✓,�) =
d2�

dS cos ✓d⌦
(9)

where � = @Qe

@t is the radiant flux leaving dS within the elemental solid angle d⌦
and Qe is the radiant energy. The involved geometry is schematized in Fig. 1.

The scattering phase function �̃(✓,�) appearing in the double integral of Eq.8
gives information on how light incident on an elemental volume is scattered in
di↵erent directions [Mobley et al., 2002]. It can be derived starting from the
volume scattering function �(✓,�), which in turn is defined as [Agrawal, 2005]:

�(✓,�) = dI/[L(✓,�) · dV ] (10)

i.e. as the radiant intensity (I = d�
d⌦ ) emanating from an elemental volume dV

in a given direction (✓,�) per unit incident radiance L. The scattering phase
function can be obtained simply dividing the volume scattering function by the
scattering coe�cient b, which can be defined, in alternative to Eq. 7 and for a
given wavelength �, as:

b =

Z

4⇡
�(✓,�)d⌦ = 2⇡

Z ⇡

0
� sin ✓d✓ (11)

where the symmetry of the azimuthal angle � has been taken into account.
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Figure 1: Visual representation of the quantities used in the definition of radi-
ance L = L(✓,�): polar angle defining photon travel (✓), elemental surface (dS),
its projection on the direction of propagation of light (dS cos ✓), and elemental
solid angle surrounding the same direction (d⌦).

In summary, Eq.8 expresses the conservation of energy of an underwater
beam of light: the first term on the right gives the Lambert-Beer loss, the
second term is the gain from light scattered from the direction defined by angles
(✓0,�0) into the direction defined by (✓,�), and the third term refers to internal
sources of radiance (e.g. bioluminescence). Many numerical models aimed at the
solution of Eq. 8 are based on a first partitioning of ⌅, the set of all downward
and upward directions, into a grid of so called quads, i.e. quadrilateral regions
bounded by lines of constant µ and �, plus two polar caps [Mobley et al., 1993],
with µ ⌘ cos ✓. In this partitioned domain, the evaluated quantity is the quad-
averaged radiance:

L(⌧ ;u, v) ⌘ 1

⌦uv

ZZ

(µ,�)2Quv

L(⌧ ;µ,�)dµd� (12)

where Quv stands for the uvth quad subtending the solid angle ⌦u,v, u labels
µ bands and v labels � bands. When applying the integral operator described
in Eq.12 to Eq.8, integration over all directions is replaced by summation over
all quads and the phase function �̃(⌧ ;µ0,�0 ! µ,�) is replaced by the quad-
averaged quantity �̃(⌧ ; r, s ! u, v) that specifies the radiance amount scattered
from quad Qrs into quad Quv. The equations for L(⌧ ;u, v) can be transformed
into a set of Riccati di↵erential equations (first-order ordinary di↵erential equa-
tions that are quadratic in the unknown function) describing the dependence
of reflectance and transmittance functions by depth within the water body.
This approach, described in detail in Mobley [1989], allows the modelling of
absorption and scattering events as sums of terms representing contributions by
pure water, particles, and dissolved substances. Furthermore, reflectance and
transmittance of the sea surface from above and below are evaluated making
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use of the Monte Carlo simulation of the surface itself, which is resolved into
a grid of triangular wave facets characterized by random vertex elevations de-
termined starting from a wave slope-speed spectrum (see for example Eqs. 3
and 4) [Preisendorfer and Mobley, 1986]. The atmospheric radiance incident
onto the sea surface can be derived from an analytical model (e.g. a cardioidal
distribution) or from a separate atmospheric radiative transfer model. On the
other side, the bottom boundary can be schematized as a semi-infinite homoge-
neous layer of water starting at some depth ⌧max or an opaque bottom at ⌧max.
In the first case, the bidirectional radiance reflectance properties of the infinite
water layer, the asymptotic di↵use attenuation coe�cient k1, and the asymp-
totic radiance distribution L1(µ) can be obtained by an eigenmatrix analysis,
as the one introduced by Preisendorfer [1988]. In the second case, a Lambertian
surface (i.e. an ideal matte surface characterized by an isotropic luminance)
with a given irradiance reflectance is able to describe the reflectance properties
of the bottom.

In conclusion, this approach (which represents only one of the possible ways
to solve Eq.8), has a strong analytical basis related to the solution of the Riccati
di↵erential equations for the retrieval of the radiance L. The only Monte Carlo
fluctuations are restricted to the numerical simulation of the sea surface. The
computation time is a linear function of depth, thus accurate radiance distribu-
tions are obtained for su�ciently high values of ⌧ (typically for ⌧ > 10) [Mobley,
1988].

3 Novel geometrical models for diatoms

3.1 Gielis transformations

Thus far light has travelled through (relatively) isotropic media, with no pre-
ferred directions, but when it reaches the diatoms, matters become very dif-
ferent. Most methods in physics and mathematical physics assume isotropy in
some sense, but frustules of diatoms have very characteristic shapes, and apart
from centric diatoms, they are distinctly anisotropic. In addition, methods bor-
rowed from mathematical physics and di↵erential geometry are local methods,
inherited from the pointwise method of determining curvature of curves devel-
oped by Newton.

Ultimately the shape of the frustules, the structure of valves and girdles, and
the distribution of pores need to be studied via mathematics, with emphasis on
geometry, optimization and energy minimization, but the question is whether
the methods borrowed from physics are adequate to study living organisms. In
particular, there is a need for dedicated geometrical structures, describing living
(and non-living) natural shapes into one coherent global framework. Gielis
transformations are a recent development that allows one to study biological
shapes and phenomena, generalizing Lams superellipses [Gielis, 2003a, Gielis
et al., 2005, Gielis, 2017]. Its origin is in the study of plants and organisms,
hence it is a scientific method sui generis, for what we can observe in our
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macroscopic world. In the past five years over 40 000 botanical specimen have
been tested, and Gielis transformations and superellipses are found everywhere
[Gielis, 2017]. In contrast, circles and ellipses are very rare in biology (centric
diatoms may be exceptions to this rule).

This geometrical treatment of diatoms from a global viewpoint, should be
integral part of a systems biological approach, coupling insights on form and
function to understand genomic and genetic diversity in diatoms, during evo-
lution and development (see Fig. 2). In diatoms this genetic toolbox is known
to be very complex with a rich history, and it is thus important to understand
form and function, since mathematical and physical laws are prevalent in our
universe.

Gielis Transformations are a generalization of the circle (as a constant func-
tion) and of the Pythagorean Theorem: indeed, selecting n1 = n2 = n3 = 2
and f(#) = R = 1 gives the unit circle and the Pythagorean theorem. Instead
of only the classic Euclidean circle, Eq. (13) defines natural shapes at all levels,
such as diatoms, starfish, flowers and molluscs. The exponents n1,2,3 change the
basic polygons defined by the symmetry parameter m. Parameters A and B are
scaling parameters. If A = B, the basic shape is a circle, but when they di↵er,
the basic shape is an ellipse. Since shape and size parameters are real numbers,
a huge diversity and variability can be described in a very compact way:

%(#, f(#), A,B,m, n1, n2, n3)

=
1

n1
p
|(1/A) cos(m#/4)|n2 + |(1/B) sin(m#/4)|n3

· f(#) (13)

In particular, diatoms and their substructures can be described in one coherent
framework (Figure 2). With m = 0 (circle) radially symmetrical cylindrical
frustules can be described, and with increasing m various diatom shapes are
modelled. Square shapes have m = 4 and benthic diatoms with pennate shapes
have bilateral symmetry, defined by m = 2. Stictodiscus diatoms can be circular
but also triangular (m = 3) or square. Higher symmetries can be observed in
sectorized Arachnodiscus or Cosnicodiscus. Actually, the parameter m divides
the plane into m sectors. Equation (14), a generalization of the sphere for
f(#,') = R (= the radius of the sphere), can describe the shape of the complete
frustule:

%(#,', f(#,'), A,B,C,m1,m2, n1, n2, n3, n4)

=
1

n1

q�� 1
A sin(m1

4 #) · cos(m2
4 ')

��n2 +
�� 1
B sin(m1

4 #) · sin(m2
4 ')

��n3 +
�� 1
C cos(m1

4 #)
��n4

·f(#,')

(14)

It describes the complete frustule and the 3D coordinate planes then corre-
spond to the valvar, radial/transapical and the (per)apical planes in diatoms.
The arrangement of the pores in fact provides a very specific coordinate system
adapted to the shape, as a natural generalization of classical coordinate systems

9



Figure 2: Schematic representation of the connections between frustule mor-
phogenesis, geometry, and physical functions. Reproduced with permission from
De Tommasi et al. [2017b].
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such as spherical and elliptical coordinates. Using the frustule and the pores as
a natural coordinate system should then allow to understand the mathemati-
cal physics underlying species specific and environmental-developmental specific
distribution of pores. In this way we can also encompass di↵erent symmetries
encountered in diatoms, and provide for a quantitative measure for qualita-
tive terms such as elliptical or oval, (sub)circular and (sub-) spherical, crescent
shapes, lanceolate, clavate, naviculoid, sigmoid and more.

A geometrization of biology, or more generally of nature, based on forms and
formation of natural shapes (a geometrical theory of morphogenesis) requires
the combination of a uniform description of shapes, coupled to di↵erential equa-
tions within a coherent geometrical framework. This uniform description then
generates a best adapted coordinate system for both the complete structure and
its details.

The proposed uniform description in diatoms can be very e↵ective in the
study of global properties, rather than local. Beyond shape description, we have
to understand the forces that generate the shapes. The nearly universal principle
in the natural sciences is that the equilibrium configuration of a system can be
found by minimizing its total energy among all admissible configurations. When
considering the surface as interface between two (or more) immiscible materials,
the surface geometry is determined by minimizing the surface tension subject
to whatever additional constraints are imposed by the environment. There is a
canonical equilibrium surface, called the Wul↵ shape, that can be characterized
as the absolute minimizer of the free energy F among all surfaces enclosing the
same three-dimensional volume. Diatoms can be considered as Wul↵ shapes, on
which surface stresses act, and they are the “unit spheres” for an anisotropic
energy. With Equations (13) and (14), we can study diatoms as Wul↵ shapes,
minimizing certain anisotropic energy functionals [Koiso and Palmer, 2008].
From a geometrical point of view, diatoms are extremely interesting because the
overall stable geometrical structure of frustules, costae and other structures, is
combined with local optimization of the precise distribution of the pores. This
distribution and the diversity make diatoms individually unique; they are the
snowflakes of (the liquid state of) water and they are evolutionary very stable
solutions.

3.2 Laplace and Fourier revisited

The morphology of diatoms then can be studied in the same way as crystals,
snowflakes, or soap films are studied, based on the harmonic function theory.
Solutions to boundary value problems can be found in an analytic way, not only
computationally. So far analytic Fourier-like solutions were restricted only to a
few domains, but can not be extended to a wide range of domains in 2D and 3D,
without the need for meshing and finite elements. Analytic Fourier-like solutions
to Laplace, Helmholtz and wave equations have been found for various 2D and
3D domains, including shells. Fourier-like refers to analytic solutions combining
Fourier series, with special functions of Hankel and Bessel type. The domains
or shells are normal with respect to a suitable spherical coordinate system so
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Figure 3: The solution of the Robin problem for the Laplace equation in a
shell S with fourfold symmetry in XY direction. Left: Boundary behaviour
along the inner shell surface of the partial sum UN of order N = 11. Right:
relative boundary error eN as function of the order N of the truncated spherical
harmonic expansion for the super-shaped shell on the left. Reproduced with
permission from De Tommasi et al. [2017b].

that the relevant boundary may be regarded as an anisotropically stretched unit
circles or spheres. In this way, accurate solutions can be obtained with very low
orders of expansions of spherical harmonics. In Caratelli et al. [2009], a number
of boundary value problems have been solved in starlike domains, under di↵erent
boundary conditions. Fig. 3 shows one solution for the Robin problem for the
Laplace equation on closed shells with fourfold symmetry in the XY plane),
with a cross sectional symmetry observed in Amphitetras genus. This method
is generally applicable for all 3D shells and the results show that, dependent on
the boundary value problem and the boundary conditions chosen, the solutions
reflect the way shapes deal with tensions on surfaces. In turn, these tensions are
described by the mean curvature H, which is directly related to the Laplacian
�, due to a Theorem of Beltrami, namely � = 2H for surfaces.

These geometrical methods thus provide a more global view, which can be
aligned in the future with existing CAD and Finite Element studies in diatom
frustules, but such global geometric view is indispensable if we wish to under-
stand form and function in diatoms.

It is clear that at present we are still far from using this in a complete
way, and in studying the fate of photons entering the frustrule and into the
protoplast – beyond the glass cage. In Section 4 several classical methods will
be presented to simulate light propagation in the frustrule. In Section 5, novel
mathematical methods are presented treating the whole diatom as one dielectric
complex structure.
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4 Going through the wall: simulating light prop-
agation in the frustule

Describing the propagation of light through the intricate but still regular diatom
frustules, ultimately means to solve Maxwell equations in presence of a periodic
dielectric medium. In their macroscopic formulation, Maxwell equations can be
expressed as [Jackson, 1999]:

r ·B = 0 (15)

r⇥E+
@B

@t
= 0

r ·D = ⇢

r⇥H� @D

@t
= J

where E and H are the macroscopic electric and magnetic fields, D and B are
the displacement and magnetic induction fields and finally ⇢ and J stand for
free charge and current densities. In absence of sources of light both ⇢ and J

can be set equal to zero. In linear regime, for isotropic media, and neglecting
material dispersion, we have:

D(r) = ✏0✏(r)E(r) (16)

B(r) = µ0µ(r)H(r) ' µ0H(r)

where ✏0 stands for vacuum permittivity, ✏ is the dielectric function of the ma-
terial (purely real and positive for transparent media, like diatom biosilica in
visible spectral range), µ0 is the vacuum permeability and the magnetic perme-
ability µ(r) is very close to unity for most dielectric materials (thus the refractive
index n equals

p
✏µ '

p
✏). With all these assumptions, Maxwell equations can

be rewritten as follows:

r ·H(r, t) = 0 (17)

r⇥E(r, t) + µ0
@H(r, t)

@t
= 0

r · [✏(r)E(r, t)] = 0

r⇥H(r, t)� ✏0✏(r)
@E(r, t)

@t
= 0

Exploiting the linearity of Maxwell equations, we can separate the time depen-
dence from the spatial dependence by expanding the fields into a set of harmonic
modes:

H(r, t) = H(r)e�i!t (18)

E(r, t) = E(r)e�i!t

We are thus considering field patterns that vary sinusoidally with time at a
frequency !, which is useful since any solution of the Maxwell equations can
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be expressed as a combination of harmonic modes. Inserting the equations 18
in 17 we obtain:

r ·H(r) = 0 (19)

r · [✏(r)E(r)] = 0

r⇥E(r)� i!µ0H(r) = 0

r⇥H(r) + i!✏0✏(r)E(r) = 0

The first two equations express the transversality of the electromagnetic waves,
while a rearrangement of the last two equations leads to:

r⇥
✓

1

✏(r)
r⇥H(r)

◆
=
⇣!
c

⌘2
H(r) (20)

which is known as the master equation (c = 1/
p
✏0µ0 stands for the vacuum

speed of light). Thus, for a given structure characterized by the dielectric func-
tion ✏(r) (in our case the three-dimensional structure of the diatom frustule),
describing how the optical field interacts with it means to solve the master
equation to find the modes H(r) and the corresponding frequencies. The elec-
tric fields E(r) can be finally retrieved by the last equation in 19. Identifying
the left side of Eq.20 with a di↵erential operator ⇥̂ allows expressing the master
equation as an eigenvalue problem:

⇥̂H(r) =
⇣!
c

⌘2
H(r) (21)

Let’s consider a dielectric structure which is periodic in three-dimensions (sim-
ilar observations can be conducted for one- and two-dimensional systems), i.e.
which is invariant under translations through a lattice vector R = la1 +ma2 +
na3, where (a1,a2,a3) are the primitive lattice vectors and l, m, and n are
integers (in other words we can say that a1, a2, and a3 span the space of lattice
vectors). The primitive reciprocal lattice vectors (b1,b2,b3), defined as

ai · bj = 2⇡�ij (22)

span the so-called reciprocal lattice. In this scenario the eigenvectors of ⇥̂ cor-
responding to eigenfrequencies !(k) are the Bloch states:

Hk(r) = eik·ruk(r) (23)

where k = k1b1 + k2b2 + k3b3 is the Bloch wave vector (with k1, k2, and k3
integer numbers) and uk(r) = uk(r +R) is a periodic function on the lattice.
In other words, the eigensolutions of Eq. 21 can be expressed as a product of
plane waves and lattice periodic functions (Bloch-Floquet theorem). The region
of non-redundant values of k (corresponding to identical Bloch states) in the
reciprocal lattice is known as the (first) Brillouin zone1. It can be easily shown

1For more details on the properties of the reciprocal lattice and the Brillouin zone it can
be useful to consult a solid-state physics handbook such as Kittel et al. [1996], since the
mathematical formalism of lattices is the same.
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that inserting the Bloch state described by 23 in the master equation 20 leads
to the following eigenvalue problem:

⇥̂kuk(r) =

✓
!(k)

c

◆2

uk(r) (24)

where the di↵erential operator ⇥̂k is defined as:

⇥̂k = (ik+r)⇥ 1

✏(r)
(ik+r)⇥ (25)

The mode profiles satisfying the eigenvalue equation 24 are subject to the
transversality and periodicity conditions defined by:

(ik+r) · uk = 0 (26)

uk(r) = uk(r+R)

The periodic boundary condition allows us to restrict the eigenvalue problem to
a single cell of the lattice. It can be demonstrated [Joannopoulos et al., 2001]
that, for each value of k, this leads to a discrete spectrum of eigenvalues that
we can label by a band index n. In analogy with the energy band structure of
a lattice of atoms subjected to a periodic electric potential V (r), the functions
!n(k) describe the frequency of the modes belonging to the nth band of a pho-
tonic structure characterized by a periodic refractive index. Photonic crystals
(PhCs), in particular, present a geometry and a refractive index contrast respect
to the environment such that there exist frequency intervals for which no modes
can propagate in the structure. In analogy with the energy band gaps present
in semiconductors, these bands are known as photonic band gaps (PBGs).

Several species of birds, insects, flora, and protists are provided, as con-
stituent parts of their organisms, with periodic structures at the sub-micron
scale acting as photonic crystals [Vukusic and Sambles, 2003, Parker, 2012, Jo-
hansen et al., 2017]. This is at the basis of the so called structural color [Sun
et al., 2013, De Tommasi et al., 2021], which is not due to the presence of
pigments absorbing visible radiation but is rather based on spectrally selective
reflectance induced by interference processes, which in turn are caused by the
periodic spatial arrangement of nanostructured biomaterials. As an example
we can mention the flashing, intense blue wings of several species of Morpho
butterflies [Vukusic et al., 1999, Kinoshita et al., 2002, Giraldo et al., 2016].
Their bright coloration, which is mainly used by males to mark their territory
and scare o↵ potential rivals in mating, is mostly due to multilayer interference
originating from the lamellae of the tree-like ridges observed in the single scales
of the wings. In other words, we can claim that the periodically nanostructured
wing scales are characterized by a PBG corresponding to the blue spectral range
of the visible spectrum.

Nanostructured photonic structures present in nature are not only exploited
by animals for intraspecies and interspecies signaling or for camouflage, but also
by flora for attracting specific pollinators [Whitney et al., 2009, Moyroud et al.,
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2017] and by plants to enhance photosynthetic e�ciency [Jacobs et al., 2016].
Nevertheless the most impressive resemblance with artificial PhCs is observed
in diatom frustules (see Fig. 4), which allowed Fuhrmann and coworkers to
define diatoms as “living photonic crystals” in their pioneering paper in 2004
[Fuhrmann et al., 2004].

Figure 4: Artificial PhC (a) and a detail of a Coscinodiscus wailesii valve (b).
Reproduced with permission from De Tommasi et al. [2017b].

In the following sections we will briefly review the main numerical methods
aimed at the simulation of the electromagnetic field propagation in a periodic
photonic structure, both in frequency and time domain and including techniques
for PBGs retrieval in a PhC. For every described algorithm, several examples
of applications to diatom frustules will be reported.

4.1 Plane Wave Expansion (PWE) method

In order to introduce the Plane Wave Expansion (PWE) method, it can be useful
to start from Eq.24 in one dimension2. Taking into account the periodicity
condition uk(x) = uk(x+ a), with a period of the lattice, we can express uk(x)
as an infinite sum of sines and cosines, i.e. as a Fourier series:

uk(x) =
1X

n=�1
cn(k)e

i 2⇡n
a x (27)

with:

cn(k) =
1

a

Z a

0
uk(x)e

�i 2⇡n
a xdx (28)

The coe�cients cn decay with |n|, thus the sum in Eq. 27 can be truncated and
reduced to a finite number of N terms. The problem is thus transformed into
a set of linear equations for N unknown cn coe�cients. It is worth noticing

2For a more detailed discussion on PWE method, refer to Busch and John [1998] and
Johnson and Joannopoulos [2001].
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that the quantity 2⇡n
a in the exponential is a reciprocal lattice vector for a

one-dimensional lattice. For a three-dimensional lattice we have, analogously:

uk(r) =
X

G

cG(k)eiG·r (29)

cG =
1

V

Z
uk(r)e

�iG·rd3r

where G = l0b1+m0
b2+n0

b3 is a reciprocal lattice vector and V is the volume
of the unit cell. Applying the transversality constraint (ik+r) · uk = 0 to the
first equation in 29, we obtain:

(k+G) · cG = 0 (30)

For each G, we can choose two perpendicular unit vectors ê(1)G and ê
(2)
G orthog-

onal to k+G such that:

cG = cG
(1)

ê
(1)
G + cG

(2)
ê
(2)
G (31)

thus reducing the problem to two unknown coe�cients cG(1) and cG
(2) for every

G.
We can now substitute uk(r) in Eq. 24 with the sum reported in Eq. 29 and

then take the Fourier transform of both sides, obtaining the following equation:

X

G

⇥
�✏�1

G0�G · (k+G
0)⇥ (k+G)⇥

⇤
cG =

⇣!
c

⌘2
cG0 (32)

✏�1
G standing for the Fourier transform of ✏�1(r). We can approximate ✏�1

G
using the discrete Fourier transform (DFT), i.e. replacing it with a finite sum
of N terms. After the truncation to a finite set of G values, the calculation is
reduced to a finite matrix eigenequation of the form Ax = !2x. In terms of
time complexity, the iterative process used to solve the eigenequation generally
takes O(N2) time (i.e. the number of operations of the algorithm scales with
N2). A possible way to reduce time complexity is to make use of the fast Fourier
transform (FFT) algorithm, which allows computing the multidimensional DFT
over N points in O(N logN) time. We can thus proceed as follows: i) we
compute the product (k+G)⇥cG, which takes O(N) time; ii) we calculate the
inverse FFT to pass to r space and multiply by ✏�1(r) in O(N) time; finally,
iii) we pass back to G space by FFT and perform the cross-product (k+G)⇥
cG. The overall computation time is O(N logN) plus O(N) for storage, which
improves noticeably the speed of the iteration. Each step of the iteration can be
further accelerated by using so called preconditioners, i.e. approximate solutions
of the eigenproblem. For PWE method an e�cient preconditioner is obtained
by considering only the diagonal entries of A, which dominate the problem for
large values of |G| [Joannopoulos et al., 2001].

The first application of PWEmethod to diatom frustules seen as photonic pe-
riodic structures was introduced in the aforementioned work by Fuhrmann et al.
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Figure 5: SEM image of a C. granii whole frusule (a) and two-dimensional band
structure of a valve immersed in water as retrieved by e↵ective-index method
calculations (b). Detail of the girdle (c) and relative, numerically reconstructed
three-dimensional band structure obtained by PWE method, considering air as
surrounding medium (d). Reproduced with permission from Fuhrmann et al.
[2004].
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[2004]. The authors looked at Coscinodiscus granii valves and girdles as pho-
tonic crystal slabs, i.e. photonic structures characterized by a two-dimensional
periodicity but a finite thickness. In this case, the properties of a two-dimensional
photonic band structure combine with that of a planar waveguide. For the con-
sidered species, valves and girdles present an hexagonal and a square pattern
of holes, respectively (see Fig. 5). In particular, the valves are characterized by
holes with 450 nm radius, a lattice constant of 900-950 nm and a thickness of
about 700 nm while the girdles present holes with 90 nm radius, a lattice con-
stant of 250 nm and a thickness which varies in the range of 200-600 nm. PWE
was exploited to reconstruct the band structure of the girdle in air (see Fig. 5d)
while a two-dimensional calculation based on the e↵ective-index method [Qiu,
2002] was used to investigate the properties of a frustule immersed in water
(low refractive index contrast, see Fig. 5b). Let us consider in detail the band
diagram reported in Fig. 5d, referring to a girdle with a thickness of 200 nm,
a hole radius r/lattice constant a ratio of 0.33, and a refractive index of 1.43.
The labels �, X, and M indicate special points of the Brillouin zone (the center,
the center of an edge, and the center of a face, respectively), while the normal-
ized frequencies of the modes are expressed in units of speed of light divided
by the lattice constant. Circles label TE modes (i.e. modes with the electric
field parallel to the slab plane) while squares mark TM modes (i.e. modes with
the electric field parallel to the holes axis). The shaded area is relative to non-
guided modes radiating into air. Let now focus on the spectral range of interest
for photosynthesis (� = 400�700 nm). The frequencies at which the resonances
occur and the number of guided modes depend on the shell thickness (in this
case 200 nm) and on the refractive index of the surrounding medium. For a frus-
tule immersed in air, the X-resonances are found in gree-yellow spectral range
while the M-resonances lie in the blue spectral range. Passing to water as the
surrounding environment, the resonating wavelengths are found at 665 nm and
470 nm at the X- and M- points, respectively. In general, in correspondence of
these points the group velocity @!

@k is low, implying a long interaction between
light and matter. In the case of the valve (5b), the lattice constant is higher than
the wavelength of visible light, thus the guided modes lie in infrared region. For
visible light, higher order resonances have to be considered which stand above
the light line (defined as !(k) = ckp

✏
), thus being partially coupled to radiative

modes. This means that the valve can be regarded as a two-dimensional grating
coupler of higher order. When immersed in water, as it is the case reported in
figure, several resonances are distributed in the visible range. The authors made
also calculations on the penetration depth associated to the modes supported by
the silica walls, starting from the evaluation of the evanescent wave:

E(z) = E0e
� 2⇡

�0

p
n2
eff�n2

m (33)

with neff e↵ective refractive index of the frustule, nm refractive index of the
surrounding medium, �0 vacuum wavelength, and z direction perpendicular
to the plane of the slab. It is worth noticing how, for small refractive index
contrasts (like the one between porous silica and water and/or cytoplasm), the
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evanescent wave can reach far into the living cell, letting an e�cient optical
coupling with the plastids, which have been observed to migrate close to the
frustule walls under dim lighting conditions [Furukawa et al., 1998].

PWE was also applied by Yamanaka et al. [2008] in the calculation of the
band structure of the inner shell of Melosira variance diatom, viewed as a PhC
slab characterized by an hexagonal lattice of pores. Simulations have been
carried out considering the frustule immersed in air and in water. In both
cases, looking at the spectral range between 400 and 500 nm and considering
the M-K direction (K indicating the middle of an edge joining two hexagonal
faces in the Brillouin zone), the dispersion curves ! = !(k) result parabolic,
showing an enhanced interaction between light and the silica shell. One of the
possible advantages of this behavior lies in the ability of the frustule to weaken
an excess supply of blue light, which would be harmful for the cell because of
the inducted production of active oxygen species such as superoxide, hydrogen
peroxide, and hydroxyl radical [Baker and Orlandi, 1995].

4.2 Finite Di↵erence Time Domain (FDTD) method

Finite Di↵erence Time Domain (FDTD) method represents the most common
computational technique used to numerically solve Maxwell equations in time
domain [Joannopoulos et al., 2001], simulating the propagation in time of both
the electric and magnetic fields. A detailed description of the algorithm can
be found for example in Ref. Taflove and Hagness [2000]. Basically, space and
time are divided into a (usually) uniform grid of discrete points and the deriva-
tives present in the Maxwell equations are approximated by finite di↵erences,
as the name of the method suggests. The electric fields E at time t are com-
puted starting from the stored values of the E fields at time t � �t and from
the H fields at time t � �t/2, and vice versa for H at t + �t/2. Like all the
time-domain methods, FDTD allows estimating the transmission or reflection
of a structure at many frequencies with a single computation, starting from
the Fourier transform of its response to a short pulse (broad bandwidth excita-
tion). Frequency eigenvalues of the system, corresponding to resonant or leaky
modes, can be retrieved as peaks in the spectrum of the response, while the
imposition of Bloch-periodic boundary conditions allows for the computation
of band structures. Loss rates can be calculated as easily as resonant frequen-
cies. A separate simulation performed with a narrow-bandwidth source can be
used to reconstruct the field pattern corresponding to a specific eigenfrequency.
For high spatial resolution simulations, a high temporal resolution is required
as well, thus the computational time of a 3D FDTD simulation scales to the
fourth power of the resolution.

A precise morphological characterization based on scanning electron micro-
scopy (SEM) allowed Goessling and co-workers [Goessling et al., 2020] to per-
form FDTD calculations on accurate 3D CAD reconstructions of C. granii gir-
dle, which, as we saw in the previous subsection, can be described as a square
lattice of cylindrical holes perforating a silica slab (see Fig. 6a,b). These simu-
lations showed, for a girdle immersed in water and considering in-plane propa-
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gation, the presence of a so-called pseudogap (i.e. a photonic band gap existing
only for particular directions of propagation) spectrally located in near infrared
(with a central wavelength �c ' 780 nm). The pseudogap has been observed
also experimentally and undergoes a blue-shift as the incidence angle ✓i increases
(see Fig. 6c). A secondary reflectance pattern, due to in-plane di↵raction of the
modes guided by the girdle, appears in green spectral region for ✓i ' 50�. Since
both pseudogap and guided modes resonate far from the absorption maxima
of chlorophylls, the authors hypothesize that the photonic properties of the
girdle evolved in such a way to reduce the interference of photosynthetically
not-productive wavelengths with pigment light absorption.

Figure 6: (a) Cross-sectional view of a C. granii girdle (SEM image). (b) 3D
CAD recinstruction over four unit cells of the girdle. Numerical values derived
by SEM characterization: a1 = 285 ± 5 nm; a2 = 279 ± 11 nm; d = 124 ± 21
nm; h1 = 225± 21 nm; h2 = 250± 32 nm; C = 290± 18 nm; D = 745± 43 nm.
(c) Reflectance of the girdle immersed in water as a function of incidence angle
(for in-plane propagation) and for di↵erent wavelengths as retrieved by FDTD
simulations (left) and measured by micro-scatterometry (right). Reproduced
with permission from Goessling et al. [2020].

In Ref. DMello et al. [2019], the photonic band structure associated to the
triangular and square lattice configurations of Nitzschia filiformis frustules has
been calculated by 3D FDTD, revealing the presence, in both cases, of res-
onances at symmetry points around 430 and 660 nm respectively, coinciding
with the main peaks of absorption of chlorophyll A, one of the chromophores
typically found in diatoms. In resonant condition the group velocity lowers,
the propagation time within the frustule becomes longer and the probability of
light-matter interaction in the proximity of the silica walls, where the chloro-
plasts lie, increases as well. The resonant photonic behavior of N. filiformis
shells have been demonstrated also experimentally by means of near-field opti-
cal microscopy (SNOM) and correlated atomic force microscopy (AFM) [DMello
et al., 2018, 2019].

4.3 Wide-Angle Beam Propagation Method (WA-BPM)

Besides the evaluation of the band structure of a diatom frustule seen as a
photonic crystal, it can be useful to study how the light normally impinging on
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a valve interacts with its porous matrix and how the transmitted radiation is
spatially distributed inside the cell. The typical dimensions of the valve pores
are indeed of the same order of magnitude of the visible wavelength, thus giving
rise to di↵raction. Di↵racted light contributions coming from the pores interact
with each other by means of interference along the direction of propagation of
the field, giving rise to intensity maxima which look like intense hot-spots. This
phenomenon has been observed in several centric species [De Stefano et al.,
2007, De Tommasi et al., 2010, Di Caprio et al., 2014, Su et al., 2015, Ferrara
et al., 2014, Maibohm et al., 2015, Romann et al., 2015] and has been exploited
in combination with far-field sub-di↵raction techniques in order to obtain a sort
of bio-derived super-lens [De Tommasi et al., 2014]. In order to simulate light
propagation through a nano-patterned diatom valve, a properly adjusted version
of Beam Propagation Method (BPM) can be used. BPM indeed is usually
employed in the study of light propagation in waveguides and optical fibers,
i.e. in conditions of paraxiality (small angles respect to the optical axis) and
of uniformity of refractive index along the direction of propagation of the field.
This is not the case of a diatom frustule, where the pores induce di↵raction
of light (leading to non-paraxial conditions) and where an abrupt variation
in the refractive index between the relatively thin valve and the surrounding
environment (water or cytoplasm) takes place.

Starting from the Helmholtz equation:

r2E(r) + k2(r) = 0 (34)

with E electric field, k = nk0 wavenumber (with k0 = 2⇡
� wavenumber in free

space), and n = n(x, y, z) refractive index spatial distribution, we can write the
solution as:

E(r) = E(x, y, z) = U(x, y, z)e�ikrz (35)

The electric field can thus be expressed as the product of a slowly varying
envelope factor U(x, y, z) and a rapid varying phase factor e�ikrz, with kr =
nrk0 reference wavenumber (expressed in terms of the reference refractive index
nr), which takes into account the average phase variation of the field. We are
assuming that the considered wave propagates primarily along z (i.e. we are
considering, at first, paraxial conditions). We will also suppose, for now, that
the amplitude varies slowly along z axis too. Inserting U(x, y, z)e�ikrz into
Eq. 34 we obtain:

@2U

@z2
+ 2ikr

@U

@z
+

@2U

@x2
+

@2U

@y2
+ (k2 � k2r)U = 0 (36)

Making use of the slowly varying envelope approximation:
����
@2U

@z2

����⌧
����2kr

@U

@z

���� (37)

we obtain the basic BPM equation:

@U

@z
=

i

2kr

h@2U

@x2
+

@2U

@y2
+ (k2 � k2r)U

i
(38)
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Pad order (m,n) Nm Dn

(1,0) P
2 1

(1,1) P
2 1 + P

4

(2,2) P
2 + P 2

4 1 + 3P
4 + P 2

16

(3,3) P
2 + P 2

2 + 3P 3

32 1 + 5P
4 + 3P 2

8 + P 3

64

Table 2: Low-order Padé approximants expressed in terms of the operator P
defined in Eq.40.

Specifying U(x, y, z) at a plane z = z0, we can iterate U along the z-axis using
finite di↵erences for the x and y derivatives.

The most popular BPM variant which can take into account non-paraxial
conditions (Wide-Angle Beam Propagation Method, WA-BPM), is known as
the multistep Padé-based technique [Hadley, 1992b,a]. We can denote @

@z with

D, and, consequently, @2

@z2 with D2. Eq. 36 can be now viewed as a quadratic
equation to be solved for the di↵erential operator D. This yields to the following
solution for a first order equation in z:

@U

@z
= ikr(

p
1 + P � 1)U (39)

with:

P ⌘ 1

k2r

⇣ @2

@x2
+

@2

@y2
+ (k2 � k2r)

⌘
(40)

Even though it is restricted to forward propagation of the field (z > 0), the above
equation is exact in that no paraxiality approximation has been introduced. The
radical in Eq. 39 can be evaluated by using a Taylor expansion. The first order
of the expansion leads to the standard, paraxial BPM, while higher orders lead
to more accurate representations of the propagating field. However, expansion
via Padé approximants [Hadley, 1992b] is more accurate than Taylor expansion
for the same order of terms. This approach leads to the following equation:

@U

@z
= ik

Nm(P )

Dn(P )
U (41)

where Nm and Dn are polynomials in the operator P , and (m,n) is the order
of approximation. Some of their low-order values are reported in Table 2.

WA-BPM has been applied with success to Coscinodiscus wailesii [De Tom-
masi et al., 2010, 2018] and Arachnoidiscus sp. [Ferrara et al., 2014]. In Fig. 7
both experimental and numerical results are reported for a valve of Arachnoidis-
cus sp. immersed in air and illuminated by red radiation (� = 640 nm). A CAD
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Figure 7: (a): Single valve of an Arachnoidiscus sp. diatom illuminated by
radiation at � = 640 nm; (b): refractive index map (XY plane) of the valve
immersed in air retrieved from a SEM characterization of the frustule; (c):
experimental transmitted intensity in XZ plane; (d): transmitted intensity in
XZ plane as evaluated by WA-BPM; (e): hot-spot acquired at z = 320 µm; (f):
transmitted intensity evaluated by WA-BPM in XY plane at z = 307 µm.
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of the valve has been obtained by a SEM morphological characterization of the
frustule. In particular, the gray-scale SEM image of the valve has been con-
verted in a binary image, so to obtain a refractive index map which has been
then properly extruded (so to obtain a three-dimensional model) and used in
simulations. Di↵raction caused by the ultrastructure of the valve induces co-
herent superposition of radiation along the optical axis, giving rise to a train
of hot-spots. Even thought the refractive index map is retrieved starting from
the image of a real valve (thus giving rise to a more accurate representation
respect to simplified valve CADs used in other numerical approaches), the po-
sition of the hot-spots as obtained by WA-BPM does not coincide exactly with
that observed in experiments, mainly because the CAD used for simulations is
basically a perforated disk and does not take into account the actual curvature
of the valve. Still the e�cient light focusing excerted by the valve is reproduced
with a reasonable accuracy. The train of hot-spots extends in a region of hun-
dreds of micrometers. Since, for the considered species, mature frustules are
characterized by multiple girdles [Brown, 1933], i.e. the height of the frustule
is of the same order of magnitude of the diameter of the valve (' 200 µm), it
is plausible to hypothesize that part of the confined light lies inside the living
cell and that valves contribute to an e↵ective collection of PAR even in environ-
mental conditions where sunlight is not so easily accessible. Furthermore, it has
been observed both experimentally and numerically that, in case of UVB radia-
tion (detrimental for DNA mainly through formation of dimeric photoproducts
between adjacent pyrimidines), the angle of divergence of di↵racted light is such
that the train of hot-spots takes place very far from the valve (i.e. outside the
living cell) or, for su�ciently low wavelengths, it does not take place at all [Fer-
rara et al., 2014]. Finally, WA-BPM allows easily evaluating light propagation
in whatever environment (e.g. water [De Tommasi et al., 2010] or cytoplasm
[De Tommasi et al., 2018]), simply by assigning the right value of refractive
index in the algorithm.

4.4 Fast Fourier Transform (FFT) approach

An alternative way to numerically reconstruct the hot-spots which take place
beyond a diatom valve when it is irradiated by a plane wave, is to make use of a
FFT-based approach within a full di↵raction algorithm like the one developed
by Delen and Hooker [1998]. Field amplitude U(x, y, z) at a distance z = L
from the valve can indeed be expressed as follows:

U(x, y, L) = F�1{F{U(x, y, 0)}eikzL} (42)

where F and F�1 stand for the Fourier and inverse Fourier transform, respec-
tively, and kz is the component of the wavevector along the direction of prop-
agation of light. Maibohm et al. [2015] applied this method to reproduce the
hot-spots oberved experimentally when a valve of C. granii diatom is exposed
to coherent (laser) radiation (see Fig. 8). Starting from the quasi-hexagonal
symmetry of the valves, a hexagonal pattern of holes has been used as model
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for the algorithm, assuming them to be completely transparent to radiation. An
absorbing boundary has been implemented in order to avoid undesired reflec-
tions.

Figure 8: (a): SEM image of a detail of a C. granii valve with indication of the
hexagonal symmetry of the lattice (top) and corresponding mask used in nu-
merical simulations (bottom). (b): transmitted intensity for � = 532 nm (top)
and � = 633 nm (bottom). Dots represent experimental data, while continuous
(top) and dashed (bottom) lines refer to numerical simulations. Reproduced
with permission from Maibohm et al. [2015].

5 Fractional calculus for diatoms

The interaction of electromagnetic fields and biological tissues and cells has be-
come a topic of increasing interest for new research activities combining knowl-
edge of electromagnetic theory, modeling, and simulations, physics, material
science, cell biology, and medicine [Bia et al., 2016]. The cytoplasm of di-
atoms contains heterogeneous mixtures of various materials and quantities such
as water, ions, membranes, and macromolecules with a broad variety of pro-
files. Therefore, their interaction with electromagnetic radiation takes place in
di↵erent relaxation processes including (i) reorientation of water and protein-
bound water molecules, (ii) interfacial polarization arising by the presence of
two or more regions with di↵erent electrical properties, (iii) ionic di↵usion,
(iv) tumbling motion of the protein molecules, and (v) relaxations due to the
non-spherical shape. These phenomena can cause complex frequency disper-
sion patterns of permittivity and conductivity [Bia et al., 2016]. Conventional
FDTD methods cannot handle such materials, and there is a need for dedicated
customized procedures.

Taking in consideration that the study of fractional calculus opens the mind
to entirely new branches of applications, we propose to apply such concept to
the modeling of diatoms, i.e. as a novel scheme for simulating electromagnetic
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pulse propagation in this class of biological structures. Just as fractional expo-
nents may find their way into innumerable equations and applications, the use
of fractional order can find practical use in many modern problems. The con-
cept of fractional exponents is an outgrowth of exponents with integer value.
In the same way, non-integral order of integration is a generalization of the
mathematical operations of di↵erentiation and integration to arbitrary, general,
non-integer order. Although it better models the higher complexity by nature,
it is still easy to physically represent its meaning. The method is based on
the fractional calculus theory and a general series expansion of the permittivity
function, dealing with spatial dispersion e↵ects as well. The resulting formu-
lation is explicit, it has a second-order accuracy, and the need for additional
storage variables is minimal.

The macroscopic dielectric properties of diatoms are defined by the inter-
action of the light/electromagnetic energy with the material constituents at
microscopic and mesoscopic scale. As a result, the permittivity and electrical
conductivity depend on the working frequency. In particular, the characteris-
tics of a general dispersive medium exhibiting multi–relaxation processes can be
modeled by using the following relationship [Foster et al., 1986]:

✏r(!) = ✏r1 +
NX

l=1

�✏rl
�l(i!⌧l)

+
�

i!✏0
, (43)

where ! = 2⇡f is the angular frequency, ✏r1 denotes the asymptotic relative
permittivity at high frequency (for ! ! +1), �✏rl is a dimensional constant
(also called the dielectric increment in some cases), and �l(i!⌧l) is a heuristically
derived function depending on the characteristic time ⌧l for l = 1, 2, . . . , N ,
with N being the number of relaxation processes occurring in the considered
dielectric material. In (43), � is the static ionic conductivity, and ✏0 denotes the
permittivity of free space. Furthermore, we assume that the following condition
holds true:

lim
!!+1

|�l(i!⌧l)| = +1, (44)

so to preserve the consistency of the representation.

5.1 Fractional–Calculus–Based Dielectric Dispersion Model

The following approximated fractional power expansion is adopted here:

�l(i!⌧l) '
KlX

n=0

�n,l (i!⌧l)
⇣n,l = � (a)

l (i!⌧l, ⇣n,l,�n,l) , (45)

where ⇣n,l and �n,l denote suitable real-valued parameters. In particular, in
order to avoid model singularities, the exponents ⇣n,l are required to be non–
negative.

The parameters Kl, ⇣n,l, and �n,l can be evaluated, for l = 1, 2, . . . , N ,
by minimizing the following relative error function over the frequency band of
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operation:

erl(⌧l, ⇣n,l,�n,l) =

vuuuut

R !max
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����l(i!⌧l)� � (a)
l (i!⌧l, ⇣n,l,�n,l)

���
2
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����l(i!⌧l)
���
2
d!

. (46)

To this end, the numerical procedure based on the enhanced weighted quantum
particle swarm optimization (EWQPSO) in [Mescia et al., 2014, Bia et al., 2015]
can be conveniently used. The EWQPSO technique does not rely on complex
operators or require gradient information and, thanks to that, is characterized
by reduced computational time, and low memory usage [Giaquinto et al., 2011].

It is worth stressing the fact that the non–linear fitting of the dispersive terms
�l(i!⌧l) (l = 1, 2, . . . , N) is carried out in such a way as to prevent outbreaks
of the model parameters �n,l and ⇣n,l (n = 0, 1, . . . ,Kl) that could lead to
instabilities of the time–marching scheme adopted for the numerical solution of
Maxwell’s equations within the considered dielectric medium. To this end, the
search domain is properly constrained, so that the inequality:

Im
n
� (a)
l (i!⌧l, ⇣n,l,�n,l)

o
> 0, (47)

is satisfied for any angular frequency ! 2 [!min,!max] and index l = 1, 2, . . . , N .
As known from theory [Hippel, 1994], the enforcement of the inequality (47) is
essential to ensure passivity and, in this way, preserve the physical consistency
of the approximate model (45).

5.2 Basic Time–Marching Scheme

The evaluation of the electromagnetic field distribution excited by light imping-
ing on a given diatom is here performed by using an extended formulation of
the aforementioned finite–di↵erence time–domain (FDTD) scheme described in
Taflove et al. [2005] and Caratelli et al. [2012], that is useful to model the ohmic
losses as well as the multi–relaxation response of media with fractional–power–
law frequency dispersion as per (43).

Let us consider a non–magnetic dispersive medium with complex relative
permittivity described by (43). Under such assumption, the di↵erential version
of the Ampere’s law in time domain, within said material, can be written as:

r⇥H = ✏0✏r1
@E

@t
+ �E+

NX

l=1

Jl, (48)

with @t denoting the partial derivative operator with respect to time, and where
the auxiliary displacement current density terms Jl (l = 1, 2, . . . , N) have been
introduced. It is straightforward to find out that the k–th term (1  k  N) is
such to satisfy the equation:

D(k)
t Jk = ✏0�✏rk

@E

@t
, (49)

28



involving the generalized fractional derivative operator:

D(k)
t = F�1{�k(i!⌧k)} ' F�1
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k (i!⌧k, ⇣n,k,�n,k)

o

=
KkX

n=0

�n,k⌧
⇣n,k

k D
⇣n,k

t . (50)

Upon substituting (49) in (48), and applying a second–order accurate finite–
di↵erence scheme, one readily obtains, at the time instant t = m�t:

(r⇥H)|m � ✏r1
�✏rk

⇣
D(k)

t Jk

⌘���
m

=
NX

l=1

Jl|m + � E|m , (51)

where the vector terms appearing on the right–hand side of the equation are
evaluated by means of the semi–implicit approximation:
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2
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. (52)

In a similar way, from equation (49) it follows that:

E|m+ 1
2 = E|m� 1

2 +
�t

✏0�✏rk

⇣
D(k)

t Jk

⌘���
m
. (53)

Let ⌫n,k be the integer number such that ⌫n,k�1 6 ⇣n,k 6 ⌫n,k. So, applying
the Riemann–Liouville theory based procedure detailed in Mescia et al. [2014]

for the finite-di↵erence approximation of the operator D(k)
t yields, after some

mathematical manipulations which are omitted here:
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with: ⇢
An,k,p

Bn,k,p,q

�
= (�1)p

✓
⌫n,k
p

◆⇢PQn,k

q=1 an,k,q
e�bn,k,q

�
, (55)

the positive real–valued coe�cients an,k,q and bn,k,q for q = 1, 2, . . . , Qn,k being
derived through the application of the EWQPSO method (see Appendix A) to
the non–linear minimization of the function:

�n,k(p) =

������
(p+ 1)⌫n,k�⇣n,k � p⌫n,k�⇣n,k �

Qn,kX

q=1
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������
, (56)
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depending on the integer index p. In (54),  n,k,q denotes the auxiliary current
density vector defined by the following recursion formula:

 n,k,q|m =

(
an,k,q Jk|m� 1

2 + e�bn,k,q  n,k,q|m�1 , m > 1,

0, m 6 0.
(57)

Finally, by combining (51) with (52), (53), (54), one can readily obtain:
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where:
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and:
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, (60)

for k = 1, 2, . . . , N . It is apparent from (58) that the evaluation of the displace-
ment current density entails solving a symmetric system of N linear equations,
this reflecting the multi–relaxation characteristics of the dielectric material un-
der analysis. As a matter of fact, equations (58) can be recast in the more
compact matrix form:
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✓
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��t

2✏0

◆
D
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| {z }
T

· J|m+ 1
2 = ⌘|m , (61)

with U being the unit matrix of order N , and D = diag {D1, D2, . . . , DN} the

diagonal matrix with nonzero entries Dk = Ck/�✏rk . In (61), J|m+ 1
2 denotes

the vector of the unknown current densities at the time instant t =
�
m+ 1

2

�
�t,

namely:
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2

3

77775
. (62)

Similarly, the column vector ⌘|m is built up by arraying the auxiliary electro-
magnetic field quantities ⌘k|

m (k = 1, 2, . . . , N) defined in (59). It is worth
noting that the inverse of the coe�cient matrix T of the linear system (61) can
be conveniently computed only one time before the time–marching scheme is ini-
tiated. In this way, the algorithmic implementation of the technique proposed in
this research study actually results in a reduced additional computational cost
of O

�
N2
�
floating–point operations useful to determine the solution of (58) as:

J|m+ 1
2 = T

�1 · ⌘|m . (63)

Once the current density terms Jl|m+ 1
2 (l = 1, 2, . . . , N) are evaluated, the

electric field distribution within the considered dielectric medium can be derived
from (48) as:

E|m+ 1
2 =
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2

⌘#
, (64)

where judicious use of (52) has been made. Finally, by carrying out a second–
order accurate finite–di↵erence approximation of the Faraday’s law in the time
domain, the following update equation for the magnetic field is readily obtained:

H|m+1 = H|m � �t

µ0
(r⇥E)|m+ 1

2 , (65)
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with µ0 denoting the magnetic permeability of free space.

5.3 Uniaxial Perfectly Matched Layer Boundary Condi-
tions

In order to truncate the FDTD computational volume and solve electromag-
netic problems involving diatoms in domains with open boundaries, dedicated
uniaxial perfectly matched layer (UPML) conditions [Gedney, 1996] have to be
derived and implemented numerically accounting for the electrical conductivity
and the multi–relaxation characteristics of the dielectric material under analysis.
To this end, let us first introduce the auxiliary electric field vector e as:

e =

✓
x +

�x

i!✏0

◆
E, (66)

with x, �x denoting the UPML material parameters in accordance with the
complex coordinate stretching approach Taflove et al. [2005]. Multiplying both
sides of (66) by i! and transforming into the time domain immediately yields:

@E

@t
= x

@E

@t
+

�x

✏0
E. (67)

In this way, it is not di�cult to find out that the Ampere’s law can be written,
within the UPML region, as:

r⇥H = ✏0✏r1
@E

@t
+ �e+

NX

l=1

jl, (68)

where the l�th displacement current density term (1  l  N) satisfies the
fractional derivative equation:

D(l)
t jl = ✏0�✏rl

@E

@t
. (69)

The discretization of the considered equations on the Yee lattice can be con-
veniently carried out by adopting the usual leapfrog scheme in time, wherein
the loss terms are averaged according to the semi–implicit approximation [see
(52)]. Overall, as it can be easily figured out by comparison with (48) and (49),
this leads to time–stepping expressions which are formally equivalent to (58)
and (64) with the stretched vectors e and jl replacing the quantities E and Jl,
respectively, for l = 1, 2, . . . , N . On the other hand, the electric field update
equation directly follows from (67) as:

E|m+ 1
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By Fourier–transforming the Faraday’s law r⇥ E = �µ0 (i!x + �x/✏0)H
and discretizing at the time instance t =

�
m+ 1

2

�
�t, one can readily derive the

time–stepping expression for the magnetic field within the UPML termination:

H|m+1 =
2✏0x � �x�t

2✏0x + �x�t
H|m � 2Y 2

0 �t

2✏0x + �x�t
(r⇥E)|m+ 1

2 , (71)

with Y0 =
p
✏0/µ0 being the wave admittance in free space.

The developed numerical procedure can be used to characterize the elec-
tromagnetic behavior of diatoms, modeled as multi-layered dielectric structure,
under plane–wave excitation. To this end, the conventional total field/scattered
field (TF/SF ) formulation detailed in Taflove et al. [2005] has been implemented
using a sinusoidally time–modulated Gaussian pulse source polarized along the
y axis:

Is(x, t) = exp

"
�
✓
t� Tc

Td

◆2
#
sin [2⇡fe (t� Tc)] �(x� xs) ŷ, (72)

with �(·) denoting the usual Dirac delta distribution, and where the parameters
Td, Tc = 4Td, fe have been selected in such a way as to achieve a spectral
bandwidth BW .

6 Beyond the glass cage: the fate of light inside
the cell

The last leg of the light journey is the cell. The absorbed photons represent
sources of information about the environment and environmental signals con-
trolling di↵erent physiological, adaptive, and biochemical processes [Depauw
et al., 2012]. Pigments are responsible for capturing solar energy. The absorbed
light can have three possible fates: generate photochemical reactions leading to
production of organic matter; when in excess, can be dissipated as heat [Bailleul
et al., 2010] or be emitted back to the environment as fluorescence [Lin et al.,
2016]. Diatoms contain two types of pigments involved in light harvesting and
photoprotection: chlorophylls and carotenoids (fucoxanthin, �-carotene and the
xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and
zeaxanthin). Two forms of chlorophylls are found in diatoms: Chl-a and Chl-c,
identified in various algae. Chlorophyll absorbs light in the red (long wave-
length) and the blue (short wavelength) portions of the electromagnetic spec-
trum, which are used in photosynthesis while carotenoids are engaged mainly
in photoprotection, with the exception of fucoxanthin that transfers excitation
energy very e�ciently to Chl-a and plays a major role in the so-called LHC
(light-harvesting complex) photosystems [Kuczynska et al., 2015]. The LHC
system contains Chl-a and c, and the fucoxanthin (Fx) and is thus referred to
as FCP, for fucoxanthin-chlorophyll protein. The pigment composition in FCP
reflects the adaptation of diatoms to the blue-green light of the marine environ-
ment [Gelzinis et al., 2021]. Moreover, the high amount of the fucoxanthin, that
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masks the other carotenoids, is responsible of the characteristic brown color of
diatoms [Bertrand, 2010]. However, due to the mixtures of pigments, the ab-
sorption spectra of phytoplankton are complex, and it is di�cult to quantify
the contribution of each pigment. In the last years di↵erent studies have been
reported in order to find a method that can be successfully used to identify the
individual absorption spectra of component pigments such as di↵erent deriva-
tive analysis and the Gaussian-Lorentzian technique. However, to date, it is
still di�cult to match the information from the pigments with the absorption
spectrum [Aguirre-Gomez et al., 2001].

Like for all living organisms, variation in light/dark cycles due to Earth rota-
tion influences the circadian rhythms of diatoms as well [Annunziata et al., 2019].
In addition, the moon gives o↵ some light of its own and few papers reported its
influence on photosynthesis [Raven and Cockell, 2006]. Very recently, Breitler
and co-workers [2020] reported for the first time a transcriptomic analysis of the
plant Co↵ea arabica under full moonlight conditions. This additional source of
photons plays a key role in the light reactions, however, at the moment we can
only speculate a possible influence of moonlight on rates of photosynthesis also
in diatoms.

Thus, having discussed how the light gets through the water and the cell
wall, we now consider what happens inside the cell and which components are
involved.

6.1 The diatom chloroplast and its evolution

Unlike plants, green and red algae, the diatom plastid is an evolutionary mosaic,
as the one of other photosynthetic members of the stramenopile algae group
that are believed to have arisen by secondary endosymbiosis, whereby a non
photosynthetic eukaryote acquired a chloroplast by engulfing a photosynthetic
eukaryote, probably a red algal endosymbiont [Falkowski et al., 2004]. More
recent studies suggest a tertiary endosymbiotic origin, in which a red alga was
acquired through secondary endosymbiosis through another algal group which
was in turn engulfed by the photosynthetic stramenopile [Dorrell and Bowler,
2017, Dorrell et al., 2017]. Each endosymbiotic event led to new combinations
of genes from the hosts and the endosymbionts. The thylakoid membrane inside
chloroplasts, capable of forming elaborate networks, harbours the protein com-
plexes that are necessary for the photosynthesis. Plastid genomes have retained
a limited number of genes related to the chloroplast function, and other genes
have either been lost or transferred to the nuclear genome [Nonoyama et al.,
2019]. For this reason, the thylakoids of diatoms are di↵erent from the chloro-
phyte one, with an envelope surrounded by four annular membranes instead of
two, and arranged in stacks of three, that are disposed in parallel in a highly
ordered manner, where the grana stacking is absent [Levitan et al., 2019]. The
four membranes are, from inside out, the inner envelope membrane (iEM), the
outer envelope membrane (oEM), the periplasmic membrane (PPM), and the
chloroplast endoplasmic reticular membrane (cERM) [Nonoyama et al., 2019]
(Fig. 9).
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Figure 9: Origin and structure of the diatom chloroplast. The upper panel shows
the schematic representation of the secondary (a) and tertiary (b) endosymbiont
hypothesis of diatom evolution. Lower panel (c) shows a schematic diagram
of the four membranes surrounding the diatom chloroplast. Reproduced with
permission from [Nonoyama et al., 2019]. Abbreviations are as follows: cERM;
chloroplast endoplasmic reticular membrane; ER, endoplasmic reticulum; iEM,
inner envelope membrane; IMS, intermembrane space; oEM, outer envelope
membrane; PPC, periplastid compartment; PPM, periplastid membrane.

Depending on the species, diatom plastids can be highly diverse in number
and size. Centric diatoms possess plastids ranging from 2 to 3 per cell (like
in Thalassiosira pseudonana) up to several hundreds (as in Odontella sinensis)
[Schober et al., 2019]. Interestingly, diatom plastids are characterized by a
pronounced motility which strongly depends on both illumination conditions
(i.e. photons availability) and spectral content of the impinging radiation. In
particular, as already mentioned in section 4.1, in several centric species and
for weak illumination conditions, it has been observed a migration of plastids
towards frustule walls, well within the region of influence of the evanescent field
associated to the modes coupled to valves and girdles (see again Eq. 33). On
the opposite, an excess of light intensity induces plastid relocation towards the
center of the cell [Furukawa et al., 1998], suggesting the presence of a mechanism
useful to nucleus protection from photodamage and/or for an e�cient coupling
with the hot-spots described in section 4.3. Migration of plastids towards the
nucleus is not only triggered by exposure to high light intensity, but it results
pronounced also for irradiation in blue spectral range [Shihira-Ishikawa et al.,
2007], where one of the maxima of the absorption spectrum of chlorophylls is
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located.

6.2 The photosynthetic and electron transport chain

Photosynthesis is a unique process which, in the case of diatoms, takes place
with an extremely high e�ciency, explaining the ecological success of these
microalgae and how they are able to produce approximately 20% of all oxygen on
Earth, being directly responsible for 40% of total marine photosynthesis [Field
et al., 1998]. Despite distinctions in the architecture of thylakoid membranes,
the fundamental machinery responsible for photosynthetic electron transfer is
highly conserved in diatoms [Levitan et al., 2019].

Like all oxygenic organisms, light energy is captured by pigments bound to
light-harvesting antenna proteins (LHC) that then transfer the energy to the two
multi-subunit membrane protein complexes photosystem II (PSII) and PSI, to
initiate photochemical reactions (Fig. 10). Recently, thanks to a sophisticated
analysis, Flori and colleagues reconstructed the 3D structure of the diatom
chloroplast using focused ion beam scanning electron microscopy (FIB-SEM).
They demonstrated that, unlike previously thought and as in the case of plants,
also in diatoms PSI and PSII are separated and that this separation is neces-
sary to avoid any “short circuits” that would make photosynthesis less e↵ective
[Flori et al., 2017]. Even though photosynthetic complexes share fundamental
structures, they di↵er in composition, ratio, and dynamic control of the photo-
synthetic reactions due to the substantial di↵erences in the light field of marine
environments. To cope with the various light environments where di↵erent pho-
tosynthetic organisms inhabit, di↵erent types and numbers of light-harvesting
antenna proteins are attached to the PSII core to enhance the light-harvesting
and energy-quenching capacities [Falkowski and Chen, 2003, Wang et al., 2020].
Very recently it has been also demonstrated that di↵erent diatom classes have
various architectures of PSII as an adaptation strategy, whilst a convergent evo-
lution occurred concerning PSI and the overall plastid structure [Arshad et al.,
2021].

6.3 The photoprotection mechanism

An excess of light energy may induce damage to the photosynthetic appara-
tus. A photoprotective response consists in the dissipation of this excess as
heat, which occurs in PSII whenever the light absorption exceeds the maximum
CO2 assimilation rate. These processes are at the basis of the so-called non-
photochemical quenching (NPQ) and are typical of almost all the photosynthetic
eukaryotes, regulating and protecting photosynthesis. The ecological dominance
of diatoms also relies on their very e�cient photoprotective mechanisms. Di-
atoms, compared to other photosynthetic organisms, possess a high capacity to
dissipate excess light energy as heat through high energy quenching (qE) that,
together with the photoinhibitory quenching (qI), can be visualized via the NPQ
of Chl-a fluorescence [Lepetit et al., 2013, Goss and Lepetit, 2015]. NPQ takes
place in the light-harvesting complex antennae (LHC) of PSII. These include
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Figure 10: Schematic diagrams of the photosynthetic electron transport chain.
Created with BioRender.com

the xanthophyll cycle, which allows diatoms to activate NPQ through the con-
version of the accessory pigment diadinoxanthin into diatoxanthin. Along with
pigments of the xanthophyll cycle, FCPs and in particular an expanded set
of LHCXs family light harvesting proteins also participate in the formation of
NPQ to avoid photo-oxidation [Taddei et al., 2016] (Fig. 11). Moreover, it has
been recently demonstrated that the excess in chloroplast reducing potential is
translocated into the mitochondria and dissipated through respiratory electron
transport as an additional photoprotective strategy [Dorrell et al., 2017].

6.4 The Diatom Photoreceptors

Light consists in a spectrum of colours and, as mentioned in section 2, the spec-
tral properties of the underwater light field are very distinct from the terrestrial
ones. Light undergoes absorptive and scattering processes throughout the water
column, and is a↵ected also by the presence of di↵erent photosynthetic organ-
isms [Depauw et al., 2012]. The blue-green (400–500 nm) spectral components
dominate in the depth, while the red and infrared wavebands are absorbed by
the water, and are present at low intensities, mostly derived from the chlorophyll
a fluorescence due to the presence of photosynthetic organisms.

Photoreceptors are light-sensing molecules able to perceive the light at spe-
cific wavelengths and propagate downstream signal pathways in response, con-
verting the physical light signal into a biochemical signal. They are photon
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Figure 11: Schematic mechanism of photoprotection. The figure shows the
chloroplastic membranes, the light harvesting complexes (LCH) of the photo-
system II (PSII) containing pigments that absorbs light for photosynthesis and
and the e↵ectors implicated in the non-photochemical quenching of chlorophyll
fluorescence (NPQ). Created with BioRender.com

detectors that use visible light to learn about the world around them. These
proteins are usually modular in their architecture. They are provided with pho-
toreceptive domains binding chromophores to absorb light signals at specific
wavelengths. Chromophores undergo physicochemical and structural changes
upon light absorption, which regulate the signal propagation [Depauw et al.,
2012] (Fig. 12). In diatoms genome many types of photoreceptors have been
identified and partially characterized e.g.: the red light receptors, phytochrome
(DPH) [Fortunato et al., 2016], di↵erent cryptochromes [Coesel et al., 2009,
König et al., 2017] and aureochromes [Mann et al., 2020] for the blue and also he-
liorhodopsins, a new family of rhodopsins recently discovered [Pushkarev et al.,
2018].

6.5 Chlorophyll optical signals for satellite population mon-
itoring

After being absorbed, light can be re-emitted at higher wavelengths through a
process called fluorescence. Approximately 2-6% of the solar energy absorbed
by chlorophyll is re-emitted as fluorescence [Qiu et al., 2018]. Chlorophyll flu-
orescence is a detectable signal that provides a way to directly estimate actual
photosynthesis from space, reflecting phytoplankton presence and primary pro-
ductivity. In 2016, Li and colleagues calculated the quantum yield of chlorophyll
fluorescence from space by using the images coming from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and MEdium Resolution Imaging
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Figure 12: Schematic representation of a simplified view of the phototransduc-
tion cascades mediated by photoreceptors. Light in the visible spectrum colors is
absorbed by specific photoreceptors which trigger signal transduction cascades
that generate physiological responses. Created with BioRender.com
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Figure 13: This map shows the average spatial concentration of chlorophyll a
in the oceans. Adapted from [Rogato et al., 2015].

Spectrometer (MERIS) satellites, which possess the capability of remotely de-
tecting solar induced chlorophyll fluorescence signals from the global ocean [Li
et al., 2016]. Chl-a is routinely derived from satellite-based reflectance using
regionally optimized algorithms. The OLCI Neural Network Swarm (ONNS) is
an example of bio-geo-optical algorithm for the retrieval of water quality pa-
rameters from atmospherically corrected satellite imagery or in situ radiometric
measurements. The aim of the development is to provide a single algorithm
that is suitable to all natural waters, from oligotrophic ocean waters to very
turbid coastal or highly absorbing inland waters. However, total phytoplank-
ton biomass, as indexed by Chl-a concentration, tells only part of the story and
di↵erences in optical properties of diatoms can be exploited to develop computa-
tional instruments able to distinguish them from other types of phytoplankton.
Starting from the observation that diatom populations exhibit much lower spe-
cific absorption coe�cients than other phytoplankton populations for a given
region [Stuart et al., 2000], Sathyendranath and colleagues introduced in 2004
a bio-optical algorithm able to distinguish their contribution and applied it to
SeaWiFS data on ocean colour [Sathyendranath et al., 2004]. The SeaWiFS
instrument was launched from NASA, by Orbital Sciences Corporation on the
OrbView-2 (a.k.a. SeaStar) satellite in August 1997, and collected data from
September 1997 until December 2010. SeaWiFS had 8 spectral bands from
� = 412 nm to � = 865 nm. Reflectance at a specific wavelength � and for a
given depth z can be defined as the ratio of upwelling irradiance (Eu) to the
downwelling one (Ed):

R(�, z) =
Eu(�, z)

Ed(�, z)
(73)
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The contribution of elastic scattering to reflectance at sea-surface, RE(�, 0), is
related to total absorption and backscattering coe�cients a(�) and bb(�) by:

RE(�, 0) = r
bb(�)

a(�) + bb(�)
(74)

with r proportionality factor. Total absorption coe�cient a(�) is given by the
sum of the absorption coe�cients of pure water (aw), dissolved organic matter
(adom) and phytoplankton (ap):

a(�) = aw(�) + adom(�) + ap(�) (75)

The coe�cient ap can be parametrized as a non-linear function of Chl-a concen-
tration C [Sathyendranath et al., 2001] derived from in situ High Performance
Liquid Chromatography (HPLC) data:

ap(�) = U(�){1� exp [�S(�)C)]}+ Ca⇤2(�) (76)

with U [m�1], S [m3(mg Chl-a)�1] and a⇤2 [m2 (mg Chl-a)�1] fitting parameters.
HPLC data can be indeed used to separate diatom-dominated samples from
mixed populations starting from the concentration of Chl-c3 and fucoxanthin
relative to Chl-a (values of Chl-c3 to Chl-a ratio less than 0.02 and fucoxanthin
to Chl-a ratio greater than 0.4 correspond to diatom-dominated regions). In the
algorithm, the ratio of reflectances at two wavelengths is always used in order
to reduce the e↵ect of any potential errors in the factor r of Eq.74, since the
variations in r are independent by the wavelengths used in the ratio. For each
pixel of a satellite image we can define the normalized remote-sensing reflectance
RRS :

RRS(�) =
L(0,�)

Ed(0,�)
(77)

where L(0,�) is the upwelling radiance from the sea-surface in the zenith di-
rection at wavelength � and Ed(0,�) is the downwelling irradiance at the same
wavelength. The chlorophyll concentration is first estimated using both the
RRS(510)/RRS(555) and RRS(490)/RRS(670) ratios, assuming a diatom popu-
lation. The di↵erence between the two computed chlorophyll values is then esti-
mated and normalized to the mean of the two values. The operation is repeated
assuming a mixed phytoplankton population. The correct model yields smaller
di↵erences in the concentrations retrieved using two di↵erent waveband pairs if
compared to the wrong model. Therefore, each pixel can be assigned to diatom
or mixed population, on the basis of the computed normalized di↵erences. In
2018, Kramer and co-workers [Kramer et al., 2018] refined and improved the
algorithm through successive re-parameterizations and re-formulations of the
absorption and backscattering coe�cients, with data collected in di↵erent sites.

7 Conclusions

The main analytical models describing the underwater optical field, the essential
numerical algorithms for the study of the photonic properties of the diatom seen
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as a natural metamaterial and methods for complex EM propagation problems
and wave propagation in dispersive materials with multiple relaxation times
are described. In the near future, the use of fractional calculus-based meth-
ods will be extended to study diatoms and their substructures, in those cases
where conventional FDTD techniques fail. In Bia et al. [2016], the plane-wave
propagation in a variety of dispersive media has been examined, whereby the
comparison between simulated results and those evaluated by using an analyt-
ical method based on the Fourier transformation demonstrated the accuracy
and e↵ectiveness of the developed FDTD model. The dispersive models might
be related further to the absorption spectra of the chromophores described in
section 6 and to biosilica dispersion.

Gielis transformations are presented as a unifying geometrical model frame-
work. They allow for great flexibility in modeling and for computational e�-
ciency to be achieved, and have been used for automated detection and deter-
mination of diatoms (see Fig. 14) [Seeger, 2021].

Figure 14: Jewels of the Sea. https://maxseeger.de/jewels-of-the-sea. Repro-
duced with permission of the author.

In presenting a new viewpoint, beyond the classical Euclidean and Rieman-
nian, one enters the realm of Minkowski-Finsler geometry, basically the geome-
try where the fundamental metric goes beyond the quadratic one. Today, Finsler
geometry is the full-sized research theme in mathematics, but it turns out that
the simplest of metrics, actually the one proposed by Lam and by Riemann
for the infinitesimals, is extremely useful to study natural shapes, in a systems
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biology and evolutionary perspective.
Finally, the presented discussion ends up inside the cell, describing all the

pigments and the processes involved in light harvesting, photoprotection, and,
ultimately, in photosynthesis. Examples of numerical analysis of satellite images
for remote sensing of diatom populations are also described, confirming how
mathematical modeling not only allows the understanding of the interaction of
light with frustules, but also the retrieval of fundamental information about
diatom-related primary production.
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Melilotus Thyssen, Gérald Grégori, et al. Nanoplanktonic diatoms are glob-
ally overlooked but play a role in spring blooms and carbon export. Nature
Communications, 9(1):1–12, 2018.

Bernard Lepetit, Sabine Sturm, Alessandra Rogato, Ansgar Gruber, Matthias
Sachse, Angela Falciatore, Peter G Kroth, and Johann Lavaud. High light
acclimation in the secondary plastids containing diatom Phaeodactylum tri-
cornutum is triggered by the redox state of the plastoquinone pool. Plant
Physiology, 161(2):853–865, 2013.

Orly Levitan, Muyuan Chen, Xuyuan Kuang, Kuan Yu Cheong, Jennifer Jiang,
Melissa Banal, Nikhita Nambiar, Maxim Y Gorbunov, Steven J Ludtke,
Paul G Falkowski, et al. Structural and functional analyses of photosys-
tem II in the marine diatom Phaeodactylum tricornutum. Proceedings of the
National Academy of Sciences, 116(35):17316–17322, 2019.

Wenkai Li, Weidong Guo, Yongkang Xue, Congbin Fu, and Bo Qiu. Sensitiv-
ity of a regional climate model to land surface parameterization schemes for
east asian summer monsoon simulation. Climate Dynamics, 47(7):2293–2308,
2016.

Hanzhi Lin, Fedor I Kuzminov, Jisoo Park, SangHoon Lee, Paul G Falkowski,
and Maxim Y Gorbunov. The fate of photons absorbed by phytoplankton in
the global ocean. Science, 351(6270):264–267, 2016.

49



Christian Maibohm, Søren Michael Mørk Friis, Marianne Ellegaard, and
Karsten Rottwitt. Interference patterns and extinction ratio of the diatom
coscinodiscus granii. Optics Express, 23(7):9543–9548, 2015.
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