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Key message 25 

• Generalist and specialist beneficials are used in greenhouse crops to control pests.  26 

• Predator-prey population models can be used to predict pest outbreaks and prevent pesticide 27 

applications. Currently, no such models are on the market for decision making. 28 

• Simple, logistic regression models were built for three economic important pests and their 29 

predators in tomato crops.  30 

• The predicted population dynamics are in line with generalist and specialist predator ecology  31 

• The models were validated and deemed satisfactory for practical guidance in biocontrol 32 

actions. 33 
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Abstract 48 

Generalist and specialist predators are successfully used in biocontrol programs in greenhouse 49 

vegetable crops, like tomato. A greenhouse ecosystem is rather simple and provides an excellent 50 

opportunity for developing predator-prey decision models. Three systems were selected, 1) the 51 

generalist predatory bug Macrolophus pygmaeus and the greenhouse whitefly Trialeurodes 52 

vaporariorum, 2) the generalist predatory bug Nesidiocoris tenuis and the tobacco whitefly Bemisia 53 

tabaci and 3) the specialist predatory mite Phytoseiulus persimilis and the spider mite Tetranychus 54 

urticae. The study is based on an extensive field dataset. 55 

No complex mathematical predator-prey models were developed. A binomial variable was given the 56 

value of “0” for the period when the pest was not under control. As soon as the population declined 57 

after the peak density, this variable was given a value of “1”. The relationship between the densities 58 

of the prey and the predator was checked using a logistic regression model.   59 

The validated models do not calculate future pest densities but rather predict when pest control should 60 

be initiated, based on the number of pests and predators present at a certain time. Numerical 61 

simulation of the prey isoclines showed an L-shaped curve for the generalist predators and a linear 62 

curve for the specialist predators.  63 

Our simple, empirical modelling approach provides satisfactory models for biocontrol purposes. When 64 

combined with a standardized monitoring protocol, these models can be implemented in decision 65 

tools. In the future, more data will allow a machine learning approach, in which additional parameters 66 

like temperature, humidity, time can be included. 67 

 68 

 69 

 70 

 71 

 72 
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Introduction 73 

The preventative release of generalist predators as biocontrol agents in IPM programs has 74 

become common practice in European greenhouse vegetable crops as they can develop and build up 75 

a strong standing army in absence of the target pest (e.g. Nomikou et al. 2002; Messelink and Janssen, 76 

2014; Moerkens et al., 2017; Brenard et al. 2018). Specialist predators (or parasitoids) are released 77 

more curatively to target specific pests (e.g. Van Lenteren et al. 1996; Alatawi et al. 2011).  78 

A big advantage of a greenhouse ecosystem compared to open, natural conditions is its simplicity. 79 

A Northwestern European greenhouse can be considered as a closed ecosystem with very few 80 

movements to the surrounding area (in comparison with open fields). The vegetation/crop is a 81 

monoculture and the number of prey and predator species is small, during some periods even limited 82 

to one predator and one pest. Such one-to-one predator-prey interactions are rare in natural 83 

conditions. The simplicity of ecosystems in greenhouses allows more controlled ecological studies of a 84 

few species. Nevertheless, one or two pest species combined with one or more generalist or specialist 85 

predators can result in complex population dynamics. Greater insight into these dynamics would allow 86 

a better interpretation of the predator-prey interactions in the field and would improve biocontrol 87 

strategies.  88 

The classic population model is a Lotka-Volterra predator-prey model (Gause et al. 1936). 89 

Models that are more complex have been proposed (e.g. Hanski et al., 1991; Turchin and Hanski, 1997; 90 

Hanski et al. 2001; Mukhopadhyay and Bhattacharyya 2013). These models are very theoretical and 91 

try to convert several biological interactions in a mathematical formula. The drawback is their 92 

complexity when more parameters are included. Validation with extended field data on different 93 

locations is missing. A good example of this is the well-studied predatory mite Phytoseiulus persimilis 94 

(Athias-Henriot) (Acari: Phytoseiidae) and its prey, two-spotted spider mite Tetranychus urticae (Koch) 95 

(Acari: Tetranychidae). Several predator-prey models have been developed in the past (Bernstein 96 

1985; Bancroft and Margolies, 1999; Kozlova et al. 2005; Kuang et al. 2017), but validation in practical 97 

conditions is missing. E.g. Kozlova et al. (2005) describes a deterministic model with diffusion and time 98 
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delay, which gave a reasonably good fit to the field data. The goal of their study was not to describe 99 

the data but to determine the parameters and the type of behavior that takes place in the particular 100 

system of prey and predator. For biocontrol purposes, it is sufficient to know the prey isocline (i.e. how 101 

many predators are needed to control the prey) in combination with the probability of a pest 102 

population being under control or not at a given point in time, which is the scope of our study. 103 

In this study, three predator-prey systems (i.e. simplified systems with just one predator and only 104 

one of its prey species) which are common in tomato greenhouses were selected. The first predator-105 

prey system is the predatory bug Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) and the 106 

greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Macrolophus 107 

pygmaeus is a zoophytophagous generalist predator, which is capable of controlling several pest 108 

species like whiteflies, aphids, mites, thrips and Lepidoptera (e.g. Enkegaard et al. 2001; Perdikis and 109 

Lykouressis, 2002; Blaeser et al. 2004; Castañé et al. 2004; Alomar et al. 2006; Urbaneja et al. 2009). It 110 

can maintain its population by feeding on the plant while prey densities are low or absent (e.g. Perdikis 111 

and Lykouressis, 2000; Ingegno et al. 2011). Population growth is accelerated when supplementary 112 

food is provided after inoculative release in the crop (Moerkens et al., 2017; Brenard et al. 2018, 2019).   113 

The second predator-prey system is the predatory bug Nesidiocoris tenuis (Reuter) (Hemiptera: 114 

Miridae) and the tobacco whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), with a similar 115 

interaction as between M. pygmaeus and T. vaporariorum. Nesidiocoris tenuis is also a 116 

zoophytophagous generalist predator and is mostly released in South-European (Spain, Canary Islands, 117 

Sicily) tomato greenhouses as a biocontrol agent against B. tabaci (Carnero et al. 2000; Calvo et al. 118 

2012; Calvo et al. 2012) and Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) (Urbaneja et al. 2009; 119 

Calvo et al 2012b; Urbaneja et al. 2012). 120 

The third predator-prey system is the predatory mite P. persimilis and the two-spotted spider 121 

mite, T. urticae. Phytoseiulus persimilis is a specialized feeder of spider mites and is commonly released 122 

as a biocontrol agent (e.g. Gough, 1991; Drukker et al. 1997; Opit et al. 2004). 123 
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The population dynamics of these three predator-prey interactions in tomato greenhouses were 124 

simplified and simulated using a common logistic regression with the intention to predict a probability 125 

of control of the pest, based on the number of predators and prey at a certain time. The prey isoclines 126 

were computed numerically and compared between two generalist predators (M. pygmaeus and N. 127 

tenuis) and a specialist predator (P. persimilis). 128 

 129 

Materials and Methods 130 

Data collection  131 

Predator-prey model: M. pygmaeus - T. vaporariorum   132 

Population dynamics were recorded in seven experimental greenhouse compartments (size 133 

between 500 and 1500m²) during several years (2016-2018) at Research Centre Hoogstraten (Belgium) 134 

and at eight commercial, Belgian tomato greenhouses with a minimum of four hectares per 135 

greenhouse. The different locations had a wide diversity of different tomato varieties (beef, cluster 136 

and specialty tomatoes) each with their own climate conditions. Tomato plants are cultivated year 137 

round in Belgium with artificially lit and non-lit crops (Moerkens et al. 2016). More details on the 138 

different locations are described in Table 1.  139 

The number of adult whiteflies and adult mirids were counted on yellow sticky traps (YSTs) (e.g. 140 

Bug-scan Dry, Biobest, Belgium), which is a common monitoring method in tomato greenhouses 141 

(Böckmann et al. 2015; Pinto-Zevallos and Vänninen, 2013). These traps (25 x 10 cm) were hung just 142 

below the head of the plant on 185 fixed locations distributed throughout the different monitored 143 

greenhouses. Every week or maximum two weeks, the population densities of predator and prey were 144 

manually counted on all 185 YSTs. The YSTs were replaced during every sampling occasion. 145 

Macrolophus pygmaeus densities on YSTs are much lower compared to whiteflies and can vary a lot in 146 

time and between locations (unpublished observations). Therefore, mirid densities were counted on 147 
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two sides of the YST (whiteflies only on one side) and were averaged over a minimum of four YST’s. 148 

These four YSTs were located in the same plant row (at commercial greenhouses) or in the same 149 

greenhouse compartment (at Research Centre Hoogstraten). Thus, at each time point, a minimum of 150 

four (eight sides) averaged YST counts were used for M. pygmaeus. This way variation in mirid counts 151 

was minimized. In total, 2730 unique predator-prey combinations were collected, divided over 152 

multiple greenhouses and time points. The total dataset contains a wide range of predator/prey ratios, 153 

including extreme values during pest outbreaks. 154 

Macrolophus pygmaeus individuals were released at the start of each new crop cycle. The total 155 

number, the distribution and the feeding strategy differs between growers, as they work with different 156 

producers (e.g. Biobest Group N.V., Belgium and Koppert N.V., the Netherlands). A common release 157 

strategy is described by Moerkens et al. (2017). The whitefly populations naturally persist and disperse 158 

each cropping season, no extra releases were carried out. Periods when growers applied plant 159 

protection products or periods when secondary pests (e.g. T. absoluta, A. lycopersici and T. urticae), 160 

occurred were removed from the datasets in order to obtain one to one predator-prey interactions.  161 

 162 

Predator-prey model: N. tenuis – B. tabaci  163 

Population dynamics were recorded at four commercial tomato greenhouses in the Almeria province 164 

of Spain in 2018, each with a different climate condition. More details are presented in Table 1. 165 

The sampling method was identical to the one described above. Also for N. tenuis an average density 166 

for each sampled tomato row was calculated (10 YST sides). Every two weeks, the population densities 167 

were counted on 80 YSTs at fixed locations in the greenhouses. In total, 1220 unique YSTs were 168 

sampled. The total dataset contained a wide range of predator/prey ratios, including extreme values 169 

during pest outbreaks. 170 

Like M. pygmaeus, N. tenuis individuals are released in a similar way at the start of each crop cycle and  171 

whitefly populations naturally persist and disperse each cropping season. Again, periods when growers 172 

applied plant protection products or periods when secondary pests occurred were omitted. 173 
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 174 

Predator-prey model: P. persimilis – T. urticae  175 

All data were obtained at Research Centre Hoogstraten, Hoogstraten, Belgium. During two subsequent 176 

cropping seasons in 2016 and 2017, tomatoes were planted in two different semi-commercial 177 

greenhouses of 200m² in January 2016 and 2017 (Table 1). Crawling insects, like mites, require a 178 

different sampling approach compared to flying insects. Mites cannot be monitored using YSTs and 179 

require sampling on the plant.  In 2016, 252 plants were monitored weekly between 11 May 2016 and 180 

29 June 2016. In 2017, 476 plants were sampled weekly between 21 March 2017 and 6 June 2017. In 181 

total, there were 600 plants present in each greenhouse compartment. Every week, the number of 182 

adult T. urticae and P. persimilis were counted with the naked eye on the fourth leaf starting from the 183 

head of the plant. From previous experience, we know that the third to the fifth leaves hold the most 184 

spider mites (unpublished observations). Spider mites were released on 30 March in 2016 and 7 March 185 

in 2017. Tomato leaves infested with T. urticae were randomly distributed in the greenhouse, which 186 

resulted in hotspots of spider mites and plants with less spider mites. The predatory mite P. persimilis 187 

(Phytoseiulus-System, Biobest Group N.V., Westerlo, Belgium) was homogenously released at a dose 188 

of 20 ind/m² in the head of each plant on 12 May in 2016 and 21 April 2017. The predatory bug M. 189 

pygmaeus was not released in these greenhouses. The number of whiteflies remained very low during 190 

the 8 and 11 week interval in 2016 and 2017 respectively. Only a few individuals were spotted by the 191 

end of the experiment. Therefore, spider mites and P. persimilis were the only pest and predator of 192 

significance present in the greenhouse. 193 

 194 

Logistic regression model 195 

The population dynamics of the different predators and prey are typically characterized by a strong 196 

population growth of the prey, followed by that of the predator (Fig 1). Sometimes, the pest outbreak 197 

was too severe and the grower decided to use a chemical plant protection product. As mentioned 198 
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earlier, the data were cut off at these moments and not considered for further analysis. For the logistic 199 

models, a variable “pest control” was created. This binomial variable was given the value of “0” for the 200 

period when the pest densities were increasing. As soon as the population declined after the peak 201 

density, the pest control variable was given a value of “1”. This variable was created manually for each 202 

YST (flying insects) or plant (crawling insects) time series. If population densities were very low or 203 

confusing and no clear “0” or “1” value could be given, the data were omitted from the dataset. All 204 

datasets are independent between years and growers (Table 1.).  205 

We quantified through a generalized linear model (glm) how the variable pest control yes (1) or no (0) 206 

changed in relation to the previous densities of the predator and the pest. This logistic regression was 207 

built with a binomial distribution and logit link function. The number of insects on the YSTs and the 208 

number of mites on the leaves were log transformed (log + 1) prior to the regression analyses. The 209 

statistical analysis started with a saturated model and interactions and non-significant main factors 210 

were dropped at a significance level of 0.05. Predicted probabilities from this logistic regression model 211 

were converted to their original state using the inverse logit formulae (expmodel parameters/(1 + expmodel 212 

parameters). All statistics were carried out in R v.3.5.1 (R Core Team, 2018). The used model input datasets 213 

are indicated in Table 1.  214 

 215 

Model validation 216 

The logistic regression model enables us to predict the probability of biocontrol at given pest and 217 

predator densities. In order to validate the model, the predictions of the model were compared to the 218 

observations of an independent dataset. The datasets used for model validation are marked in Table 219 

1. The output of the model is a probability (between 0 and 1), while the observed data consists of 220 

values of either 0 or 1 (no/yes control). Therefore, the model output probability was rounded to 0.10 221 

and grouped together according to the following categories: (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 222 

0.80, 0.90, and 1.00). For each category, the proportion of samples with actual, observed biocontrol 223 
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(value 1) was determined. This way, we can compare the model output, which is a chance of biocontrol 224 

with the actual, observed proportion of biocontrol. Frans et al. (2018) describe a similar method for 225 

internal fruit rot in bell pepper. The slope and intercept of the regressions lines between observed and 226 

estimated proportions were checked whether they differed from unity and zero, respectively. All 227 

statistics were carried out in R v.3.5.1 (R Core Team, 2018). 228 

 229 

Calculation of prey isoclines 230 

Simulation of prey isoclines requires calculation of a curve, along which the prey population neither 231 

grows nor declines as a function of the predator population. These are the points in time series of 232 

pest/prey densities where this series reaches its maximum. In order to use a logistic regression model, 233 

we have categorized the increasing phase of the pest densities as “0” and the decreasing phase, 234 

including the maximum, as “1” as illustrated in Figure 1. Therefore, the model will predict whether the 235 

pest population will increase (0) or decrease (1). The output of this model is not “0” or “1” but a 236 

probability between “0” and “1”. To determine the point of maximum pest density (i.e. data point on 237 

the pest isocline) we need to determine the required density of predators. This was achieved by 238 

numerically changing the predator density values for a range of prey densities until the model output 239 

reached a chance of 50%. The prey isocline was defined as a curve where the prey population had 50% 240 

chance of increasing or decreasing, which is similar to the classic definition of a curve along which the 241 

prey population neither grows nor declines.  Above this curve, the pest population has a higher chance 242 

to decrease and below this curve the pest population has a higher chance to increase. In addition, 243 

curves that mark when the pest population has a 25% and 75% chance of increasing were added to the 244 

plots. .  245 

 246 
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Results 247 

Data collection 248 

As an illustration of the datasets, the total averaged population densities of predator and prey are 249 

given in Fig. 1. After removing zero values (prey) and unusable data (unclear “0” and “1” values), 1829 250 

and 967 data points were usable for the M. pygmaeus – T. vaporariorum model for the model input 251 

and validation respectively. For the N. tenuis – B. tabaci model 319 and 527 data points remained and 252 

for P. persimilis – T. urticae 2016 and 1832 data points.  253 

 254 

Logistic regression model 255 

The interaction effect between the densities of the predator and prey was dropped from the model 256 

for both M. pygmaeus – T. vaporariorum (glm: z = -0.283: p = 0.777) and N. tenuis – B. tabaci (glm: z = 257 

-0.366; P = 0.714). The additive effect of the predator and the prey were highly significant for both 258 

predator-prey models (P < 0.05). For P. persimilis – T. urticae, the saturated model was significantly 259 

better than simplified ones. All statistical details can be found in Table 2. 260 

 261 

Model validation 262 

The relations between the observed and estimated chances of biocontrol were checked with a linear 263 

regression. The slope and the intercept of this regression for the M. pygmaeus – T. vaporariorum model 264 

tested not significantly different from unity (t = -1.926; P = 0.090) and zero (t = -0.539; P = 0.605) 265 

respectively (Fig. 2). Likewise, the slope and the intercept for the N. tenuis – B. tabaci model tested 266 

not significantly different from unity (t = -0.131; P = 0.899) and zero (t = 0.965; P = 0.363) respectively 267 

(Fig. 2). Similar results were found for the P. persimilis – T. urticae model for the slope (t = -0.592; P = 268 
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0.580) and the intercept (t = -0.233; P= 0.825) (Figure 2). One outlier was removed from the dataset at 269 

the estimated chance for biocontrol of 0.60 because of low sample size (n = 23). Overall, the values on 270 

the x-axis (observed) are equal to the values on the y-axis (estimated) for all three predator-prey 271 

models. 272 

 273 

Calculation of prey isoclines 274 

The prey isoclines of the whiteflies have an L-shape in relation to their generalist predators (Fig. 3). At 275 

low prey densities (for T. vaporariorum < 100 and B. tabaci < 30), more mirids are needed to control 276 

the pest population. N. tenuis is able to control B. tabaci at lower densities on the yellow sticky trap 277 

compared to M. pygmaeus and T.  vaporariorum. However, the catch rate on the yellow sticky trap can 278 

be different for the different species. Therefore, the densities can be biased, which makes comparison 279 

between species difficult.  280 

The specialist P. persimilis has a more linear/horizontal relationship with his prey (Fig. 3). More P. 281 

persimilis is needed at increasing spider mite densities. An observation of only one adult P. persimilis 282 

per leaf is sufficient to reduce the spider mite population almost independent of the pest density.  283 

Prey isoclines with a probability of 0.25 and 0.75 are shown in Fig. 3. Above the prey isocline, the prey 284 

population has a higher tendency to decrease. Below the prey isocline, the pest population will most 285 

likely increase.  286 

 287 

Discussion 288 

Monocultures in greenhouse crops provide a perfect semi-natural environment for studying 289 

population dynamics of different predators and their prey. In comparison to natural ecosystems with 290 

a multitude of variables, greenhouses are simple, semi-enclosed ecosystems, wherein even climate 291 

conditions are standardized within specific boundaries for crop cultivation. Data collection of one-to-292 
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one predator-prey systems in tomato greenhouses provided a large database of three study systems: 293 

M. pygmaeus – T. vaporariorum, N. tenuis – B. tabaci and P. persimilis – T. urticae. For each predator-294 

prey system a logistic regression model was fitted and validated based on field data collected at semi-295 

commercial and commercial companies. We do not predict population densities, but the probability 296 

of being in the increase or decrease phase of the pest population, given the population sizes of prey 297 

and predators.  298 

Generalist and specialist predators interact in a different way with their prey. When prey is 299 

scarce, a generalist predator will add alternative prey or food sources to their diet diet(Křivan1996, 300 

Turchin and Hanski 1997; Hanski et al. 2001; van Baalen et al. 2001; Symondson et al. 2002; 301 

Mukhopadhyay and Bhattacharyya 2013). For both M. pygmaeus and N. tenuis and their prey, an L-302 

shaped prey isocline was simulated based on our rather simple logistic regression model (Fig. 3). Such 303 

an L-shaped isocline was previously described as a prey refuge (Křivan, 2011; Křivan and Priyadarshi 304 

2015). This means that a part of the prey population was inaccessible for the predator. Such an L-shape 305 

is not illogical for a generalist predator as they will add alternative prey or food sources (i.e. tomato 306 

fruit/leaves) to their diet when the prey becomes scarce. Thus, at low prey densities, much higher 307 

predator densities are required to control the pest. Mirids, like M. pygmaeus and N. tenuis, always 308 

require plant food in their diet for water and nutrient uptake (Moerkens et al. 2016; Urbaneja-Bernat 309 

et al. 2019). They can also survive on the plant when prey is absent or scarce (e.g. Perdikis and 310 

Lykouressis, 2000; Ingegno et al. 2011). In fact, the L-shape can be considered as a lack of encounter 311 

rates between predator and prey and/or limited searching efficiency of the predator. A prey would not 312 

go extinct very quickly in combination with a generalist predator, as they ideally reach a stable 313 

equilibrium point. Our model does not allow prediction of the predator isocline or calculations of 314 

equilibrium points. However, Figure 1 illustrates that both predator and prey densities remain within an 315 

acceptable range (based on personal communication with the growers) after the pest population peak for both 316 

M. pygmaeus and N. tenuis. At very high prey densities the carrying capacity of the environment/crop 317 

will theoretically limit the reproduction of the prey and less predators will be required to reduce the 318 
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pest population. Such prey isoclines are characterized by a “hump”. The classic example of such a 319 

model is the Rosenzweig-MacArthur model (Rosenzweig and MacArthur 1963). The combination of 320 

such a model with a “prey refuge” was described by Křivan (2011) and Křivan and Priyadarshi (2015). 321 

Such a “hump” was not detected in the data, although the prey isocline has a slow decline at high prey 322 

densities. In other words, at increasing pest densities, less predators are required to achieve control 323 

of the population. We expect that the logistic regression model is not complex enough to show the 324 

expected “hump” in our data.  325 

Specialist predators only feed on one prey type. Even at low prey densities, they will keep 326 

searching for this prey or they die. Therefore, specialist predator-prey systems are characterized by 327 

large oscillations through time (Turchin and Hanski 1997; Hanski et al. 2001; Symondson et al. 2002; 328 

Mukhopadhyay and Bhattacharyya 2013). A linear prey isocline is expected, as more predators are 329 

required when prey densities increase. Indeed, the prey isocline of the P. persimilis-T. urticae predator-330 

prey system appeared to be a linear curve. When more spider mites are present, more predatory mites 331 

are required. The slope of this curve is not steep and becomes almost horizontal, which resembles the 332 

classic Lotka-Volterra model (Gausse et al. 1936). The trial did not last long enough to detect 333 

population oscillation in time. Figure 1 clearly shows a dramatic drop of both predator and prey on all 334 

plants, causing local extinctions of spider mites and/or predatory mites. In addition, the “hump” 335 

caused by the carrying capacity of the crop was expected (Rosenzweig & MacArthur 1963), as it was 336 

included in other spider mite models (Kozlova et al. 2005; Kuang et al. 2017), but was not observed. 337 

Again, we expect that the logistic regression model is not complex enough to show these dynamics. 338 

To conclude, this study provides actual, realistic generalist and specialist predator-prey 339 

dynamics based on real field data. In order to model the essential parameters (i.e. prey isoclines and 340 

the chance of biocontrol) the available data was simplified and complex mathematical modelling was 341 

avoided. The validated models are easy to interpret. We acknowledge the fact that more complex 342 

dynamics, like the lack of a carrying capacity, are masked in our modelling approach. However, for 343 

biocontrol purposes these models are easy to implement as a decision tool in the near future. Many 344 
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Northwestern European tomato growers are monitoring their crop using yellow sticky traps 345 

(Böckmann et al. 2015; Pinto-Zevallos and Vänninen 2013). This way, they obtain quantitative data of 346 

both the pest and the predator (e.g. whiteflies and mirids). Unfortunately, most growers focus on the 347 

densities of the pest and not the predators. Tools for more efficient monitoring, like automatic 348 

counting of pests and predators on yellow sticky traps, are under active development and will 349 

encourage growers to monitor in a standardized way (Moerkens et al. 2019). In the near future, 350 

growers will be able to automatically count insects on yellow sticky traps using smartphone images. As 351 

these data are fed into the presented population models a decision support system will increase the 352 

efficiency of biocontrol actions,  like the release of additional biocontrol agents or spot treatments 353 

with selective pesticides. Currently the tools presented require some form of interpretation, as a 354 

greenhouse in which plant protection products has been used, or in which alternative predator or pest 355 

species are present can alter the associations between pest control and prey and predator densities. 356 

Therefor we recommend the use of this decision support system in collaboration with a biological crop 357 

advisor. In the future, more data will allow comparable analysis using machine learning techniques, 358 

which will hopefully be able to forecast densities of predator and prey. Additional parameters like 359 

temperature, humidity, growing stage of the plant, time (week, month)… can be added in order to 360 

increase the predictive power of the models and reduce variation.  361 

Monitoring quantitative spider mite and predatory mite densities on leaves is more labor 362 

intensive. It is unlikely growers will start counting all these mites. New automatic approaches with 363 

standardized images of leaves are required. Only then, will the above described model be applicable 364 

on a large scale in greenhouses.  365 

 366 
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 514 

Figures and Tables 515 

Table 1. Model and validation dataset collection details for M. pygmaeus – T. vaporariorum, N. tenuis 516 

– B. tabaci and P. persimilis – T. urticae predator-prey interactions. Different columns represent the 517 

predator-prey interaction, the year of sampling, the individual grower, the location (city) of the 518 

greenhouse, whether artificial light was used (lit/non-lit crops), the number of yellow sticky traps or 519 

plants that were sampled, the number of data assessments (#YST or plants multiplied by sampling 520 

occasions (time)) and whether the dataset was used for model input or validation.  521 

https://doi.org/10.1007/s10340-019-01105-9
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Predator-prey Year Grower Location (Belgium) Lit/non-

lit 

# YST/ 

plants 

# 

assessments 

Dataset 

M. pygmaeus 

- T. 

vaporariorum 

2016 Grower A Hoogstraten lit 42 588 model 

2017 PCH* Hoogstraten lit 8 56 model 

2018 PCH* Hoogstraten non-lit 53 904 model 

2018 PCH* Hoogstraten lit 12 293 model 

2018 Grower B Putte lit 10 145 validation 

2018 Grower C Rijkevorsel lit 10 97 validation 

2018 Grower D Rijkevorsel non-lit 10 176 validation 

2018 Grower E Rijkevorsel non-lit 10 101 validation 

2018 Grower F Broechem lit 10 140 validation 

2018 Grower F Broechem non-lit 10 100 validation 

2018 Grower B Putte non-lit 10 130 validation 

N. tenuis - B. 

tabaci 

2018 Grower G La Venta Del Viso non-lit 20 320 validation 

2018 Grower H Vícar non-lit 20 320 model 

2018 Grower I Vícar non-lit 20 320 validation 

2018 Grower J La Cañada non-lit 20 260 validation 

P. persimilis -    

T. urticae 

2016 PCH* Hoogstraten non-lit 252 2016 model 

2017 PCH* Hoogstraten non-lit 476 5712 Validation 

*Research Centre Hoogstraten 522 

 523 

 524 

 525 

Table 2. Parameter estimates and statistics of the logistic regression models for each predator-prey 526 

interaction 527 
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Predator-prey Parameter Estimate SE Statistics 

M. pygmaeus - T. vaporariorum Intercept -5.218 0.271 z = -19.25; P < 0.0001 

 

Predator 1.677 0.155 z = 10.82; P < 0.0001 

  Prey 1.518 0.131 z = 11.62; P < 0.0001 

N. tenuis - B. tabaci Intercept -4.233 0.870 z = -4.87; P < 0.0001 

 

Predator 2.395 0.387 z = 6.19; P < 0.0001 

  Prey 1.510 0.496 z = 3.04; P = 0.0023 

P. persimilis - T. urticae Intercept -3.135 0.288 z = -10.88; P < 0.0001 

 

Predator 12.025 0.986 z= 12.20; P < 0.0001 

 

Prey 0.728 0.135 z = 5.39; P < 0.0001 

  Predator*Prey -3.040 0.406 z = -7.50; P < 0.0001 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

Figure Legends 541 
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 542 

Figure 1. Averaged (± SE) population densities of all datasets combined for three different predator-543 

prey interactions, namely M. pygmaeus – T. vaporariorum, N. tenuis – B. tabaci, P. persimilis – T. 544 

urticae. The binomial classification for periods when the prey population increases (0) or decreases (1) 545 

is indicated between brackets for each time point.  546 

(0)
(0) (0) (0) (0) (0) (0)

(0)
(0)

(0)

(0)

(0)

(1)

(1)

(1) (1)

(1)
(1)

(1)

(1) (1)

(1)

0

50

100

150

200

250

300

350

400

450

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
u

m
b

e
r 

o
f 

in
d

iv
id

u
a

ls
 p

e
r 

Y
ST

Week

T. vaporariorum

M. pygmaeus

(0)

(0)

(0) (0)

(0)

(0)

(0)

(1)

(1)

(1)

(1)

(1)

(1)
(1) (1)

(1)
(1) (1)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u

m
b

e
r 

o
f 

in
d

iv
id

u
a

ls
 p

e
r 

Y
ST

Week

B. tabaci

M. pygmaeus

B. tabaci

(1)

(0)
(0)

(0)

(0)

(0)

(1)

(1)

(1)

(1)

(1)

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

e
r 

o
f 

in
d

iv
id

u
a

ls
 p

e
r 

le
a

f

Week

T. urticae

P. persimilis

B. tabaci

N. tenuis



 

-25- 

 

 547 

Figure 2. Validation of the logistic regression models for all three predator-prey systems. Estimated 548 

probability of biocontrol from the logistic regression models, and observed chance of biocontrol by 549 

manual counting of 0 and 1’s. Numbers in brackets indicate the number of data points for each 550 

category (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). 551 
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  552 

Figure 3. Numerical simulations of the logistic regression models. Prey isoclines were calculated at a 553 

probability of achieving biological control of 0.5. Prey isocline boundaries at 25 and 75% were included. 554 

The light grey areas represent situations where the pest population will increase because not enough 555 

predators are present (possibly extra control measurements are required). Similarly, the dark grey 556 

areas represent situations where the pest population will decrease (no further control actions needed). 557 


