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Deep phylogeographic structure in mitochondrial DNA not reflected in morphological
variation has been uncovered in a number of species over the past few decades. How-
ever, inferred phylogeographic structure based solely on mitochondrial DNA can be mis-
leading and might not reflect the true history of evolutionary lineages. Consequently,
such cases should be further investigated based on genome-wide data. One of these
examples is provided by the Middle Spotted Woodpecker Dendrocoptes medius, a non-
migratory habitat specialist associated with old deciduous forests of the Western
Palaearctic. It displays strong genetic divergence in mitochondrial DNA between Asian
and European populations despite there being only slight variation in morphology
between them. Here, we found a clear genomic divergence between Asian and European
populations that is consistent with mitochondrial divergence patterns. As revealed by iso-
lation by distance analyses, this differentiation in two lineages was not merely an effect
of geography. Genomic population structure indicates that both the Asian and European
lineages might each have been separated in more than one refugium during the last gla-
cial maximum. The Middle Spotted Woodpecker might represent a case of cryptic diver-
sity throughout its distribution range, as has been previously found for other taxa across
the tree of life. However, we also found footprints of gene flow from the Asian into the
European populations, suggesting at least limited introgression upon secondary contact.
The processes and mechanisms that might prevent lineage fusion between the morpho-
logically cryptic but genetically divergent lineages of the Middle Spotted Woodpecker
need to be further investigated especially in the area of potential secondary contact.
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The last decade has revealed many species with sur-
prisingly deep phylogeographic structure in mito-
chondrial DNA (mtDNA) that is not reflected in
morphological variation (e.g. Lohman et al. 2010,
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Webb et al. 2011, Mil�a et al. 2012, Saitoh et al.
2015, Alaei Kakhki et al. 2018, Fuchs et al. 2018,
Schweizer et al. 2018, Zhang et al. 2019). The
higher mutation rate of mtDNA compared with
that of the nuclear genome, facilitated by reduced
effective population size due to its haploidy and
chiefly maternal inheritance, makes it a valuable
tool to study phylogeographic patterns of recently
diverged lineages (Avise 2009). However, phylo-
geographic structure inferred solely based on
mtDNA can be misleading for various reasons. In
general, as gene trees can vary substantially across
the genome (e.g. Nater et al. 2015), phylogeo-
graphic reconstruction based on single recombina-
tion units, such as mtDNA, can contradict the true
history of lineage diversification as a consequence of
incomplete lineage sorting, introgression or selec-
tion (Edwards 2009, Toews & Brelsford 2012).
Divergence patterns in mtDNA might then reflect
the biogeographic rather than evolutionary history
of lineages (Drovetski et al. 2018a). Moreover, deep
mtDNA divergence can also be prevalent in the
absence of any nuclear genomic differentiation as a
result of processes such as introgression from an
extinct species (‘ghost introgression’; Hogner et al.
2012, Zhang et al. 2019), male-biased dispersal
(Dai et al. 2013), speciation reversal (Webb et al.
2011) or non-neutral evolution of mtDNA (Pavlova
et al. 2013, Fossoy et al. 2016). Additionally,
mtDNA does not usually enable informative evalua-
tion of putative gene flow among different evolu-
tionary lineages (e.g. Bastos-Silveira et al. 2012,
Zemanova et al. 2017). Nonetheless, there are cases
where patterns of mtDNA variation contradicting
morphological disparity were shown to reflect evo-
lutionary histories that were also recovered by
genome-wide data (e.g. Harris et al. 2018, Sch-
weizer et al. 2019a, 2019b).

Consequently, cases where phylogeographic or
phylogenetic patterns inferred from mtDNA con-
tradict morphological variation should be further
investigated through analyses based on genome-
wide data. Such an example is the Middle Spotted
Woodpecker Dendrocoptes medius. The species is a
non-migratory, low-dispersal habitat specialist (Pasi-
nelli 2003) that is morphologically rather uniform
over its wide distribution area, which ranges from
northern Spain over large parts of central and east-
ern Europe, the Balkans and Anatolia to the Cauca-
sus, and an isolated area in the Zagros Mountains of
Iran and Iraq (Robles & Pasinelli 2020, Winkler
et al. 2020). Four subspecies are usually recognized

(Winkler et al. 2020, Gill et al. 2022): D. m. medius
from continental Europe; D. m. caucasicus occur-
ring in northern Turkey, the Caucasus, Transcau-
casia and probably northwestern Iran; D.
m. anatoliae from western and southern Anatolia;
and D. m. sanctijohannis, which breeds in the
Zagros Mountains in southwestern Iran and north-
eastern Iraq. Differences in size and plumage among
subspecies are slight and partly clinal (Vaurie 1959,
Cramp 1985). A recent study, however, found a
strong phylogeographic break between Asian (in-
cluding the Caucasus) and European populations
(Kamp et al. 2019). Although slight differences
were also found in a single nuclear marker, this pat-
tern was mainly driven by mtDNA divergence, with
the two lineages being reciprocally monophyletic in
all three mtDNA markers analysed (ATP6, Control
Region, Cytochrome b). Coalescence of the Asian
and European clades was dated to 1.5 million years
ago, a level of divergence found between taxa some-
times treated as distinct species, for instance in the
Great Spotted Woodpecker Dendrocopos major and
Green Woodpecker Picus viridis complexes (Pons
et al. 2011, 2019, Perktas & Quintero 2013, del
Hoyo & Collar 2014, Perktas et al. 2015, Gill et al.
2022).

The strong mitochondrial divergence between
Middle Spotted Woodpecker lineages is surprising
given the apparent lack of pronounced morphologi-
cal differences between the Asian and European lin-
eages. Moreover, the Marmara Sea, with the
Dardanelles and Bosporus Straits separating the two
lineages, should not represent a strong physical bar-
rier for a bird. Indeed, such a strong phylogeo-
graphic break across this area has not been
documented in birds before (cf. Kamp et al. 2019).
In addition, the lack of phylogeographic mtDNA
structure within the two lineages (Kamp et al.
2019) precluded any conclusion on their recent
population history. Here, we use genome-wide data
to: (1) assess the history of population divergence in
the Middle Spotted Woodpecker and to test for
potential mito-nuclear discordance, and (2) infer
the recent population history of the different popu-
lations of the Middle Spotted Woodpecker.

METHODS

Sampling

We obtained tissue or blood samples of Middle
Spotted Woodpeckers from six geographical areas
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encompassing the eastern and western mtDNA lin-
eages: Armenia (Lesser Caucasus one individual,
Armenian Highlands in Transcaucasia four individ-
uals), Greater Caucasus in Russia (five individuals
from four sampling sites), and North Aegean
Island of Lesvos in Greece (four close sampling
sites with one, two, two and four individuals,
respectively) from the Asian populations; Balkans
with mainland Greece (two sampling sites with
one and two individuals) and Serbia (one individ-
ual), Switzerland (three sampling sites with seven
individuals each) and Spain (nine individuals from
six close sampling sites) for the European popula-
tions (Fig. 1, Table 1). With the exception of
D. m. sanctijohannis of the Zagros Mountains of
Iraq and Iran, our sampling locations represented
all currently recognized subspecies as well as three
formerly recognized subspecies: D. m. lilianae of
Iberia, D. m. splendidior of the Balkans and
D. m. laubmanni of Transcaucasia (Winkler et al.
2020).

Samples from 57 individuals were used for anal-
yses after quality checks of the data (see below),
some of which have already been used in Kamp
et al. (2019) (cf. Table 1). DNA was extracted
with a modified salt extraction protocol (Aljanabi
& Martinez 1997), a standard phenol–chloroform
protocol (Sambrook et al. 1989) or by ecogenics
GmBH (Balgach, Switzerland) using the DNeasy
Blood and Tissue kit (Qiagen, Hilden, Germany).

Data preparation

Genotyping by sequencing (Elshire et al. 2011)
was conducted by ecogenics GmbH (Balgach,
Switzerland). Individually MID-tagged reduced-
representation libraries were generated using the
standard enzyme combination of EcoRI/MseI and
sequenced on an Illumina NextSeq sequencing sys-
tem (single-read 75 base pairs). The quality of raw
reads was then checked with FASTQC 0.10.1
(Andrews 2010). Individuals with fewer than one
million reads were excluded. Leading and trailing
low-quality bases of reads were removed using
TRIMMOMATIC 0.39 (Bolger et al. 2014). A
genome assembly of a female Downy Woodpecker
Dryobates pubescens (GCA_000699005.1) (Zhang
et al. 2014) was then used as reference to align
trimmed reads using BWA MEM 0.7.17 (Li
2013).

Single nucleotide polymorphisms (SNPs) were
called and genotyped in analysis of next-generation

sequencing data (ANGSD) (Korneliussen et al.
2014). Only SNPs were retained that had a maxi-
mum P value of 10�3 for being variable, a mini-
mum mapping quality of 20, a minimum base
quality score of 20, a minimum total read depth of
120, a minimum individual read depth of 5 and a
minimum minor allele frequency of 0.01 (-
SNP_pval 1e-3 -minQ 20 -minMapQ 20 -
setMinDepth 120 -geno_minDepth 5 -minMaf
0.01). Only uniquely mapped reads and biallelic
SNPs with less than 10% missing data across sam-
pled individuals were retained (-uniqueOnly 1 -
skipTriallelic 1 -minInd 52).

Population genomic structure

We first computed a principal component analysis
with PCAngsd (Meisner & Albrechtsen 2018) to
obtain an overview of the genomic structure
within and among the different populations of the
Middle Spotted Woodpecker. We accounted for
the uncertainty of called genotypes using individ-
ual genotype likelihoods. Eigenvectors from the
covariance matrix were computed with the func-
tion ‘eigen’ in R 3.6.2 (RCoreTeam 2019). We
then additionally performed an admixture analysis
in NGSadmix (Skotte et al. 2013) to check for
individual assignments to different numbers of
ancestral populations. We performed 10 indepen-
dent runs each for different numbers of K ranging
from 1 to 14. The optimum number of popula-
tions was evaluated with CLUMPAK (Kopelman
et al. 2015).

Nucleotide diversity (p) of each population was
computed in ANGSD. The unfolded site fre-
quency spectrum was estimated using a reference
genome assembly from Downy Woodpecker
(GCA_000699005.1) to characterize ancestral
states and to provide a prior to compute allele fre-
quency probabilities in ANGSD (-dosaf 1). Miss-
ing data were allowed in one individual per SNP.
Pairwise nucleotide diversity for each site was esti-
mated using thetaStat based on the site frequency
spectrum. The average was then used as nucleo-
tide diversity for each population. As a result of
the small sample sizes, individuals from the differ-
ent sampling sites in the Russian Greater Caucasus
were pooled, as were individuals from the two
sampling sites in Armenia (Lesser Caucasus and
Transcaucasia) and from Greece and Serbia (Balka-
ns). The different sampling sites from Switzerland
were treated separately in the analyses.
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The populations of the Middle Spotted Wood-
pecker sampled for this study were spread across
the entire longitudinal range of the European con-
tinent. To explore the influence of geographical
distance on genomic structure, we tested for isola-
tion by distance between different populations. To
this end, Mantel tests (Mantel 1967) were applied
to matrices of genetic (FST/(1 – FST)) and logarith-
mic (ln) Euclidean geographical distances between

populations using the R package ade4 (Dray &
Dufour 2007) with 999 Monte Carlo permuta-
tions. FST was computed in Arlequin 3.5.2.2
(Excoffier & Lischer 2010) based on SNPs as
called with ANGSD (see above) allowing a level
of missing data of 0.05. Three populations were
considered each for Asia (Greater Caucasus, Lesser
Caucasus/Transcaucasia, Lesvos) and Europe
(Balkans, Switzerland, Spain).

Figure 1. Top: distribution of the European (blue) and the Asian (red) lineages of the Middle Spotted Woodpecker. Circles indicate
sample localities with colours corresponding to populations as shown in the principal components analysis (PCA) (bottom left) and
sizes of the circles proportional to sample size. Bottom left: PCA using 2743 single nucleotide polymorphisms of the different popula-
tions of the Middle Spotted Woodpecker. Bottom right: bar plots showing individual ancestry assignments based on admixture analy-
ses with the best-fitting model for K > 2 of six genetic clusters (K = 6). Assignment of individuals to the different populations as in
the PCA is shown on the bottom of the figure. Different sampling sites were pooled for Greater Caucasus (Russia), for the Lesser
Caucasus and Transcaucasia (Armenia), and for mainland Greece (Greece).
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Table 1. Samples used for this study. Samples included in Kamp et al. (2019) are marked in bold.

Sample ID Location Lat. Long.
Geographical
area Deposition

Type of
sample

Voucher
specimen

Asian lineage
KS82246 Armenia, Nerkin Hand 39.06 46.52 Armenia,

Transcaucasia
Yerevan State
University

Blood

EAK444 Armenia, Nerkin Hand 39.06 46.52 Armenia,
Transcaucasia

Yerevan State
University

Blood

IVF1221 Armenia, Nerkin Hand 39.06 46.52 Armenia,
Transcaucasia

Yerevan State
University

Blood

KS82243 Armenia, Nerkin Hand 39.06 46.52 Armenia,
Transcaucasia

Yerevan State
University

Blood

KS82275 Armenia, Tavush Marz, Zikatar 41.13 44.91 Armenia, Lesser
Caucasus

Yerevan State
University

Blood

YPM
140467

Greece, Lesvos, Mount
Olympus

39.07 26.38 Lesvos YPM Tissue USNM
637430

YPM
140468

Greece, Lesvos, Mount
Olympus

39.07 26.38 Lesvos YPM Tissue USNM637431

YPM
145145

Greece, Lesvos, Petra 39.35 26.17 Lesvos YPM Tissue NHMBEO

YPM
140405

Greece, Lesvos, Polichnitos 39.13 26.22 Lesvos YPM Tissue USNM
637370

YPM
140494

Greece, Lesvos, Polichnitos 39.13 26.22 Lesvos YPM Tissue USNM
637457

YPM
141384

Greece, Lesvos, Polichnitos 39.13 26.22 Lesvos YPM Tissue USNM
640757

YPM
140425

Greece, Lesvos, Polichnitos 39.13 26.22 Lesvos YPM Tissue USNM
637390

YPM
144969

Greece, Lesvos, Vrisa 39.06 26.19 Lesvos YPM Tissue YPM

YPM
145110

Greece, Lesvos, Vrisa 39.06 26.19 Lesvos YPM Tissue YPM

UWBM
64847

Russia, Krasnodarskiy Kray 43.9 40.79 Russia, Greater
Caucasus

UWBM Tissue UWBM

UWBM
71227

Russia, Krasnodarskiy Kray 44.44 38.4 Russia, Greater
Caucasus

UWBM Tissue –

UWBM
64715

Russia, Krasnodarskiy Kray 43.5 40.19 Russia, Greater
Caucasus

UWBM Tissue UWBM

UWBM
64673

Russia, Krasnodarskiy Kray 44.44 38.4 Russia, Greater
Caucasus

UWBM Tissue UWBM

UWBM
64628

Russia, Krasnodarskiy Kray 44.72 37.45 Russia, Greater
Caucasus

UWBM Tissue UWBM

European lineage
YPM
142773

Greece, East Macedonia,
Rhodope Mountains

41.11 26.03 Balkans YPM Tissue NHMBEO

YPM
140530

Greece, East Macedonia,
Rhodope Mountains

41.34 24.56 Balkans YPM Tissue YPM

YPM
142709

Greece, East Macedonia,
Rhodope Mountains

41.11 26.03 Balkans YPM Tissue YPM

YPM
84373

Serbia, Pcinja District 42.33 21.9 Balkans YPM Tissue YPM

8540 Spain, Cantabrian Mountains 42.65 –5.07 Spain University of
Oviedo

Blood –

3949 Spain, Cantabrian Mountains 42.66 –5.08 Spain University of
Oviedo

Blood –

3931 Spain, Cantabrian Mountains 42.65 –5.09 Spain University of
Oviedo

Blood –

(continued)
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Table 1. (continued)

Sample ID Location Lat. Long.
Geographical
area Deposition

Type of
sample

Voucher
specimen

8524 Spain, Cantabrian Mountains 42.69 –5.04 Spain University of
Oviedo

Blood –

8535 Spain, Cantabrian Mountains 42.79 –5.02 Spain University of
Oviedo

Blood –

8529 Spain, Cantabrian Mountains 42.62 –5.15 Spain University of
Oviedo

Blood –

3963 Spain, Cantabrian Mountains 42.73 –5.03 Spain University of
Oviedo

Blood –

8508 Spain, Cantabrian Mountains 42.62 –5.14 Spain University of
Oviedo

Blood –

8533 Spain, Cantabrian Mountains 42.79 –5.03 Spain University of
Oviedo

Blood –

NE101451 Switzerland, Canton of
Neuchâtel

47.01 6.93 Switzerland Swiss
Ornithological
Institute

Blood –

NE101455 Switzerland, Canton of
Neuchâtel

47.02 6.97 Switzerland Swiss
Ornithological
Institute

Blood –

NE101458 Switzerland, Canton of
Neuchâtel

46.1 6.92 Switzerland Swiss
Ornithological
Institute

Blood –

NE101461 Switzerland, Canton of
Neuchâtel

47.01 6.92 Switzerland Swiss
Ornithological
Institute

Blood –

NE101463 Switzerland, Canton of
Neuchâtel

47 6.93 Switzerland Swiss
Ornithological
Institute

Blood –

NE101464 Switzerland, Canton of
Neuchâtel

47.01 6.93 Switzerland Swiss
Ornithological
Institute

Blood –

NE152452 Switzerland, Canton of
Neuchâtel

47 6.94 Switzerland Swiss
Ornithological
Institute

Blood –

NE152499 Switzerland, Canton of
Neuchâtel

47.01 6.94 Switzerland Swiss
Ornithological
Institute

Blood –

TG152318 Switzerland, Canton of
Thurgau

47.65 9.07 Switzerland Swiss
Ornithological
Institute

Blood –

TG152335 Switzerland, Canton of
Thurgau

47.64 9.11 Switzerland Swiss
Ornithological
Institute

Blood –

TG152338 Switzerland, Canton of
Thurgau

47.64 9.08 Switzerland Swiss
Ornithological
Institute

Blood –

TG152344 Switzerland, Canton of
Thurgau

47.65 9.08 Switzerland Swiss
Ornithological
Institute

Blood –

TG152387 Switzerland, Canton of
Thurgau

47.64 9.14 Switzerland Swiss
Ornithological
Institute

Blood –

TG152407 Switzerland, Canton of
Thurgau

47.63 9.13 Switzerland Swiss
Ornithological
Institute

Blood –

(continued)
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Phylogenetic relationships of
populations

We used TreeMix (Pickrell & Pritchard 2012) to
infer the topology of relationships among different
populations and to test for potential gene flow and
its direction between different branches in the
phylogeny. Based on the results of the admixture
analyses (see below), samples from the Greater
and Lesser Caucasus and Transcaucasia (Caucasus/
Transcaucasia) were pooled. Moreover, we
retained three populations for Europe, i.e. Balkans,
Switzerland and Spain. Only SNPs with no missing
data, and those that were at least 5 kilobase pairs
apart to avoid physical linkage were kept for these

analyses. Linkage disequilibrium reaches back-
ground levels well before this distance in outbred
bird populations (Ellegren et al. 2012). A
maximum-likelihood tree rooted with the popula-
tion of the Caucasus and Transcaucasia was built
first, then an increasing number of migration edges
were successively added. The fit of the different
models to the data was evaluated by inspecting
the residuals of the population matrix. Positive
residuals indicate pairs of populations where
covariance is underestimated and model fit might
be improved by additional events of migration,
whereas negative residuals indicate an overestima-
tion of covariance in the particular model (Pickrell
& Pritchard 2012). An increasing number of

Table 1. (continued)

Sample ID Location Lat. Long.
Geographical
area Deposition

Type of
sample

Voucher
specimen

TG152431 Switzerland, Canton of
Thurgau

47.65 9.08 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152306 Switzerland, Canton of Zurich 47.6 8.64 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152321 Switzerland, Canton of Zurich 47.63 8.62 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152323 Switzerland, Canton of Zurich 47.62 8.61 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152325 Switzerland, Canton of Zurich 47.63 8.63 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152327 Switzerland, Canton of Zurich 47.6 8.62 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152329 Switzerland, Canton of Zurich 47.6 8.62 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152351 Switzerland, Canton of Zurich 47.61 8.63 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152353 Switzerland, Canton of Zurich 47.62 8.63 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152360 Switzerland, Canton of Zurich 47.61 8.61 Switzerland Swiss
Ornithological
Institute

Blood –

ZH152361 Switzerland, Canton of Zurich 47.61 8.62 Switzerland Swiss
Ornithological
Institute

Blood –

Abbreviations: NHMBEO, Museum of Natural History, Belgrade; USNM, Smithsonian Institution, National Museum of Natural History;
UWBM, University of Washington Burke Museum; YPM, Yale University Peabody Museum of Natural History.
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migration edges were added until residuals were
zero. This analysis was performed 20 times to
check for convergence among different runs.

RESULTS

Strong genetic differentiation between
the Asian and European populations

We obtained 2743 SNPs in total. In an individual-
based principal components analysis, there was a
strong separation between the Asian and the Euro-
pean populations along the first principal axis,
which explained 37.86% of the variance (Fig. 1).
The second principal component axis explained
7.45% of the variance and separated the individu-
als from the Greater Caucasus and Armenia from
those of Lesvos in the Asian group. There was
only limited genetic separation among individuals
sampled from the European group.

Nucleotide diversity was similar across the pop-
ulations of the Asian group (Fig. 2). Among the
European populations, those from Switzerland
showed intermediate nucleotide diversity values,
whereas those from the Balkans and Spain were
distinctly higher and lower, respectively, compared
with the populations sampled in Switzerland.

We tested for the overall influence of isolation
by distance on patterns of genomic variation using
2423 SNPs; a Mantel test revealed a highly signifi-
cant correlation between geographical and genetic
distances (Fig. 3). However, this was mainly driven
by higher values in pairwise comparisons between
individuals from the Asian and European popula-
tions relative to genetic distance within the respec-
tive geographical groups.

Admixture analyses and population
histories indicate limited introgression
from the Asian into the European
populations

In the admixture analyses, K = 2 was revealed as
the optimal number of clusters (see Supporting
information, Fig. S1); one cluster contained all
individuals from the Asian group and the other
individuals from the European group. However, all
individuals from the Balkans (Greece and Serbia)
showed some degree of admixture with the Asian
cluster (see Supporting information, Fig. S2). To
assess if additional structure occurs within the
Asian and the European group, we checked the

results for K = 6, which was revealed as the opti-
mum number of clusters for K > 2 (see Support-
ing information; Fig. S1). Within the Asian group,
the individuals from the Russian Greater Caucasus
and Armenia (Caucasus/Transcaucasia) were
assigned to one cluster and individuals from Lesvos
to another cluster. There was no indication of
mixed ancestry in any individuals from these clus-
ters. In the European group, four clusters were
resolved. Although all Spanish individuals were
recovered together in a single cluster with no
mixed ancestry evident, many Swiss individuals
had mixed ancestries with the three remaining
European genotype clusters. Furthermore, one
Swiss individual also had some genetic contribu-
tion from the Spanish cluster. Although the

Figure 2. Nucleotide diversity (p) of different populations of
the Middle Spotted Woodpecker plotted against longitude in
degrees.

Figure 3. Population-level genetic differentiation between
Asian and European lineages of the Middle Spotted Wood-
pecker relative to geographical distances between populations.
Genetic differentiation between the lineages was considerably
larger than within them. The point on the far left concerns the
comparison between Lesvos from the Asian and the Balkans
from the European populations.
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individuals sampled from the Balkans (three indi-
viduals from Greece and one from Serbia) were
recovered as primarily comprising European ances-
try, as recovered for the Swiss birds, all individuals
also showed some degree of admixture with the
Asian cluster. Two individuals showed mixed
ancestries from both the Caucasus/Transcaucasia
and the Lesvos clusters, and two individuals from
the Caucasus/Transcaucasia cluster only. One indi-
vidual from Greece also showed genetic contribu-
tion from the Spanish cluster. For runs with K = 2
to K = 5 and K = 7 to K = 8, mixed ancestries
with the Asian cluster were consistently found in
the individuals sampled from the Balkans, and only
for K = 8 did the individuals from the Balkans
form a distinct cluster. Moreover, the Spanish indi-
viduals were always treated as a separate cluster,
or even as two separate clusters for K = 7 (see
Supporting information, Fig. S2).

Histories of populations based on 1747 SNPs
were first explored by estimating a maximum-
likelihood tree in TreeMix with no migration edges
in the model (Fig. 4, left) and the three popula-
tions from the European group were recovered as
a distinct clade. When migration was added to the
model, model residuals reached values of zero
with three migration edges in all 20 runs. In 17
runs, gene flow was inferred from Lesvos into the
Balkan populations, as well as from Caucasus/
Transcaucasia and the Balkans into Switzerland
(Fig. 4, right). In three runs, gene flow was indi-
cated from Lesvos into Spain and the Balkans, as
well as from the common ancestor of the Euro-
pean group into Switzerland.

DISCUSSION

An increasing number of morphologically cryptic
lineages have been uncovered using molecular data
over the past few decades (e.g. Kozak et al. 2006,
Reeves et al. 2008, Lohman et al. 2010, Weir et al.
2016, Leys et al. 2017, Drovetski et al. 2018b, Sla-
venko et al. 2020, Tang et al. 2021). The Middle
Spotted Woodpecker might be an additional case
of unexpected diversity in the tree of life.
Genome-wide variation in this species revealed a
clear divergence between Asian and European
populations. This differentiation into two phylo-
geographic groups was not merely an effect of geo-
graphical distance, as isolation by distance analyses
revealed a clear separation of comparisons between
Asian and European populations from those

among populations within these two regions. This
unexpected divergence has already been indicated
by mitochondrial data (Kamp et al. 2019), and we
therefore add a case where marked mitochondrial
divergence not reflected in morphological disparity
reflects the phylogeographic history of a lineage
(cf. Stervander et al. 2016, Schweizer et al.
2019a). Despite the strong divergence, we found
signatures of gene flow from the Asian into the
European populations, suggesting at least limited
introgression upon secondary contact. Which fac-
tors might restrict gene flow between the two
cryptic evolutionary lineages remains unclear and
warrants further research.

Asian and European Middle Spotted
Woodpeckers represent distinct
evolutionary lineages

Cases of discordance between mtDNA and pheno-
typic divergence demand thorough investigation
with multilocus data. Consistent with patterns of
mitochondrial variation (Kamp et al. 2019), we
corroborate with genome-wide data the existence
of two independent evolutionary lineages in the
Middle Spotted Woodpecker. The marked geno-
mic differentiation between the Asian and the
European populations of this species is surprising,
because the Sea of Marmara with the Dardanelles
and Bosporus Straits cannot be considered as an
effective barrier between them (cf. Kamp et al.
2019). Moreover, the species is continuously dis-
tributed on both sides of the Sea of Marmara, as
well as between European Turkey and Greece
(Handrinos & Akriotis 1997, Kirwan et al. 2008).
Although there are several bird species with differ-
ent subspecies described on either side of the Sea
of Marmara (Roselaar 1995), such a strong phylo-
geographic break in this region has not been docu-
mented. However, the climate in the surroundings
of the Sea of Marmara might not have been suit-
able for Middle Spotted Woodpeckers during the
last glacial maximum (Kamp et al. 2019). Conse-
quently, the region might have been colonized
recently from both the east and the west, poten-
tially leading to a recent secondary contact zone.
Indeed, mixed ancestries that included Asian
genetic variants were found in all individuals from
the Balkans. Additionally, gene flow from Asian
into European populations was indicated by the
TreeMix analyses. This points to the existence of a
secondary contact zone with at least unidirectional
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introgression between the two lineages. However,
its location and width remain unclear.

The subspecies D. m. medius of the European
lineage is usually considered to occur in European
Turkey, extending to the western shore of the Sea
of Marmara, whereas the range of the subspecies
D. m. caucasicus of the Asian lineage extends from
the Sea of Marmara eastwards (Roselaar 1995).
However, given that morphological variation
between European and Asian populations is con-
sidered at least partly to be clinal, a potential sec-
ondary contact zone might not necessarily coincide
with the proposed subspecies border and could be
located in Europe. Hence, introgression would
probably not be detected in the population of Les-
vos and the inferred unidirectionality of gene flow
might be a sampling artefact. Hybrid zones upon
secondary contact might be rather narrow. Never-
theless, recently diverged evolutionary lineages can
show rather broad hybrid zones of more than
100 km width (Price 2008). This depends on the
strength of selection against hybrids as well as
demographic or geographical factors controlling
the intensity of migration into the contact zones
from the parental populations (e.g. Barton &
Hewitt 1985, Beysard & Heckel 2014, McEntee
et al. 2020). However, given that populations in
the Balkans with signs of mixed ancestries lie up

to 370 km away from each other, introgression
might proceed over a wide geographical distance
in the Middle Spotted Woodpecker.

Hybridization upon secondary contact has been
documented in a variety of Palaearctic bird species
(reviewed in Aliabadian et al. 2005). Divergence in
the Middle Spotted Woodpecker happened at a
similar timescale to the divergence between the Ibe-
rian Green Woodpecker Picus sharpei and Eurasian
Green Woodpecker P. viridis (Pons et al. 2011,
Kamp et al. 2019). Their apparently stable contact
zone in southwestern France is about 245 km in
width with no nuclear introgression detected on
both sides of the hybrid zone based on nine Z-
linked loci and ten autosomal loci (Pons et al.
2019). Although the two Green Woodpeckers dif-
fer in coloration of plumage and bare parts as well
as in vocalizations (del Hoyo & Collar 2014, Pons
et al. 2019), evidence for such pronounced differ-
ences in morphology between the two lineages of
the Middle Spotted Woodpecker is lacking (Cramp
1985) and potential differences in vocalization need
to be investigated. However, at least slight differ-
ences in habitat preferences might exist. The Mid-
dle Spotted Woodpecker is mainly found in
deciduous woodland dominated by oaks and avoids
any other vegetation type on mainland Greece, but
it is common in olive groves on the Island of Lesvos

Figure 4. Maximum-likelihood trees as estimated with TreeMix depicting the history of populations on a tree with no migration (left),
and with three migration edges shown as coloured arrows indicating gene flow from Lesvos into the Balkan populations, as well as
from Caucasus/Transcaucasia and the Balkans into Switzerland. Colours indicate migration weight, and horizontal branch lengths are
proportional to the amount of genetic drift that has occurred along the branch.
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(Handrinos & Akriotis 1997). Olive groves are also
inhabited on mainland Turkey, but oaks seem also
to be a more important part of the species’ habitat
there (Kirwan et al. 2008). Consequently, it is
unclear which prezygotic isolation factors other
than demographic or geographical aspects could
limit gene flow between the two lineages of the
Middle Spotted Woodpecker. Moreover, given their
short time of divergence, it is unlikely that gene
flow could be restricted by intrinsic postzygotic iso-
lation (cf. Price & Bouvier 2002, Price 2008). How-
ever, genetic incompatibilities might evolve faster
than prezygotic isolation, as has been recently
shown for relatively young cryptic Amazonian bird
species displaying strong intrinsic postzygotic repro-
ductive isolation in the absence of premating isola-
tion (Pulido-Santacruz et al. 2018, Cronemberger
et al. 2020). The amount of gene flow between the
two evolutionary lineages of the Middle Spotted
Woodpecker, and the potential processes and
mechanisms that might restrict it, need to be inves-
tigated through more comprehensive geographical
sampling especially focused in the area of the poten-
tial location of a secondary contact zone.

Our results call for a comprehensive evaluation
of phenotypic as well as ecological and behavioural
variations in the Middle Spotted Woodpecker. Pre-
vious morphological studies were largely qualitative
in nature and not comprehensive geographically
(Vaurie 1959, Cramp 1985, Kirwan 2005, Kirwan
et al. 2008). Geographical gradients in body size
and plumage colour hypothesized in these studies
need to be re-evaluated using quantitative methods,
especially in the area separating the European and
Asian lineages. Even without strong phenotypic
divergence, it can be argued that the two evolution-
ary lineages of Middle Spotted Woodpecker could
be treated at least as incipient species; however, fur-
ther studies using a more comprehensive geographi-
cal sampling should demonstrate that introgression
does not extend beyond the contact zone, thereby
preventing lineage fusion.

Population structure within Asia and
Europe

The genome-wide data used for this study provided
much greater resolution with respect to the evolu-
tionary histories of the Asian and European lineages
of the Middle Spotted Woodpecker compared with
previous analyses of mtDNA variation (cf. Kamp
et al. 2019). Genomic population structure

indicated that both lineages might have been sepa-
rated in more than one refugium during the last gla-
cial maximum. Overall, a stronger genomic
structure was revealed in the Asian compared with
the European lineage, with the population of Les-
vos being clearly separated from those of Russia and
Armenia. Although Russian samples originated
from the western Greater Caucasus, Armenian sam-
ples were collected either in the Lesser Caucasus or
Armenian Highlands in Transcaucasia. Interestingly,
no marked difference was found between the differ-
ent regions, despite them being separated not only
by considerable geographical distance, but also by
mountain ranges. However, there is suitable habitat
for the Middle Spotted Woodpecker along the
slopes of the Greater and Lesser Caucasus as well as
in the Armenian highlands, and valleys between
these ranges might be more likely to act as barriers
than the ranges themselves. The slightly lower
nucleotide diversity of the Russian population
might indicate that the area was colonized from the
south. The Caucasus are well known to have acted
as a glacial refugium for several forest bird species
(e.g. Hung et al. 2017), but suitable climate for the
Asian lineage of the Middle Spotted Woodpecker
during the last glacial maximum existed even fur-
ther south (Kamp et al. 2019). Additionally, the
genomic population structure points towards the
existence of a second refugium further west. During
the last glacial maximum, Anatolia retained much
of its forest cover and served as a refugium for two
oak species (Bagnoli et al. 2016, €Ulker et al. 2018),
and the climate, especially in southern Anatolia,
might have been suitable for the Middle Spotted
Woodpecker (Kamp et al. 2019). Interestingly,
nucleotide diversity in the island population of Les-
vos was not considerably reduced compared with
mainland populations. However, this island is
located close to mainland Turkey and was even con-
nected to it during the last glacial maximum (Peris-
soratis & Conispoliatis 2003).

Within European populations, admixture analyses
revealed no consistent geographical structure among
Swiss and Balkan populations of Middle Spotted
Woodpecker. The comparatively high nucleotide
diversity in the Balkans might indicate the existence
of a refugium in this region, where suitable climate
existed for the Middle Spotted Woodpecker during
the last glacial maximum (Kamp et al. 2019). How-
ever, it is unclear how this might be influenced by
the introgression from alleles from the Asian popula-
tions. On the other hand, Spanish individuals were
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revealed as a separate cluster, which was not indi-
cated by variation in mtDNA (cf. Kamp et al. 2019).
Given their very limited amount of admixture with
the remaining European populations and their low
nucleotide diversity, the Iberian Peninsula was prob-
ably a separate glacial refugium for the Middle Spot-
ted Woodpecker that remained isolated and so did
not act as a centre of expansion. Colonization of cen-
tral Europe from a glacial refugium on the Iberian
Peninsula played a role in some lineages (Hewitt
2000, 2004), but the Pyrenees might have been too
great a barrier for others. Indeed many bird species
have isolated lineages in Iberia, often in combination
with comparatively low nucleotide diversity, indicat-
ing small historical population sizes, which may fur-
ther restrict their recolonization potential (Ellegren
et al. 2012, Backstr€om et al. 2013, Poelstra et al.
2014). Additional sampling of Middle Spotted
Woodpeckers on both sides of the Pyrenees may be
warranted to evaluate the genetic (and phenotypic)
uniqueness of the Iberian population. It is currently
negatively affected by habitat fragmentation as well
as degradation (Robles et al. 2008, Robles & Ciudad
2012, 2017) and is likely to be susceptible to nega-
tive effects of climate change (Robles & Pasinelli
2020). The low nucleotide diversity found here may
add substantial vulnerability to cope with negative
effects of habitat and climate changes. Conservation
actions aimed to reverse and mitigate negative effects
of habitat fragmentation, habitat degradation and cli-
mate change are critical to preserve this unique
genetic reservoir of the Middle Spotted Wood-
pecker.
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Figure S1. DK statistics for admixture analysis
from K = 2 to K = 14.

Figure S2. Individual ancestry assignment for
admixture analysis from K = 2–5 and K = 7–8.
Sample origin is indicated below the diagram.
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