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Abstract 

Are simple trading strategies profitable? It is a question that has been on the minds of academics 

and practitioners for decades. In this paper, we review the longstanding literature on trading 

strategies in spread betting (also known as handicap betting), a popular sports betting 

microstructure. We review over 600 strategy implementations and find that market efficiency and 

systematic misperceptions are not mutually exclusive per se. Predictable glitches occur, but they 

are too small to be profitably exploited which is consistent with efficient markets. Furthermore, 

while controlling for data mining issues is becoming mainstream in finance, it has not yet made its 

way into this literature. We provide evidence that the hurdle rate of |z| > 3 which has been put 

forward in the broader finance literature should also be used in betting market research. 
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In this paper we review the longstanding literature on simple rule-of-thumb or mechanical 

strategies in sports betting. The quest for profitable trading strategies receives substantial attention 

in the broader finance literature. Practitioners are interested in finding methods for accumulating 

wealth, while academics are interested in the informational efficiency implications of profitable 

strategies (or both). In an efficient market, asset prices summarize all available information such 

that simple trading rules cannot lead to risk-adjusted excess returns (Fama, 1970). The existence 

of persistently profitable strategies could, for example, expose significant behavioral biases which 

can have resource allocation implications. In financial markets, strategies that consist of sorting 

assets on price-to-fundamentals ratios (value) or on their past performance (momentum) are 

generally profitable (Asness, Moskowitz, & Pedersen, 2013). However, it is not clear whether 

these are genuine market inefficiencies or rational risk compensations. Sports betting markets, due 

to their design simplicity, provide more direct tests of market efficiency. 

Sports betting markets have a long history1 in both economics and psychology research as they are 

essentially “simple financial markets” (Sauer, 1998, p. 2021). In contrast to earlier, more general 

literature reviews (Sauer, 1998; Thaler & Ziemba, 1988) we focus on easily implementable 

mechanical strategies. We zoom in on such strategies as they provide a more direct test of market 

efficiency compared to tests based on regressions or on the statistical modeling of underlying game 

variables, which are also common in the literature. Furthermore, we concentrate on point spread 

betting (also known as handicap betting), the market microstructure where all bets have a winning 

probability of close to 50% by design. This setting has the methodological advantage that all the 

assets have identical risk-return characteristics (Dana & Knetter, 1994). Furthermore, as the returns 

of bets across different games are independent, the returns are iid2. With the risk explanation 
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crossed out, persistently profitable trading rules that are easily implemented and based on public 

information are direct evidence of market inefficiencies.  

We review more than 40 years of literature and over 600 strategy implementations and find 

evidence of statistically significant market inefficiencies. For example, the market quite 

persistently misestimates the probability that underdogs will beat the spread. Leveraging this 

information increases returns above that of a naïve, random trading strategy. At first sight, we also 

find economically significant market inefficiencies. However, the sports betting literature is 

plagued with type 1 error inconsistencies i.e. there are many examples of papers claiming to find 

inefficiencies that were later rebuked by out of sample tests. It is common practice to test a battery 

of strategies based on some easily observable variables for a wide range of parameter values while 

only vaguely referring to data mining issues. Furthermore, in the papers we review, statistical 

methods that control for the number of hypotheses tested were never used. The hurdle rates 

designed for single hypothesis testing (like |𝑧| > 1.96) are routinely used in a multiple testing 

exercise. Our analyses based on three multiple testing adjustments (Bonferroni; Holm; Benjamini, 

Hochberg, and Yekutieli) indicate that a hurdle rate of |𝑧| > 3, which was put forward by Harvey, 

Liu, and Zhu (2016) for research in equity markets and Benjamin et al. (2018) for research 

communities in general, should also be the hurdle rate for betting market research. Under this 

stricter hurdle rate, none of the reviewed strategies were significantly profitable after transaction 

costs, which is consistent with an efficient sports betting market. Lastly, we observe a strong 

inverse relationship between the profitability of a strategy and its sample size. This observation is 

again in line with an efficient market where inefficiencies are chance results.  

The usual disclaimer for literature surveys applies. We summarize, interpret and discuss many 

important results, but this review is by no means a complete catalog of all papers that have been 
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written on the subject. The rest of this paper is structured as follows. In section 1 we discuss the 

usefulness of sports betting as a research lab for finance. Section 2 introduces the point spread 

betting market microstructure. Section 3 discusses the methodology used to benchmark statistical 

and economic significance given the large number of tests conducted in the literature. Section 4 

zooms in on individual strategies while section 5 zooms out and puts the results in context. A 

further discussion can be found in section 6 and section 7 concludes. 

1. Sports betting as a research lab for finance 

Empirical work in sports betting markets dates back to Griffith (1949). Since then, countless 

researchers have embraced the methodological advantages of sports betting markets to test their 

hypotheses. The links between sports betting markets and traditional financial markets like the 

stock market are clear. Both are competitive speculative markets in which a large number of 

participants collectively determine the prices of assets whose future payoffs are uncertain (Ali, 

1979). Moreover, sports betting, like trading derivatives and active asset management, is a zero 

sum game (before commissions) (Levitt, 2004). However, sports betting markets have several 

features that make them interesting research labs in general and specifically allow for notably clean 

efficiency tests.  

a) The assets are very simple. Sports bets are typically binary options that have a single 

positive payoff if the underlying event takes place. This payoff structure is very easy to 

understand for all parties involved which can ease efficiency. In a lab setting, Carlin, 

Kogan, and Lowery (2013) for example show that lower asset complexity leads to higher 

efficiency. 

b) The assets have very short maturities of days to hours or even minutes. This relatively short 

time span allows individuals to quickly evaluate their investment decisions and can 
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enhance learning (Thaler & Ziemba, 1988). In experimental research, Forsythe, Palfrey, 

and Plott (1982) stress the importance of replication for asset prices to converge to a 

rational expectations equilibrium. Furthermore, the very short maturities virtually remove 

any necessity to incorporate the time value of money in analyses.  

c) The assets’ true values are exogenously revealed. The event outcomes are known ex post 

and are independent of the behavior of traders. This circumvents the dreaded joint 

hypothesis problem3 as researchers can systematically compare market prices of assets with 

their true values (Campbell, Lo, & MacKinlay, 1997; Thaler & Ziemba, 1988).  

d) The expected payoff of a sports bet at a particular point in time is idiosyncratic and does 

not comove with aggregate risk factors (Moskowitz, 2015; Snyder, 1978). This is very 

different from capital market assets where the returns are correlated with each other and 

the stochastic discount factor. 

e) The information set relevant to the pricing of sports bets is much smaller compared to that 

of a multinational company which can enhance efficiency as the attention span of traders 

is limited (Hirshleifer, Lim, & Teoh, 2009; Simon, 1971). 

f) The sports betting landscape consists of very different market microstructures (point spread 

betting, pari-mutuel betting, fixed odds betting…) in virtually any sport. This element 

coupled with the depth of historical data that is available4 provides researchers a wealth of 

natural experiments (for recent examples, see Berkowitz, Depken II, and Gandar (2015), 

Brown (2014), Croxson and Reade (2014) or Mills and Salaga (2018)). 

g) Many of the above features can be replicated in a lab setting, but the gain in controllability 

that experiments offer is at least partially offset by external validity concerns (Levitt & 
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List, 2007). In betting markets agents can be studied in their natural habitat, without being 

aware that they are observed and with real money at risk. 

As a result, researchers have gratefully used these “market[s]-in-miniature” (Hausch & Ziemba, 

1990, p. 61) in many topics including the market’s forecasting abilities (Asch, Malkiel, & Quandt, 

1982; Griffith, 1949) arbitrage relations (Franck, Verbeek, & Nüesch, 2013; Marshall, 2009) 

testing prospect theory (Snowberg & Wolfers, 2010) or asset price clustering (Brown & Yang, 

2016).  

2. Point spread betting market microstructure 

In spread betting, agents bet on whether a team is going to win by more or lose by less than the 

point spread. Point spreads are set by bookmakers i.e. market makers5 who are the counterparty to 

all gamblers. The point spreads are set in proportion to the relative team qualities. This equalizes 

the probability of winning a bet on either team. As an example, suppose a very strong team plays 

against a very weak team. A simple bet on which team will win the game will heavily favor the 

stronger team. However, with a spread, the bookmaker can level the playing field by requiring not 

only that the stronger team wins, but that it wins by, for example, at least a 14-point difference. 

Bookmakers typically first announce their point spread a few days before the game (i.e. the 

opening spread). The spread can change because of i.a. game-related news or large volumes placed 

on one of the teams, right until the game is about to start (i.e. the closing spread). However, 

whenever a gambler makes a bet, the point spread quoted on the moment the bet is made is locked 

in. Subsequent spread changes only affect the gamblers who enter later. In contrast to pari-mutuel 

betting, a gambler knows all the conditions of the bet when it is made. 
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Point spread betting is arguably the most popular betting microstructure in the United States. 

Spread betting is mostly associated with American football and basketball where it is common to 

score many points in a game. The betting industry grafted onto these two sports is enormous. In 

2020 for example, more than 10% of adult Americans indicated they would bet on the Super Bowl, 

the most important football game of the year, and in 2019, 20% of adult Americans indicated they 

would bet on March Madness, the NCAA men’s basketball tournament (American Gaming 

Association, 2020)(American Gaming Association, 2019). The popularity of spread betting is 

sometimes explained by the increased thrill of betting on a score difference compared to betting 

on the outcome. Alternatively, under some circumstances it could be more profitable for a 

bookmaker to offer spread bets than to offer fixed odds bets (Bassett Jr, 1981). Research in these 

point spread betting markets dates back to Pankoff (1968) who explicitly introduced the efficiency 

jargon in the betting literature, inspired by his contemporaries Fama (1965) and Mandelbrot 

(1966).  

If the spread indeed equalizes the win probabilities of bets on either team the fair odds would be 

2. However, bookmakers are not in the business for the fun of it, so they charge a fee for their 

services just like market makers in traditional financial markets. Payout happens according to the 

11 for 10 rule6. This means that an $11 winning bet only yields a profit of $10. This is below the 

fair payout, which allows the bookmaker to make a profit. A gambler who wants to break even 

must achieve a win fraction of at least 
1121, approximately 52.4% (or alternatively, lose less than 

1 − 1121, approximately 47.6%). This can be seen by solving  

 𝑓 × 10 − (1 − 𝑓) × 11 = 0 (1) 

to 𝑓, the fraction of winning bets.  
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If the total amount bet is perfectly balanced between the two teams, the bookmaker pays out $21 

for every $22 it receives. Traditionally, bookmakers were understood to focus on achieving such 

a balance. By doing so, they take no risk as they can pay off the winning bets by the losing bets 

and collect a commission along the way. In this view, excessive volume placed on one team will 

induce the bookmakers to adjust the point spread in order to incentivize gamblers to bet on the 

other team. As a result, if the spread differs from the market’s consensus, market forces will push 

the spread towards the equilibrium value. This also means that the point spread is not necessarily 

an unbiased predictor of the margin of victory. If the market’s expectations are biased, bookmakers 

will anticipate and purposely bias the point spread to equalize the volumes bet on both sides to 

avoid having to take an active position in the game. As a result, the point spread will be a forecast 

of the market’s expectation of the game outcome instead of the game outcome itself. More recent 

research however shows that bookmakers are not trying to nullify their risk in every game. 

Bookmakers can earn more when there are more losers whose stakes can be collected than winners 

who have to be paid. There is empirical evidence that bookmakers indeed maximize their profits 

by offering slightly biased lines, i.e. more than 50% of the volume on one side and take active 

positions in the game outcome as a result (Levitt, 2004; Paul & Weinbach, 2011; Strumpf, 2003). 

There is of course a limit to how far bookmakers can go with such practices as witty gamblers will 

quickly exploit flagrant profit opportunities. 

It is worth mentioning that a strand of the spread betting literature examines the totals market 

where gamblers bet on the total number of points scored by the two teams combined. The 

efficiency of this market is beyond our scope. We refer interested readers to Paul and Weinbach 

(2002), Paul, Weinbach, and Wilson (2004) and DiFilippo, Krieger, Davis, and Fodor (2014). 
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3. Methodology 

Spread betting brings about the methodological advantage that the probability of winning a series 

of bets can be modelled via a binomial distribution where successive outcomes are independent. 

In large samples, the binomial distribution can be conveniently approximated by the normal 

distribution. Two benchmarks are commonly used to evaluate the performance of trading 

strategies. 

a) Statistical efficiency: the win fraction is indistinguishable from randomness (50%). Under 

the null, the point spreads reflect all information such that the expected return of every bet 

is equal. 

b) Economic efficiency: the win fraction is not significantly higher than 52.4% (or lower than 

47.6%). Under this null hypothesis expected returns do not have to be equal, but differences 

cannot be so large that profit opportunities arise. 

The advantage of using these two benchmarks jointly is that both exploitable and unexploitable 

inefficiencies can be identified. 

The benchmarks result in the following hypotheses and test statistics (Woodland & Woodland, 

1997).  

Hypothesis 1: the trading strategy is statistically efficient: 

𝐻0,1: 𝜋 = 0.5 

𝐻𝑎,1: 𝜋 ≠ 0.5, 
where 𝜋 is the win fraction. The test statistic is  
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𝑍1 = (𝜋̂ − 0.5)√(0.5)(1 − 0.5)𝑛 , 
where 𝜋̂ is the empirical win fraction and 𝑛 the number of bets.  

Hypothesis 2: the trading strategy is economically efficient: 

𝐻0,2: 𝜋 = 1121 

𝐻𝑎,2: 𝜋 > 1121, 
with a similar test statistic: 

𝑍2 = (𝜋̂ − 1121)
√1121 (1 − 1121)𝑛

. 
In the discussion of the trading strategies, we will only report this second test statistic when the 

strategy is profitable (empirical win fraction larger than 
1121), and we can reject the null of 

randomness (at the 5% significance level). For strategies with winning percentages significantly 

below 50%, we use the benchmark of 1 − 1121 ≈ 47.6%. 

To further streamline the exhibition, we only present the z-statistics defined above in the analyses. 

Some older papers lack significance tests or use other methods including the test proposed by 

Tryfos, Casey, Cook, Leger, and Pylypiak (1984), which was shown to be slightly biased by 

Woodland and Woodland (1997), or use a likelihood ratio test (Even & Noble, 1992). In these 

cases, the above z-statistics are computed if the required data are provided. Furthermore, to save 

space and avoid data mining issues we only present consolidated results on the longest time period 
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available in each paper and leave out the year by year analyses. Moreover, a small number of 

articles deploy strategies for which it is not clear that they can be implemented (strategies that rely 

on closing line information or strategies that assume more favorable point spreads could be 

obtained by setting up a betting syndicate that exploits price differences between different regions). 

These strategies are not included in this overview. Lastly, ties are excluded from the analyses as it 

is common bookmaker policy to simply refund bets in these scenarios (or avoid ties by non-integer 

point spreads).  

Multiple Testing 

We initially benchmark the test statistics against the common single hypothesis test values of |z| > 

1.96 and |z| > 1.64 for the two- and one-tailed tests respectively. The strategy implementations 

with z-statistics that exceed these critical values are deemed statistically significant in the original 

studies. However, the trading strategy literature in spread betting is a textbook example of a 

situation where corrections for multiple testing are crucial to limit flagrant p-hacking. Scholars test 

hundreds of possible strategies, often without any theoretical underpinning. When enough 

strategies are tried out, significant results will be found even if the null is true, by construction of 

the hypothesis test (type 1 error). In this paper, we review 628 strategies, so the risk of many type 

1 errors is very real. Moreover, when researchers find an interesting strategy, they often start 

digging in the periphery. As a result, many slight alterations of the same profitable strategy are 

proposed. Alternatively, some promising strategies are tested multiple times in similar or 

overlapping datasets (for example, first between 1970-1985, and in a later follow-up study between 

1970-1995). Some implementations are so similar that the returns are almost identical and the z-

statistics very highly correlated. An example from the reviewed strategies includes betting on 

home underdogs when the spread is 8.5 in the NBA between 1995-2002 and betting on home 
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underdogs when the spread is 9 in the NBA between 1995-2002. If we count both these strategies, 

we are essentially double counting profitable strategies and will vastly overestimate the true degree 

of inefficiency. In contrast, strategies that are not deemed profitable are often not published 

(publication bias) and not further dissected which artificially suppresses the number of 

unprofitable strategies. As a result, we get a lopsided literature that is tilted in favor of profitability. 

A testable consequence of such a scenario is that we find pockets of profitability centered around 

a few strategies in a few samples that do not generalize out of their samples and find too few 

unprofitable strategies.  

We try to alleviate the concern related to the number of proposed test by using multiple testing 

methodologies (we rely on Harvey et al. (2016) who propose a multiple testing framework for 

finance in general). The issue of correlated z-statistics is trickier, we propose a pragmatic approach 

that limits the overlap between strategies. 

Taming the family-wise error rate and the false discovery rate 

The significance level α controls the type 1 error rate in a single hypothesis test and is usually set 

to 5%. When multiple tests are carried out, α should be adjusted. If not, the probability of making 

a type 1 error, i.e. the family-wise error rate, quickly approaches 100%.  

The most common approach to limiting the family-wise error rate to the usual 5% level is the 

Bonferroni adjustment which shrinks the original α by the number of tests: 

α𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = 𝛼𝑁, 
where 𝑁 is the number of tested hypotheses. The objective of the Bonferroni adjustment is 

somewhat extreme (controlling the probability of making a single type 1 error), which results in 

harsh hurdle rates when the number of tests increases. In our case it would amount to rejecting the 
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null of all implementations with z-scores above 3.95 for the two-sided tests as we have a sample 

of 628 hypotheses. Note that we implicitly assume here that all tests that were conducted are 

included in our sample. This is clearly not realistic but still a useful exercise as the results can be 

thought of as a lower bound for the hurdle rate. As an example, the hurdle rate would rise to 4.11 

is we were to assume that we are only observing half of all conducted tests. 

Another well-known method to control the family-wise error rate is Holm’s adjustment, which 

sequentially tests all p-values against a dynamic benchmark. The algorithm consists of a few steps: 

1) Order the p-values from small to large: 𝑝(1) ≤ 𝑝(2) ≤ ⋯ ≤ 𝑝(𝑖) ≤ ⋯ ≤ 𝑝(𝑁). 
2) For each p-value (starting from the smallest), check if 𝑝𝑖 < 𝛼𝑁+1−𝑖 = 𝛼𝑖𝐻𝑜𝑙𝑚. 

3) Reject the respective null if the inequality holds. If the inequality does not hold, do not 

reject the respective hypothesis and all other hypotheses with larger p-values. 

Holm’s method is dynamic, i.e. the index number 𝑖 in the denominator makes the hurdle rate 

different for every hypothesis, in contrast to the Bonferroni method. Note that for 𝑖 = 1, 𝛼𝑖𝐻𝑜𝑙𝑚 =α𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖. For 𝑖 = 2,  𝛼𝑖𝐻𝑜𝑙𝑚 > α𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖, making Holm’s adjustment less stringent, leading 

to more rejections and all rejections via Bonferroni are also rejected via Holm. 

A last method we deploy is the Benjamini, Hochberg, and Yekutieli (BHY) adjustment that is 

algorithmically somewhat similar to Holm’s adjustment. In contrast to the previous two 

adjustments, BHY’s targets the false discovery rate, i.e. the expected proportion of false 

discoveries, and makes sure it stays below α. It consists of the following steps: 

a) Order the p-values from small to large: 𝑝(1) ≤ 𝑝(2) ≤ ⋯ ≤ 𝑝(𝑖) ≤ ⋯ ≤ 𝑝(𝑁). 
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b) Find the largest 𝑖 such that:  𝑝𝑖 ≤ 𝑖𝑁×𝑐(𝑁) 𝛼 = 𝛼𝑖𝐵𝐻𝑌. (It can be shown that setting 𝑐(𝑁) =
∑ 1𝑗𝑁𝑗=1  is suitable under arbitrary dependency among the test statistics.) 

c) Reject the respective null hypotheses for 𝑝𝑘 for  𝑘 = 1, … , 𝑖 and accept the other null 

hypotheses.  

When we apply the multiple testing adjustments to our data, it is important to account for the 

correlation between z-statistics of the different hypotheses. Correlation among the z-statistics, 

which is certainly present, makes the multiple testing methods too stringent. Consider the extreme 

case where we test the same hypothesis 100 times. Instead of using the ordinary p-value hurdle 

rate of 5% which would be appropriate as we are essentially conducting a single hypothesis test, 

we would use 
5%100 under the Bonferroni adjustment, which is of course far too conservative.  

In the remainder of this section, we apply the multiple testing adjustments to our data set to 

determine the appropriate critical values. As mentioned previously, the data set contains 628 

strategy implementations, but many of these implementations test the same strategy (like for 

example betting on the home team). Moreover, the samples in which these different 

implementations of the same strategy are tested often overlap. To determine the appropriate critical 

values for the z-statistics given this dependence, we make a subsample of 85 strategy 

implementations. In this subsample, the dependence is removed to a large extent as we only include 

one implementation of each strategy per tournament (so we remove implementations of the same 

strategy in different periods). If the patterns in betting markets follow a stationary process, tests in 

different time periods measure the same phenomenon anyway. We do include implementations of 

the same strategy when tested in a different tournament because of the large institutional 

differences. If the strategy is tested for multiple parameter values, we still only include one 
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implementation as implementations for subsequent parameter values are often highly correlated. 

We make two subsamples of 85 strategy implementations via the process described above, one 

with the smallest and one with the largest z-values per strategy and tournament. We compute the 

appropriate z-score benchmarks in both subsamples, which are shown in table 1.  

[INSERT TABLE 1 HERE] 

Table 1 provides us a number of different critical values which we can use as a benchmark. Note 

that all multiple test benchmarks are at least 3. Also note that the multiple test benchmarks are 

relatively robust to changes in the number of tested hypotheses. Even if we make the widely 

unrealistic assumption that only 20 hypothesis tests were ever carried out, the Bonferroni hurdle 

rate would already be above 3. As a result, using a multiple test hurdle rate of |z| > 3 is very 

reasonable (although it increases the probability of type 2 errors). This choice is both consistent 

with the analysis from table 1 and with the previous proposals of i.a. Harvey et al. (2016) and 

Benjamin et al. (2018). 

4. Mechanical trading strategies 

To make the trading strategy zoo more manageable we fit the reviewed strategies in the taxonomy 

shown below.  

a) Game characteristics   

1) Home team (betting on the home team) 

2) Underdog (betting on the underdog, i.e. the team that receives a head start via the 

spread) 

3) Home underdog (betting on the home underdog) 
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4) Home favorite (betting on the home favorite where the favorite is the team that 

receives a disadvantage via the point spread) 

5) Familiarity (for example, betting on a team that plays on the surface it is used to) 

6) Fatigue (for example, betting on a team on a road trip) 

7) Attention & Importance (for example, betting on the home team in a playoff 

game) 

8) Absences (for example, betting on a team with an absent top player) 

b) Past performance  

1) Performance against the spread (for example, betting on teams that beat the 

spread last game) 

2) Performance not against the spread (for example, betting on teams that won 

their last 3 games) 

3) Spread movements (for example, bet on teams that became larger underdogs 

between opening and closing spread)  

We first distinguish between strategies based on current game characteristics (like the location of 

the game) and past performance (for example whether a team won the last game or not). The first 

four items of this first category are individual strategies as they are so common in the literature 

(home team, underdog, home underdog, home favorite). The next four are container items for 

strategies related to familiarity, fatigue, attention & importance and absences. The second category 

(past performance) contains the large family of momentum and contrarian strategies. We subset 

this category by performance against the spread, performance not against the spread and spread 

movements. The performance against the spread strategies are especially interesting as they take 

both the game outcomes and expectations (the spread) into account. 
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We collected the relevant papers by querying for “spread betting” and either “efficiency” or 

“efficient” in the EBSCO discovery service. This resulted in a sample of 157 papers. We removed 

all papers that did not implement strategies and further expanded our sample by reviewing the 

bibliographies of the relevant papers and the papers that cited the examined papers 

(backward/forward snowballing). This resulted in a final sample of 46 papers. The last query was 

carried out in October of 2020. In what follows we highlight the most important results per strategy 

family. To make the discussion digestible we will often refer to the appendix where interested 

readers can find additional strategies. In the tables, we will highlight strategy implementations that 

reject the null under the single hypothesis benchmark in bold and the strategies that reject the null 

under the multiple test benchmark in red. 

4.1 Strategies based on game characteristics  

4.1.1 home team. 

Consistently betting on home teams is one of the simplest and most tested mechanical trading 

rules. The well-known home-field advantage posits that home teams win more often than visiting 

teams. In NLF games between 1981 and 2004 for example, the home team outscored the visiting 

team by 3 points on average (Borghesi, 2007a). Factors that drive this effect include familiarity 

with the venue, crowd behavior, travel fatigue and referee biases (see Jamieson (2010) for a 

review). If the market does not adequately reflect this home-field advantage into prices, 

inefficiencies can occur. Table 2 summarizes the studies that implement the strategy of 

consistently betting on home teams. The data sets include NFL games, NBA games, college 

football games, college basketball games and Australian Football League games between 1973 

and 2017. Overall, the market correctly discounts the home-field advantage. The empirical win 

fractions are not consistently above or below 50% and for only two strategies that were profitable 



18 
 

in sample, the null of randomness could be rejected at the single hypothesis benchmark (and even 

in different directions). Furthermore, the null of unprofitability is never rejected.  

[INSERT TABLE 2 HERE] 

4.1.2 underdog. 

Another trading rule that requires almost no information is betting on the favorite or underdog. 

These are the teams that received a disadvantage or an advantage via the point spread respectively. 

Investigating this strategy seems meaningful as in other environments like pari-mutuel betting, it 

is a stylized fact that returns on favorites are much higher than returns on underdogs (Snowberg & 

Wolfers, 2010). However, it is worth repeating that in spread betting there are no real favorites or 

underdogs at the level of the bet. All bets have virtually the same risk-return characteristics, which 

is not at all the case in pari-mutuel betting or fixed-odds betting where you can regularly make 

bets at odds of 20 to 1 or more for example. Still, at the game level, the market could misestimate 

the winning probability of an underdog which can give rise to inefficiencies.  

Table 3 summarizes the papers implementing the “bet on underdog” strategy. There appears to be 

an outspoken bias in favor of underdogs. Of the 22 implementations of this strategy, 20 find that 

underdogs win more than 50% of the time against the spread. Moreover, the null of randomness is 

rejected in 9 cases at the single test benchmark and once at the multiple test benchmark. 

Unprofitability is only once rejected at the single test benchmark.  

The market appears to systematically underestimate the quality of underdogs such that the return 

of a strategy that bets on these teams will be higher than that of a naïve, random strategy. However, 

the bias is generally too small to be profitably exploited. A possible explanation of the tendency 

to underbet underdogs is that it is more fun to bet on and root for the team that is likely to win 
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(Paul & Weinbach, 2005a). As the best performing teams receive most media attention, it could 

also be the case that the volume of news coverage biases gamblers into overestimating the 

favorites. 

[INSERT TABLE 3 HERE] 

Motivated by better than even winning probabilities of the unconditional underdog strategy, many 

researchers implement underdog strategies conditional on some point spread 𝑃𝑆. Predicting the 

score difference in a game between two very unevenly matched teams might be harder which could 

induce further biases (Vergin & Scriabin, 1978). The results of these conditional underdog 

strategies are similar to the unconditional underdog strategy. For 46 out of 51 implementations, 

the underdog beats the spread in more than 50% of the games. Furthermore, the null of randomness 

is rejected in 17 cases at the single test benchmark and twice at the multiple test benchmark. The 

null of unprofitability is never rejected at the multiple test benchmark. The supporting tables can 

be found in the appendix subsection on underdogs. 

4.1.3 home underdog. 

Meshing home team and underdog information results in the strategy that most systematically 

rejects the nulls of both randomness and unprofitability at the single test benchmark. In total, 45 

home underdog implementations are reviewed (both unconditional shown in table 4 and 

conditional on the point spread, shown in appendix). The null of randomness is rejected 22 times 

at the single test benchmark and 6 times at the multiple test benchmark. Betting on home underdogs 

was even significantly profitable (at the single test benchmark) in NFL games between 1973 and 

1987. However, in more recent periods, the win fraction is below 50%. It seems that this 

inefficiency has faded over time, an observation also made by Gray and Gray (1997) when they 
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study the returns of the strategy season by season. At the multiple testing benchmark, the strategy 

was never profitable. 

[INSERT TABLE 4 HERE] 

Several explanations for the home underdog bias have been proposed. First, large home underdogs 

are the worst teams in the league and bettors may be hesitant to bet on such low-quality teams. 

Second, when away favorites are leading by a comfortable margin, they might relax their 

performance and substitute their best players off the field to avoid injury and fatigue. As a result, 

the favorite wins the game, but does not cover the spread. This effect is arguably larger for away 

teams as home crowds will be disappointed if their team does not fully commit or if key players 

stop playing early. Some even go further and hint that this observation might be consistent with 

point shaving: corruption where players maximize their utility by both winning the game while at 

the same time receiving a bribe to fail to cover the spread (Wolfers, 2006). Ashman, Bowman, and 

Lambrinos (2010) further add that bad teams have little opportunities in a season to get recognized. 

They might be extra motivated when they get to play a big team at home to prove what they are 

worth, leading to an unexpectedly good performance. 

For completeness, we include the papers implementing the “bet on home favorites” strategy in 

appendix. The null of randomness is never rejected. 

4.1.4 familiarity. 

In this section we review strategies that try to exploit differences in familiarity with game 

circumstances between the teams.  

Boulier, Stekler, and Amundson (2006) try to exploit differences in playing field surfaces in NFL 

games (turf versus grass). The authors propose the strategy of betting on the home team when it 
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hosts a visiting team that is used to playing on a different surface. The strategy is profitable in 

sample and randomness is rejected at the single test benchmark, but not at the multiple test 

benchmark as shown in row 1 of table 5. 

Borghesi (2007a) investigates whether temperature information can be profitably exploited. To 

control for the temperature teams are familiar with, the author constructs a temperature 

acclimatization advantage variable. For example, if a team from Miami plays an away game in 

New England in December, it is clearly less familiar with the game conditions. One of the 

strategies he proposes is betting on home teams in the coldest quartile of game day temperatures 

conditional on the acclimatization advantage, shown in table rows 2 to 5 of table 5. It appears that 

the market does not fully incorporate the acclimatization difficulties that occur on the coldest game 

days when the acclimatization difficulties for the visiting team are the largest. The null of 

randomness of this strategy implemented for NFL games between 1981-2004 is decisively rejected 

at the single test benchmark, but again not at the multiple test benchmark. The author also tests the 

converse strategy of betting on home teams in the warmest quartile of games conditional on the 

acclimatization advantage, but no statistically significant results are found (see in appendix under 

the familiarity subsection). 

Familiarity with the climate is further investigated by Kuester and Sanders (2011). They find that 

betting on teams from arid regions when they host teams from humid regions is profitable and the 

null of unprofitability is even rejected at the single test benchmark, but again not at the multiple 

test benchmark as shown in row 6 of table 5. Just like the strategy of Borghesi (2007a) discussed 

above, the performance of this strategy is also not symmetric. For the converse strategy of betting 

on teams from humid regions when they host teams from arid regions, the null of randomness is 

not rejected at the single test benchmark. The difference could be explained by aridity being more 
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performance adverse and harder to acclimatize to. Aridity is also correlated with for example 

altitude, which has a large impact on the oxygen uptake of the athlete. (A few extensions of the 

strategy can be found in appendix). 

We finish this section with Shank (2019), who studies the performance of home teams in divisional 

NFL games. The NFL schedule stipulates that each team plays its divisional rivals twice a year, 

while they are only guaranteed to play teams outside their division once every three or four years. 

As a result, the familiarity with divisional rivals’ coaches, players, tactics etc., is much higher, to 

which the market can misreact. Indeed, home teams only cover in 47% of divisional games 

between 2003-2016, rejecting the null of randomness at the single test benchmark, but not at the 

multiple test benchmark as shown in row 8 of table 5.  

[INSERT TABLE 5 HERE] 

4.1.5 fatigue. 

Fatigue is another major factor that can impact game performance and must be accounted for in 

the point spread. Lacey (1990) and Vergin (1998) devise strategies where the location of a team’s 

previous game proxies for fatigue. Home teams that played at home in the previous game are 

supposedly well rested while away teams that also played away in their previous game traveled 

more. The strategies are shown in the first four rows of table 6 and are never profitable nor 

significantly different from randomness. 

Sung and Tainsky (2014) investigate whether the bye-week induces inefficiencies. An NFL season 

consists of 17 weeks where each team plays only 16 games. This means that every team gets one 

week off each season (between the fourth and tenth week of the season). The bye-week gives 

players and staff the time to unwind and rest. The authors build their hypotheses on the strand of 
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the psychology literature that established a positive relationship between days off and subsequent 

performance. As a result, if the betting market does not accurately estimate the value of the bye-

week, the performance of teams that took a week off might be underestimated. They propose a 

battery of strategies of which we highlight a selection in rows 5 to 8 of table 6 (rest shown in 

appendix). Interestingly, the null of unprofitability is rejected for two strategies at the single test 

benchmark: betting on the favorite after it had a bye-week and betting on the away favorite after 

it had a bye-week. This last strategy has an empirical win fraction of over 73%. Betting on 

underdogs after their bye-weeks was never profitable. The authors hypothesize that rest affects 

strong teams and weaker teams differently. However, if we benchmark the results at the more 

appropriate multiple test critical values, none of the strategies are statistically significant. 

Ashman et al. (2010) test whether player fatigue is correctly priced in NBA point spreads. As NBA 

teams often face games on consecutive nights, fatigue is more of an issue for basketball players 

compared to athletes in other sports. Table 6 rows 9 to 11 show the result of betting on the home 

team when respectively the visiting team, both teams and home team had back-to-back games. 

Randomness is rejected for home teams playing back-to-back games at the multiple test 

benchmark. Apparently, the betting market does not fully recognize that fatigue at least partially 

cancels out the home field advantage. 

Ashman et al. (2010) further dissect the results from this last strategy conditional on the number 

of days of rest the away team had shown in rows 12 to 20 of table 6. Furthermore, in rows 13, 16 

and 19 the sample is limited to games where the home team traveled one or two time zones 

eastwards between their back-to-back games. Underperformance arising from eastward travel is 

in line with Jehue, Street, and Huizenga (1993) who find that West Coast teams perform badly 

when they travel to the east. Home team underperformance is statistically significant at the 
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multiple test benchmark when the visiting team rested for one or two games. Inspired by the above 

results, Ashman et al. (2010) further condition the strategies on other game related information 

(shown in appendix in the fatigue subsection). The results are qualitatively similar.  

[INSERT TABLE 6 HERE] 

We end this section with Schnyzer and Hizgilov (2018) who specifically focus on the effect of jet 

lag induced fatigue. They study the Australian Football League, which has the methodological 

advantage that many games take place on neutral grounds. Jet lag has been shown to worsen the 

performance of athletes, but the question of course is whether the betting market efficiently 

incorporates this information into prices (Jehue et al., 1993). Results of several strategies 

conditional on the jet lag of the visiting team are shown in table 6 rows 21 to 28. Interestingly, 

there appears to be no jet lag effect on neutral grounds, but there appear to be jet lag effects on the 

non-neutral grounds (relative to the single test benchmark only). The authors argue that the jet lag 

effect on non-neutral grounds is just a home team bias. 

4.1.6 attention & Importance. 

Another common input to trading strategies is the importance of a game and the attention it 

receives. Amoako-Adu, Marmer, and Yagil (1985) and Vergin and Sosik (1999) propose the 

strategy of betting on all home teams in Monday night NFL games. For a long time, Monday night 

games were the only games broadcasted in prime time leading to substantial media and fan 

attention. These spotlights can be a strong incentive for teams to perform better and these games 

tend to attract more casual bettors. As depicted in table 7, Monday night home team bets had a win 

fraction of 68% between 1979-1981 and 60% between 1976-1996, leading to statistically 

significant profits in both periods at the single test benchmark, but not at the multiple test 

benchmark (although the null of randomness is rejected at the multiple test benchmark). Shank 
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(2018) extends the strategy as it is now common practice to also broadcast games in prime time 

on Thursday, Saturday and Sunday night. Although the return of betting on home teams in prime-

time games is higher compared to that of the regular Sunday games (compare row 5 and 6 of table 

7), the null of randomness is not rejected.  

In a similar vein, Vergin and Sosik (1999), Gandar, Zuber, and Lamb (2001) and Borghesi (2007b) 

test betting on playoff games for the NFL and the NBA. These games, like the prime-time games, 

receive considerably more attention and attract a large amount of casual, less informed, bettors. 

Furthermore, these games often involve teams that rarely play against each other and can take 

place on a neutral location, which could complicate the pricing. Lastly, the stakes are especially 

high in these games as losing teams are eliminated. The strategy of Vergin and Sosik (1999) and 

Borghesi (2007b) to bet on home teams in playoff games rejects the null of unprofitability at the 

single test benchmark (but randomness is not rejected at the multiple test benchmark). The similar 

strategy of betting on home underdogs in playoff games is also significantly profitable at the single 

test benchmark and has an astounding empirical win fraction of over 70%. Surprised by these 

results, Gandar et al. (2001) revisit the strategies in a large sample of NBA games, in NFL games 

beyond the sample used by Vergin and Sosik (1999) and in MLB games (these results are not 

shown due to the different microstructure of baseball betting). None of these datasets contain 

evidence that betting on playoff home games is significantly different from randomness, “the bias 

found by Vergin and Sosik was short-lived” (Gandar et al., 2001, p. 451).    

Hickman (2020) focusses on NCAA basketball “March Madness” games. March Madness is a 6-

round single-elimination postseason tournament with 64 teams. As these games are played on 

neutral courts the home/away distinction cannot be made. However, all teams in the tournament 

are divided into seeds where seed 1 represents the best teams and seed 16 the worst, based on the 
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opinion of a selection committee. Hickman (2020) tests whether consistently betting on the higher-

seeded team in March Madness games results in profits as shown in table 7 (rows 18 to 21). The 

null of randomness can never be rejected, additional results are shown in appendix, none of them 

are statistically significant.   

We end this section by looking at potential psychological factors that make teams perform 

differently in the weeks leading up to, or after an important game. Lacey (1990) investigates 

whether strategies that bet on teams in games before or after divisional games result in profits. 

Teams might underperform in the week preceding a divisional game as they are already preparing 

for the divisional game (looking past their opponents) and after a divisional game as a result of the 

aftermath of a big win or loss. However, as summarized in table 7 (row 22 and 23), the profits of 

these strategies do not differ from randomness. 

[INSERT TABLE 7 HERE] 

4.1.7 absences 

Dare, Dennis, and Paul (2015) investigate betting market efficiency in the NBA when players are 

absent because of for example injury, sickness, suspension or personal reasons. Table 8 shows the 

results of the strategy of betting on the team with most absences. To further refine the strategy, it 

is also tested conditional on the value of the payer(s) that is (are) absent, indicated by the 

Approximate Value (AV) index, which is proportional to the quality of the player (see the paper 

for more information on how to compute this metric). The results in table 8 show that betting on 

teams that miss players wins more than half of the time and the null of randomness can be rejected 

in 1 case (only at the single test benchmark). The analysis is repeated for home teams and away 

teams (tables shown in appendix). Home teams with absent players consistently cover more than 

50%, although randomness is never rejected. For away teams the evidence is mixed. 
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Colquitt, Godwin, and Shortridge (2007) investigate the role of coaching changes on betting 

markets. Inspired by the literature on CEO turnover and subsequent stock price behavior, they 

investigate whether betting markets react efficiently when a team changes its coach. As shown in 

table 8 row 7, when an inexperienced coach takes over, the betting market underestimates the 

team’s ability as these teams cover 63% of the time, which is statistically profitable (again, only 

at the single test benchmark). The effect fades quickly in the next games. When an experienced 

coach takes over, randomness is never rejected. Further results with respect to the runup to a 

coaching change are reported in appendix, the null of randomness is never rejected. 

[INSERT TABLE 8 HERE] 

4.2 Strategies based on past performance 

In this section we summarize the large family of both momentum and contrarian trading rules. 

Momentum strategies extrapolate past performance into the future, while contrarian strategies do 

just the opposite. These strategies are especially interesting as they are also intensely studied in 

the mainstream finance literature. Momentum especially is considered to be the “premier anomaly” 

(Fama & French, 2008, p. 1653). Stocks that have outperformed in the past 3 to 12 months continue 

to outperform in the near future. Such profitable momentum strategies are awkward as they seem 

to imply that markets are not even weakly efficient. To make momentum profits compatible with 

the neoclassical rational framework risks would have to increase after good past performance, 

which is counterintuitive (Lewellen, 2002) although several attempts for risk based explanations 

have been made (Galariotis, 2013; Johnson, 2002; Li, 2018). Contrarian strategies found their way 

into the broader finance literature via seminal work of De Bondt and Thaler (1985). Stocks that 

have performed relatively well in a 2 to 5-year period relatively underperform the following years 

and vice versa. This phenomenon is most readily explained by investor overreaction to news which 
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is corrected in the long run but others point to varying risk-premia (Chan, 1988; Fama & French, 

1996). As the risk-return profile of all spread bets is equal by construction as discussed previously, 

any risk explanation can be quickly ruled out in our context. If profitable momentum betting 

strategies would be found, we could more confidently point to behavioral explanations.  

4.2.1 performance against the spread. 

A first straightforward strategy consists of betting on the team that beat the spread by the largest 

average amount in the last k weeks. This is the team that outperformed the most, relative to the 

expectations. If momentum (contrarian) patterns would exist, we would expect this team to 

overperform (underperform) in the future. As shown in table 9 rows 1-4, the evidence is mixed. In 

the early days (1969-1981) the momentum strategy was generally profitable in sample (although 

randomness was never rejected) while later periods are consistent with a profitable contrarian 

strategy but the null of unprofitability is only once rejected at the single test benchmark.  

A variation on the same theme is not just betting on the one team that outperformed the most, but 

on all teams that are on win streaks against the spread as shown in table 9 rows 5-10. The evidence 

here is mostly consistent with contrarian strategies and the null of randomness is rejected for 1 

implementation at the multiple test benchmark. 

[INSERT TABLE 9 HERE] 

The appendix contains 145 additional implementations based on performance against the spread 

including Camerer (1989) and Paul, Weinbach, and Humphreys (2014) who further refine the 

strategies shown in table 9 by also looking at the performance of the opponents in the last games. 

The null of randomness is never rejected at the multiple test benchmark.  
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4.2.2 performance not against the spread. 

Next to momentum and contrarian strategies against the point spread, it is also common to define 

strategies relative to past game performance not against the point spread as shown in table 10. 

Rows 1-4 implement the strategy of betting on the team that beat its opponents by the largest 

average amount last weeks. However, for none of the 22 strategies the null of randomness is 

rejected at the multiple test level. 

Fodor, DiFilippo, Krieger, and Davis (2013) implement a longer-term contrarian strategy that 

exploits the sticky preferences of gamblers. They find that teams that qualified for the playoffs in 

the prior season are overrated by the market in the first game of the following season. Between 

seasons, teams can drastically change their lineup, coaches and tactics, which can have a large 

impact on their subsequent performance. However, gamblers’ perceptions are still anchored to the 

successful campaign of the last season. These sticky preferences can be exploited by betting 

against teams that qualified for the playoffs last season when they face a team that did not qualify 

in the first week of the new season as shown in row 5 of table 10. The strategy results in a win 

fraction of over 64% and the null of unprofitability is rejected at the single test benchmark, but not 

at the multiple test benchmark. The effect vanishes as expected in the second week of a new season 

as gamblers update their beliefs. (The authors also show the results for the strategy beyond game 

6, these results are left to the appendix). 

In a follow-up study, Bennett (2019) analyzes these sticky preferences in the college football 

setting. More specifically, he tests whether betting against teams in the top of the Associated Press 

poll (a prestigious ranking) last season is profitable in the first game of a new season. The results 

are shown in row 6 of table 10 and the null of unprofitability can be rejected for top 10 teams, but 
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again only at the single test benchmark. The overvaluation does not exist for the lower ranked 

teams (11 to 25). 

Relatedly, J. Davis, McElfresh, Krieger, and Fodor (2015) analyze how information of this first 

game of a new season is used to make decisions related to the second game of a new season. They 

analyze the performance of the underdog in the second game of a season conditional on the 

outcome of the first game as shown in table 10 row 7. In 1 of 5 strategies, statistical efficiency is 

rejected at the multiple test benchmark. The authors hypothesize that the lack of information (only 

1 game played) makes it especially hard to establish efficient point spreads.  

Lacey (1990), Vergin (1998) and Vergin (2001) test the contrarian strategy of betting against teams 

that won their previous game by a large margin. Results are shown in the final rows of table 10. 

Eight out of nine strategies are profitable in sample although the null of randomness is only once 

rejected at the single test benchmark and never at the multiple test benchmark. Interestingly, the 

profitability of the strategies rises almost monotonically with the size of the win in the previous 

game. Results of the converse strategy of betting on teams that lost by a large margin are shown 

in appendix. The null of randomness is never rejected. 

More strategies can be found in appendix. The null of randomness is never rejected at the multiple 

test benchmark in 47 additional implementations. 

[INSERT TABLE 10 HERE] 

4.2.3 spread movements. 

We end the past performance discussion by reviewing the strategies that use movements of the 

point spread as their trading signal. Gandar, Zuber, O'Brien, and Russo (1988) propose the strategy 

of systematically betting on the team that became more of an underdog between the opening and 



31 
 

closing line, i.e. the team the market assigns diminishing winning probabilities to. Such a strategy 

would be profitable if market movements are mainly driven by investor irrationality instead of 

efficient reactions to news. This strategy of betting against the market is profitable as shown in 

table 11 and the null of randomness is quite strongly rejected at the single test benchmark, but 

again not at the multiple test benchmark. 

Gandar, Dare, Brown, and Zuber (1998) and Shank (2018) also implement strategies that look at 

the difference between opening and closing point spreads. Interestingly, they find that when the 

home team becomes more of a favorite, its chances of beating the spread go down as shown in 

table 11. Conversely, when the home team becomes more of an underdog its chances go up. These 

are signals that the point spread might overreact to the arrival of news and that gamblers can exploit 

this by betting in the opposite direction. The null of randomness is rejected once at the multiple 

test benchmark in 20 line movement strategies shown in table 11. The appendix contains 26 

additional strategies. The null of randomness is never rejected at the multiple test benchmark. 

[INSERT TABLE 11 HERE] 

5. Review  

In this section we summarize the reviewed strategies (both the strategies discussed in the main text 

and those in appendix). Table 12 shows a high-level overview of the effectiveness of the 628 

strategy implementations reviewed in this paper. Over 50% were profitable in their sample (i.e. 

the empirical win fraction fell outside the 47.6%-52.4% interval). Profitable strategies were found 

in every sport and every strategy family. The null of randomness could be rejected for 18% of the 

implementations at the single test benchmark, but only for 3% at the multiple test benchmark. The 

null of unprofitability was rejected for 7% of the strategies at the single test benchmark, but never 
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at the multiple test benchmark. It is worth noting that 40% of all unprofitability rejections at the 

single test benchmark originate from just three papers (namely Ashman et al. (2010), Paul and 

Weinbach (2005a) and Vergin and Sosik (1999)). Most rejections both in relative and absolute 

terms occur in the home underdog category. Also note that the significance of the momentum and 

contrarian strategies that receive a lot of attention in the mainstream finance literature is very 

limited. 

[INSERT TABLE 12 HERE] 

[INSERT FIGURE 1 HERE] 

Figure 1 visualizes all strategy implementations. The top left panel plots the empirical win 

fractions and the absolute value of the 𝑍1 statistics. The vast majority of implementations are 

located in the bottom left or bottom right quadrants which represent the implantations whose track 

records are indistinguishable from randomness. The implementations in the top right corner are 

the most interesting. These strategies are profitable in sample and reject the null of randomness at 

the multiple test benchmark. The red dots represent the implementations that reject the null of 

unprofitability at the single test benchmark. As mentioned previously, the null of unprofitability 

was never rejected at the multiple test benchmark. The top right panel of figure 1 is a funnel plot, 

a scatter diagram of the empirical win fractions and the square root of the sample size. Funnel plots 

are often used in meta-analyses to summarize estimates and detect publication bias (Stanley & 

Doucouliagos, 2010). The funnel is centered right at 50% and shows a clear relationship between 

profitability and sample size. The strategies tested in the largest samples are unprofitable, the 

smaller the sample, the higher the likelihood of finding a profitable strategy7. This is consistent 

with an efficient market where deviations from randomness are chance results. 
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The bottom left and right panels of figure 1 display histograms of the absolute values of the 𝑍1 and 𝑍2 statistics respectively. Interestingly, the number of strategies with test statistics between 0 and 

1 is much lower compared to what we would expect under the null.  

To conclude the analysis, some of the individual strategies might strongly challenge the notion of 

market efficiency in sports betting. However, when the evidence is placed in the broader context 

and we account for the large data mining exercise that has been conducted over the decades, the 

evidence is consistent with the null of an efficient market. A last argument in favor of market 

efficiency next to the size of the z-statistics is the unpredictability of their signs. There are many 

examples of z-statistics flipping sign when the exact same strategy is tested in another sample. 

Moreover, sometimes the null of randomness is even rejected in the two opposite directions (see 

for example the home team strategy). This of course creates a clairvoyance issue with respect to 

the sign as it is a priori not clear in which direction we should implement the strategy when we 

want to exploit any bias. This point echoes Fama (1998), who argues that biases in both directions 

are consistent with the efficient market hypothesis where anomalies are chance results.  

6. Discussion 

Market efficiency in betting markets has been studied for decennia but there is still no clear 

consensus. The efficiency literature is especially susceptible to data mining issues which stand in 

the way of more definitive conclusions. It is common practice to devise a battery of strategies 

based on some easily observable variables without (or only a vague) reference to the underlying 

logic or psychological mechanisms that would make such strategies a priori interesting to 

investigate. “What bias are we testing for today?” Sauer (2005, p. 418) somewhat ironically asks 

when discussing the staleness in the literature, to which we can easily add “which subsample 

should we investigate today?”.  
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A general problem for behavioral trading strategies is that “each strategy can be defended 

persuasively on reasonably plausible a priori grounds” (Tryfos et al., 1984, p. 129). Indeed, a 

momentum strategy betting on teams which have been performing well can sensibly be defended 

by underreaction. The market does not yet fully appreciate the recent increase in team quality, such 

that assets on this team can be bought at discount prices. However, the diametrically opposite 

contrarian strategy of betting on teams that have been performing badly could also sound 

reasonable if we embed it in a story where the market overreacts and underestimates the true ability 

of the team. This point echoes the common criticism to the behavioral project: “allowing for 

irrationality opens a Pandora’s box of ad hoc stories that will have little out-of-sample predictive 

power” (Daniel, Hirshleifer, & Subrahmanyam, 1998, p. 1841). If a sensible story can be made for 

any strategy it appears that they all deserve to be closely investigated, which induces data mining 

concerns. 

In defense of the anomaly dredging endeavors, efficiency requires that all information is properly 

discounted. Consistently testing any imaginable strategy in any subsample you can get your hands 

on seems warranted. Such practices can inductively expose unexpected behavioral glitches. 

However, in these cases, it is vital to properly subject the results to multiple testing methods. If 

not, we end up with a literature without a clear consensus and profitable strategies which are 

merely type 1 errors. An issue that is further amplified by the tendency of journals to publish 

significant results (Harvey, 2017). An interesting area for future research would be to test all 

proposed strategies both out of sample and post publication. For equities, McLean and Pontiff 

(2016) and Jacobs and Müller (2020) find that many claimed anomalies disappear over time. 

Another interesting area for future research is the origin of the persistent biases. The most 

frequently used explanation is that the observed regularities are behavioral glitches. However, we 



35 
 

should keep in mind that the observed perceived biases might just be rational, a point that is often 

overlooked in papers that claim to find inefficiencies. “Are we observing an inefficient market or 

simply one in which the tastes and preferences of the market participants lead to the observed 

results?” (Gabriel & Marsden, 1990, p. 885). If consumption benefits between betting on favorites 

and underdogs for example are large enough, rational utility maximizers will be bribed into giving 

up expected returns, a point that echoes the utility of gambling model (Conlisk, 1993; Humphreys, 

Paul, & Weinbach, 2013). Although the spread betting microstructure controls for risk-return 

differences that are expected to drive decision making in a mean-variance framework, agents could 

also derive consumption benefits from other asset characteristics. Distinguishing between 

misperceptions (biases) and non-risk-return related consumption benefits (which fit the rational 

framework) remains empirically difficult, but findings could spill over to the cross-section of 

expected stock returns (for example to explain the returns on glamour stocks). Consumption 

benefit differentials driving the decisions of agents in a spread betting context would of course be 

bad news for the cleanliness of this microstructure as an asset pricing lab. We would again be 

entangled in a joint-hypothesis problem in the attempt to construct a model that captures the non-

risk-return related consumption benefits of the different assets.  

7. Conclusion 

In this review we examine over 600 betting strategies tested over 40 years. We operate in the 

spread betting context that has the nice characteristic that all assets have the same risk-return 

profile such that differences in returns between assets or strategies cannot be attributed to risk. 

Many of the reviewed strategies, when discussed individually, would point in the direction of 

severe market inefficiencies. However, placing these results in the bigger context takes the sting 

out.  
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We document a number of persistent biases, most notably the underdog bias, that could be levered 

to raise returns of a betting strategy above that of a naïve, random strategy. We find that 3% of the 

strategy implementations reject the null of randomness under the multiple test benchmark. 

However, these biases are too small to be profitably exploited. We find that 7% of strategies are 

significantly profitable under the common single hypothesis benchmark. This could lead 

researchers to conclude ample profit opportunities exist. However, when we factor in the large 

number of hypotheses tested over the last decades, we have to move the hurdle rate to at least |z| > 

3 under which the null of unprofitability is never rejected. Furthermore, we observe a strong 

inverse relationship between the profitability of a strategy and its sample size, which is again in 

line with an efficient market where inefficiencies are chance results. 

Both data mining and the publication bias most likely lead to more reports of statistically 

significant trading strategies than actually exist. It is reasonable to assume that our reported 

profitability rate is an upper bound. The fact that we find no significantly profitable strategies, 

even with a scientific process that could tilt the evidence in its direction, is a strong argument to 

not reject the null of market efficiency.  

A counter argument that could be made is that successful traders never reveal their secrets. It might 

well be that the discoverers of highly profitable trading strategies choose to monetize their findings 

instead of publishing them in a journal. This might lead us to overestimate the true degree of 

efficiency. However, given the scrutiny betting strategies received over the last decades, it is not 

very likely that many profitable strategies would go unnoticed. 
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Footnotes 

1. Betting arguably even lies at the origin of modern probability theory. Mathematicians Blaise 

Pascal and Pierre de Fermat developed fundamental probability concepts while discussing a game 

of chance (Devlin, 2010). Furthermore, via the solutions of the St. Petersburg paradox, which 

involves a theoretical lottery, many core economic concepts like utility functions and expected 

utility maximization were introduced (Bernoulli, 1954; Smith, 1971) 

2. Note that this is generally not the case in other betting market microstructures like pari-mutuel 

or fixed odds betting. In these markets, assets with very different risk-return profiles coexist. This 

induces a need to adjust for the risk-return differences between the assets as agents generally seem 

to prefer lottery-like assets with a low probability of a high return over assets with a high 

probability of a low return (Bird & McCrae, 1987). This empirical regularity is called the “favorite-

longshot bias”. 

3. Testing efficiency in stock markets is a notoriously fishy undertaking. Market prices can never 

be compared with the true value of stocks as the latter are never revealed. Researchers can resort 

to models that generate theoretical prices and compare these to market prices. However, when 

discrepancies arise, it is not clear whether the market prices are wrong or whether the model that 

generates theoretical prices is wrong, or both. This fundamental untestability of efficiency in stock 

markets is called the joint hypothesis problem. 

4. See jonasvdb.info for an overview of data sources. 

5. Jaffe and Winkler (1976) discuss the similarities between market makers in financial and sports 

betting markets and their relationship with investors. Furthermore, it is important to appreciate that 

the risk bookmakers take is categorically different from that of other gambling establishments like 
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casinos. While the latter exploit the law of large numbers to secure asymptotically certain profits, 

bookmakers can suffer large losses when they systematically misestimate game outcome 

probabilities or bettor behavior. While the outcome probabilities for a casino game like roulette 

are common knowledge, pricing a sports bet is much harder. This introduces incentives for sports 

bettors to gather information as they do not just rely on luck (like their roulette colleagues), but 

also on their ability to correctly estimate game outcome probabilities (Figlewski, 1979). (Or at 

least it appears. In an efficient market, the marginal profits to analyzing information are again 

zero.) 

6. Levitt (2004) notes that a “major puzzle in this industry is the rarity of price competition, i.e., 

the vig is almost universally 10%”. This point is further explored by Sandford and Shea (2013). 

They attribute it to the first mover disadvantage bookmakers have when setting their lines. 

Gamblers can consequently make their bets with information bookmakers did not have when they 

set their lines. More recently however, bookmaker competition starts to bring down the 

commission charged (Berkowitz, Depken II, & Gandar, 2018). Papers in which the authors state 

the 11 for 10 commission structure did not apply (which were very few) were not included in this 

review to keep the hurdle rate constant. 

7. The symmetry of the funnel is often inspected in meta-studies to detect possible publication 

bias. If for example only negative effect sizes are published because a negative sign is more 

intuitive or in line with theory, the funnel will be asymmetric (for example, see Havranek, Irsova, 

and Zeynalova (2018) on the relationship between tuition fees and college enrollment). In our case 

symmetry is less of a concern as it is not the sign of the effect that indicates profitability, but the 

absolute deviation from 50%. 
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Tables 
Table 1: Z-score hurdle rates under different testing methods (naïve single testing, the Bonferroni adjustment, Holm’s 
adjustment and Benjamini, Hochberg, and Yekutieli’s adjustment). For the dynamic methods (Holm and BHY) the 
hurdle rate represents the z-score the first insignificant strategy should achieve in order to reject its null.  

Testing method Min 
one 
sided 

Max 
one 
sided 

Min 
two 
sided 

Max 
two 
sided 

Naïve single test 1.64 1.64 1.96 1.96 
Bonferroni adjustment 3.24 3.24 3.44 3.44 
Holm’s adjustment 3.24 3.23 3.44 3.43 
BHY adjustment 3.68 3.31 3.85 3.50 

 

 

Table 2: Overview of papers implementing “bet on home team” strategy.  
Authors Data set 𝝅̂ 𝒁𝟏 𝒁𝟐 
Lacey (1990) NFL 1984-1986 0.476 -1.234  
Golec and Tamarkin (1991) NFL 1973-1987 0.515 1.709  
Golec and Tamarkin (1991) College football 1973-1987 0.498 -0.251  
Oorlog (1995) NBA 1989-1991 0.486 -1.312  
Gray and Gray (1997) NFL 1976-1994 0.504 0.383  
Vergin (1998) NFL 1984-1995 0.489 -1.087  
Vergin and Sosik (1999) NFL 1981-1996 0.499 -0.153  
Gandar et al. (2001) NBA 1981-1997 0.495 -1.202  
Kochman and Goodwin (2004) NFL 1998-2002 0.500 0.026  
Kochman and Goodwin (2004) Preseason NFL 1998-2002 0.438 -2.121 -1.315 
Boulier et al. (2006) NFL 1994-2000 0.513 0.854  
Borghesi (2007b) NFL 1981-2000 0.502 0.324  
Sung and Tainsky (2014) NFL 2002-2009 0.485 -1.307  
Paul, Weinbach, and Wilson (2014) NFL 2007-2011 0.482 -1.262  
Sinkey and Logan (2014) College football 1985-2008  0.511 2.749  
Humphreys, Paul, and Weinbach (2014) College basketball 2007-2008 0.495 -0.565  
Coleman (2017) College football 2004-2011 0.504 0.509  
Shank (2018) NFL 2009-2017 0.489 -0.951  
Schnyzer and Hizgilov (2018) Australian Football League 2001-20016 0.533 2.949 0.818 
Shank (2019) NFL 2003-2016 0.487 -1.500  
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Table 3: Overview of papers implementing “bet on underdog” strategy.  
Authors Data set 𝝅̂ 𝒁𝟏 𝒁𝟐 
Vergin and Scriabin (1978) NFL 1969-1974 0.515 0.968  
Tryfos et al. (1984) NFL 1969-1981 0.526 2.563 0.223 
Golec and Tamarkin (1991) NFL 1973-1987 0.524 2.742 0.068 
Golec and Tamarkin (1991) College football 1973-1987 0.504 0.678  
Oorlog (1995) NBA 1989-1991 0.501 0.087  
Gray and Gray (1997) NFL 1976-1994 0.526 3.303 0.276 
Paul, Weinbach, and Weinbach (2003) College football 1976-2000 0.503 0.695  
Kochman and Goodwin (2004) NFL 1998-2002 0.531 2.394 0.545 
Kochman and Goodwin (2004) Preseason NFL 1998-2002 0.581 2.704 1.913 
Paul and Weinbach (2005a) NBA 1995-2002 0.501 0.261  
Paul and Weinbach (2005b) College basketball 1996-2004 0.496 -1.255  
Borghesi, Paul, and Weinbach (2009) NFL 1981-2004 0.518 2.687  
Borghesi et al. (2009) College football 1982-2004 0.510 2.198  
Borghesi et al. (2009) AFL 1998-2006 0.538 2.413 0.914 
Sung and Tainsky (2014) NFL 2002-2009 0.507 0.631  
Paul, Weinbach, and Wilson (2014) NFL 2007-2011 0.505 0.344  
Sinkey and Logan (2014) College football 1985-2008  0.508 1.875  
Humphreys et al. (2014) College basketball 2007-2008 0.490 -1.215  
(J. L. Davis & Krieger, 2017) NFL 1995-2014 0.503 0.460  
(J. L. Davis & Krieger, 2017) Preseason NFL 1995-2014 0.524 1.656  
(J. L. Davis & Krieger, 2017) NBA 2005-2014 0.501 0.221  
(J. L. Davis & Krieger, 2017) Preseason NBA 2005-2014 0.542 2.421 1.045 

 

Table 4: Overview of papers implementing “bet on home underdog” strategy.  
Authors Data set 𝝅̂ 𝒁𝟏 𝒁𝟐 
Amoako-Adu et al. (1985) NFL 1979-1981 0.599 2.743 2.085 
Golec and Tamarkin (1991) NFL 1973-1987 0.556 3.743 2.156 
Golec and Tamarkin (1991) College football 1973-1987 0.503 0.341  
Oorlog (1995) NBA 1989-1991 0.479 -0.988  
Gray and Gray (1997) NFL 1976-1994 0.546 3.347 1.627 
Vergin and Sosik (1999) NFL 1981-1996 0.525 1.613  
Gandar et al. (2001) NBA 1981-1997 0.493 -0.945  
Paul et al. (2003) College football 1976-2000 0.503 0.340  
Paul and Weinbach (2005b) College basketball 1996-2004 0.497 -0.407  
Borghesi (2007b) NFL 1981-2000 0.532 2.341 0.572 
Borghesi et al. (2009) NFL 1981-2004 0.530 2.490 0.521 
Borghesi et al. (2009) College football 1982-2004 0.522 2.946  
Borghesi et al. (2009) AFL 1998-2006 0.522 0.728  
Sung and Tainsky (2014) NFL 2002-2009 0.512 0.591  
Paul, Weinbach, and Wilson (2014) NFL 2007-2011 0.481 -0.786  
Sinkey and Logan (2014) College football 1985-2008  0.519 2.696  
Humphreys et al. (2014) College basketball 2007-2008 0.465 -1.989 -0.626 
Shank (2018) NFL 2009-2017 0.490 -0.516  
Shank (2019) NFL 2003-2016 0.485 -0.992  
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Table 5: Overview of papers implementing “bet conditional on familiarity characteristics” strategies.  
 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
1 Boulier et al. (2006) NFL 1994-2000 Bet on home team when it hosts a team 

that plays on a different surface 
(grass/turf) in its own venue 

0.534 1.970 0.593 

2 Borghesi (2007a) NFL 1981-2004 Q1 acclimatization advantage (highest) 0.565 2.416 1.530 
3   Q2 acclimatization advantage  0.540 1.413  
4   Q3 acclimatization advantage  0.515 0.571  
5   Q4 acclimatization advantage (lowest) 0.547 1.565  
6 Kuester and 

Sanders (2011) 
College football 
2000-2006 

Bet on teams from arid regions when 
they host teams from humid regions 

0.566 2.653 1.704 

7   Bet on teams from humid regions when 
they host teams from arid regions 

0.498 -0.440  

8 Shank (2019) NFL 2003-2016 Bet on divisional game home team 0.469 -2.170 -0.481 
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Table 6: Overview of papers implementing “bet conditional on fatigue characteristics” strategies.  
 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
1 Lacey (1990) NFL 1984-

1986 
Bet on home team after previous home game 0.478 -0.596  

2   Bet on away team after previous away game 0.516 0.435  
3 Vergin (1998) NFL 1984-

1995 
Bet on home team after previous home game 0.498 -0.110  

4   Bet on away team after previous away game 0.513 0.692  
5 Sung and Tainsky 

(2014) 
NFL 2002-
2009 

Bet on favorites that had a bye-week 0.625 2.915 2.363 

6   Bet on underdogs that had a bye-week 0.445 -1.144  
7   Bet on away favorites that had a bye-week 0.732 2.967 2.663 
8   Bet on home favorites that had a bye-week 0.448 -0.855  
9 Ashman et al. 

(2010) 
NBA 
1990-2009 

Bet on home team in the second game of 
back-to-back games for the away team 

0.506 0.873  

10   Bet on home team in the second game of 
back-to-back games for both teams 

0.499 -0.048  

11   Bet on home team in the second game of 
back-to-back games for the home team 

0.459 -3.086 -1.312 

Rows 12-20 show the strategy “bet on home teams in the 2nd game of back-to-back games for the home team” 
conditional on the days of rest the away team had (0, 1 or 2, >2) and on whether the home team travelled one or 
two time zones to the east between their back-to-back games (E) or not (No E). 
12   0 0.499 -0.048  
13   0 E   0.491 -0.330  
14   0 No E 0.501 0.107  
15   1 or 2  0.455 -3.162 -1.508 
16   1 or 2 E   0.424 -2.442 -1.684 
17   1 or 2 No E   0.463 -2.298 -0.827 
18   >2 0.486 -0.374  
19   >2 E 0.310 -2.469 -2.163 
20   >2 No E 0.540 0.940  
Rows 21-28 show the strategy “bet on visiting team” conditional on the jet lag (time difference). 
21 Schnyzer and 

Hizgilov (2018) 
Australian 
Football  

Gain 2+ hours 0.458 -1.414  

22  League  Gain 1 hour 0.571 1.000  
23  2001-2016 No change 0.454 -2.547 -1.221 
24   Lose 1 hour 0.533 0.516  
25   Lose 2+ hours 0.431 -2.256 -1.477 
26   Gain 2+ hours or lose 2+ hours 0.445 -2.585 -1.462 
27   Lose 2+ hours neutral field 0.545 0.302  
28   Gain 2+ hours or lose 2+ hours neutral field 0.583 0.577  
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Table 7: Overview of papers implementing “bet conditional on attention characteristics” strategies.  

 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
1 Amoako-Adu et al. 

(1985) 
NFL 1979-1981 Home team Monday night  0.682 2.412 2.099 

2 Vergin and Sosik 
(1999) 

NFL 1976-1996 Home team Monday night  0.608 3.837 2.997 

3   Home team Monday night 
underdog 

0.667 3.464 2.973 

4   Home team Monday night favorite 0.571 1.801  
5 Shank (2018) NFL 2009-2017 Home team Prime time 0.520 0.852  
6   Home team Not prime time 0.481 -1.504  
7 Vergin and Sosik 

(1999) 
NFL 1976-1996 Home team Playoff 0.586 2.304 1.665 

8 Gandar et al. (2001) NFL 1997-1999 Home team Playoff 0.446 -0.930  
9  NBA 1981-1997 Home team Playoff 0.511 0.728  
10 Borghesi (2007b) NFL 1981-2000 Home team Playoff 0.592 2.507 1.863 
11 Vergin and Sosik 

(1999) 
NFL 1976-1996 Home team Playoff underdog 0.737 2.065 1.859 

12 Gandar et al. (2001) NFL 1997-1999 Home team Playoff underdog 0.412 -0.728  
13  NBA 1981-1997 Home team Playoff underdog 0.543 1.093  
14 Borghesi (2007b) NFL 1981-2000 Home team Playoff underdog 0.778 2.357 2.157 
15 Vergin and Sosik 

(1999) 
NFL 1976-1996 Home team Playoff favorite 0.577 1.794  

16 Gandar et al. (2001) NFL 1997-1999 Home team Playoff favorite 0.456 -0.662  
17  NBA 1981-1997 Home team Playoff favorite 0.505 0.297  
18 Hickman (2020) March Madness Bet on the higher-seeded team 0.494 -0.466  
19  1996-2019 Bet on higher-seeded team in 

round 1 
0.497 -0.144  

20   Bet on higher-seeded team in 
round 2 

0.507 0.255  

21   Bet on higher-seeded team in 
rounds 3-6 

0.473 -0.979  

22 Lacey (1990) NFL 1984-1986 Bet on teams on the week before a 
divisional game 

0.513 0.482  

23   Bet on teams on the week after a 
divisional game 

0.506 0.224  
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Table 8: Overview of papers implementing “bet conditional on absences” strategies.  
 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Rows 1-5 show the strategy “bet on team with most absences” conditional on the AV. (AV is the total 
Approximate Value of the players who are absent. The higher the AV, the more valuable players are missing. 
When both teams have absences, the AV is the difference between the values of players missing for each team). 

1 Dare et al. (2015) NBA 1996-2005 unconditional 0.513 1.925  

2   AV≥ 5 0.517 2.105  

3   AV ≥ 10 0.511 0.905  

4   AV ≥ 15 0.520 0.887  

5   AV ≥ 20 0.525 0.665  

Rows 6-11 show the strategy “bet on team with a new coach” conditional on the time after the change (1-3 to 7-9 
games) and on whether the new coach has previous experience as a NBA head coach (EX) or not (N EX). 
6 Colquitt et al. (2007) NBA 1988-2002 1-3, EX 0.547 0.808  

7   1-3, N EX 0.631 2.400 1.966 
8   4-6, EX 0.525 0.447  

9   4-6, N EX 0.565 1.193  

10   7-9, EX 0.481 -0.333  

11   7-9, N EX 0.481 -0.333  
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Table 9: Overview of papers implementing “bet conditional on performance against the spread” strategies.  
 Authors Data set k=1 k=2 k=3 k=4 k=5 k=6 
Rows 1-4 show the strategy “each week, bet on team that beat the spread by the largest average amount last k 
weeks”. 
1 Vergin and 

Scriabin (1978) 
NFL 
1969-
1974 

𝝅̂: 0.526 𝒁𝟏: 0.453 
𝝅̂: 0.569 𝒁𝟏: 1.179 

𝝅̂: 0.538 𝒁𝟏: 0.620 
𝝅̂: 0.627 𝒁𝟏: 1.953 

𝝅̂: 0.528 𝒁𝟏: 0.412 
𝝅̂: 0.521 𝒁𝟏: 0.289 

2 Tryfos et al. 
(1984) 

NFL 
1969-
1981 

𝝅̂: 0.517 𝒁𝟏: 0.455 
𝝅̂: 0.541 𝒁𝟏: 1.031 

𝝅̂: 0.531 𝒁𝟏: 0.742 
𝝅̂: 0.526 𝒁𝟏: 0.602 

𝝅̂: 0.537 𝒁𝟏: 0.812 
𝝅̂: 0.523 𝒁𝟏: 0.475 

3 Gandar et al. 
(1988) 

NFL 
1980-
1985 

𝝅̂: 0.488 𝒁𝟏: -0.221 
𝝅̂: 0.416 𝒁𝟏: -1.481 

𝝅̂: 0.380 𝒁𝟏: -2.018 𝒁𝟐: -1.618 

𝝅̂: 0.409 𝒁𝟏: -1.477 
𝝅̂: 0.508 𝒁𝟏: 0.130 

 
 

4 Vergin (2001) NFL 
1981-
1995 

𝝅̂: 0.493 𝒁𝟏: -0.204 
𝝅̂: 0.418 𝒁𝟏: -2.328 𝒁𝟐: -1.654 

𝝅̂: 0.418 𝒁𝟏: -2.255 𝒁𝟐: -1.602 

𝝅̂: 0.468 𝒁𝟏: -0.841 
 

𝝅̂: 0.457 𝒁𝟏: -1.100 
 

 
 

Rows 5-10 show the strategy “bet on teams that beat the spread last k games”. 
5 Lacey (1990) NFL 

1984-
1986 

𝝅̂: 0.508 𝒁𝟏: 0.398 
𝝅̂: 0.422 𝒁𝟏: -2.795 𝒁𝟐: -1.945 

    

6 Oorlog (1995) NBA 
1989-
1991 

𝝅̂: 0.500 𝒁𝟏: -0.031 
     

7 Vergin (1998) NFL 
1984-
1995 

𝝅̂: 0.500 𝒁𝟏: -0.020 
𝝅̂: 0.482 𝒁𝟏: -1.109 

    

8 Paul and 
Weinbach 
(2005a) 

NBA 
1995-
2002 

 𝝅̂: 0.460 𝒁𝟏: -4.359 𝒁𝟐: -1.738 

 𝝅̂: 0.462 𝒁𝟏: -1.981 𝒁𝟐: -0.775 

  

9 Paul, Weinbach, 
and Humphreys 
(2011) 

NBA 
2003-
2009 

 𝝅̂: 0.499 𝒁𝟏: -0.117 
 𝝅̂: 0.508 𝒁𝟏: 0.500 

  

10 Sinkey and 
Logan (2014) 

College 
football 
1985-
2008  

 𝝅̂: 0.500 𝒁𝟏: -0.067 
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Table 10: Overview of papers implementing “bet conditional on performance not against the spread” strategies. 
  Authors Data set k=1 k=2 k=3 k=4 k=5 k=6 
Rows 1-4 show the strategy “each week, bet on team that beat its opponents by the largest average amount last k 
weeks”. 
1 Vergin and 

Scriabin (1978) 
NFL 
1969-
1974 

𝝅̂: 0.462 𝒁𝟏: -
0.679 

𝝅̂: 0.563 𝒁𝟏: 1.068 
𝝅̂: 0.603 𝒁𝟏: 1.638 

𝝅̂: 0.667 𝒁𝟏: 2.517 𝒁𝟐: 2.160 

𝝅̂: 0.608 𝒁𝟏: 1.540 
𝝅̂: 0.523 𝒁𝟏: 0.302 

2 Tryfos et al. 
(1984) 

NFL 
1969-
1981 

𝝅̂: 0.483 𝒁𝟏: -
0.455 

𝝅̂: 0.525 𝒁𝟏: 0.636 
𝝅̂: 0.510 𝒁𝟏: 0.249 

𝝅̂: 0.550 𝒁𝟏: 1.136 
𝝅̂: 0.538 𝒁𝟏: 0.825 

𝝅̂: 0.528 𝒁𝟏: 0.583 

3 Gandar et al. 
(1988) 

NFL 
1980-
1985  

𝝅̂: 0.433 𝒁𝟏: -
1.265 

𝝅̂: 0.392 𝒁𝟏: -
1.913 

𝝅̂: 0.457 𝒁𝟏: -
0.717 

𝝅̂: 0.500 𝒁𝟏: 0.000 
𝝅̂: 0.483 𝒁𝟏: -0.263 

 

4 Vergin (2001) NFL 
1981-
1995 

𝝅̂: 0.509 𝒁𝟏: 0.265 
𝝅̂: 0.470 𝒁𝟏: -
0.844 

𝝅̂: 0.440 𝒁𝟏: -
1.664 

𝝅̂: 0.443 𝒁𝟏: -
1.508 

𝝅̂: 0.459 𝒁𝟏: -1.038 
 

Row 5 shows the strategy “bet against teams that qualified for the playoffs last season when they face a team that 
did not qualify in game k of the next season”. 
5 Fodor et al. 

(2013) 
NFL 
2004-
2012 

𝝅̂: 0.644 𝒁𝟏: 2.213 𝒁𝟐: 1.850 

𝝅̂: 0.500 𝒁𝟏: 0.000 
𝝅̂: 0.507 𝒁𝟏: 0.120 

𝝅̂: 0.475 𝒁𝟏: -
0.391 

𝝅̂: 0.424 𝒁𝟏: -1.231 
𝝅̂: 0.544 𝒁𝟏: 0.662 

Row 6 shows the strategy “bet on teams in top of AP poll in first game of next season when playing against a team 
not in the top 25” strategy. The strategy is further conditioned on the top team being the favorite (F) and whether 
the top team is part of the top 25, top 10 or top 11-25. 
   Top 25 Top 25 F Top 10 Top 10 F Top 11-25 Top 11-25 

F 
6 Bennett (2019) College 

football 
2008-
2016 

𝝅̂: 0.425 𝒁𝟏: -
1.971 𝒁𝟐: -
1.344 

𝝅̂: 0.436 𝒁𝟏: -
1.645 

𝝅̂: 0.373 𝒁𝟏: -
2.305 𝒁𝟐: -
1.873 

𝝅̂: 0.385 𝒁𝟏: -
2.038 𝒁𝟐: -
1.619 

𝝅̂: 0.471 𝒁𝟏: -0.588 
𝝅̂: 0.484 𝒁𝟏: -0.308 

Row 7 shows the strategy “bet on underdog in the second game of a season conditional on the performance in the 
first game”. 
   Both teams 

won first 
game 

Favorite won 
first game 
underdog lost 

Favorite lost 
first game 
underdog won 

Both 
teams lost 
first game 

All games 

7 J. Davis et al. 
(2015) 

NFL 
1997-
2012 

𝝅̂: 0.585 𝒁𝟏: 1.236 
𝝅̂: 0.435 𝒁𝟏: -1.193 

𝝅̂: 0.463 𝒁𝟏: -0.469 
𝝅̂: 0.707 𝒁𝟏: 3.151 𝒁𝟐: 2.792 

𝝅̂: 0.540 𝒁𝟏: 1.234 

Rows 8-10 shows the strategy “bet against teams that won their previous game by k points or more”. 
   k=10 k=15 k=20 
8 Lacey (1990) NFL 

1984-
1986 

𝝅̂: 0.539 𝒁𝟏: 1.335 
𝝅̂: 0.561 𝒁𝟏: 1.714 

𝝅̂: 0.590 𝒁𝟏: 1.992 𝒁𝟐: 1.467 
9 Vergin (1998) NFL 

1984-
1995 

𝝅̂: 0.526 𝒁𝟏: 1.809 
𝝅̂: 0.527 𝒁𝟏: 1.492 

𝝅̂: 0.524 𝒁𝟏: 1.051 

10 Vergin (2001) NFL 
1981-
1995 

𝝅̂: 0.522 𝒁𝟏: 1.674 
𝝅̂: 0.526 𝒁𝟏: 1.584 

𝝅̂: 0.536 𝒁𝟏: 1.769 
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Table 11: Overview of papers implementing “bet conditional on spread movements” strategies. 
 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
1 Gandar et 

al. (1988) 
NFL 1980-
1985 

Bet on the team that becomes less favored (more of 
an underdog) over the course of the week’s betting 

0.549 2.909 1.503 

The next rows show the strategy “bet on home team when the spread for the home team moves by k points”. 
2 Gandar et 

al. (1998) 
NBA 
1985-1994 

k≤-4 0.464 -0.378  

3   k=-3 0.493 -0.117  
4   k=-2 0.429 -2.583 -1.719 
5   k=-1 0.510 0.689  
6   k=0 0.510 0.886  
7   k=1 0.490 -0.692  
8   k=2 0.480 -0.719  
9   k=3 0.364 -2.216 -1.831 
10   4≤k 0.579 0.688  
11 Shank 

(2018) 
NFL 2009-
2017 

k≤-4 0.421 -1.192  

12   k≤-3 0.464 -0.895  
13   k≤-2 0.489 -0.388  
14   k≤-1 0.437 -3.064 -1.901 
15   k≤0 0.479 -1.188  
16   k=0 0.495 -0.200  
17   0<k 0.497 -0.179  
18   1≤k 0.498 -0.082  
19   2≤k 0.475 -0.900  
20   3≤k 0.514 0.329  
21   4≤k 0.608 1.540  
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Table 12: General overview of the effectiveness of the reviewed strategies. The second column shows the number of 

strategy implementations. The third column shows the number of profitable strategies (𝜋̂ > 0.524 or 𝜋̂ < 0.476) 

while columns four and five show the rejections of the null of randomness and the null of unprofitability respectively, 

both at the single test benchmark and at the multiple test benchmark (between brackets). 

Sample n Profitable 
in sample 

Randomness rejected 
z>|1.96| (z>|3|) 

Unprofitability rejected 
z>|1.64| (z>|3|) 

Full 628 324 113 (17) 45 (0) 
Sports     
AFL 4 3  3 (0) 1 (0) 
Australian Football League 9 9 4 (0) 0 (0) 
College basketball 15 5 2 (0) 0 (0) 
College football 87 28 17 (0) 5 (0) 
NBA 176 93 36 (8) 19 (0) 
March Madness 35 13  0 (0) 0 (0) 
NFL 290 164  45 (9) 19 (0) 
Preseason NFL 7 5 3 (0) 1 (0) 
Preseason NBA 5 4 3 (0) 0 (0) 
Strategies     
Home team 20 3 3 (0) 0 (0) 
Underdog 73 37 26 (3) 2 (0) 
Home underdog 45 29 22 (6) 10 (0) 
Home favorite 18 1 0 (0) 0 (0) 
Familiarity 18 11 5 (0) 1 (0) 
Fatigue 48 35 18 (3) 8 (0) 
Attention & Importance 61 31 8 (2) 8 (0) 
Absences 24 8 3 (0) 1 (0) 
Past performance against the spread 177 85 12 (1) 5 (0) 
Past performance not against the 
spread 

95 58 11 (1) 6 (0) 

Spread movements 49 26 5 (1) 4 (0) 
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FIGURES 

 

Figure 1: top left panel: scatterplot of the strategy implementations. The horizontal axis represents 

the empirical win fractions. The black dashed lines represent critical values (1.96 and 3 for the 

horizontal axis and 0.524 for the vertical axis). The red dots represent the strategy 

implementations that reject the null of unprofitability under the single test benchmark. Top right 

panel: funnel plot with the empirical win fractions on the horizontal axis and the square root of 

the sample size on the vertical axis. Bottom left and right panels show histograms of the absolute 

value of the Z1 statistics and the Z2 statistics respectively for the full sample of strategy 

implementations. The vertical blue lines show the critical values, i.e. 0.476 and 0.524 for in-sample 

profitability and 1.96 and 1.64 for the z-statistics. The red line is the folded standard normal 

distribution.  
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(Online) Appendix A: additional tables and results 

Game characteristics   

Underdog  

Table A summarizes papers implementing the “bet on the underdog” strategy, conditional on some 

point spread PS. Note that there does not appear to exist a clean relation between the point spread 

cutoff value and the empirical win fraction, nor statistical significance. However, the tendency to 

underestimate conditional underdogs is clear as 46 out of 51 implementations indicate underdogs 

win more than 50% of the time. 

Table A: Overview of papers implementing “bet on underdog conditional on the point spread (PS)” strategy.  
Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Vergin and Scriabin (1978) NFL 1969-1974 PS>5 0.546 2.388 1.153 
  0<PS≤5 0.456 -1.655  
  5<PS≤10 0.543 1.735  
  10<PS≤15 0.530 0.882  
  15<PS 0.640 1.980 1.645 
Tryfos et al. (1984) NFL 1969-1981 PS>5 0.540 3.010 1.224 
  0<PS≤5 0.506 0.410  
  5<PS≤10 0.536 2.169 0.709 
  10<PS≤15 0.539 1.564  
  15<PS 0.589 1.687  
Gandar et al. (1988) NFL 1980-1985 PS>5 0.502 0.091  
  0<PS≤5 0.543 2.248 0.999 
  5<PS≤10 0.511 0.440  
  10<PS≤15 0.537 0.611  
  15<PS 0.375 -0.707  
Vergin (2001) NFL 1969-1995 PS>5 0.531 3.215 0.713 
Paul et al. (2003) College football 1976-

2000 
7 < PS 0.503 0.467  

  28 < PS 0.538 2.161 0.817 
Paul and Weinbach (2005b) College basketball 1996-

2004 
10 < PS 0.506 0.930  

  20 < PS 0.529 1.652  
Borghesi et al. (2009) NFL 1981-2004 7 < PS 0.525 1.813  
 College football 1982-

2004 
7 < PS 0.507 1.163  

 AFL 1998-2006 7 < PS 0.572 2.653 1.776 
Humphreys et al. (2014) College basketball 2007-

2008 
10 < PS 0.496 -0.279  

  12 < PS 0.507 0.364  
(J. L. Davis & Krieger, 2017) NFL 1995-2014 PS>3 0.503 0.390  
  0<PS≤3 0.503 0.246  
  PS>5 0.504 0.423  
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  0<PS≤5 0.502 0.235  
(J. L. Davis & Krieger, 2017) Preseason NFL 1995-2014 PS>3 0.532 1.469  
  0<PS≤3 0.517 0.914  
  PS>5 0.577 2.154 1.492 
  0<PS≤5 0.514 0.872  
(J. L. Davis & Krieger, 2017) NBA 2005-2014 PS>3 0.499 -0.095  
  0<PS≤3 0.506 0.613  
  PS>5 0.498 -0.326  
  0<PS≤5 0.505 0.676  
 Preseason NBA 2005-2014 PS>3 0.556 2.701 1.557 
  0<PS≤3 0.510 0.312  
  PS>5 0.569 2.287 1.498 
  0<PS≤5 0.529 1.352  
Paul and Weinbach (2005a) NBA 1995-2002 PS>8.5 0.509 0.800  
  PS>9 0.506 0.555  
  PS>9.5 0.510 0.770  
  PS>10 0.525 1.902  
  PS>10.5 0.530 2.094 0.458 
  PS>11 0.532 2.010 0.494 
  PS>11.5 0.537 2.162 0.776 
  PS>12 0.541 2.238 0.941 
  PS>12.5 0.556 2.728 1.561 
  PS>13 0.552 2.287 1.247 

 

Home underdog  

Table B summarizes conditional home underdog strategies. The performance of the strategy in 

NBA games is striking. In these cases, there exists an almost monotonic relationship between 

performance and the point spread. For the largest home underdogs, empirical win fractions of over 

70% are observed.  
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Table B: Overview of papers implementing “bet on home underdog” strategy.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Paul et al. (2003) College football 1976-

2000 
PS>7 0.517 1.607  

  PS>28 0.571 1.648  
Paul and Weinbach (2005b) College basketball 1996-

2004 
PS>10 0.454 -2.303 -1.106 

Borghesi (2007b) NFL 1981-2000 PS>2 0.540 2.792 1.139 
  PS>8 0.547 1.264  
Borghesi et al. (2009) NFL 1981-2004 PS>7 0.524 0.790  
Borghesi et al. (2009) College football 1982-

2004 
PS>7 0.521 2.041  

Borghesi et al. (2009) AFL 1998-2006 PS>7 0.625 2.000 1.621 
Humphreys et al. (2014) College basketball 2007-

2008 
PS>10 0.433 -1.373  

  PS>12 0.417 -1.291  
Shank (2018) NFL 2009-2017 PS>3 0.493 -0.323  
  PS>6 0.541 1.109  
  PS>10 0.630 1.769  
Paul and Weinbach (2005a) NBA 1995-2002 PS>8.5 0.545 1.624  
  PS>9 0.555 1.788  
  PS>9.5 0.569 2.032 1.330 
  PS>10 0.602 2.639 2.028 
  PS>10.5 0.641 3.182 2.646 
  PS>11 0.674 3.336 2.883 
  PS>11.5 0.680 3.118 2.708 
  PS>12 0.717 3.357 2.991 
  PS>12.5 0.711 2.832 2.516 
  PS>13 0.725 2.846 2.548 
Ashman et al. (2010) NBA 1990-2009 PS>11 0.571 2.162 1.437 
  PS>12 0.620 2.729 2.191 
Vergin and Sosik (1999) NFL 1981-1996 PS=0 0.522 0.361  

 

Home favorite   

For completeness, we mention the results of the strategy of betting on home favorites in table C. 

The null of randomness is never rejected. 
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Table C: Overview of papers implementing “bet on home favorite” strategy.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Golec and Tamarkin (1991) NFL 1973-1987 Unconditional 0.493 -0.642  
 College football 1973-

1987 
Unconditional 0.495 -0.595  

Oorlog (1995) NBA 1989-1991 Unconditional 0.486 -1.097  
Vergin and Sosik (1999) NFL 1981-1996 Unconditional 0.486 -1.358  
Gandar et al. (2001) NBA 1981-1997 Unconditional 0.496 -0.841  
Sung and Tainsky (2014) NFL 2002-2009 Unconditional 0.484 -1.181  
Paul, Weinbach, and Wilson 
(2014) 

NFL 2007-2011 Unconditional 0.483 -0.989  

Sinkey and Logan (2014) College football 1985-
2008  

Unconditional 0.497 -0.513  

Humphreys et al. (2014) College basketball 2007-
2008 

Unconditional 0.503 0.275  

Shank (2018) NFL 2009-2017 Unconditional 0.487 -0.956  
Shank (2019) NFL 2003-2016 Unconditional 0.488 -1.122  
Humphreys et al. (2014) College basketball 2007-

2008 
PS≤ -12 0.486 -0.759  

  PS≤ -10 0.497 -0.164  
Shank (2018) NFL 2009-2017 PS≤ -10 0.517 0.487  
  PS≤ -7 0.490 -0.445  
  PS≤ -4 0.494 -0.354  
  PS≤ -2 0.485 -0.997  
  PS = 0 0.549 0.700  

 

Familiarity  

Borghesi (2007a) investigates whether temperature information can be profitably exploited. As a 

first exploration, he computes the empirical win fractions for the home team conditional on the 

temperature of the game as shown in the first four rows of table D. Interestingly, the home team 

covers significantly more than expected in the coldest games at the single test benchmark, but 

never at the multiple test benchmark. Rows 5 to 8 of table D contain the strategy of betting on 

home games in the hottest quartile of game day temperatures conditional on the acclimatization 

advantage (the converse of the strategy discussed in the main text). Kuester and Sanders (2011) 

further investigate climate acclimatization challenges. For completeness, we include row 9 and 10 

of table D where the subsamples contain games between arid region teams or between humid 
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region teams (so no acclimatization challenges). The strategies are not profitable in sample and the 

null of randomness is never rejected.  

Table D: Overview of papers implementing “bet on home team conditional on familiarity” strategies.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Borghesi (2007a) NFL 1981-2004 Q1 temperature (hottest) 0.473 -1.300  
  Q2 temperature 0.483 -1.565  
  Q3 temperature 0.501 0.053  
  Q4 temperature (coldest) 0.541 2.960 1.240 
  Q1 temperature (hottest) and Q1 

acclimatization advantage (highest) 
0.475 -0.811  

  Q1 temperature (hottest) and Q2 
acclimatization advantage  

0.434 -1.543  

  Q1 temperature (hottest) and Q3 
acclimatization advantage 

0.518 0.381  

  Q1 temperature (hottest) and Q4 
acclimatization advantage (lowest) 

0.470 -0.492  

Kuester and Sanders 
(2011) 

College football 
2000-2006 

Both teams from arid regions  0.498 -0.116  

  Both teams from humid regions 0.507 0.749  

 

Fatigue 

Additional bye-week related strategies by Sung and Tainsky (2014) and other tests of the “betting 

on the home team in the second game of back-to-back games when the away team had 1 or 2 days 

of rest” by Ashman et al. (2010) are shown in table E. Furthermore, Oorlog (1995) investigates 

whether betting on a team playing the last game of a road trip can be profitable. Inefficiencies 

could arise if the market misestimates the effect of road wear on team performance. Coleman 

(2017) tests whether betting on a favored home team in the latter half of the season when it hosts 

a visiting team that travelled one time zone to the east is profitable. This strategy seems promising 

based on his elaborate regression results. Although the null of randomness is rejected relative to 

the single test benchmark, the null of unprofitability is not. 

Table E: Overview of papers implementing “bet conditional on fatigue characteristics” 

strategies.  
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 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
1 Sung and Tainsky 

(2014) 
NFL 2002-
2009 

home team after it had a bye-week 0.536 0.851  

2   away team after it had a bye-week 0.551 1.063  
3   home favorite after it had a bye-week 0.579 1.539  
4   home underdog after it had a bye-week 0.452 -0.617  
Rows 5-8 display the strategy “bet on the home team in the second game of back-to-back games for the home team when 
the visiting team had 1 or 2 days of rest” conditional on other info. 
5 Ashman et al. (2010) NBA 1990-

2009 
both teams played away last game 0.470 -1.361  

6   the home team played away and away team 
played at home last game 

0.443 -2.649 -1.536 

7   he home team played at home while the 
away team played away last game 

0.395 -1.889  

8   both teams played at home last game 0.500 0.000  
Rows 9-14 display the strategy “bet home team in back-to-back games when the visiting team is not having back-to-back 
games” conditional on whether it travelled one or two time zones to the east between back-to-back games (E) or not (No 
E) and other info. 
9   home team is an underdog 0.430 -3.021 -1.998 
1
0 

  the home team is an underdog (E) 0.388 -2.266 -1.785 

1
1 

  home team is an underdog (No E) 0.442 -2.214 -1.312 

1
2 

  home team is a favorite 0.470 -1.798  

1
3 

  home team is a favorite (E) 0.411 -2.426 -1.781 

1
4 

  home team is a favorite (No E) 0.485 -0.784  

Rows 15-18 display the strategy “bet on the home underdog in the second game of back-to-back games for the home 
team when the visiting team had 1 or 2 days of rest” conditional on other info. 
1
5 

  both teams played away last game 0.448 -1.412  

1
6 

  home team played away and the away team 
played at home last game 

0.424 -1.982 -1.360 

1
7 

  the home team played at home and the 
away team played away last game 

0.286 -2.268 -2.018 

1
8 

  both teams played at home last game 0.500 0.000  

1
9 

Oorlog (1995) NBA 1989-
1991 

bet on teams on the last game of a road trip 0.543 1.952  

2
0 

Coleman (2017) College 
football 2004-
2013 

bet on favored home teams in the latter half 
of the season when they host a visiting team 
that travelled one time zone to the east 

0.554 1.964 1.092 

 

Attention & Importance  

Hickman (2020) also tests whether the market correctly estimates the quality of the teams per seed. 

The proposed strategy is to bet on a team when it plays a team from another seed. As shown in 
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table F, in none of the 16 cases, the null of randomness is rejected. Furthermore, Hickman (2020) 

tests whether conference affiliation of the teams can be profitably exploited. A number of 

variations are shown in table 18 but randomness can never be rejected. 

Relatedly, Moore and Francisco (2019) investigate the performance of Power Five (P5)/Automatic 

Qualifying (AQ) college football teams when playing against a Football Championship 

Subdivision (FCS) team. The authors dissect the strategy by dividing the P5/AQ sample per 

conference. The P5/AQ sample includes the Southeastern Conference (SEC), the Atlantic Coast 

Conference (ACC), the Big Ten, the Big Twelve and the Pacific 10/Pacific 12 and the Big East 

until 2012. It is worth noting that the SEC is considered the best conference in college football. 

Results conditional on the conference are shown in table F. Interestingly, the strategy of betting 

against SEC teams when they play against an FCS team rejects the null of unprofitability (only at 

the single test benchmark). The authors hypothesize that SEC teams might save their best players 

for next games when playing against FCS teams, or simply lack motivation. 

Table F: Overview of papers implementing “bet conditional on attention and importance 
characteristics” strategies.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Hickman 
(2020) 

March  bet on seed 1 teams (against a differently seeded 
team) 

0.507 0.260  

 Madness bet on seed 2 teams (against a differently seeded 
team) 

0.444 -1.944  

 1996-2019 bet on seed 3 teams (against a differently seeded 
team) 

0.520 0.656  

  bet on seed 4 teams (against a differently seeded 
team) 

0.498 -0.064  

  bet on seed 5 teams (against a differently seeded 
team) 

0.490 -0.283  

  bet on seed 6 teams (against a differently seeded 
team) 

0.497 -0.073  

  bet on seed 7 teams (against a differently seeded 
team) 

0.517 0.447  

  bet on seed 8 teams (against a differently seeded 
team) 

0.536 0.936  

  bet on seed 9 teams (against a differently seeded 
team) 

0.486 -0.329  
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  bet on seed 10 teams (against a differently seeded 
team) 

0.500 0.000  

  bet on seed 11 teams (against a differently seeded 
team) 

0.532 0.801  

  bet on seed 12 teams (against a differently seeded 
team) 

0.566 1.578  

  bet on seed 13 teams (against a differently seeded 
team) 

0.462 -0.825  

  bet on seed 14 teams (against a differently seeded 
team) 

0.425 -1.554  

  bet on seed 15 teams (against a differently seeded 
team) 

0.529 0.594  

  bet on seed 16 teams (against a differently seeded 
team) 

0.500 0.000  

  bet on higher seed when it comes from a major 
conference (ACC, Bog 10, Big 12, Big East, Pac-12, 
SEC) 

0.510 0.558  

  bet on higher seed when lower seed comes from a 
major conference (ACC, Bog 10, Big 12, Big East, 
Pac-12, SEC) 

0.491 -0.186  

  bet on higher seed when both teams come from a 
major conference (ACC, Bog 10, Big 12, Big East, 
Pac-12, SEC) 

0.471 -1.318  

  bet on higher seed when both teams do not come 
from a major conference (ACC, Bog 10, Big 12, Big 
East, Pac-12, SEC) 

0.504 0.086  

  bet on teams from the ACC conference (intra-
conference games excluded) 

0.447 -1.895  

  bet on teams from the Big 10 conference (intra-
conference games excluded) 

0.539 1.423  

  bet on teams from the Big 12 conference (intra-
conference games excluded) 

0.502 0.057  

  bet on teams from the Big East conference (intra-
conference games excluded) 

0.511 0.384  

  bet on teams from the Pac-12 conference (intra-
conference games excluded) 

0.525 0.768  

  bet on teams from the SEC conference (intra-
conference games excluded) 

0.507 0.236  

  bet on the higher-seeded team when PS≤ -20 0.478 -0.470  
  bet on the higher-seeded team when -20 <PS≤ -10 0.500 0.000  
  bet on the higher-seeded team when -10 <PS≤ -5 0.499 -0.045  
  bet on the higher-seeded team when -5 <PS≤ 0 0.480 -0.839  
  bet on the higher-seeded team when PS>0 0.527 0.612  
Moore and 
Francisco 
(2019) 

College 
football 
2003-2018 

bet on P5/AQ teams when playing an FCS team 0.499 -0.052  

  bet on ACC teams when playing an FCS team 0.568 1.279  
  bet on Big 10 teams when playing an FCS team 0.533 0.516  
  bet on Big 12 teams when playing an FCS team 0.473 -0.405  
  bet on Big East teams when playing an FCS team 0.455 -0.522  
  bet on PAC 10/12 teams when playing an FCS team 0.520 0.283  
  bet on SEC teams when playing an FCS team 0.385 -2.535 -2.011 
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Absences 

Dare et al. (2015) further condition their strategy on home teams and away teams respectively as 

shown in table G.   

To investigate how the market deals with potential rumors on coaching changes, Colquitt et al. 

(2007) also investigate the runup to the change. As shown in table G, there is no evidence betting 

markets are not efficient in the games leading up to a coaching change. 

Table G: Overview of papers implementing “bet conditional on absence characteristics” strategies.  
Authors Data 

set 
Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 

Dare et al. (2015) NBA  bet on home teams with the most absences 0.511 1.122  
 1996- bet on home teams with the most absences AV ≥ 5 0.509 0.798  
 2005 bet on home teams with the most absences AV ≥ 

10 
0.517 0.949  

  bet on home teams with the most absences AV ≥ 
15 

0.558 1.830  

  bet on home teams with the most absences AV ≥ 
20 

0.543 0.778  

  bet on away teams with the most absences 0.485 -1.602  
  bet on away teams with the most absences AV ≥ 5 0.475 -2.167 -0.101 
  bet on away teams with the most absences AV ≥ 

10 
0.494 -0.347  

  bet on away teams with the most absences AV ≥ 
15 

0.518 0.561  

  bet on away teams with the most absences AV ≥ 
20 

0.490 -0.198  

Colquitt et al. 
(2007) 

NBA 
1988- 

bet on the team that will hire a new coach games 
1-3 before change 

0.500 0.000  

 2002 bet on the team that will hire a new coach games 
4-6 before change 

0.481 -0.477  

  bet on the team that will hire a new coach games 
7-9 before change 

0.491 -0.236  

Performance against the spread 

Camerer (1989) and Paul, Weinbach, and Humphreys (2014) further refine the strategy shown in 

table 9 by conditioning on the performance of the opposing team against the spread. Table H shows 

the strategy of betting on teams on win streaks while table I shows the opposite strategy of betting 

on teams that are on losing streaks. The evidence is mixed, i.e. the empirical win fractions are not 
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consistently smaller or larger than 50%, furthermore, the null of randomness is only once rejected 

at the single test benchmark.  

Table H: Overview of papers implementing “bet on teams that are on a k game winning streak against the spread 
when playing a team on a shorter winning streak/losing streak against the spread” strategy.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Camerer (1989) NBA 1983-

1986 
k=1, shorter winning 
streak 

0.520 0.532  

  k=2, shorter winning 
streak 

0.510 0.381  

  k=3, shorter winning 
streak 

0.466 -1.104  

  k=4, shorter winning 
streak 

0.459 -1.031  

  k=5, shorter winning 
streak 

0.461 -0.792  

  k=6, shorter winning 
streak 

0.426 -1.152  

  k=7, shorter winning 
streak 

0.476 -0.309  

  k=8, shorter winning 
streak 

0.345 -1.671  

  k ≥ 9, shorter winning 
streak 

0.421 -0.973  

  k=1, losing streak 0.520 0.532  
  k=2, losing streak 0.520 0.523  
  k=3, losing streak 0.452 -1.159  
  k=4, losing streak 0.529 0.542  
  k=5, losing streak 0.480 -0.283  
  k=6, losing streak 0.514 0.169  
  k=7, losing streak 0.556 0.471  
  k=8, losing streak 0.400 -0.632  
  k ≥ 9, losing streak 0.444 -0.471  
Paul, Weinbach, and Humphreys 
(2014) 

NFL 2005-
2010 

k=1, shorter winning 
streak 

0.495 -0.164  

  k=2, shorter winning 
streak 

0.490 -0.277  

  k=3, shorter winning 
streak 

0.495 -0.097  

  k=4, shorter winning 
streak 

0.520 0.283  

  k=5, shorter winning 
streak 

0.478 -0.295  

  k=1, losing streak 0.492 -0.282  
  k=2, losing streak 0.519 0.434  
  k=3, losing streak 0.393 -1.664  
  k=4, losing streak 0.500 0.000  
  k=5, losing streak 0.455 -0.426  
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Table I: Overview of papers implementing “bet on teams that are on a k game losing streak against the spread when 
playing a team on a shorter losing streak/winning streak against the spread” strategy.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Camerer (1989) NBA 1983-

1986 
k=1, shorter losing streak 0.532 0.836  

  k=2, shorter losing streak 0.519 0.667  
  k=3, shorter losing streak 0.520 0.635  
  k=4, shorter losing streak 0.538 0.955  
  k=5, shorter losing streak 0.449 -

1.010 
 

  k=6, shorter losing streak 0.596 1.457  
  k=7, shorter losing streak 0.444 -

0.667 
 

  k=8, shorter losing streak 0.750 2.236 2.025 
  k ≥ 9, shorter losing streak 0.615 1.177  
  k=1, winning streak 0.532 0.836  
  k=2, winning streak 0.532 0.836  
  k=3, winning streak 0.519 0.440  
  k=4, winning streak 0.536 0.655  
  k=5, winning streak 0.500 0.000  
  k=6, winning streak 0.654 1.569  
  k=7, winning streak 0.400 -

0.775 
 

  k=8, winning streak 0.727 1.508  
  k ≥ 9, winning streak 0.615 0.832  
Paul, Weinbach, and Humphreys 
(2014) 

NFL 2005-
2010 

k=1, shorter losing streak 0.491 -
0.325 

 

  k=2, shorter losing streak 0.551 1.569  
  k=3, shorter losing streak 0.550 1.044  
  k=4, shorter losing streak 0.558 0.832  
  k=5, shorter losing streak 0.654 1.569  
  k=1, winning streak 0.491 -

0.333 
 

  k=2, winning streak 0.529 0.676  
  k=3, winning streak 0.536 0.535  
  k=4, winning streak 0.556 0.577  
  k=5, winning streak 0.714 1.604  

 

Table J contains additional performance against the spread strategies of which we highlight a few. 

Woodland and Woodland (2000) and Sinkey and Logan (2014) investigate whether profitable 

strategies can be found at the intersection between past performance against the spread and other 

game variables (favorite/underdog or home/away). Vergin (2001) tests whether the performance 

against the spread in a previous season contains useful information. Kochman, Goodwin, and 

Gilliam (2017) test whether teams that have a very lopsided record against the spread in the 
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beginning of the season regress to the mean in terms of performance against the spread. More 

specifically they propose the strategy of betting on all teams that lost at least 4 out of the 5 first 

games against the spread and betting against all teams that won at least 4 of their first 5 games 

against the spread. The null of randomness is never rejected. 

Table J: Overview of papers implementing “bet conditional on performance against the spread characteristics” 
strategies.  

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Vergin and Scriabin 
(1978) 

NFL 1969-
1974 

bet on teams that had a winning point 
spread record the year before 

0.506 0.322  

Vergin and Scriabin 
(1978) 

NFL 1969-
1974 

bet against teams that had a losing point 
spread record the year before 

0.495 -0.266  

Gandar et al. (1988) NFL 1980-
1985 

bet the underdog against a favored team 
that, as a favorite in the previous week, 
covered the spread by at least 10 points 

0.581 2.089 1.476 

Lacey (1990) NFL 1984-
1986 

bet on teams that failed to beat the spread 
last two games 

0.425 -2.683 -1.834 

Vergin (1998) NFL 1984-
1995 

bet on teams that failed to beat the spread 
last two games 

0.507 0.423  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on teams that failed to beat the spread 
last two games 

0.495 -0.687  

Oorlog (1995) NBA 1989-
1991 

bet on teams that have a better win 
record against the spread for the season 
to date 

0.512 1.111  

Oorlog (1995) NBA 1989-
1991 

in the second half of the season, bet on 
the team with the better win record 
against the spread in the first half of the 
season 

0.510 0.643  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that covered 
last game 

0.507 0.545  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that covered at 
least 2 consecutive games 

0.501 0.077  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that covered at 
least 3 consecutive games 

0.498 -0.055  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that covered at 
least 4 consecutive games 

0.535 0.884  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that failed to 
cover last game 

0.525 1.864  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that failed to 
cover at least 2 consecutive games 

0.523 1.238  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that failed to 
cover at least 3 consecutive games 

0.515 0.579  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that failed to 
cover at least 4 consecutive games 

0.503 0.074  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won and 
covered last game 

0.511 0.777  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won and 
covered at least 2 consecutive games 

0.521 0.994  
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Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won and 
covered at least 3 consecutive games 

0.469 -0.927  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won and 
covered at least 4 consecutive games 

0.480 -0.400  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied 
and failed to cover last game 

0.527 1.844  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied 
and failed to cover at least 2 consecutive 
games 

0.526 1.233  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied 
and failed to cover at least 3 consecutive 
games 

0.504 0.128  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied 
and failed to cover at least 4 consecutive 
games 

0.495 -0.097  

Vergin (2001) NFL 1981-
1995 

bet against teams that covered the spread 
by 10 points or more last game 

0.513 0.930  

Vergin (2001) NFL 1981-
1995 

bet against teams that covered the spread 
by 15 points or more last game 

0.518 1.010  

Vergin (2001) NFL 1981-
1995 

bet against teams that covered the spread 
by 20 points or more last game 

0.526 1.107  

Vergin (2001) NFL 1981-
1995 

bet on teams that failed to cover the 
spread by 10 points or more last game 

0.511 0.825  

Vergin (2001) NFL 1981-
1995 

bet on teams that failed to cover the 
spread by 15 points or more last game 

0.531 1.704  

Vergin (2001) NFL 1981-
1995 

bet on teams that failed to cover the 
spread by 20 points or more last game 

0.525 1.067  

Vergin (2001) NFL 1981-
1995 

bet against teams that had a net winning 
record against the spread of at least 4 
games last season 

0.537 1.630  

Vergin (2001) NFL 1981-
1995 

bet against teams that had a net winning 
record against the spread of at least 5 
games last season 

0.542 1.660  

Vergin (2001) NFL 1981-
1995 

bet against teams that had a net winning 
record against the spread of at least 6 
games last season 

0.517 0.484  

Vergin (2001) NFL 1981-
1995 

bet against teams that had a net winning 
record against the spread of at least 7 
games last season 

0.567 1.555  

Vergin (2001) NFL 1981-
1995 

bet against teams that had a net winning 
record against the spread of at least 8 
games last season 

0.558 0.762  

Vergin (2001) NFL 1981-
1995 

bet on teams that had a net losing record 
against the spread of at least 4 games last 
season 

0.497 -0.134  

Vergin (2001) NFL 1981-
1995 

bet on teams that had a net losing record 
against the spread of at least 5 games last 
season 

0.513 0.504  

Vergin (2001) NFL 1981-
1995 

bet on teams that had a net losing record 
against the spread of at least 6 games last 
season 

0.561 1.480  

Vergin (2001) NFL 1981-
1995 

bet on teams that had a net losing record 
against the spread of at least 7 games last 
season 

0.560 1.342  
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Vergin (2001) NFL 1981-
1995 

bet on teams that had a net losing record 
against the spread of at least 8 games last 
season 

0.622 1.640  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team that lost 
against the spread by the largest average 
amount last week 

0.505 0.137  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team that lost 
against the spread by the largest average 
amount last 2 weeks 

0.500 0.000  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team that lost 
against the spread by the largest average 
amount last 3 weeks 

0.531 0.866  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team that lost 
against the spread by the largest average 
amount last 4 weeks 

0.445 -1.445  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team that lost 
against the spread by the largest average 
amount last 5 weeks 

0.529 0.723  

Paul and Weinbach 
(2005a) 

NBA 1995-
2002 

bet against teams that are not on a >2 
game losing streak against the spread 
versus teams on >2 game losing streaks 
against the spread 

0.514 1.530  

Paul and Weinbach 
(2005a) 

NBA 1995-
2002 

bet against teams that are not on a >4 
game losing streak against the spread 
versus teams on >4 game losing streaks 
against the spread 

0.512 0.640  

Paul et al. (2011) NBA 2003-
2009 

bet against teams on a 2-game loss streak 
against the spread 

0.498 -0.235  

Paul et al. (2011) NBA 2003-
2009 

bet against teams on a 4-game loss streak 
against the spread 

0.513 0.848  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on home teams that beat the spread 
last two games 

0.516 1.680  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on underdogs that beat the spread last 
two games 

0.489 -1.209  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on home favorites that beat the 
spread last two games 

0.498 -0.139  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on home underdogs that beat the 
spread last two games 

0.524 1.414  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on home teams that failed to beat the 
spread last two games 

0.488 -1.300  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on underdogs that failed to beat the 
spread last two games 

0.483 -1.604  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on home favorites that failed to beat 
the spread last two games 

0.477 -1.753  

Sinkey and Logan (2014) College 
football 1985-
2008 

bet on home underdogs that failed to beat 
the spread last two games 

0.507 0.446  
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Kochman et al. (2017) College 
football 2015-
2016 

bet against teams that won at least 4 of 
the first five games against the spread 

0.525 0.632  

Kochman et al. (2017) College 
football 2015-
2016 

bet on teams that lost at least 4 of the 
first five games against the spread 

0.533 0.851  

Shank (2018) NFL 2009-
2017 

bet on the home team if it covered the 
spread last two games 

0.481 -0.799  

Shank (2018) NFL 2009-
2017 

bet on the home team if it failed to cover 
the spread last two games 

0.530 1.342  

Shank (2018) NFL 2009-
2017 

bet on the away team if it covered the 
spread last two games 

0.495 -0.190  

Shank (2018) NFL 2009-
2017 

bet on the away team if it failed to cover 
the spread last two games 

0.460 -1.785  

Bennett (2020) College 
football 2006-
2018 

for BCS/Power 5 teams, bet on teams 
that that exceeded the point spread by 20 
points or more and betting against teams 
that fell short by 20 points or more in the 
previous game 

0.501 0.052  

Bennett (2020) College 
football 2006-
2018 

for non BCS/Power 5 teams, bet on 
teams that that exceeded the point spread 
by 20 points or more and betting against 
teams that fell short by 20 points or more 
in the previous game 

0.534 2.416 0.702 

Bennett (2020) College 
football 2006-
2018 

for BCS/Power 5 teams and non-
BCS/Power 5 teams that played a 
BCS/Power 5 team, bet on teams that 
that exceeded the point spread by 20 
points or more and betting against teams 
that fell short by 20 points or more in the 
previous game 

0.500 -0.024  

Bennett (2020) College 
football 2006-
2018 

for non-BCS/Power 5 teams that played 
another non BCS/Power 5 team, bet on 
teams that that exceeded the point spread 
by 20 points or more and betting against 
teams that fell short by 20 points or more 
in the previous game 

0.542 2.759 1.207 

 

Bennett (2020) implements strategies that condition on last game performance of both teams. The 

rule is to bet on teams that did well against the spread in the previous game and to bet against 

teams that performed poorly against the spread when they play teams whose results were closer to 

the spread last game. The strategy is tested for different parameter values and shown in table K. 

The rows condition on the difference between the spread and the actual outcome of a team in its 

prior game. The columns indicate the result against the spread of its opponent in its own previous 

game. For example, in the cell with row header ≥35 and column header <35, the betting rule is 
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implemented on teams where the difference between the outcome and point spread in the previous 

game was 35 points or more, while the difference for the opponent was smaller than 35 in its 

previous game. In only 1 of 22 tests, the null of randomness is rejected at the single test benchmark. 

Table K: Bennett (2020) in college football games between 2006-2018. Strategy implemented is “bet on teams that 
did well against the spread in the previous game and bet against teams that performed poorly against the spread when 

they play teams whose results were closer to the spread in their previous game” strategy. The rows condition on the 

difference between the spread and the actual outcome of a team in its prior game. The columns indicate the results 

against the spread of its opponent in their previous game.  

 <35 <30 <25 <20 <15 <10 <5 
≥35 𝝅̂: 0.511 𝒁𝟏: 0.465 

𝝅̂: 0.509 𝒁𝟏: 0.381 
𝝅̂: 0.508 𝒁𝟏: 0.340 

𝝅̂: 0.507 𝒁𝟏: 0.258 
𝝅̂: 0.505 𝒁𝟏: 0.172 

𝝅̂: 0.514 𝒁𝟏: 0.412 
𝝅̂: 0.539 𝒁𝟏: 0.839 

≥30  
/ 

𝝅̂: 0.497 𝒁𝟏: -0.166 
𝝅̂: 0.501 𝒁𝟏: 0.068 

𝝅̂: 0.502 𝒁𝟏: 0.109 
𝝅̂: 0.498 𝒁𝟏: -0.119 

𝝅̂: 0.516 𝒁𝟏: 0.697 
𝝅̂: 0.521 𝒁𝟏: 0.686 

≥25  
/ 

 
/ 

𝝅̂: 0.515 𝒁𝟏: 1.202 
𝝅̂: 0.516 𝒁𝟏: 1.244 

𝝅̂: 0.512 𝒁𝟏: 0.850 
𝝅̂: 0.523 𝒁𝟏: 1.422 

𝝅̂: 0.518 𝒁𝟏: 0.828 
≥20  

/ 
 
/ 

 
/ 

𝝅̂: 0.516 𝒁𝟏: 1.693 
𝝅̂: 0.515 𝒁𝟏: 1.489 

𝝅̂: 0.524 𝒁𝟏: 2.012 𝒁𝟐: 0.049 

𝝅̂: 0.528 𝒁𝟏: 1.774 

Performance not against the spread 

Table L contains additional strategies based on performance not against the spread. Many of the 

strategies are similar to those discussed above, but the past information is now measured by the 

game outcome itself and not against the spread. The null of randomness is never rejected at the 

multiple test benchmark. 

Table L: Overview of papers implementing “bet conditional on performance not against the spread characteristics” 
strategies. 

Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Lacey (1990) NFL 1984-

1986 
bet on teams that qualified for post 
season play last season when facing a 
team that did not 

0.550 1.825  

Vergin (1998) NFL 1984-
1995 

bet on teams that qualified for post 
season play last season when facing a 
team that did not 

0.486 -0.901  

Vergin (2001) NFL 1981-
1995 

bet on teams that qualified for post 
season play last season when facing a 
team that did not 

0.503 0.256  

Fodor et al. (2013) NFL 2004-
2012 

bet on teams that qualified for post 
season play last season when facing a 
team that did not 

0.496 -0.276  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won last 
game 

0.520 1.583  
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Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won at 
least 2 consecutive games 

0.532 1.874  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won at 
least 3 consecutive games 

0.510 0.456  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet against favorite teams that won at 
least 4 consecutive games 

0.515 0.492  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied 
last game 

0.526 2.039 0.170 

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied at 
least 2 consecutive games 

0.523 1.350  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied at 
least 3 consecutive games 

0.525 1.147  

Woodland and 
Woodland (2000) 

NFL 1985-
1997 

bet on underdog teams that lost or tied at 
least 4 consecutive games 

0.536 1.254  

Vergin (2001) NFL 1981-
1995 

bet on teams that lost their previous 
game by 10 points or more 

0.498 -0.155  

Vergin (2001) NFL 1981-
1995 

bet on teams that lost their previous 
game by 15 points or more 

0.511 0.693  

Vergin (2001) NFL 1981-
1995 

bet on teams that lost their previous 
game by 20 points or more 

0.522 1.065  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team has been 
outscored by its opponents by the largest 
average amount last week 

0.500 0.000  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team has been 
outscored by its opponents by the largest 
average amount last 2 weeks 

0.471 -0.840  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team has been 
outscored by its opponents by the largest 
average amount last 3 weeks 

0.479 -0.583  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team has been 
outscored by its opponents by the largest 
average amount last 4 weeks 

0.503 0.076  

Vergin (2001) NFL 1981-
1995 

each week, bet on the team has been 
outscored by its opponents by the largest 
average amount last 5 weeks 

0.490 -0.239  

Paul et al. (2011) NBA 2003-
2009 

bet on teams on a 2-game win streak 0.498 -0.262  

Paul et al. (2011) NBA 2003-
2009 

bet on teams on a 4-game win streak 0.496 -0.307  

Paul et al. (2011) NBA 2003-
2009 

bet against teams on a 2-game loss streak 0.504 0.503  

Paul et al. (2011) NBA 2003-
2009 

bet against teams on a 4-game loss streak 0.502 0.150  

The rows below show the strategy “bet against teams that qualified for the playoffs last season when they face a 
team that did not qualify in game k of the next season” 
Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Fodor et al. (2013) NFL 2004-

2012 
k = 7 0.516 0.254  

  k = 8 0.404 -1.457  
  k = 9 0.473 -0.405  
  k = 10 0.475 -0.384  
  k = 11 0.469 -0.500  
  k = 12 0.492 -0.126  
  k = 13 0.564 0.944  
  k = 14 0.507 0.119  
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  k = 15 0.508 0.128  
  k = 16 0.444 -0.882  
  k = 17 0.620 2.018 1.618 
      

 

Table M: Overview of papers implementing “bet on teams in top of AP poll in first game of next season when playing 
against a team not in the top 25” strategy. The strategy is further conditioned on the team being the favorite (F) 
(which is of course often the case for last season top 25 teams) and playing against a power 5 team (P) or not (N). 

Authors Data set Top 25 P Top 25 F 
P 

Top 25 N Top 25 F N Top 10 P Top 10 F P 

Bennett 
(2019) 

College 
football 
2008-
2016 

𝝅̂: 0.458 𝒁𝟏: -0.577 
𝝅̂: 0.500 𝒁𝟏: 0.000 

𝝅̂: 0.413 𝒁𝟏: -1.960 𝒁𝟐: -1.427 

𝝅̂: 0.416 𝒁𝟏: -1.878 
𝝅̂: 0.500 𝒁𝟏: 0.000 

𝝅̂: 0.520 𝒁𝟏: 0.200 

  Top 10 N Top 10 N 
F 

Top 11-25 P Top 11-25 F 
P 

Top 11-25 
N 

Top 11-25 
N F 

  𝝅̂: 0.309 𝒁𝟏: -2.832 𝒁𝟐: -2.481 

𝝅̂: 0.321 𝒁𝟏: -2.610 𝒁𝟐: -2.266 

𝝅̂: 0.448 𝒁𝟏: -0.557 
𝝅̂: 0.500 𝒁𝟏: 0.000 

𝝅̂: 0.480 𝒁𝟏: -0.346 
𝝅̂: 0.480 𝒁𝟏: -0.346 

Spread movements 

Table N supplements the strategy discussed in table 11 of the main text. The null of randomness 

is never rejected. Baryla Jr, Borghesi, Dare, and Dennis (2007) zoom in on the efficiency of the 

betting market during the first four games of a season. They compare early season price formation 

with that of the IPO process banks face when pricing a new security. At the start of a season, the 

betting market has some indications about the strength of a team, but true values are only revealed 

gradually as the season progresses. More concretely, they test whether movements in the point 

spread between the opening line and closing line contain useful information in the first four games 

of a season. As shown in table N, the null of randomness is never rejected. 

Table N: Overview of papers implementing “bet conditional on spread movements” strategies 

 Authors Data set Conditioning 𝝅̂ 𝒁𝟏 𝒁𝟐 
Rows 1-8 show the strategy “bet on home team when the spread for the home team moves by k points”. 
1 Gandar et al. 

(1998) 
NBA 1985-
1994 

k = -3.5 0.433 -
0.730 

 

2   k = -2.5 0.536 0.805  
3   k = -1.5 0.490 -

0.469 
 

4   k = -0.5 0.500 0.000  
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5   k = 0.5 0.490 -
0.819 

 

6   k = 1.5 0.520 0.986  
7   k = 2.5 0.563 1.463  
8   k = 3.5 0.467 -

0.365 
 

Rows 9-25 show the strategy “bet on home team when the spread moved by k points from the opening line to the 
closing line in the first four home games of a season”. 
9 Baryla Jr et al. 

(2007) 
NBA 1985-
2005 

k ≤ -4 0.488 -
0.152 

 

10   k ≤ -3.5 0.423 -
0.784 

 

11   k ≤ -3 0.375 -
1.414 

 

12   k ≤ -2.5 0.520 0.283  

13   k ≤ -2 0.440 -
1.153 

 

14   k ≤ -1.5 0.422 -
1.584 

 

15   k ≤ -1 0.510 0.280  

16   k ≤ -0.5 0.504 0.124  

17   k ≤ 0 0.544 1.677  

18   k ≤ 0.5 0.506 0.197  

19   k ≤ 1 0.448 -
1.405 

 

20   k ≤ 1.5 0.571 1.604  

21   k ≤ 2 0.456 -
0.887 

 

22   k ≤ 2.5 0.424 -
1.172 

 

23   k ≤ 3 0.589 1.336  

24   k ≤ 3.5 0.458 -
0.577 

 

25   k ≤ 4 0.500 0.000  

       

26 Gandar et al. 
(1988) 

NFL 1980-
1985 

bet on the team that becomes less favored 
(more of an underdog) over the course of 
the week’s betting for games in weeks 
following “winning” weeks for the public. 
“Winning” weeks were those for which at 
least 50% of line changes from the opening 
to the closing line moved the betting line 
closer to the eventual game outcome 

0.570 2.669 1.762 
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