

This item is the archived peer-reviewed author-version of:

Cause analysis of unsafe acts of pilots in general aviation accidents in China with a focus on management and organisational factors

Reference:

Ma Qian, Wang Guojun, Buyle Sven, Jiang Xuan.- Cause analysis of unsafe acts of pilots in general aviation accidents in China with a focus on management and organisational factors

International journal of occupational safety and ergonomics - ISSN 2376-9130 - 29:2(2023), p. 690-703

Full text (Publisher's DOI): https://doi.org/10.1080/10803548.2022.2067296

To cite this reference: https://hdl.handle.net/10067/1875890151162165141

uantwerpen.be

Institutional repository IRUA

1 Cause Analysis of Unsafe Acts of Pilots in General Aviation Accidents

2 in China with a Focus on Management and Organisational Factors

- 3
- 4

5

Abstract

Introduction: General aviation (GA) safety has become a key issue worldwide and pilot errors have 6 grown to be the primary cause of GA accidents. However, fewer empirical studies have examined 7 8 the contribution of management and organisational factors for these unsafe acts. The flawed 9 decisions at the organisational level have played key roles in the performance of pilots. This study provides an in-depth understanding of the management and organisational factors involved in GA 10 11 accident reports Method: A total of 109 GA accidents in China between 1996 and 2021 were 12 analysed. Among these reports, pilot-related accidents were analysed using the human factors 13 analysis and classification system (HFACS) framework. Results: The significant effects of managerial and organisational factors and the failure pathways on a GA accident have been 14 15 identified. Furthermore, unlike traditional HFACS-based analyses, the statistically significant relationships between failures at the organisational level and the sub-standard acts of the pilots in 16 17 GA accidents were revealed. Conclusion: Such findings support the GA accident prevention strategy that attempts to reduce the number of unsafe acts of pilots should be directed to the crucial 18 19 causal categories at HFACS organisational levels: resource management, organisational process, 20 failure to correct a known problem, inadequate supervision, and supervisory violations.

21 Keywords: general aviation accidents; HFACS; unsafe acts; organisational factors

22

23

24 1. Introduction

25 General aviation (GA) is inclusive of all civil aviation operations, apart from scheduled air transport, including search and rescue flights, air medical flights, crop dusting flights, flight training, and 26 27 scientific experiment flights[1]. From 2011 to 2020, 94 GA accidents in China led to a death toll of 28 85. However, no accidents have been reported for scheduled air transport[2-7]. This outcome 29 indicates that GA is a high-risk industry compared to scheduled air transport in China (see Figure 30 1). The development trend of GA accidents can also be observed in other countries. Given the fairly 31 large number of fatalities and injuries caused by these accidents as well as loss of entrepreneurial production, GA accidents incur substantial costs to society. For example, Sobieralski [8] estimated 32 33 the average annual GA accident cost in the United States to be between 1.64 billion USD and 4.64 34 billion USD. For Australia, the estimated total cost of GA accidents was 62.36 million USD in 2003, and New Zealand bore an annual accident cost attributed to GA between 9.74 million USD and 35 36 25.05 million USD[9,10]. The premiums earned by insurance companies always fail to cover the 37 incurred losses related to GA accidents and incidents [11]. Therefore, reducing the number of GA 38 accidents to ensure the sustainability of GA growth is an important safety challenge.

According to the International Civil Aviation Organisation (ICAO)[12], an analysis of previous accidents and incidents could help accident prevention effectively. Aircraft accidents culminate in

- 41 a variety of precursive factors, including human error and technical or equipment malfunctions[13].
- 42 Although continued advances in aircraft design, reliability, and safety have substantially reduced
- 43 accidents caused by the environment and equipment, human factors have played significant roles in
- 44 aircraft accidents[14]. As is shown in Figure 2, in China, the proportion of civil aviation accidents
- 45 directly related to mechanical breakdown has gradually decreased since 1995, while the percentage
- 46 of accidents in which unsafe acts of aircrew were cited as direct causes has been on the rise. A
- 47 plethora of studies has indicated that approximately 55 to 95% of GA accidents can be attributed, at
- least in part, to pilot errors[15-17]. In contrast to GA, only 38% of airline accidents exhibited a
 direct association with pilot errors [15].
- 50 The unsafe behaviour of pilots in GA accidents has received considerable attention from scholars. 51 According to Wiegmann et al. [13], skill-based errors were observed in nearly 80% of pilot-related 52 GA accidents, followed by decision errors and routine violations. Lenné et al. [18] evaluated human 53 error in GA crashes and found that the unsafe acts of pilots, including skill-based errors and decision errors, were significantly associated with latent failures, including sub-standard personal readiness, 54 55 physical/mental limitations, and adverse mental states of pilots. Bearman et al. [19] further pointed 56 out that special situations (time constraints, financial pressures, lack of maintenance facilities, 57 physical discomfort) can strongly influence pilots' decision-making. According to the statistics of reasons for GA pilots' unsafe acts between 2010 and 2019, situational awareness was the most 58 59 observed reason, followed by insufficient rest, distraction in the cockpit, and navigational error [20]. 60 Li et al. [15] concluded that instrument meteorological conditions (IMC), locations and aircraft 61 types (helicopter and airplane) were associated with pilot errors.
- 62 However, there is little empirical work on the failures in organisations associated with the generation of unsafe acts of GA pilots. Dekker [21] proposed that human error is a symptom of failure deeper 63 64 inside the organisational system. Organisational failures not only create conditions of human error 65 but also have the potential to generate a working environment in which personnel are more likely to commit violations [22]. Orasanu and Connolly [23] emphasised that pilots' decisions were 66 67 influenced by the organisation's operating procedures in a direct way and by norms and culture in 68 an indirect way. Gaur [24] and Li et al. [15] are two of the few studies that examine the influence of 69 management and organisational factors on civil aviation accidents. Gaur found that over 50% of the 70 civil aviation accidents examined had organisational influences. Li et al. analysed 41 civil aviation 71 accidents that occurred in China. The results provided an understanding, based upon empirical 72 evidence, of the impact of decisions at management level on the occurrence of unsafe acts of pilots 73 such as poor resource management, inadequacies in organisational process, supervisory violations 74 and inadequate supervision. Xue and Fu [25] emphasised the critical role of organisational factors 75 in the violation operation of pilots based on a modified analysis model for GA accidents. By analysing 133 helicopter accidents that occurred in Brazil, Filho et al. [26] concluded that high-level 76 77 management contributed to the chain of events leading to pilots' unsafe acts. Nonetheless, the 78 proportion of helicopter accident reports in which organisational factors were described was small, 79 which may be related to the fact that GA accident reports (especially non-fatal accidents) rarely 80 capture organisational influences. Many studies have indicated that the lack of a systematic 81 investigation of GA accidents and incidents was the key reason for the scarcity of research involving 82 management and organisational factors associated with the performance of pilots [13,14,16].

According to Lenné et al. [18], understanding the nature of organisational factors is critical for safety 83 84 programs to achieve greater success. Interventions at active failures of pilots only slightly affect GA 85 safety unless there are effective supervisory and organisational processes in place to provide support. More importantly, interventions at the organisational level are likely to be the most cost-effective 86 87 [27]. In this context, it is important to examine the organisational and management factors 88 underlying GA accidents to develop effective safety programs and GA accident countermeasures. 89 This study aims to reveal the contribution of management and organisational factors to the unsafe 90 acts of GA pilots by describing the associations between causal factors at the organisational and operational levels. A human error taxonomy approach was used to accomplish this. To date, there 91 92 have been very few studies that examined the impact of organisational levels on GA pilots' acts. 93 Due to data constraints, those studies either failed to provide an in-depth analysis of organisational 94 and management factors or did not distinguish between airline accidents and GA accidents. Our 95 study bridges this gap with GA accident reports involving GA enterprises published by Civil Aviation Administration of China (CAAC). CAAC is responsible for GA accident investigation as 96 97 well as GA aircraft operation supervision in China.

98 2. Analytical Framework

99 2.1. Human Factor Analysis and Classification System (HFACS)

- Although many models have been proposed to analyse the human error in aircraft accidents, the Human Factors Analysis and Classification System (HFACS) is still the most popular aircraft accident model in the literature [27]. It is derived from Reason's organisational model of human error [28] and was originally designed for the investigation and analysis of US military aviation accidents [29]. As themes and trends in causal factors could be easily identified with this taxonomic approach, HFACS lends itself to multiple accident case analyses [30]. Table 1 shows the application of HFACS to various accidents that occur across different countries.
- Following the cases of HFACS applicability and the nature of the HFACS framework, which considers failures at all levels of an organisation, HFACS was used as an appropriate analytical framework in this study to examine the failures at organisational levels, influencing the unsafe acts of GA pilots. According to the version of the HFACS framework described by Shappell and Wiegmann [31], the entire HFACS framework includes four levels and 19 causal categories. The four levels are listed in Table 2 and the HFACS framework is shown in Figure 3.
- 113 *2.1.1. Unsafe Acts*
- Unsafe acts refer to the active failures of front-line pilots, which dominate most accident databases.
 Failures at this level can be classified into two categories; errors and violations. Errors (skill-based errors, decision errors, and perceptual errors) represent the unsafe acts that occur within rules and regulations implemented by an organisation, while violations (routine violations and exceptional violations) are defined as the wilful disregard for the rules and regulations which are more generally associated with motivational problems.
- 120 *Skill-based errors* are the failures of highly practiced behavior that occur with little or no conscious
- 121 thought. Skill-based errors frequently appear as failure to see and avoid, breakdown in visual scan,
- and inadvertent use of aircraft. Decision errors are best described as "honest mistakes" and often
- 123 occur in situations where pilots do not have the appropriate knowledge or choose a plan that proves
- 124 inappropriate for the situation at hand. Although *perceptual errors* are generally less frequent in
- 125 accident reports, they are as important as skill-based errors and decision errors. The type of error

- 126 arises when pilots' perception of the world differs from reality such as misjudging the 127 distance/altitude/airspeed.
- 128 Routine violations are defined as habitual acts which are often tolerated and, in effect, sanctioned
- 129 by the system or administrations. Therefore, the occurrence of a routine violation is indicative that
- 130 there might be failures in supervision level. *Exceptional Violations* are isolated departures from
- authorities. Unlike routine violations, exceptional violations are neither typical of the individual norcondoned by management.
- 133 2.1.2. Preconditions for Unsafe Acts
- 134 It is recognized that focusing on why unsafe acts occurred in the first place is a very important step 135 in accident analysis. The process involves analysing preconditions for unsafe acts of pilots, which 136 consists of environmental factors (physical environment and technological environment), the 137 condition of pilots (adverse mental states, adverse physiological conditions and physical/mental 138 limitations), and personnel factors (crew resource management and personal readiness).
- Physical environment has been shown to have an impact on pilots, which includes the operational environment (i.e., adverse weather, altitude, terrain), and the ambient environment (i.e., temperature, noise, vibration, light, toxins) in the cockpit. The *technological environment* also has a tremendous impact on the performance of pilots. This category encompasses a variety of issues such as the design, display characteristics and automation of hardware and controls.
- 144 Adverse mental states can be understood as not being prepared mentally. The mental conditions that 145 affect the performance of pilots are considered in this category (i.e., the loss of situational awareness, pernicious attitudes, task fixation). Adverse physiological states refer to the medical and/or 146 physiological conditions of pilots, such as spatial disorientation, illness, intoxication, and poisoning 147 148 known to impair the performance of pilots. Physical and mental limitations refer to the instances 149 when operational requirements exceed the limit of the individual in the control of aircraft. For instance, pilots may find themselves in emergencies in which the time required to respond or choose 150 151 an appropriate plan exceeds their ability.
- 152 *Crew resource management* is regarded as a cornerstone of aviation and used to account for the 153 occurrences of poor coordination or communication among personnel. Deficiencies in the crew's 154 cockpit and non-cockpit communications are the most common factors in this category. *Personal* 155 *readiness* is the failure of individuals to prepare physically or mentally for duty. Unlike routine 156 violation, this causal factor emphasizes failures of pre-flight preparation, such as drug use, alcohol 157 consumption, violation of rest management, etc.

158 2.1.3. Unsafe Supervision

- 159 The category of supervision was considered in Swiss Cheese Model, which creates preconditions
- 160 for unsafe acts and influences the condition of pilots and the type of environment they work in [31].
- 161 In the context of GA enterprises, supervision generally refers to the practice of deputy general
- 162 manager of operation and maintenance. The situation where pilots own or lease aircraft and need to
- 163 carry on self-supervision is not considered in our study. This category comprises four sub-categories:
 164 inadequate supervision, planned inappropriate operations, failure to correct a known problem, and
 165 supervisory violations.
- 166 *Inadequate supervision* refers to inappropriate oversight and management of resources and 167 personnel. There are many examples in which the lack of supervision and oversight triggers the 168 violations of crew as well as other unsafe acts[31]. One of the examples is supervisors of GA
- 169 enterprises always failed to provide adequate recurrent training for pilots or ensure pilots have

sufficient rest time between flights, skill-based errors are more like to occur. Planned inappropriate 170 operations category contains errors in the task assignment by managers related to operations. A 171 common error classified into this category is the improper manning. For example, senior, dictatorial 172 captains are paired with junior, weak co-pilots or inexperienced flight instructors are paired with 173 174 poorly trained student pilots, communication and coordination problems are more easily observed. 175 Failure to correct a known problem refers to those instances when problematic issues are known to 176 supervisors and they fail to correct them accordingly. For example, the failure to identify at-risk GA pilots who had repeatedly violated flight procedures. This kind of supervisory behavior is more 177 likely to foster an unsafe atmosphere and then promote the violation of rules and regulations [31]. 178 179 Supervisory violations are willful disregard for existing rules and doctrine by supervisors during the 180 course of their duties, creating the preconditions for the tragic sequence of events that predictably follow. For example, the operation manager of GA enterprises arranges personnel to perform flight 181 182 tasks without the necessary qualification and license, which creates the precondition of fatal pilot 183 errors.

184 2.1.4. Organisational Influences

Organisational influences describe the contributions of flawed decisions in upper command levels, directly affecting the practices at the mid-management level, as well as the conditions and actions of front-line pilots. The upper command levels of GA enterprises refer to the upper-level management including the manager and deputy manager. This category can be examined into three subcategories: resource management, operational process, and organisational climate.

Resource management refers to corporate decisions on how to allocate, manage and maintain the 190 organisational assets (personnel, monetary assets, equipment, and facilities). It is noteworthy that 191 192 the financial performance of GA enterprises has a critical impact on the resource management 193 decisions. For example, GA enterprises in times of fiscal austerity tend to purchase low-cost and 194 less effective equipment which have a higher risk of accidents Operational process is defined as corporate decisions and rules governing the everyday activities of the organisation. Often, topics 195 196 including operations (operational tempo, time stress, production quotas), procedures (standards, 197 defined objectives, documentation) and oversight (risk management, safety programs) are covered 198 in this category. In China, GA enterprises are more likely to be rated risky operators by CAAC if 199 they fail to establish a potential safety hazard investigation and treatment system or formulate safety 200 training program and annual safety training plan. Organisational climate can be viewed as the 201 prevailing working atmosphere within the organisation which comprises a broad class of variables 202 that influence personnel performance such as policies, command structure, and culture. Take 203 command structure, for example, if the command-chain of GA enterprises is confusing and no one 204 knows who is in charge, organisational safety will easily suffer and accidents happen.

- 205 **3. Methods**
- 206 *3.1. Data Source*

The 109 GA accident reports from the calendar years 1996–2021 were obtained from CAAC
 according to the following criteria;

- 209
- 210 Time interval: 1996–2021
- 211 Type of research: GA accident reports
- 212 Operation: GA enterprises

- 213 Aircraft Category: Fixed-wing aircraft, helicopters, and gyrocopters
- 214 Report Status: Final report
- 215 Injury Severity: Fatal and Non-fatal
- 216

245

217 CAAC clearly defined the investigation standard of civil aviation accidents in 1995. Thus, the GA 218 accidents, which occurred between January 1996 and December 2021, were obtained for analysis. 219 Additionally, this study was primarily interested in powered aircraft, and thus the data were 220 restricted to include only accidents involving powered GA aircraft. Gliders, blimps, and balloons 221 were excluded from the analysis. Ultra-light aircraft were also excluded [13]. Some of those reports, 222 16 in total, have provided only basic information, yet causal factors were not described, and 223 consequently, were not considered. Ultimately, 109 final accident reports in which causal factors 224 were identified and described in detail were submitted for further analysis. All GA accidents 225 examined conformed to the accident definition in the 9th edition of Convention on International 226 Civil Aviation, Annex 13[12] and the civil aircraft accident definition given in Civil Aircraft 227 Accident Investigation Rules (CCAR-395-R2)[55].

228 3.2. Reliability Analysis

229 Among the 109 GA accident reports, coding has only been applied to 86 GA accidents where pilot 230 error was involved. Two experts with extensive experience of GA accident investigation coded each 231 accident report independently. The experts had previously been trained together face to face for a 232 week on how to use the HFACS framework. The raters were assigned to analyse two years of the 233 GA accident data to achieve a shared and accurate understanding of the coding process as well as 234 the HFACS framework. The coding process is like this if any causal factor described in the HFACS 235 framework was noted in the examined accident report, it was encoded as '1' and if not noted as '0' 236 To avoid over-representation from any single accident report, each HFACS category was counted at 237 most once. Discrepancies in the categorisation were recorded and discussed until a consensus was 238 reached.

After the raters independently made their initial classifications, inter-rater reliability analysis at the categorical level should be conducted as a consistency check. Cohen's κ coefficient and the simple percentage rate of the agreement are typically utilised in the literature to measure compatibility between coders [27, 37, 38, 56]. The magnitude of the κ coefficient represents the proportion of agreement beyond that expected by chance. According to Landis and Koch [57], for the κ coefficient, we can judge the strength of agreement with the following standards:

246	K Statistic	Strength of Agreement
247	≤ 0	poor
248	0.01-0.20	slight
249	0.21-0.40	fair
250	0.41-0.60	moderate
251	0.61-0.80	substantial
252	and 0.81–1	almost perfect
253		

However, the κ could easily be distorted in some situations, such as where the number of categories is small or where there is a very high agreement between raters related to a large percentage of cases falling into one class [58, 27]. Therefore, the simple percentage rate of agreement (calculated over

- all paired ratings) was also calculated for inter-rater reliability. For example, in Table 3, in almost
- all categories, the *K* value was over 0.60, indicating substantial agreement. The category of adverse
- 259 physiological states was an exception. Its κ coefficient was 0.383, although the percent compliance
- was 96.51% in this category. This is because the frequency of the adverse physiological state category was very low (only 2).
- 262 Concerning what level of agreement is acceptable, Li et al. [27] held that it was between 63% and
- 263 95%. Li and Harris [37] found reliability figures between 72.3% and 96.4% and described this as
- acceptable reliability between raters. Shappell and Wiegmann [31] described 85% overall agreement
 between coders as an excellent level. The rates of compliance obtained in this study were quite high
 compared to those reported in the literature.

267 3.3. Relationship Analysis

- 268 The HFACS framework permits a relationship analysis between the errors at different levels. χ^2 test 269 of independence, Φ coefficient, and the odds ratio were considered for the evaluation of the 270 relationship between HFACS levels using the database obtained from coding.
- 271 3.3.1. χ^2 Test of Independence

It was performed to estimate the statistical strength of the association between the categories in the higher and lower levels of the HFACS framework. It is a common hypothesis test method based on the χ^2 distribution, which is mainly used for classification variables. The χ^2 test has many uses, and the most popular one is to check whether the X and Y variables with two or more classes are interdependent, which is the χ^2 test of independence. The hypothesis tested in this test is 'there is no association' [59]. In this study, the hypothesis is defined as 'there is no association between failures at different HFACS levels.

- 279 The χ^2 represents the degree of deviation of the observed value from the theoretical value. The 280 calculation steps were as follows:
- 281 $\chi^2 = \sum \frac{(A-E)^2}{E} = \sum_{i=1}^k \frac{(A_i E_i)^2}{E_i}, \quad i = 1, 2, ..., k.$ (1)
- 282

 $E_{i=1} E_i$ Where A_i =Observed value or frequency of *i*th cell.

283

 E_i =Expected value or frequency of the cell *ith*. k =The number of cells.

- 284 This test has requirements for research data. Specifically, if the number of samples (n) is greater 285 than 40, and the expected cell frequencies are all equal to or greater than 5, researchers should refer 286 to the results of the Pearson χ^2 test. The Pearson χ^2 test is also the original form of the χ^2 test, which 287 288 was first put forward by the British statistician Karl Pearson in 1990. When any of the expected cell frequencies are between 1 and 5 (n > 40), continuous correction of χ^2 statistics is necessary [59]. 289 Yates' χ^2 test, also called Yates' correction, is used to provide a more conservative result for 290 contingency tables with small cell counts [60]. Yates' correction only replies to 2×2 cross tables. 291 292 For cross tables with any of the expected cell frequencies less than 1, Fisher's exact test provides a 293 better solution. Furthermore, if the number of samples is less than 40, Fisher's exact test is used [59]. 294 3.3.2. Φ Coefficient
- 295 The level of the relationship is given by the Φ correlation coefficient. The Φ statistic (varying from
- 296 0 to 1, where 1 implies a complete association between two categories, 0 implies that the two
- 297 categories are independent) is a recommended analysis for two class 2 × 2 tables [36]. In the four-

298 grid table, the Φ is between 0 and 1, and in other contingency tables, there is no upper limit 299 theoretically. The larger the value, the stronger the correlation degree. The calculation step was as 300 follows:

$$\Phi = \sqrt{\chi^2 / n}.$$
 (2)

302 According to Cohen[61], the values of the Φ coefficient can be divided into four sets: the range [0, 303 0.1) indicates no relationship, range [0.1, 0.3) indicates a low level of relationship, range [0.3, 0.5) 304 indicates a moderate level of relationship, and range [0.5,1] indicates a very high level of association. 305 *3.3.3 Odds Ratio*

306 Finally, the calculation of odds ratios would contribute to an easier understanding of the correlation 307 between HFACS levels [59]. The odds ratio is the ratio of the probability of the presence of an 308 examined variable to the probability of its non-presence with the influence of another variable. If 309 the odds value is greater than 1, then the examined variable is more likely to occur in the presence 310 of another variable. An odds ratio of 1 indicates no association. In this study, the odds ratio provides 311 an estimate of how many times a causal factor at lower operational levels is likely to be observed in 312 the presence of the other causal factor at higher organisational levels. The statistical analyses 313 (reliability analysis and relationship analysis) were conducted using the SPSS (Statistical Package 314 for the Social Science) program (version 22.0).

315 **4. Findings**

This part is arranged as follows: first, 109 GA accident reports were analysed descriptively, and then HFACS analysis and relationship analysis results were provided.

318 4.1. Overall Results

319 As seen in Table 4, human factors are not limited to pilots or aircrews, but also include air 320 traffic controllers, ground crew, maintenance personnel, passengers, and managers. A total of 81.7% 321 of GA accidents were caused by human factors. This percentage implies that human factors have 322 been the primary cause of GA accidents, followed by environmental and equipment factors. A total 323 of 78.9% of GA accidents were associated with pilots, which is in line with existing research 324 The three most frequent GA aircraft types in the 109 aircraft accidents were R44II (9.17%), Y5 325 (6.42%), and R22 (5.50%). This is partly because these three types of aircraft are more often used 326 than other aircraft in the GA operation. Over a quarter of GA accidents involve collisions (26.61%), 327 and LOC (Loss of Control) (20.18%) and CFIT (Controlled Flight into Terrain) (19.27%) are the 328 two most common types of GA accidents besides collisions.

329 The fatal accident rate was as high as 39%, and 96 people were killed in the GA accidents examined.

- 330 Cruise or operation is the most critical phase of the flight for GA accidents; 69 (63.3%) accidents
- 331 occurred in this phase, which relates to the operations involved in the GA accidents (agriculture and
- 332 forestry-related flights (31.19%) and training flights (31.19%)). Thirteen (11.93%) accidents
- 333 occurred in the take-off phase of flight, 8 (7.34%) in the landing phase, 7 (6.42%) in the descent
- phase, 5 (4.59%) in the climb phase, 7 (6.42%) in other phases. According to the Report on
- Production Safety Accident and Regulations of Investigation and Treatment [62], among the 109
- GA accidents, 20 (18.35%) are particularly serious accidents, 8 (7.34%) major accidents, and 81

337 (74.31%) ordinary accidents.

338 4.2. HFACS Analysis Results

Since unsafe acts committed by pilots are germane to the examination of GA accident data, we restricted HFACS analysis to 86 pilot-related GA accidents. A total of 532 causal factors were identified in the accident reports. Figure 4 depicts the analysis results for the four HFACS levels. 182 unsafe acts, 201 preconditions for unsafe acts, 142 unsafe supervisions, and 98 organisational influences factors were observed in the GA accidents.

344 As shown in Figure 5, in level 1, the most prevalent unsafe acts were violations of pilots (66), 345 followed by skill-based errors (63), decision errors (43), and perceptual errors (10). This ranking 346 observed in unsafe acts is similar to another article involving civil aviation accidents that occurred 347 in China [27]. In level 2 preconditions for unsafe acts, physical environment (56) has the highest 348 frequency, followed by mental/physiological limitations (49) and adverse mental states (44). The 349 highest frequency in unsafe supervision level and organisational influences level belongs to 350 inadequate supervision (44) and organisational process (55) causal factors, respectively. Wiegmann and Shappel[34], Li et al.[27], Liu et al. [35], and Filho et al. [26] drew the same conclusion 351

concerning this ranking. The most common HFACS factors observed in the GA accident reports and
 their corresponding proportions are given in Table 5.

- At level 1, the factors most commonly involved were failure to properly prepare for the flight (45%), poor choice (44%), inadequate application of controls (34%), not following the IFR/VFR
- procedure (34%), breakdown in visual scan (30%), and failure to see and avoid (17%).

At level 2, for environmental factors, condition of pilots, and personnel factors causal categories, the most frequently observed factors were physical environment (65%), information processing limitation (56%), failed to communicate or coordinate (33%), and pernicious attitude (22%).

For unsafe supervision level, the most common factors were failed to enforce rules and regulations (35%), failed to provide proper or adequate training (29%), failed to provide correct data and other support (21%), and failure to provide oversight (20%). Finally, at level 4 for organisational process, resource management, and organisational climate causal categories, the most frequently cited factor was procedures with 45%. This factor was followed by human resources at 35% and oversight at

365 31%.

366 4.3. Relationships between HFACS levels

367 4.3.1 Relationships Between Adjacent HFACS Levels

For each of the 86 GA accidents, the categorisation of 19 HFACS causal categories was first performed as present (1) or absent (0). Based on the categorisation results, the relationships between the categories were examined individually.

- Table 6 shows that there were 12 pairs of significant associations ($p \le 0.05$). There were seven pairs of significant associations between level 4 organisational influences and level 3 unsafe supervision. The resource management category at level 4 was significantly associated with four categories of unsafe supervision: inadequate supervision ($\chi^2 = 26.217$, df=1, p ≤ 0.001), planned inappropriate operations ($\chi^2 = 7.055$, df=1, p ≤ 0.01), failed to correct a known problem ($\chi^2 = 8.547$, df=1, p ≤ 0.01), and supervisory violations ($\chi^2 = 33.214$, df=1, p ≤ 0.001). Organisational process was significantly associated with three categories of unsafe supervision: inadequate supervision ($\chi^2 = 19.627$, df=1,
- 378 $p \le 0.001$), planned inappropriate operations ($\chi^2 = 8.524$, df=1, $p \le 0.01$), and supervisory violations

379 $(\chi^2=32.976, df=1, p\le 0.001)$. Organisational climate was not significantly associated with any level 380 3 categories.

- 381 Three pairs of significant associations existed between the categories at level-3 and level-2. The
- 382 HFACS level-3 category failed to correct a known problem was significantly associated with the
- 383 level-2 category technological environment (χ^2 =7.495, df=1, p≤0.01). Mental/physiological
- 384 limitations at level 2 were significantly associated with inadequate supervision (χ^2 =4.615, df=1,
- 385 $p \le 0.05$) and supervisory violations ($\chi^2 = 5.503$, df=1, $p \le 0.05$) at level 3 respectively.
- Two pairs of categories have significant associations between HFACS level 2 preconditions for unsafe acts and level 1 unsafe acts. Mental/physiological limitations were significantly associated with one category of level 1: decision errors ($\chi^2 = 10.673$, df=1, p≤0.01). Adverse mental states were significantly associated with one category of level 1: violations ($\chi^2 = 6.026$, df=1, p≤0.05).
- significantly associated with one category of level 1: violations ($\chi = 0.020, \text{ di}=1, \text{ p} \le 0.03$).
- The analysis of the level of relationship between categories in HFACS levels is shown in Table 6. In the level 4 categories, the statistically highest significant positive correlation was observed between resource management and supervisory violations in level 3 (Φ =0.621, p≤0.001). There was
- also a very high correlation between resource management and inadequate supervision (Φ =0.552, p≤0.001), as well as between organisational processes and supervisory violations (Φ =0.619, p≤0.001). In the level 3 categories, there was a moderate correlation between failed to correct a known problem and level 2 category technological environment (Φ =0.335, p≤0.01). At levels 2 and 1, there was a moderate correlation between mental/physiological limitations and decision errors
- 398 (Φ=0.352, p≤0.001).
- 399 Finally, the odds ratios and 95% Cis are given in Table 6. The highest odds ratio was determined 400 between the flawed organisational process and supervisory violations. The occurrence of a poor 401 organisational process (i.e., no official procedures in place) increases the chance of supervisory violations by approximately 62 times. Similarly, when poor organisational processes were present, 402 403 the odds of inadequate supervision and planned inappropriate operations increased by 9.3 and 4.0 times, respectively. Inadequate supervision was 14 times more likely to be present in the presence 404 405 of inefficient or poor resource management (i.e., excessive cost-cutting). The odds ratios between 406 resource management and the other three categories in level 3 can be interpreted similarly.
- 407 The observed associations would also mean that the probability of adverse technology environment 408 when supervisors failed to correct a known problem (i.e., documents in error, an at-risk aviator) is 409 approximately six times higher. The odds of mental/physiological limitations present increased 410 about three times in the presence of supervisory violations (i.e., failure to enforce rules and 411 regulations) or inadequate supervision (i.e., failure to provide proper training). In turn, decision 412 errors were over four times more likely to occur when there were mental/physiological limitations 413 (i.e., sensory limitation).
- 414 4.3.2. Relationships Between Non-Adjacent HFACS Levels
- Based on previous research, there are many examples in which organisational failures will directly impact the unsafe acts of pilots, such as violations and decision errors. Dönmez and Uslu[56] analysed the relationships between higher levels in the organisation (unsafe supervision and organisational influences) and level 1 unsafe acts and found that organisational processes and supervisory violations were statistically significant in relation to the violations of the cockpit crew. For this reason, the relationships between HFACS organisational and supervision levels and unsafe
- 421 acts level were examined in this study, the following Table 7 was obtained.
- 422 Level 4 organisational influences versus level 1 unsafe acts found that there were two pairs of 423 significant associations: resource management and decision errors ($\chi^2 = 8.31$, df=1, p≤0.01), and

organisational processes and violations of pilots ($\chi^2 = 5.05$, df=1, p ≤ 0.05). Also, there were two pairs 424 of significant associations between level 3 unsafe supervision and level 1 unsafe acts; supervisory 425 violations and violations of pilots ($\chi^2 = 5.292$, df=1, p ≤ 0.05), and inadequate supervision and 426 violations of pilots ($\chi^2 = 6.026$, df=1, p ≤ 0.05). An intermediate positive correlation was found 427 between level 4 category resource management and decision errors at level 1 (Φ=0.311, p≤0.01). A 428 low positive correlation was found between the other three pairs. The odds ratio analysis results 429 430 indicate that the presence of management and organisational factors obtained in the analysis of the 431 χ^2 test increased the probability of decision errors and violations of pilots by about 3–4 times.

432 **5. Discussion**

433 5.1 Unsafe Acts

434 The violations of pilots were the most frequently classified category at Level 1 in the examined GA accident reports. By definition, pilots' violations deviate from safe operating practices, procedures, 435 436 standards, or rules and often involve fatalities [22]. Failure to properly prepare for flight was the 437 most frequently observed factor in violations. This factor is included in routine violations. Here, the 438 violations of pilots were significantly associated with adverse mental states in level 2, which 439 suggests that adverse mental states such as distraction, loss of situational awareness, and mental fatigue may be the most important precursors of the violations of pilots. The violations made by 440 441 pilots were nearly four times more likely to occur in the presence of adverse mental states. Measures must be taken to reduce the probability of adverse mental states. The pernicious attitude (i.e., 442 443 complacency, overconfidence, and poor flight vigilance) was involved in 22% of GA accidents and accounted for one-third of the adverse mental states. Thus, a major focus of training should be to 444 445 strengthen the safety awareness of GA pilots and increase the relevance of training to GA operation. Krause[63] emphasised that, based on academic research, safety surveys, and accident reports, there 446 were deficiencies in the decision-making ability of pilots during accident flights. The most 447 448 frequently observed factor in decision errors was poor choice, accounting for approximately 88% of those observed. Poor choice presents an incorrect decision made by pilots among multiple 449 response options. A sound decision is generally based on three basic elements: adequate knowledge, 450 keen perception, and the ability to identify appropriate actions. This would mean that pilots with 451 452 less experience are more likely to make wrong decisions, especially when faced with time, financial, 453 and other external pressures [64]. By definition, the mental/physiological limitations category at 454 level 2 encompasses issues such as the lack of adequate experience, especially for the complexity 455 of the situation, insufficient reaction time, and information overload. The presence of mental/physiological limitations may be related to decision errors. The empirical study published 456 457 by Lenné et al. [18] further supports this association. Nonetheless, pilots can regain decision-making ability by developing accurate perceptions and the ability to distinguish between correct and 458 459 incorrect solutions [63]. Technology (i.e., portable weather data) can also help enhance the decisionmaking process of pilots [65]. 460

Skill-based errors were the second most frequent category of unsafe acts, whose proportion in GA accidents was very close to the violations. The prevalence of skill-based errors in GA can be explained by the fact that GA pilots often fly less and are offered fewer opportunities for initial and recurrent training sessions than their commercial counterparts [33]. This is the case in China. Adequate flight training and experience could be effective solutions for reducing skill-based errors. The most frequently cited skill-based error for the GA accidents examined was the inadvertent

- 467 control or handling of aircraft. DoD (Department of Defense)[66] defined this factor as over or under
- the control of aircraft or systems, which may be associated with a temporary failure of coordination.
- 469 Perceptual errors had the lowest frequency and were only observed in 10 of the 86 GA accidents.
- 470 This is due in large part to fewer nondaylight GA operations and great advances in warning devices
- such as ground collision avoidance systems [26]. Misjudging distance/altitude/airspeed was the
 most common perceptual error, accounting for 90% of all errors. No statistically significant
- relationship was found between skill-based and perceptual errors and higher HFACS causalcategories.

475 5.2. Management and Organisational Effect

476 Decisions by management create flaws within an organisation, which inevitably leads to latent error-477 producing conditions. These then interact with mental and physical states to generate unsafe acts 478 [22]. Unlike previous research, the high frequencies of organisational and supervision categories 479 observed in the GA accident reports permit the analysis of the relationships between HFACS 480 organisational and operational levels.

481 *5.2.1 Unsafe Supervision*

482 Supervisors are also seen as middle managers at organisations. Causal factors attributed to unsafe 483 supervision failures involved the full range of supervisory factors rather than one category. The factors classified as inadequate supervision (51.16%) and planned inappropriate operations (50%) 484 485 had the highest percentages within the unsafe supervision category, which parallels the results of other civil aviation accident analyses [22, 27, 33]. The presence of a failure to correct a known 486 problem at unsafe supervision level was associated with the presence of poor technological 487 488 environment. There was a moderate and significant correlation between the two categories. The 489 failure to correct a known problem category was, in turn, greatly inflated by poor resource 490 management. This was a link between poor technological environment and flawed resource 491 management. Failure to correct a known problem in the HFACS framework refers to situations in 492 which a supervisor fails to correct hazardous acts or unsafe tendencies or fails to initiate remedial 493 actions.

494 Inadequate supervision and supervisory violations at Level 3 were significantly associated with 495 mental/physiological limitations at Level 2. Physical/mental limitations appeared in more than half 496 of the pilot-related accidents. In China, GA pilots are generally younger than pilots flying aircraft 497 operating under CAAR Part 121 and are much less experienced [67]. Such pilots often fly less 498 sophisticated and reliable aircraft into areas where it is difficult for ATC (Air Traffic Controller) to 499 provide flight support [34]. ATC is regarded as the last line of defence. In addition, GA aircraft have 500 a low flying altitude and a complicated flight environment, resulting in a short response time for 501 pilots. Therefore, GA pilots are more likely to be in situations beyond their training and abilities 502 when flying aircraft. The inadequate supervision category contains issues such as failure to provide 503 adequate technical data or procedures and failure to provide proper and adequate training. 504 Permitting unqualified crew to fly is one of the most common supervisory issues in the category of 505 supervisory violation. Typically, this unsafe supervision behaviour is more likely to occur when 506 there is a shortage of qualified pilots. China has been facing a serious shortage of pilots, which may 507 be the probable reason for the high prevalence of supervisory violations (44.19%). The significant relationship between mental/physiological limitations and the two categories in unsafe supervision 508 509 level is a clear indication that the GA industry in China has not invested enough in pilot training 510 specifically targeted at improving the emergency response capability of pilots.

511 The proportion of GA accident reports in which physical environment factor was identified was the 512 highest at level 2. This was related to adverse weather, such as clouds, rain, or thick fog. GA flights are especially vulnerable to adverse weather because of their small aircraft size and low altitude, 513 514 and pilots tend to complete a flight when facing adverse weather [68]. A small percentage of GA 515 accidents was found to be associated with problems in crew resource management. This is partly 516 because a subset of GA operations is conducted by a single pilot, which reduces the number of 517 communication failures between pilots in the cockpit [34]. In this study, the aircraft in 26 of the 86 GA accidents examined were single-piloted. Adverse mental states were involved in over 50% of 518 519 GA accident reports. In addition to pernicious attitude (22%), mental fatigue (10%), loss of 520 situational awareness (8%), and channelised attention (8%) were also frequent factors in adverse 521 mental states. Adverse mental states of GA pilots are more likely to have disastrous consequences, 522 as they often fly aircraft alone without reminders from a copilot in the cockpit[26].

523 *5.2.2. Organisational Influences*

524 High-level decisions represent the common starting point for various failure pathways and are the 525 root causes of other failures [22]. Poor resource management was associated with inadequacies in 526 all categories at the unsafe supervision level which in turn affected the preconditions for unsafe acts, 527 and consequently, the actions of pilots. The statistical results suggest that unsafe supervision failures 528 are more likely to be present when there are organisational level issues related to resource 529 mismanagement. Taking supervisory violations as an example, the odds of supervisory violations 530 being present increased by nearly 20 times in the presence of poor resource management. DoD defined poor resource management as a mishap factor negatively affecting system, pilots, and error 531 532 management, also promoting the emergence of unsafe situations [69]. In the HFACS framework, 533 poor resource management encompasses issues such as the mismanagement of human resources 534 (i.e., inappropriate selection, staffing and training of human resources at an organisational level), monetary resources (i.e., excessive cost cutting), and equipment/facility resources (i.e., purchase of 535 536 sub-optimal and inadequately designed equipment, failure to remedy known design flaws in existing 537 equipment). Among them, poor human resource management issues appear more frequently in GA 538 accidents. In addition, GA companies in China do not have procedures that address contingencies. 539 As such, managers often fail to identify problems until an accident occurs.

540 Organisational process showed strong relationships with three supervisory categories: inadequate 541 supervision, planned inappropriate operations, and supervisory violations. The occurrence of 542 problems in the organisational process increased the probability of unsafe supervisory practices. 543 According to DoD, deficiencies in organisational processes will result in inadequacies in individual, 544 supervisory, and organisational performance and cause unidentified hazards and uncontrolled risk, 545 resulting in human error or an unsafe situation [66]. In the HFACS framework, deficiencies in organisational process include such issues as operations (i.e., undue time pressure, high workload, 546 547 poor incentive system), procedures (failure to set clearly defined objectives, no official procedures in place, lack of work instructions), and oversight (inappropriate hazard recognition, poor risk 548 549 management programs, lack of pilot programs) [29].

550 5.2.3 Unsafe Supervision and Organisational Influences

551 When examining the relationships between supervision and organisational levels and unsafe acts

552 level, very important findings were obtained. Organisational processes, inadequate supervision, and

supervisory violations were found to be statistically significant with violations of pilots.

The DoD emphasised that poor organisational processes will negatively influence the performance 554 555 of pilots, as well as supervisory and organisational practices[66]. Organisational processes fall into three categories: operations, procedures, and oversight. The operations included in the 556 organisational process are also defined as the working conditions provided to workers by upper-557 558 level management, including operational tempo, time stress, and schedules. For example, in China, 559 the increased demand for crop dusting between May and August each year leads the crew to fly a 560 very demanding schedule arranged by management. As a result, more unsafe acts of pilots and a 561 high accident rate were observed during this period [2]. Procedures in the organisational process refer to official methods (which involved standards, documentation, and instructions) on how to do 562 563 the job. The oversight factor is the continuous monitoring of other organisational factors, such as 564 resources, organisational processes, and organisational climate, for a safe operating environment. 565 Therefore, not surprisingly, the deficiencies in these factors are related to violations committed by pilots. 566

567 Inadequate supervision is described as a supervisory failure to identify hazards, control risks, and 568 provide training and oversight [66]. For instance, supervisors fail to track the qualification or performance of pilots, and therefore are unable to identify risky pilots who are more likely to violate 569 570 rules or regulations [29]. Supervisory violations are a wilful disregard for rules and regulations by 571 managers, such as the failure to enforce rules and regulations, authorising unnecessary hazards, and 572 permission to allow a pilot to fly without the necessary qualification. Maurino et al. [22] argued that 573 poor supervisory examples were generally associated with violations of pilots. When violations at management levels become more common, pilots would likely regard some nonconformist flying 574 acts as accepted and hence ignore flight rules. This may even trigger a lack of awareness that they 575 576 are in fact violations and not the norm [31]. It is widely recognised that addressing the unsafe 577 behaviour of 'violations' is more complex and difficult. The associations obtained in this study 578 indicate that violations of pilots require organisational remedies.

579

580

581 6. Conclusion

582 HFACS framework was used to classify the casual factors from GA accident investigation reports. 583 With the data on GA accident factor information, we conducted a statistical analysis of the 584 associations between categories at different levels. According to the analysis results, violations, 585 skill-based errors, and decision-based errors were the most frequently reported unsafe acts of GA 586 pilots, while poor resource management and inefficient organisational processes were found to be 587 the root causes of these unsafe acts. Besides, the relationship between violations and organisational 588 and management factors was statistically revealed.

589 The effect of organisational factors on unsafe acts of GA pilots received less attention from 590 researchers compared with the relationship between organisational factors and unsafe acts of airline 591 pilots, which is not conducive to GA enterprises accident prevention. GA enterprises are the main body of GA aircraft operators in countries whose GA factor market is relatively backward (e.g., 592 593 China) or geographical location is special (e.g., Japan). Many critical flight missions needed to be 594 carried out by GA enterprises for efficiency and safety reasons, like emergency rescue, air medical, 595 and flight training. In China, over 90% of GA flight hours are produced by GA enterprises. The 596 research findings on the causal factors of GA accidents and the key associations between 597 management and organisational factors and unsafe acts will provide valuable guidance for GA enterprises to determine the effective combination of safety interventions. Interventions at unsafe acts are unlikely to have expected impact on safety unless effective supervision, organisational processes and resource management are in place to provide support. Besides, knowing the most common error forms and the pattern of GA accident path can help regulators develop targeted intervention measures and objectively evaluate system safety programs.

Finally, it is important to recognize the limitations of our study. We use GA accident reports provided by CAAC to classify causal factors, not the primary data. There is a difference between "What's the causes of GA accidents?" and " What causes do investigation experts think caused GA accidents?". In China, aviation accident investigation is conducted by CAAC. They might choose not to disclose or play down some causal factors to avoid being too incriminating. As a result, these GA accident reports may suffer bias[26]. The future GA accident investigation can consider the use of HFACS framework or other human error analysis models to guide the collection of data. Besides, scholars have put forward that some emerging organisational factors like learning from experience and change management may not be well identified by HFACS model[25]. However, these factors were rarely observed in the GA accident reports studied, most of the organisational factors included in these GA accident reports can be well identified by HFACS. Future work could focus on the emerging organisational factors identification problem of human error analysis models to help contribute to extensive research on organisational factors.

618 Funding details: This research did not receive any specific grant from funding agencies in the 619 public, commercial, or not-for-profit sectors.

Disclosure statement: there are no relevant financial or non-financial competing interests to report.

Availability of data: The data that support the findings of this study are available on request fromthe CAAC.

- 642 References
- 643
- 644 1. Standing Committee of the Congress. 中国民用航空法 [Civil aviation law of the People's Republic
 645 of China]. Beijing: China Legal Publishing House; 2017. Chinese.
- 646 2. Civil Aviation Administration of China.民用航空飞行事故汇编(2011-2015) [2011-2015 Civil
- aviation flight accidents compilation]. Beijing: Civil Aviation Administration of China Press; 2017.
- 648 3. Civil Aviation Administration of China[Internet]. 2017 June [cited 2021 March 04]; [about 23 screens].
- Available from: http://www.caac.gov.cn/XXGK/XXGK/TJSJ /201705/P020170508406 147 909874.pdf
- 4.Civil Aviation Administration of China[Internet]. 2018 June [cited 2021 March 04]; [about 23 screens].
- 651
 Available
 from:
 http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201805
 /P02018
 05216
 22
 8
 3

 652
 1951125.pdf.
- 5.Civil Aviation Administration of China[Internet]. 2019 June [cited 2021 March 04]; [about 25 screens].
 Available from: http://www.caac.gov.cn/XXGK/XXGK/TJSJ/ 201905/ P020190 5085 19 52
 9727887.pdf.
- 656 6. Civil Aviation Administration of China[Internet]. 2020 June [cited 2021 March 04]; [about 26 screens].
- 657 Available from: http://www.caac.gov.cn/XXGK/XXGK /TJSJ/202006/ P020200 60563 06 77
 658 965649.pdf.
- 659 7. Civil Aviation Administration of China[Internet]. 2021 June [cited 2021 July 04]; [about 27 screens].
- 660 Available from: http://www.caac.gov.cn/XXGK/XXGK/TJS J/202106 /P0202106 1058 26 00192012.pdf.
- 8. Sobieralski JB. The cost of general aviation accidents in the United States. Transportation Research
 Part A: Policy and Practice. 2013;47:19-27.
- 9. Bureau of Transport and Economics. Cost of Aviation Accidents and Incidents. Canberra: Bureau of
 Transport and Economics;2006.(BTRE Report 113).
- 10. Scuffham P, Chalmers D, O'Hare D, et al. Direct and indirect cost of general aviation crashes. AvSeM.
 2002;73(9):851-8.
- 11. Rosenlof K. Insurance Special Report 2018. Aviation International News. [Internet]. 2018 June[cited
 2021 June 06]; [about 4 screens]. Available from: https://www.usau.com/wp-con te
 nt/uploads/2018/06/Insurance-Special-Report-2018-AIN-Vallach.pdf
- 12. International Civil Aviation Organisation[Internet]. 2016 July [cited 2021 March 04]; [about 43
 screens] Available from: https://www.emsa.europa.eu/retro/Docs/marine casualties/annex 13.pdf.
- 672 13. Wiegmann D, Faaborg T, Boquet A, et al. Human error and general aviation accidents: A
 673 comprehensive, fine-grained analysis using HFACS. Washington(DC): US Federal Aviation
 674 Administration, Office of Aerospace Medicine;2005.(DOT/FAA/AM-05/24).
- 675 14. Boyd DD. A Review of General Aviation Safety (1984–2017). Aerosp Med Hum Perf. 2017;
 676 88(7):657-64.
- 15. Li G, Baker SP, Grabowski JG, et al. Factors associated with pilot error in aviation crashes. Aviat
 Space Environ Med. 2001;72(1):52-8.
- 16. Dambier M, Hinkelbein J. Analysis of 2004 German general aviation aircraft accidents according to
 the HFACS model. J Air Med. 2006;25(6):265-9.
- 681 17. O'Hare D, Owen D. Cross-country VFR crashes: pilot and contextual factors. Aviat Space Environ
 682 Med. 2002;73(4):363-6.
- 683 18. Lenné MG, Ashby K, Fitzharris M. Analysis of General Aviation Crashes in Australia Using the
- Human Factors Analysis and Classification System. Int J Aviat Psychol. 2008; 18(4):340-52.
- 685 19. Bearman C, Paletz SBF, Orasanu J. Situational Pressures on Aviation Decision Making: Goal

- 686 Seduction and Situation Aversion. Aviat Space Environ Med. 2009;80(6):556-60.
- 687 20. Guo X, Chen Y, Si Q, et al. Evolution Mechanism on the Unsafe Behavioural Risks of General
- 688 Aviation Pilots. Eng Econ. 2021;32(2):104-17.
- 689 21. Dekker SW. The re-invention of human error. Hum factors aerosp saf. 2001;1(3):247-65.
- 690 22. Maurino DE, Reason J, Johnston N, et al. Beyond aviation human factors: Safety in high technology
- 691 systems. New York (NY): Routledge; 2017.
- 692 23. Orasanu J, Connolly T. The reinvention of decision making. In: Decision Making in Action: Models
- and Methods. Westport(CT): Ablex Publishing; 1993.
- 694 24. Gaur D. Human factors analysis and classification system applied to civil aircraft accidents in India.
 695 Aviat Space Environ Med. 2005;76(5):501-5.
- 696 25. Xue Y, Fu G. A modified accident analysis and investigation model for the general aviation industry:
- 697 Emphasizing on human and organisational factors. J Saf Res. 2018;67:1-15.
- 698 26. Filho APG, Souza CA, Siqueira ELB, et al. An analysis of helicopter accident reports in Brazil from
 699 a human factors perspective. Reliab Eng Syst Saf. 2019;183:39-46.
- 700 27. Li W-C, Harris D, Yu C-S. Routes to failure: Analysis of 41 civil aviation accidents from the Republic
- of China using the human factors analysis and classification system. Accid Anal Prev. 2008;40(2):42634.
- 28. Reason J. Human error. Cambridge (MA): Cambridge university press; 1990.
- 29. Shappell SA, Wiegmann DA. The human factors analysis and classification system--HFACS.
- Washington(DC): US Federal Aviation Administration, Office of Aviation Medicine; 2000. (DOT/FAA/AM-00/7).
- 30. Salmon PM, Cornelissen M, Trotter MJ. Systems-based accident analysis methods: A comparison of
 Accimap, HFACS, and STAMP. Saf Sci. 2012;50(4):1158-70.
- 31. Wiegmann D, Shappell S. A human error approach to aviation accident analysis: The human factors
 analysis and classification system. Burlington(VT): Ashgate Publishing Limited; 2003.
- 32. Ting FAL-Y, Dai SBD-M, editors. 14th International IEEE Conference on Intelligent Transportation
 Systems (ITSC); 2011 Oct 5-7; Washington(DC).NY:IEEE; 2011.
- 33. Shappell S, Detwiler C, Holcomb K, et al. Human Error and Commercial Aviation Accidents: An
 Analysis Using the Human Factors Analysis and Classification System. Hum. Factors. 2007;49(2):227-
- 715 42.
- 716 34. Wiegmann DA, Shappell SA. Human error analysis of commercial aviation accidents: application of
- the Human Factors Analysis and Classification system (HFACS). Aviat Space Environ Med. 2001;
 72(11):1006-16.
- 35. Liu SY, Chi CF, Li WC, editors. International Conference on Engineering Psychology and Cognitive
 Ergonomics; 2013 July 21-26; Las Vegas, NV.
- 36. Shappell S, Wiegmann D, editors. Proceedings of the Annual Meeting of the International Society of
- Air Safety Investigators; 2004 Sep 1-2; Gold Coast, Australia. Sterling(VA):the International Society of
 Air Safety Investigators; 2004.
- 37. Li W-C, Harris D. Pilot error and its relationship with higher organisational levels: HFACS analysis
 of 523 accidents. Aviat Space Environ Med. 2006;77(10):1056-61.
- 726 38. Li W-C, Harris D. HFACS Analysis of ROC Air Force Aviation Accidents: reliability analysis and
- 727 cross-cultural comparison. Int J Appl Aviat Stud. 2005;5(1):65-81.
- 39. Zhan Q, Zheng W, Zhao B. A hybrid human and organisational analysis method for railway accidents
 based on HFACS-Railway Accidents (HFACS-RAs). Saf Sci. 2017;91:232-50.

- 40. Baysari MT, Caponecchia C, McIntosh AS, et al. Classification of errors contributing to rail incidents
- and accidents: A comparison of two human error identification techniques. Saf Sci. 2009;47(7):948-57.
- 41. Baysari MT, McIntosh AS, Wilson JR. Understanding the human factors contribution to railway
 accidents and incidents in Australia. Accid Anal Prev. 2008;40(5):1750-7.
- 42. Wang X, Zhang B, Zhao X, et al. Exploring the underlying causes of Chinese Eastern Star, Korean
- Sewol, and Thai Phoenix ferry accidents by employing the HFACS-MA. Int J Environ Res Public Health.
 2020;17(11):4114.
- 43. Celik M, Cebi S. Analytical HFACS for investigating human errors in shipping accidents. Accid Anal
 Prev. 2009;41(1):66-75.
- 44.Schröder-Hinrichs JU, Baldauf M, Ghirxi KT. Accident investigation reporting deficiencies related to
 organisational factors in machinery space fires and explosions. Accid Anal Prev. 2011;43(3):1187-96.
- 45. Akyuz E, Celik M. Utilisation of cognitive map in modelling human error in marine accident analysis
 and prevention. Saf Sci. 2014;70:19-28.
- 46. Rashid HSJ, Place CS, Braithwaite GR. Helicopter maintenance error analysis: Beyond the third
 order of the HFACS-ME. Int J Ind. Ergon. 2010;40(6):636-47.
- 745 47. Schmidt J, Schmorrow D, Figlock R, editors. Proceedings of the Human Factors and Ergonomics
- 746 Society Annual Meeting. Los Angeles(CA): SAGE Publications;2000.同 32 缺少括号内内容
- 747 48. Rashid HSJ. Human factors effects in helicopter maintenance: proactive monitoring and controlling
 748 techniques[dissertation]. London:Cranfield University; 2010.
- 49. Diller T, Helmrich G, Dunning S, et al. The human factors analysis classification system (HFACS)
- applied to health care. Am J Med Qual. 2014;29(3):181-90.
- 50. Cohen TN, Cabrera JS, Litzinger TL, et al. Proactive safety management in trauma care: Applying
 the Human Factors Analysis and Classification System. J Healthc Qual. 2018; 40(2):89-96.
- 753 51. Chen Y. The development and validation of a human factors analysis and classification system for
- the construction industry. Int J Occup Saf Ergon. 2020:1-15.
- 52. Jiang W, Han W, Zhou J, et al. Analysis of Human Factors Relationship in Hazardous Chemical
 Storage Accidents. Int J Environ Res Public Health. 2020;17(17):6217.
- 53. Theophilus SC, Esenowo VN, Arewa AO, et al. Human factors analysis and classification system for
 the oil and gas industry (HFACS-OGI). Reliab Eng Syst Saf. 2017;167:168-76.
- 54. Patterson JM, Shappell SA. Operator error and system deficiencies: analysis of 508 mining incidents
 and accidents from Queensland, Australia using HFACS. Accid Anal Prev. 2010;42(4):1379-85.
- 55. Civil Aviation Administration of China[Internet]. 2020 Jan 03 [cited 2021 March 04];[about 2
 4screens]. Available from: http://www.caac.gov.cn/XXGK/XXGK/MHGZ/ 202002/t20200203 2 00
- 763 633.html
- 56. Dönmez K, Uslu S. The effect of management practices on aircraft incidents. J Air Transp Manag.
 2020; 84:101784.
- 57. Landis JR, Koch GG. An application of hierarchical kappa-type statistics in the assessment ofmajority agreement among multiple observers. Biometrics. 1977;33(2):363-74.
- 58. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size
 requirements. Phys Ther. 2005;85(3):257-68.
- 770 59. Zhang W, Jie Y. SPSS 统计分析基础教程[Basic course of SPSS statistical analysis]. Beijing: Higher
- 771 Education Press; 2004.Chinese.
- 60. Riffenburgh RH. Statistics in medicine. 2nd ed. Amsterdam (Netherlands): Elsevier Academic Press;
- 2006. Chapter 6, Statistical Testing, Risks, and Odds in Medical Decisions; p.93-114.

774	61. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York (NY): Lawrence
775	Erlbaum Associates; 1988.
776	62. State Council of the PRC[Internet]. 2007 March 28 [cited 2021 May 06]; [about 4 screens]. Available
777	from: http://www.gov.cn/zhengce/2020-12/27/content_5573638.htm. 63. Krause SS. Aircraft Safety:
778	McGraw-Hill Professional Publishing; 2003.
779	64. Detwiler C, Hackworth C, Holcomb K, et al. Beneath the Tip of the Iceberg: A Human Factors
780	Analysis of General Aviation Accidents in Alaska Versus the Rest of the United States. Washington(DC):
781	US Federal Aviation Administration, Office of Aerospace Medicine; 2006. (DOT/FAA/AM-06/7).
782	65. Ahlstrom U, Ohneiser O, Caddigan E. Portable weather applications for general aviation pilots. Hum
783	Factors. 2016;58(6):864-85.
784	66. Department of Defense[Internet]. 2005 [cited 2021 May 06];[about 2 screens]. Available from:
785	https://higherlogicdownload.s3.amazonaws.com/NASBLA/76594a34-f3a1-4916-
786	95ac1e9c872170cc/UploadedImages/Lighthouse/DOD%20HFACS%20Guidance%20document.pdf.
787	67. Civil Aviation Administration of China[Internet]. 2021 [cited 2021 July 04];[about 23 screens].
788	Available from: http://pilot.caac.gov.cn/jsp/airmanNews/airmanNewsDetail.jsp?uuid=3ab26535-d331-
789	4ccf-bcf6-496c61fe0797&code=Statistical_info#down.
790	68. Li G, Baker SP. Crash Risk in General Aviation. JAMA. 2007;297(14):1596-8.
791	69. Department of Defense [Internet]. 2005 [cited 2021 May 06];[about 2 screens]. Available from:
792	https://www.dcms.uscg.mil/Portals/10/CG-1/cg113/docs/pdf/DoD_HFACS7. 0.p df?ver =2017-02-23-
793	152408-007.
794	70. Civil Aviation Administration of China. 2011-2015 Civil aviation flight accidents compilation.
795	Beijing: Civil Aviation Administration of China Press; 2017.
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	
810	
811	
812	
813	
814	
815	
816	

820	Figure 2. Comparison of direct causes of civil aviation accidents in China between 1975 and 2015 (%)
821	Note: The full colour version of this figure is available online.
822	Figure 3. HFACS framework
823	Note: HFACS= human factors analysis and classification system.
824	Figure 4. Frequency of HFACS levels
825	Note: HFACS= human factors analysis and classification system.
826	Figure 5. Frequency of HFACS causal categories.
827	Note: HFACS= human factors analysis and classification system.
828	

Figure 1. GA and scheduled air transport accidents statistics in China from 1950 to 2019 for every 5 years

Note: GA=general aviation.

Types of accidents	Countries involved	Studies		
Commercial aviation	Australia, China, The United	(Ting and Dai [32]), (li et al. [27]), (Shappell et		
accidents	States, India	al. [33]), (Wiegmann and Shappell [34]), (Gaur		
		[24])		
GA accidents	German, Brazil, Australia,	(Dambier and Hinkelbein [16]), (Filho et al. [26]),		
	the United States, China	(Lenné et al.[18]), (Wiegmann et al.[13]), (Liu et		
		al.[35])		
Military aviation accidents	the United States, China	(Shappell and Wiegmann [36]), (Li and Harris		
		[37]), (Li and Harris [38])		
Railway accidents	China, Australia, the United	(Zhan et al. [39]), (Baysari et al. [40]), (Baysari et		
	States	al. [41])		
Maritime accidents	South Korea, Germany,	(Wang et al. [42]), (Celik and Cebi [43]),		
	Australia, China, Sweden,	(Schröder-Hinrichs et al. [44]), (Akyuz and		
	Canada, New Zealand, UK,	Celik[45])		
	Denmark			
Maintenance-related	Australia, Canada, New	(Rashid et al. [46]), (Schmidt et al. [47]), (Rashid		
accidents	Zealand, UK, the United	[48])		
	States			
Heath and Medicine	the United States	(Diller et al.[49]), (Cohen et al.[50])		
Construction accidents	China	(Chen[51])		
Chemical storage accidents	China	(Jiang et al.[52])		
Refinery accidents	the United States	(Theophilus et al.[53])		
Mining accidents	Australia	(Patterson and Shappell [54])		

862 Table 1

863 Applications of HFACS framework.

864 Note1: HFACS= human factors analysis and classification system.

865 Note2: GA=general aviation.

866

867

868 **Table 2**

869 Levels of HFACS framework with descriptions.

No.	Levels	Descriptions
1	Unsafe acts	Errors or violations committed by those at the sharp end of
	(Active failures)	the system
2	Preconditions for unsafe acts	Make up the underlying causes of accidents and are by-
	(Latent failures)	product of latent organisational failures
3	Unsafe supervision	Contains most of the hidden errors and derives from decisions
	(Latent failures)	taken in the managerial sphere
4	Organisational influences	The highest level of failure in HFACS lying dormant in the
	(Latent failures)	system and are directly associated with supervisory practice

870 Note: HFACS= human factors analysis and classification system.

871

872

Table 3

875 Inter-rater reliability tests results.

HFACS category	Cohen's K	Percentage agreement
Level 4		
Resource management	.927	96.51
Organisational climate	.774	95.35
Organisational process	.950	97.67
Level 3		
Inadequate supervision	.814	90.70
Planned inappropriate operations	.814	90.70
Failed to correct a known problem	.793	94.19
Supervisory violations	.924	96.51
Level 2		
Physical environment	.975	98.84
Technological environment	.937	97.67
Adverse mental states	.953	97.67
Adverse physiological states	.383	96.51
Mental/physiological limitations	.844	93.02
Crew resource management	.878	94.19
Personal readiness	.882	94.19
Level 1		
Decision errors	.884	94.19
Skilled-based errors	.907	96.51
Perceptual errors	.750	94.19
Violations	.935	97.67

Table 4

882 Main causes of GA accidents

78.9
1.8
7.3
4.6
1.8
20.2
81.7
38.5
19.3

883 Note1: GA=general aviation.

884 Note2: Since multiple factors may be observed in each GA accident report at the same time, it cannot be expected

that the sum of the percentages is equal to 100%.

886 Table 5 887 Most cont

HFACS	Most common causal factors	Percentage
Levels		(%)
Unsafe acts	Failed to properly prepare for the flight	45
	Poor choice	44
	Inadequate application of controls	34
	Not follow IFR/VFR procedure	34
	Breakdown in visual scan	30
	Failure to see and avoid	17
	Misjudged distance/altitude/airspeed	13
	Not current/qualified for the mission	13
	Uneven distribution of attention	12
	Minimum descent altitude not maintained	12
Preconditions for	Physical environment	65
Unsafe acts	Information processing limitation	56
	Failed to communicate or coordinate	33
	Personality traits and pernicious attitude	22
	Technological environment	16
	Mental fatigue	10
Unsafe	Failed to enforce rules and regulations	35
Supervision	Failed to provide proper/adequate training	29
	Failed to provide correct data or other support	21
	Failed to provide oversight	20
	Improper manning	15
	Authorized unqualified crew/aircraft for flight	14
	Failed to track qualification/performance	12
	failed to provide adequate brief time/preparation	10
Organisational	Procedures (standards/clearly defined	45
Influences	objectives/documentation/instructions)	43
	Human resources (selection/staffing/training/maintaining)	35
	Oversight (risk management/safety programs)	31
	Equipment resources (poor design/purchasing of unsuitable	0
	equipment)	9
	Structure (chain of command/communication/formal	0
	accountability for actions)	0
	Operations (operational tempo/time stress/schedules/production	7
	quotas)	/

888 Note1: HFACS= human factors analysis and classification system.

889 Note2: Because each general aviation accident is generally caused by a variety of causal factors across several

HFACS categories, the percentages in the table do not add up to 100%.

891

892

Table 6

895 Relationship analysis results- adjacent HFACS levels

HFACS Levels	χ^2 Test		Φ Coef	Φ Coefficient		95% CI
	χ^2	р	Φ	р	-	
Level 4-Level 3						
Resource Management	26.217	0.000***	0.552	0.000***	14.307	[4.655, 43.971]
Х						
Inadequate Supervision						
Resource Management	7.055	0.008**	0.285	0.008**	3.345	[1.346, 8.312]
Х						
Planned Inappropriate						
Operations						
Resource Management	8.547	0.003**	0.315	0.003**	5.127	[1.608,16.350]
Х						
Failed to Correct a						
Known Problem						
Resource Management	33.214	0.000***	0.621	0.000***	19.600	[6.399, 60.035]
Х						
Supervisory Violations						
Organisational Process	19.627	0.000***	0.478	0.000***	9.314	[3.231, 26.849]
Х						
Inadequate Supervision						
Organisational Process	8.524	0.004**	0.315	0.004**	3.958	[1.535, 10.206]
X						
Planned Inappropriate						
Operations						
Organisational Process	32.976	0.000***	0.619	0.000***	61.667	[7.778, 488.915]
X						
Supervisory Violations						
Level 3-Level 2						
Failed to Correct a	7.495	0.006**	0.335	0.002**	6.200	[1.790, 21.477]
Known Problem x						
Technological						
Environment						
Inadequate Supervision	4.615	0.032*	0.232	0.032*	2.594	[1.078, 6.244]
x Mental/Physiological						
Limitations						
Supervisory Violations	5.503	0.019*	0.253	0.019*	2.901	[1.177, 7.150]]
x Mental/Physiological						
Limitations						
Level 2-Level 1						

Mental/Physiological Limitations x	10.673	0.001***	0.352	0.001***	4.449	[1.776,11.144
Adverse Mental States Violations	x 6.026	0.014*	0.265	0.014*	3.900	[1.259,12.081
* p ≤0.05 **p ≤0.01 ***	*p≤0.001.					
Note1: HFACS= human	factors analy	sis and classific	ation systen	n.		
Note 2: Degrees of freed	lom=1 for the	e entire table.				
Note 3: All other compa	risons were r	non-significant.				
Table 7 Relationship analysis res	sults-non adj	acent HFACS le	vels			
HFACS Levels	χ^2 T	est	Φ Coe	efficient	Odds Ratio	95% CI
	χ^2	р	Φ	р		
Level 4-Level 1						
Organisational Process x Violations	5.05	0.025*	0.242	0.025*	3.231	[1.130,9.237]
Level 3-Level 1						
Supervisory	5.292	0.021*	0.248	0.021*	3.864	[1.161,12.859]
Violations x						
Violations						
Inadequate	6.026	0.014*	0.265	0.014*	3.900	[1.259,12.081]
Supervision x						
Violations						
* p ≤0.05 **p ≤0.01 ***	*p≤0.001.					
Note: HFACS= human f	actors analys	sis and classifica	tion system.			