Universiteit
Antwerpen

This item is the archived peer-reviewed author-version of:

Expanding Normalized Systems from textual domain descriptions using TEMOS

Reference:
SenkyF David, Suchanek Marek, Kroha Petr, Mannaert Herwig, Pergl Robert.- Expanding Normalized Systems from textual domain descriptions using TEMOS

Journal of intelligent information systems - ISSN 1573-7675 - 59:2(2022), p. 391-414
Full text (Publisher's DOI): https://doi.org/10.1007/S10844-022-00706-8
To cite this reference: https://hdl.handle.net/10067/1881900151162165141

uantwerpen.be

- \\-——-;L:E

Institutional repository IRUA

Expanding Normalized Systems from Textual Domain
Descriptions using TEMOS

David Senky¥ - Marek Suchdnek
Petr Kroha - Herwig Mannaert
Robert Pergl

the date of receipt and acceptance should be inserted later

Abstract Functional requirements on a software system are traditionally captured
as text that describes the expected functionality in the domain of a real-world sys-
tem. Natural language processing methods allow us to extract the knowledge from
such requirements and transform it, e.g., into a model. Moreover, these methods
can improve the quality of the requirements, which usually suffer from ambiguity,
incompleteness, and inconsistency. This paper presents a novel approach to using
natural language processing. We use the method of grammatical inspection to find
specific patterns in the description of functional requirement specifications (writ-
ten in English). Then, we transform the requirements into a model of Normalized
Systems elements. This may realize a possible component of the eagerly awaited
text-to-software pipeline. The input of this method is represented by textual re-
quirements. Its output is a running prototype of an information system created
using Normalized Systems (NS) techniques. Therefore, the system is ready to
accept further enhancements, e.g., custom code fragments, in an evolvable man-
ner ensured by compliance with the NS principles. A demonstration of pipeline
implementation is also included in this paper. The text processing part of our
pipeline extends the existing pipeline implemented in our system TEMOS, where
we propose and implement methods of checking the quality of textual requirements
concerning ambiguity, incompleteness, and inconsistency.

Keywords normalized systems, requirements engineering, natural language
processing, model-driven development, code generation

D. Senkyf - M. Suchdnek - P. Kroha - R. Pergl

Faculty of Information Technology, Czech Technical University in Prague, Thakurova 9, 16000
Praha 6, Prague, Czech Republic

E-mail: david.senkyr@fit.cvut.cz

H. Mannaert - M. Suchdnek
Faculty of Business and Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen,
Antwerp, Belgium

2 D. Senkyf et al.

1 Introduction

Software development always starts with analysis and requirement specifications
to obtain a product requirement document describing what the software system
must, should, or can do to fulfil its purpose, e.g., efficiently supporting specific
activities of people and organizations. This document is then used according to
the methodologies and development processes used to design, produce, test, and
deploy the target software system. The development is typically supported by
models. Therefore, models assembled from a requirement specification can be used
to generate parts of the resulting system with applied best practices using model-
driven development techniques . [2,9]

One such technique is based on Normalized Systems (NS) theory [11]. It focuses
on the evolvability of software systems by using code templates to compose a
system from building blocks called NS elements. A model of the NS elements
together with various settings and configurations is used by NS expanders to fill in
the templates and produce an NS application — typically an enterprise information
system (EIS). Custom code fragments can be added to the generated code base;
however, the code can still be regenerated (e.g., when the templates support model
changes or new technologies) as custom code is harvested and then reinjected into
the regenerated code. The NS approach has been verified in practice by numerous
large-scale and long-term projects. [13,14]

Currently, an NS model must be created manually by analysts based on textual
requirement specifications or other domain knowledge, mostly captured as text.
This paper aims to automatically build NS models from textual domain descrip-
tions in natural language (English) to enhance this part of the NS development
process. The goal is to create a method and a tool that will produce an initial
NS model for further refinement by applying natural language processing (NLP).
Together with existing tools supporting the NS development process, it should
be possible to streamline the generation of an NS application prototype directly
from text. We foresee several benefits, such as quick prototyping, including test-
ing, making rapid and cheap changes, and, importantly, validating the original
requirements. We follow the idea of symbiosis between the textual requirements
and the developed system. In the end, the functionality in textual form can be
validated by stakeholders or lawyers, and it can be a part of a contract.

Our paper is structured as follows: First, we explain the motivation in terms of
the software development process using Normalized Systems and set our goals in
Section 2. Then, related work is briefly introduced to provide the necessary context
and relevant references to previous work in Section 3. Section 4 describes both a
theoretical solution and a technical solution to generate Normalized Systems from
textual domain descriptions. The implementation of the text-to-NS pipeline is
described in Section 5. In Section 6, the resulting solution is evaluated using a
prepared case, and future research is outlined. Finally, Section 7 summarizes the
outcomes of our work.

2 Software Development Process with NS and Our Goals

The software development process starts with requirement specifications. Then,
based on the methodology (waterfall, iterative, or agile), design, development, and

Expanding NS from Text using TEMOS 3

Customer
;'1 Technical Choices Normalized System
BIPERTEET) (Enterprise Information System)
. f A

requirements

NS Model

CEEEEE—"
/m\ (Elements)

Software Analyst

NS Expanders
(Code Generation)

design

Custom Code .
(Craftings) %0\ 5.4\
Software Developer Software Architect

Fig. 1 Software development process with Normalized Systems.

verification occur. Normalized Systems are not bound to any software development
methodology; both traditional and agile methodologies can be applied. The process
focuses on (re)generation from the specification (models) to evolvable information
systems. As shown in Fig. 1, the software analyst creates an NS model based
on the domain requirement specification. Then, a prototype information system
with generic functionality can be directly generated and verified with the customer.
Usually, the requirement specification is refined multiple times during this process.
The model is elaborated, and custom features are described. These features are
then implemented as code fragments plugged into the generic system. Therefore,
even if there are further changes in the model, it can be regenerated while retaining
the custom features.

Our research pursues the following goals:

G1: Enhance TEMOS to utilize NLP to produce NS models from textual domain
descriptions.

G2: Add the possibility of exporting NS models from TEMOS into formats used
by NS tooling.

G3: Streamline the prototyping of NS from text.

3 Related Work

This part briefly overviews relevant topics, technologies, and terminology with
respect to the goal of our research. It also provides important references to existing
previous work.

4 D. Senkyf et al.

3.1 Requirements Engineering with NLP — Classification

The idea of supporting requirements engineering by tools based on the linguistic
approach is a topic addressed in papers taking into account at least one of two
goals — to extract a model from the textual description and/or to clarify and
improve the textual description. In papers [8] and [7], Kof broke down the NLP
approach into three groups:

— The first one is related to lexical methods — methods that do not rely on basic
NLP approaches like part-of-speech tagging nor any other parsing. These
methods perceive the text as a sequence of characters and look for terms
(subsequences) that occur repetitively.

— Syntactical methods typify the second group. These methods use part-of-
speech tagging and looking for special sentence construction. Based on that,
they are able to distinguish objects and relationships.

— The last group represents semantic methods — methods that interpret each
sentence as a logical formula or a partial model. The goal is then to look for
predefined patterns or structures.

Moreover, the semantic methods should be supported by predefined patterns/struc-
tures created by humans or via machine learning [27].

3.2 Requirements Engineering with NLP — Related Work

In the paper by Rolland and Proix [18], the authors introduced a tool called OISCI.
This tool processes the French natural language. The approach presented in the
paper targets the creation of the characterization of the parts of the sentence pat-
terns that will be thereafter matched. OISCI also uses a text generation technique
from the conceptual specification to natural language for validation purposes.

Linguistic assistant for Domain Analysis (LIDA) is a tool presented by Overmyer,
Lavoie, and Rambow [16]. LIDA is conceived as a supportive tool — it can recognize
multi-word phrases, retrieve the base form of words (stemming and lemmatiza-
tion), present the frequency of words, etc. — but it does not contain algorithms
for automatic recognition of model elements. The decisions about modelling are
fully user-side, i.e., the user marks candidates for entities, attributes, and relations
(inclusive operations and roles).

TextReq tool [1] is implemented using The Natural Language Toolkit (NLTK).
This paper uses parsed trees of sentences, including part-of-speech tagging and
dependency recognition, to recognize entities and attributes. From the papers
mentioned above, the concept presented in this paper is the closest one to our
approach.

Visual Narrator tool [17] focuses on textual user stories and generates concep-
tual models as OWL ontologies. It is based on the spaCy NLP framework, similar
to our implementation. It requires user stories written in the form with indicators
(e.g., I want, I can). These are parsed in the sense of part-of-speech tagging and
dependency recognitions for further processing.

The same approach of using part-of-speech tagging and dependency recognition
is presented in the paper by Rooijen et al. [28], too. There, the tool is called REACT
(Requirements Extraction and Classification Tool).

Expanding NS from Text using TEMOS 5

A more detailed overview of existing tools is presented in the recent paper by
Zhao et al. [30].

3.3 TEMOS

As the extension of the TEMOS tool is set out in goals G1 and G2 of our work,
we present this tool in a separate section.

TEMOS supports requirements engineering concerning both goals — model ex-
traction and textual description clarification. As we describe in the paper [20], we
derive the UML model using the grammatical inspection of the textual form of
requirements. The process consists of three phases. During the first phase, the text
is parsed, and an internal model is created. During the second phase, we search for
patterns indicating ambiguity [21], incompleteness [22,23], and inconsistency [29].
We also confront the problem of domain facts and rules that domain experts find
so obvious that they fail to mention them. We denotated it as a problem of default
consistency rules [24].

TEMOS focuses on making textual requirements specifications more precise
and less inconsistent. To achieve it, we use the semantic information derived from
the complete textual description of requirements specifications with the help of
the simultaneously constructed internal model. Concerning the categorization pro-
vided in Section 3.1, our approach combines syntactical and semantic methods.

The tool TEMOS was primarily created for UML class model generation. Any-
way, thanks to the internal model (created incrementally by processing sentence
by sentence), we are able to convert semantics from the internal model to different
target forms. In the past, we also generated also SHACL shapes [19].

3.4 Normalized Systems

Normalized Systems (NS) theory [11] describes how to design and build complex
systems that can easily adapt to new changes using fine-grained modular structures
and the elimination of combinatorial effects. Although the theory is applicable
in various domains, and some works focus on that (e.g., [15] or [26]), it is the
most visibly used in software engineering. The theory itself describes how to build
software systems without combinatorial effects. It does so by applying four basic
principles: Separation of Concerns, Action Version Transparency, Data Version
Transparency, and Separation of States. The modular structure consists of so-
called NS Elements of five kinds: Data, Task, Flow, Trigger, and Connector. The
specification of an NS application consists of technical details and Elements models
encapsulated as Components. Each component can depend on other components
and describes a specific part or concern of the system. [3,13]

With an NS application, specifications consisting of components and elements,
NS Expanders can be used. During the expansion, selected code templates are
filled with information from the specification and previously harvested fragments
(custom code or craftings). The generated source code can then be used to build
and run the application as well as for further customizations. As such craftings
are always harvested, both the specification and code templates may change, and
the application can be regenerated. The craftings may bring combinatorial effects

6 D. Senkyf et al.

and other issues, but it has been empirically shown that there is a maximum of
10% of craftings in a codebase. [4, 6]

The NS metamodel describes the elements, components, applications, other
entities, their value fields and link fields. An important aspect of the metamodel is
its meta-circularity, i.e., the NS metamodel is itself an NS model [10]. For example,
a Data Element that describes structural entities is in the metamodel itself a
Data Element. It has significant implications with respect to the NS tooling that
supports the modelling, composing specifications, expanding, and managing NS
applications. Those tools can be expanded as NS applications themselves which
ensure their evolvability and maintainability.

3.5 Transformations into Normalized Systems

According to the NS metamodel, the goal of this work is to transform a natu-
ral text into an NS elements model. The previous research on transformations or
mappings between NS models and some other knowledge representations can pro-
vide valuable insights. The bi-directional transformation between NS models and
OWL ontologies [25] defines the mapping between the NS metamodel and core
constructs of the Web Ontology Language (OWL). It also describes how a tool
is built to execute transformations according to the mapping in both directions.
Instead of finding natural language patterns in text descriptions, it deals with
knowledge graphs and transforms from OWL to NS by looking up specific nodes
and edges mapped to the NS Elements.

The NS Elements are tightly related to the concept of projections, as also
demonstrated in [25] that builds a way of a new type of projections. The XML
representation that is commonly used for NS models serialization is a specific pro-
jection. Thanks to the NS metamodel’s meta-circularity, the projection allows to
import and export of the NS metamodel (and any of its instances) using XML [13].
Our work will focus on working with NS models in their XML format.

3.6 Summary

In the context of the presented related work, we follow the idea of the TEMOS tool
regarding text processing. The objective is similar to other presented tools: extract
information from the perspective of requirements engineering. The tools/works
differ in the used NLP framework and the used features of the annotated text. We
reuse the method of grammatical inspection that we will describe later.

The standard output of the TEMOS tool is the UML diagram. In this work,
where we extend this tool, we try to convert our internal model into a new form
—an NS elements model.

Following the existing works regarding Normalized Systems generation, we con-
nect the research of model generation from the text and the Normalized Systems
generation from the model.

Expanding NS from Text using TEMOS 7

4 Our Approach in Generating NS Elements from Textual Domain
Description

In this section, we describe how we use natural language processing methods to
convert textual information into our internal model. This model is in the next
phase transformed into NS metamodel.

4.1 The Method of Grammatical Inspection

Let’s consider the whole input text as a collection of sentences. A sentence is
a couple S = (7T,D) where T is an ordered set of tokens ¢; and D is a set of
dependencies. This structure is created as follows.

We use a quite typical pipeline of the text mining process that includes these
phases:

tokenization identifies tokens ¢; where a token is a word or interpunc-
tion,

sentence segmentation composes the sentence S based on the tokens representing
interpunction,

part-of-speech tagging resolves the part-of-speech tag of each token ¢;,

lemmatization identifies the word’s lemma (sometimes also called as dic-

tionary form),

dependency recognition ~ constructs set D, where the dependencies, i.e., relations
between tokens, are mapped,

co-reference recognition links tokens represented by a pronoun to their original
referent (the same person or thing typically represented
by a (proper) noun).

dobj
nsubj / a / detﬂ pr]\
PRN Aux‘a“\\vs DT ADJ‘E"“"1 NN c“cc oT *‘°""’°”"d NN/"'E'HADP/D “9eNN
/—’5
We wil fecord a serial number and a dlsplay size of each television.

Fig. 2 Example of a sentence with attribute candidates.

A result of this pipeline is the annotated original text of requirements that
we use as a source for our algorithm. An example of the annotated sentence is in
Fig. 2. For our purpose, each token ¢; has the following properties: original text
presented in a sentence, part-of-speech tag, lemma, and optional co-reference link
to another token. A dependency dj is a relation between two tokens t; and t2
having a type such as subject, object, etc. In our examples, we use types provided
by spaCy trained models for English!. It is a subset of Universal Dependency
Relations for English?.

‘We use the method of grammatical inspection improved by our sentence pat-
terns definitions to process the annotated text. On behalf of this method, we
define sentence patterns. These patterns use the grammatical structure (primarily
part-of-speech tags and dependencies), and we describe them in the next sections.

1 https://spacy.io/models/en
2 https://universaldependencies.org/u/dep/index.html

8 D. Senkyf et al.

4.2 Suitable Patterns

The idea of patterns is to use the grammatical role of words (mapped to tokens),
i.e., subject, object, etc., to indicate parts of the model to be created. For example,
both the subject and the object are candidates for an entity or an attribute in our
model.

The whole text is checked against our collection of patterns — sentence by
sentence. The extracted text fragments matching one of our patterns are processed
by our internal preliminary model manager. The model manager checks the text
fragments and transforms them into model parts if they satisfy all conditions.
Some of them are listed in the following section.

We reuse and extend the collection of patterns presented in papers listed in
Section 3.3. However, before we present the concrete patterns, we will first show
the structure of our model to illustrate how we map the extracted parts of the
text.

4.3 Internal Preliminary Model (Manager)

In the end, the information that we would like to extract from the requirements is
a collection of entities (classes), their attributes, and relations between the entities.
Thus, the goal is to transform the syntactic analysis performed on a text of the
requirements into a semantic form — a model.

The output of our text mining process is an internal preliminary model rep-
resented by a couple M = (E,R) where E is a set of elements and R is a set of
relations. Each element e; has the following properties:

root lemma the lemma form of the main word (token) representing element,
e.g., room if we have element hotel room,
Jull lemma the lemma form of the whole element, e.g., hotel room,

is entity candidate flag indicating whether the element should be modeled as an
entity or as an attribute,

is unique a flag indicating whether the requirements state the element
as unique or not.

Each binary relation r; € R links two elements ey, e; € E (where k # [) or one
element e, recursively, and it is represented by the label and cardinality type. For
our purposes, we distinguish the basic cardinality type (single or multiple) of each
actor of relation.

The goal of the internal model (manager) is to store the extracted information
and to provide constraints such as:

— text fragments representing the same semantic part of the model (e.g., hotel
room) are stored as only one element e,

— excluded text fragments listed in the configurable list are not processed,

— elements marked as entity candidates (i.e., because we already found this se-
mantic indicator in the previous text part) can not be changed to attribute
candidates; the opposite change from attribute candidate to entity candi-
date is fully legit because we can found that original attribute candidate has
custom attributes or other entity symptoms in the different parts of the text.

Expanding NS from Text using TEMOS 9

The list of excluded text fragments excludes such parts from storing them in the
model. The typical reason is that the meaning of these text fragments is too gen-
eral. For example, we do not want some introductory sentence like “This document
describes requirements of...” to generate entities document and requirement, and
connect them with the relation describe. On the other hand, in the requirements
describing a document management system, the word document will be one of
the key entities. Because such an exclusion is highly context dependent, we leave
the list of excluded text fragments configurable. The default list has been created
manually by our previous experience with requirements processing.

4.4 Suitable Patterns — Parts of Internal Model Recognition

Now, we know the target structure that is the output of the grammatical inspection
method, so we can present the specific patterns that we use to create and populate
the internal model.

We divide this section into sub-sections representing specific text structures
recognition that we find interesting.

4.5 Suitable Patterns — Triple Recognition

The basic semantic information of sentences is hidden in triples. In our case, a
triple consists of a subject, a predicate, and an object similar to the Resource De-
scription Framework (RDF). In Fig. 3, there is an example structure of annotated
text segment that corresponds to a triple recognition pattern. The predicate is
represented by a verb (part-of-speech tag property of a token). Next, there are
two following dependencies. The first one is called nsubj, and it represents the
nominal subject in our triple. The second one is called dobj, and it represents the
dependency object in our triple.

4 nsubj (1.7) ~yg.~ d0bj (1) *

NN NN
NOUN VERB NOUN

Fig. 3 Basic triple pattern.

When such a pattern is matched, we can identify:

— entity candidate element e; represented by the nominal subject part of a
sentence,

— entity candidate element ez represented by the dependency object part of a
sentence, and

— relation r where the label of the relation is represented by the lemma of the
verb token.

We can notice that the dependency type label consists of 1..* part. It represents
cardinality. We require at least one subject and one object. In any case, there can
be more subjects or objects. In such cases, we generate more triples with the same
predicate.

10 D. Senkyf et al.

The second level of cardinality is directly represented by the concrete subject
or object. We need to distinguish between the sentences “the business group owns a
hotel” and “the business group owns hotels.” This information is a part of the part-
of-speech tag where NN represents a singular noun and NNS represents a plural noun.
Anyway, this is not enough, and we need to consider other linguistic expressions of
plurality, e.g., “the business group could own more than one hotel” or “the business
group owns at least one hotel”. As shown in Fig. 4, this can be recognized via nummod
(numeric modifier) dependency and other modification dependencies representing
the meaning of minimum/maximum, at least, more than/less than, etc.

/—det dobj

DT NNAcompound NN A-nsubj\VBZ/ADVAradvmod\ADVAradvmod\NUM Arnummod\NN
——— —_—— —_—— - —— —— ——
The business group owns at least one hotel.

Fig. 4 Example of the cardinality recognition.

4.6 Suitable Patterns — Triple Recognition — Challenges

The pattern presented in Fig. 3 reflects the fundamental sentence fragment — the
bare semantic triple. However, the situation in textual requirements specification
is far from being that simple. We need to face the challenges originating from
passive voice, modificator in the form of prepositions, indirect subject, negation,
and many others.

In Fig. 5, there is an example of the passive voice sentence. We are now curious
about nsubjpass dependency instead of nsubj dependency used in the active voice.
We can note that we also miss the direct dobj dependency. This time, there is pobj
dependency that presents an object of a preposition. Also, our object (the word
guest) is not directly connected to the predicate (the word place (the lemma form))
so we need to check another dependency called agent.

/—nsubjpass pobj
DT‘dec\NN AUX 4-3uxpass ,agent—» / A—det\NN

VB ADP /DT
A booking is placed by a guest.

Fig. 5 Example of the passive voice.

When we match this pattern, we consider the information as a triple trans-
formed to active voice. In Fig. 5, it is the triple (guest, place, booking).

A similar situation occurs when the agent dependency is replaced by prep
dependency. The example is shown in Fig. 6. This time, we expect the triple
(room, relates (to), booking).

Similar to the basic triple pattern in Fig. 3, we can identify two entity candi-
dates and one relation.

To make it easier, in the examples of triples recognition, we present the root
token (word) representing entity or attribute candidates. However, as defined in
our internal model structure in Section 4.3, we recognize also the full lemma.

Expanding NS from Text using TEMOS 11

nsubjpass /pobj

DT"det\NN AUX 4-3uxpass VB/prep-sADP bT 4det\NN
-~ e —— -~ ~ —_——
A booking is related to a room.

Fig. 6 Example of the passive voice.

Often, the entity or attribute name is a composition of multiple nouns or a noun
and an adjective or both. This situation can be recognized by patterns checking
the root token relations (dependencies): compound and amod (adjectival modifier).
Both representatives are present in Fig. 2: serial number (adjective + noun) and
display size (compound nouns).

To illustrate a topic of negation in sentences, we reuse methods presented
in [29]. The negation can be represented by a standard negation of the verb (e.g.,
A user can’t. .., A system is not working. ..) or another negation modificators (e.g.,
No user can. .., A user can never...).

When presenting challenges, we also need to say that not every recognized
triple necessarily brings new semantic information. Some of them can consist of
the excluded word(s) that we won’t track; other of them can repeat already stated
semantic information in the model. That is the responsibility of the model to
eliminate possible duplicates.

4.7 Suitable Patterns — Attributes Recognition

In this category, we present two typical representatives. In Fig. 7, there is an
attribute(s) mapping via relation with the verb have. In that case, the root triple of
the sentence is (user, has, username). The subject (user) and the object (username)
are mapped to elements in our internal model. The word user is mapped as an
entity candidate and the word username is mapped as an attribute candidate.

dobj
[—dﬂ
DT NN "Bz /T ADS PN
—_—— —_—— —— o ——_———

Each user has a unique username.

Fig. 7 Example of a sentence with attribute candidate and the verb have.

We can see that the sentence structure also conforms to the previously shown
pattern regarding the general triple. So, we need to check the lemma of the verb
first to prioritize the attribute pattern over the general triple pattern.

In Fig. 2, there is the second attribute-mapping pattern representative. This
time, the attribute indication hint comes from the combination of the verb record
and the preposition of. The object of the preposition (television) is an entity candi-
date, and the objects of the triple are attribute candidates. This pattern is variable
per verb. In addition to the verb record, it can also be a verb register or the verb
write down.

As mentioned in the triple recognition challenges, we need to take into account
also semantically indirect subjects. Such a case is shown in Fig. 8. In this example
sentence, the syntactic subject represented by the pronoun we is not semantic

12 D. Senkyf et al.

prep conj
pobj-\ \ dob] con] / a
ADP % et\NN PRN 4-nsub VB / Arcompound\NN / NN Acompound\NN CC ADJ Aramod

—_—

Ec?r a booking, we keep start date end date and total pnce

Fig. 8 Example of a sentence with a semantically indirect subject representing an entity.

rich in our case. We would like to extract triples in the form (booking, keep, start
date) and variants for other attributes. This sentence structure can be matched
by a pattern detecting prep (preposition) dependency and following pobj (object
of the preposition) dependency to the expected entity candidate (a booking in our
case). Furthermore, the extracted relation keep is via mapping transformed into
the relation have that indicates that start date is an attribute candidate.

The example sentence in Fig. 7 also hints us how we can determine the is
unique property of element e. We can use a pattern that checks the presence of
the adjective unique and its connection to our entity or attribute candidate.

4.8 Suitable Patterns — Hierarchy Recognition

In the UML class diagram, we can model the inheritance relationship. On the level
of the NS metamodel, we express inheritance in the form of standard relation. We
will discuss it in Section 4.10 in the context of mapping our internal model to NS
metamodel. In any case, we benefit from the recognition of hierarchy in the text.

/—nsubj / det ﬂ
T\ AUX‘aRVB DT *°°mp°””d "N = cc or ADJ 2o NN

-~ —_—— ,—MA,—H

A room can be a family apartment or a standard room.

Fig. 9 Example of a sentence representing hierarchy of entities.

In Fig. 9, there is an example sentence representing a hierarchy of entities. The
corresponding pattern checks the nsubj (nominal subject) dependency, the main
verb have to be a form of the verb be, and there have to be the attr (attribute)
dependency instead of the dobj (dependency object) dependency. All the subject
and object(s) are mapped as entity candidate elements. The subject represents
the base entity, and the object(s) represent(s) the sub-entity(ies). We map this
hierarchy in our model and convert it to the specific relations based on the target
output model as mentioned. There should be more than one sub-entity. We can
find the other candidates via conj (conjunct) dependency.

In the words of triples, we can identify two triples here: (family apartment,
is-child-of, room) and (standard room, is-child-of, room).

4.9 Internal Model Check

It is possible to utilize our checks for incompleteness and inconsistency detection,
as proposed in our papers [22], [23], and [29]. It is beneficial to run these checks

Expanding NS from Text using TEMOS 13

before we start creating the model. After the checks that produce warnings, the
analyst can refine the textual input requirements.

We reuse the method of synonym concepts recognitions on elements to reduce
ambiguity [21]. When for an element e; there is identified a synonym element e,
a warning is generated. For example, with a set E = {booking, guest, reservation,
...}, asingle warning reports that booking and reservation are synonyms and these
concepts might be merged. This should be recognized, e.g., by on-line semantic
network ConceptNet®. This network provides a list of synonyms for the term being
queried.

4.10 Mapping to NS Metamodel

When the input text is processed, we have our internal model M ready for a
conversion to the NS model. The conversion has the following steps.

1. For each element e; from the set of elements E from our model M:

— if the is entity candidate property equals true, we convert e; to data
element in the created NS model,

— otherwise, e; is attribute candidate, and we assign it as value field to the
corresponding data element representing entity.

2. The type of data element is primary by default. However, if the root lemma
of e; is type, then the data element type is tazonomy.

3. We convert each binary relation r; from the set of relations R from our model
M to link field of data element created from ey (in the first step). We set link
field properties as follows:

— link field type based on the cardinality type of 7,
— required also based on the cardinality type of r;,
— target to the already created data element ¢; (in the first step).

4. We convert each recognized hierarchy relation. According to the NS theory,
inheritance causes combinatorial effects, i.e., it is considered as an obstacle in
evolvability. Therefore, inheritance must be modeled using link fields. Such a
link field is created on the data element representing sub-entity ej of parent
entity e;. The target of a link field is the data element representing e;. This
time, the required property is always true, and the cardinality is singular.

5. The last step is the enhancements phase. We describe it in the next section.

4.11 Enhancements Phase

After composing a model of data elements, we add several steps to apply con-
ventions from NS modelling and enhance the resulting model. The first step is
to handle the relations between primary and its corresponding taxonomy data
elements. It is a pervasive pattern to have a taxonomy data element with name
suffix Type with just a single attribute name. In other modelling languages such
as UML, it would become an enumeration. However, in terms of the NS theory,
enumerations are blocking the evolvability (e.g., when we need to add fields to
enumerated items). We noticed that the type is specified just as a “type” without

3 https://www.conceptnet.io

14 D. Senkyf et al.

any additional information in the textual requirements. When such a value field is
created, it is changed in the enhancements phase to a link field linking the newly
created taxonomy data element with name suffix Type and a name value field. For
example, if there is a Vehicle data element with type value field, it is changed to a
link field pointing to new VehicleType that has a name.

The second step is again related to the taxonomy data elements. We identified
that some texts describe both primary and taxonomy data elements but not the
relation between them. It is fixed by simply looking for such data elements with
missing relation to the corresponding taxonomy data element (if it exists). For each
of them, a new link field in the primary data element is created. The final step
of enhancements adjusts link field names using the conventions of NS modelling.
According to the mapping, the names of the field are taken from triples that do not
allow to match bi-directional links in NS models. If there is just a single link field
to the target data element, it is named by the target element’s name. In the case
of the many-side of the relationship, i.e., when it contains a collection of target
element instances, a suffix is added to express plural. For example, the value field
drives from Person drives Vehicles is renamed to vehicles but we keep drives as a
description of the field.

4.12 Exporting NS Elements

The classes for representing data elements, their value and link fields, and other
properties are expanded directly from the NS metamodel, which is meta-circular.
The XML format is required to allow the transition of NS models in TEMOS to NS
models for expenders. Due to NS tooling’s versatility, we were able to implement
expanders for the data-classes in Python and the XML serialization. There are
two benefits when using the approach with expanders in this case. First, whenever
the NS metamodel is updated, it is possible to re-expand the classes and related
serialization for TEMOS. Second, although we currently focus on the structural
part of the NS metamodel (i.e., data elements and the constructs around them),
expansion works with full NS metamodel. It will simplify future development when
we can focus, for example, on task and flow elements. TEMOS has been extended
with a command-line interface that takes a text as input and writes a set of XML
files with data elements according to the NS tooling expectations.

The set of XML files generated from TEMOS can be added to an existing NS
component or to a new prepared one. It is not possible to generate a component
fully from functional requirements. It contains various implementation and envi-
ronment details, e.g., which source base is used or the version or qualified name of
the component. These details need to be provided in other NS tools, or an example
component XML file can be adjusted accordingly. Such a component can then be
imported for further refining, e.g., in NS Modeler, or directly used for expansion.

We used the sentences introduced in Fig. 5, Fig. 6, Fig. 9, and Fig. 8 as re-
quirements to generate an NS model of data elements. Fig. 10 shows the resulting
model with five data elements. There were no fields for Guest and Room mentioned
in the text. Both Standard Room and Family Apartment have the relation to parent
element Room as they form a hierarchy. Finally, there are several fields (value and
link) for the Booking data element.

Expanding NS from Text using TEMOS 15

=
org.normalizedsystems.temits

Booking
,
guest : Guest[Ln01] orgnormalizedsystems.temBis
startDate : String > Guest
endDate : String

totalPrice : String
room : Room[Ln01]

org normalizedsystems.temBis

Room
wnds| [omn emis|
StandardRoom | FamilyApartment |
room : Room[Ln01] | room : Room([Ln01] |

Fig. 10 Generated data elements for a hotel example.

| Booking

\ Guest

Start date

Enddate | 20210223

Total price 21575

Room 215 x -

Cancel Save

Fig. 11 Booking form for expanded NS application.

4.13 Generating Information System Prototypes

The expansion is possible directly with an NS component filled by data elements
from our transformation. The expanded information system is possible to build and
deploy just by executing a set of commands or by clicking the button in the NS tool
called Prime Radiant [13]. The resulting system is a basic CRUD application but
fully operational and can serve as a prototype for further requirements elaboration.
Fig. 11 shows a form based on the Booking data element. We manually added
value fields name for Room and Guest as data elements without any attribute are
meaningless.

With the prototype, it is possible to change the NS model directly in NS Mod-
eler or Prime Radiant and quickly re-expand, build and re-deploy the application.
If the requirements are more specific, even custom code fragments called craftings
can be added to the expanded code base. NS comes with a principle of harvesting
those craftings, so they are not lost upon re-expansion. Whenever there is a change
of the requirements text, it is possible to regenerate XML files of data elements,
but if other changes were made, those would be overwritten. On the other hand, if
there are some harvested craftings or other than data elements in the component,
such additional elements stay intact.

16 D. Senkyf et al.

5 Text-to-NS Pipeline Implementation

The text processing part is an extension of the TEMOS tool, and it is powered
by the spaCy* NLP framework, version 3.2. We use a pretrained model called
en_core_web_trf in version 3.2.0 (available together with the spaCy installation) to
process text written in English. The text processing logic is written in Python.
Both the spaCy version and the model version are the latest versions available at
the time of writing this paper.

To streamline the process of information system prototyping from textual func-
tional requirements (set as goal G3), we prepared a script for automating it. As
input, it takes the textual requirements together with a directory in which the
target NS component is located and the Prime Radiant is located (for expansion
and deployment). Then, it executes the following steps:

Run TEMOS to create data elements as XML files in the component.
Expand the information system using Normalized Systems.

Build the information system from an expanded code base.
Deploy/run the information system.

(optional) Open a web browser with the running system.

Gujs L2 ROl

Steps 2 and 3 are performed by executing Maven targets, as the Normalized
Systems use the Java programming language. For deploying and running in step 4,
the system is managed through Prime Radiant, which supports multiple deployed
bases and various options (e.g., database management). As stated, the system can
be easily reified and recreated after stopping.

6 Evaluation and Discussion

In this section, we evaluate our approach using textual requirements from three
different sources: first, the EUrent case provided by NSX, second, a set of require-
ments from the natural language requirements processing (NLRP) benchmark pro-
vided by Karlsruhe Institute of Technology, and third, a set of requirements from
the PUblic REquirements (PURE) dataset.

We describe each input data text with the number of sentences, the number
of words, and two indices of readability — the Automated Readability Indez (ARI)
and the Gunning Fog Inder (GFI) — that we obtained using theFree Text Complezity
Analyzer online tool®. In the evaluation, we analyse precision and recall considering
relevant (expected) model constructs and retrieved (generated) model constructs.
In our case, they are defined as:

|[{relevant model constructs} N {retrieved model constructs}|
|{retrieved model constructs}|

precision =

and

|[{relevant model constructs} N {retrieved model constructs}|

=
reca |[{relevant model constructs}|

4 https://spacy.io
5 https://www.lumoslearning.com/1lwp/free-text-complexity-analysis.html

Expanding NS from Text using TEMOS 17

A model construct in this analysis includes data elements (both primary and
taxonomy elements), link fields, and value fields.

We discuss the challenging situations and issues regarding missing or incor-
rectly generated model constructs. Furthermore, we discuss general software de-
velopment aspects, revisit our initial goals, and propose future work.

6.1 Evaluating with the EUrent Case

To assess our approach, we use an official example called the EUrent Case [12].
NSX has used it for several years as a training example for new analysts. In 45
sentences (522 words, ARI 4.07, GFI 7.48), 40 data elements are described, of
which two are of the history type (but are not covered in the textual description)
and nine are of the taxonomy type. This example also contains different kinds
of value and link fields. We used our pipeline on the textual description of the
EUrent case to generate an NS model and expand the corresponding information
system prototype. This section discusses the differences between our generated NS
model (presented in Fig. 12) and the reference model created by analysts who
have experience with Normalized Systems. In NS visualization, taxonomy data
elements use a red background, whereas primary data elements are blue.

6.1.1 Missing Data Elements

We need to take into account that the NLP framework (based on spaCy) works
with pretrained models, and the resulting annotations should differ when a specific
sentence is used alone or in the context of a paragraph.

This case occurred in our evaluation, where a specific dependency had a dif-
ferent root token than we expected.

6.1.2 Missing Value Fields

The attribute average price is missing because it was not matched by any of our
attribute patterns.

6.1.3 Mistaken Value Fields

The reason for the incompletely identified value field damaged is the unmatched
condition sentence connected to the word flag.

6.1.4 Missing Link Fields

NLP recognition fails on passive-voice sentences with the verb relate. Similar to the
first point, there is a difference when the sentence is used alone or in a paragraph. In
the case of a paragraph, the word related was incorrectly identified as an adjective
instead of a verb. This issue concerns almost all missing link fields.

18 D. Senkyft et al.

6.1.5 Excess Elements

Fortunately, we did not find any excess elements. As mentioned in Section 4.3,
a configurable list of excluded text fragments can be helpful here. There is a
possibility of using human intervention to exclude words or text fragments from
processing.

In our case, the requirements contain the word today. Without excluding this
word, it should be identified as an entity candidate and transformed into a data
element in the NS model. We show this situation in Fig. 12 with a dashed rectangle.

6.1.6 Taxonomy Data Elements

Due to the enhancement phase, all of the taxonomy data elements were correctly
identified and completely matched. The missing information was deduced despite

Fig. 12 EUrent case generated diagram with evaluation.

Expanding NS from Text using TEMOS 19

the ambiguity and incompleteness in the text, e.g., not mentioning the name at-
tribute or stating that there is only a type for other entities. Moreover, no extra
taxonomy data elements were generated. Therefore, for these nine data elements,
our method achieved the best possible result.

6.1.7 Degradation of Links to Values

When compared to the model created by an analyst, we differ in the fields of
Natural Person. In our case, both fields — gender and national register number — are
value fields because they conform to our attribute patterns. However, experienced
analysts model them as data elements and link fields from Natural Person. For ex-
ample, an analyst may use a name of Gender that is not stated in the requirements,
so this is an example of incompleteness.

6.1.8 Differences in Naming

Our patterns were created for sentence structures in which the adjective is con-
nected to the root token (word) of an attribute or entity candidate. Nevertheless,
thanks to this case study, we found that the adjective can also be connected to
the first token (word), e.g., social media account (because social media is a well-
established phrase) vs. new printer cartridge.

6.1.9 Evaluation Summary

As described in the paragraphs above, there are differences between the original
and the generated NS model. Some of these differences are caused by ambiguity, in-
completeness, or inconsistency in the textual requirements. Moreover, the software
analysts — based on their experience — may add constructs that are not present in
the text. Table 1 summarizes the numbers of constructs that are matched, missing
(not present in the generated model), excessive (not present in the original model),
and mistaken (present but with different properties). We show the differences in
the diagram of the generated model in Fig. 12: the red lines represent missing
links, the orange lines with arrows indicate a reversed direction, the purple crosses
denote construct excess, and the orange ellipses mark mistaken fields. To com-
pute the precision and recall metrics, the number of missing constructs represents
false negatives, excessive and mistaken constructs are considered false positives,
and matches are true positives. Then, the retrieved elements are the union of the
matching, excessive, and mistaken constructs. Finally, the relevant elements are
matched with missing data.

The method we propose achieved a precision of approximately 87% and a recall
of approximately 92%. The overall score (the ratio of matching model constructs
to all expected model constructs) is 81% for this case. The result is usable as the
first prototype for further refinements in other NS tools as intended. However, it
counts incompleteness and ambiguity as having a negative impact on the method.
If we ignore the differences caused by such issues with the input text, we obtain
an overall score of 85%. When we ignore the differences that are caused by analyst
experience (e.g., taking Gender as an element instead of a value field), it further
increases the score to 89%.

20 D. Senkyf et al.

6.2 Evaluation with NLRP Benchmark Texts

By applying the same evaluation technique as in the EUrent case, we also analysed
the results for selected texts from the NLRP Benchmark site®. We selected seven
requirement descriptions relevant to software information systems that described
the structural aspect of the domain in the form of natural English text. We did
not use descriptions that were written as simple bulleted lists of functional and
nonfunctional requirements or descriptions focused on processes. Moreover, the
examples had various length and complexity metrics. The dataset does not con-
tain any reference models; however, there are written training data (primarily for
students), so we were able to prepare reference models ourselves.

A summary of the results is shown in Table 2. We verified that the main
issues are related to the semantic content of the text rather than the complexity
of the sentences. For example, the Movie Theatre case has a low score because
it is described from a user navigation perspective in some systems. The better
results (the Address Book, Elevator, and EUrent cases) are pure descriptions of
the problem domain — the entities, their properties and relations. When a customer
is guided to describe a case in such a manner, precision and recall can be expected
to be approximately 80%.

6.3 Evaluation with the PUblic REquirements (PURE) Dataset

The third dataset evaluated is a dataset of public requirement documents called
PURE [5]. We select a subcollection of documents that consist of functional re-
quirements concerning domain descriptions. In this evaluation, we consider the
precision metric only. The dataset does not contain any reference models. More-
over, some of the requirements are already quite complex, and we believe that
different analysts can model them in different ways based on their experience and
expertise. Therefore, it is difficult to evaluate recall objectively.

A summary of the results is given in Table 3. We follow this with a discussion
of our findings for this last evaluated dataset. In the evaluation, we also address
documents containing functional specification sections with more than 5,000 words
(the largest document, the Inventory 2.0 case, has 8,116 words).

Overall, we confirmed the idea of the usefulness of the list of excluded words
and text fragments. We expanded this list with new elements. One of them is the

6 http://nlrp.ipd.kit.edu/index.php/Category:Language:English

Table 1 EUrent case evaluation.

|| Match Missing Excess Mistaken Precision Recall

Primary DEs! 26 2 0 1 96.30% | 92.86%
Taxonomy DEs! 8 0 0 1 88.89% | 100.00%
Value Fields 58 1 0 6 90.63% 98.31%
Link Fields 26 7 3 6 74.29% 78.79%
Total [118] 10 | 3| 14 | 87.41% | 92.19%

I DEs = Data Elements

Expanding NS from Text using TEMOS 21

Table 2 Evaluation of additional cases from the NLRP Benchmark.

Case || Words Sentences ARI' GFI? Precision Recall

Address Book 417 15 129 | 13.6 81.82% 78.26%
Elevator 180 10 104 | 12.3 81.25% | 100.00%
Hotel 541 24 3.7 7.7 78.57% | 91.67%
Movie Theatre 176 9 8.1 | 11.0 86.21% 78.13%
Library 216 15 5.5 | 10.2 85.71% | 66.67%
Ships 49 5 6.8 | 11.3 100.00% | 75.00%
Trains 78 6 5.7 | 11.9 88.89% | 84.21%
Average I | | | | s86.06% | 81.99%

L ARI = Automated Readability Index; 2 GFI = Gunning Fog Index

word information. For example, in the sentence “It shows information such as cases
assigned, . ..”, we want to skip the word information and map the case to the entity
referenced by the pronoun it. Regarding references, some cross-references targeting
section headers or words in more than 2 previous sentences are also challenging to
process.

Another point concerning the list of excluded words is the problem domain
itself. For example, the word value is typically processed to enrich the model with
restrictions regarding the data type that represents the value, e.g., cardinality.
In this case, the word wvalue is not mapped to any data element. However, in a
specification describing sensors, value should represent a standalone data element
in the sense of the recorded value of a sensor. This recorded value should have
custom attributes such as a timestamp and some numeric values that a sensor
measures.

We also need to take into account text formatting that decreases recogni-
tion success. When processing plain text converted from document formats with
rich formatting, we lose information about sections (headers), lists, and tables.
The tables are the most challenging elements. On the other hand, we can quite
successfully recognize standalone text fragments representing headers and bullets
representing lists.

6.4 Software Development Aspects

Our approach can be seen as an extension of the methods used in model-driven de-
velopment. Traditionally, a software analyst takes textual requirements to produce
conceptual models that can be used as a basis for designing or, in model-driven de-
velopment, generating a software system. Even if consistency between such models
and systems is assured, this does not help in maintaining the models with respect
to textual requirements that can also change over time. This results in manual
work for the analyst. Moreover, as each analyst may use different approaches and
have different experience, they may model the same thing differently.

With the transformation that we proposed and implemented; a textual descrip-
tion is always transformed into the same model. When the text of the requirements
is changed, the transformation can be executed again, a new NS model can be

22 D. Senkyf et al.

Table 3 Evaluation of additional cases from the PURE dataset.

Case || Words Sentences ARI' GFI2 Precision
0000_cctns 394 21 | 14.49 | 16.13 74.07%
1999_multi-mahjong 1759 88 | 11.14 | 10.56 69.70%
1999_tcs 5855 296 | 13.95 | 14.40 71.88%
2000_nasa-x68 5455 358 | 13.96 | 12.44 68.42%
2001 _elsfork 1704 92 | 13.06 | 14.05 61.84%
2001-npac 2453 115 | 14.22 | 14.56 65.31%
2002_evla-back 844 44 | 12.58 | 14.42 58.33%
2002_evla-corr 955 41 | 15.84 | 17.05 69.57%
2002 _sce-api 2108 76 | 16.82 | 15.67 79.52%
2003_pnnl 931 45 | 15.73 | 16.70 63.64%
2003_tachonet 492 19 | 16.96 | 15.77 81.82%
2004 _colorcast 1199 66 | 12.62 | 13.49 67.69%
2004 _e-procurement 1683 90 | 11.82 | 12.22 71.19%
2004 _grid-bgc 716 56 | 10.03 | 10.01 77.50%
2004 jis 1763 134 | 13.09 | 16.79 76.00%
2004 _jse 641 21 | 19.66 | 15.69 69.23%
2005_grid-3D 196 11 8.72 9.19 66.67%
2005_microcare 3821 133 | 16.01 | 15.10 73.57%
2005-nenios 944 82 7.72 | 10.63 69.57%
2005_phin 2988 110 | 19.84 | 10.63 75.76%
2005_pontis 4395 221 | 13.73 | 11.48 72.16%
2008_vub 2546 61 | 26.97 | 10.20 68.97%
2009 inventory-2.0 8116 851 8.78 9.13 74.10%
2009 library 1974 79 | 13.42 | 10.62 71.26%
2010_home-1.3 1135 45 | 15.04 9.89 67.50%
2010_mashboot 526 26 | 13.26 | 13.50 68.18%
Average H | I I ” 70.52%

L ARI = Automated Readability Index; 2 GFI = Gunning Fog Index

produced, and a new information system can be expanded, built, and deployed.
However, it is crucial to keep track of changes made in addition to the data ele-
ments coming from the transformation. If one, for example, adds a new value field
in NS Modeler or specifies a data child in Prime Radiant, those changes would
normally be overwritten. By using a model representation in XML, on the other
hand, conflicts can be solved through standard version control systems (VCSs),
which are recommended.

Another change that can arise is related to the NS metamodel, despite its sta-
bility. As the module used for representing the NS metamodel and serialization
is expanded directly from the NS metamodel, it easily adapts to such changes.
Nevertheless, if the NS metamodel is changed significantly, the change will also
be required to transform from the internal preliminary model. This means that
the NS metamodel is changed according to the theory, and the new versions are
backwards compatible. On the other hand, some changes can be used to improve

Expanding NS from Text using TEMOS 23

the transformation. For example, suppose a new type of relation between data ele-
ments is incorporated (e.g., inheritance or part-whole relations). In this case, new
textual patterns can be designed to find such relations in the textual requirements.

6.5 Goals Revisited

At the beginning of this work, we set three goals listed in Section 2. In this section,
we describe how we met these goals.

Concerning the first goal, G1 Enhance TEMOS to utilize NLP for producing NS
models from textual domain descriptions, we introduced the focus of TEMOS in
Section 3.3, and we followed up on the approach of text analysis using sentence
patterns. We described the suitable patterns, and we presented examples of them
in Sections 4.2—4.8.

Regarding the second goal, G2 Add the possibility to export NS models from
TEMOS into format used by NS tooling., this began in Section 4.10, where we
described the approach of mapping the recognized text parts into the NS meta-
model. We also showed how to apply conventions from NS modelling during the
enhancement phase in Section 4.11. Finally, we described the exporting process in
Section 4.12.

The last goal, G3 Streamline the prototyping of NS from text, is described from
a practical process implementation perspective in Section 5. We evaluated and
discussed the whole prototyping pipeline in Section 6.

6.6 Future Work

The work presented in this paper is ready to be used, and as explained, it is mainly
helpful in the initial phase of software development. Nevertheless, there are further
potential steps that can extend our approach. From a content viewpoint, we plan
to define more patterns for text analysis to produce different NS Elements. For
example, subsequent research could focus on descriptions of behavioural aspects
in functional requirements. As a result, the NS models generated from TEMOS
would also contain task and flow elements.

Concerning usability, the pipeline that we designed can be incorporated directly
into the NS tool to avoid the need for executing a script. For instance, the Prime
Radiant tool could contain a form for creating or updating a component from
textual requirements. The transformation would be executed by simply clicking a
button. For a software analyst, it would be convenient to paste text, click a button,
and have a running prototype for further discussion with customers, future users,
or different stakeholders.

7 Conclusion

This paper presents our solution for generating information systems directly from
textual functional requirements using Normalized Systems. It builds on both the
existing capabilities of NS technologies and the tool TEMOS [20]. Our approach

24 D. Senkyf et al.

of recognizing specific patterns using NLP methods (including grammatical in-
spection) and incorporating the intermediate transformation layer of an internal
preliminary model allows us to produce working information system prototypes.
Such prototypes can be used for verifying and clarifying requirements with clients
or as a basis for further manual enhancements. We also automated the pipeline
from textual functional requirements to a running prototype without any interme-
diate steps. Finally, the solution also takes evolvability into account, as both the
NS metamodel and textual requirements on a software system may change over
time.

8 Declarations
8.1 Funding

The research was supported (in terms of funding) by Czech Technical University
in Prague grant No. SGS20/209/0OHK3/3T/18.

8.2 Conflicts of Interest/Competing Interests

Marek Suchének collaborates on research with NSX bvba (University of Antwerp
spin-off) as being PhD student with topic oriented on Normalized Systems. Herwig
Mannert as one of the NS Theory authors is also one of the NSX bvba founders.

8.3 Availability of Data and Material

Not applicable. There are no datasets created in this research. Source codes are
available based on a request.

8.4 Code Availability

Source codes are available from David Senkyi based on a request. The NS tools
are available from NSX.

8.5 Authors’ Contributions

David Senky# designed and implemented the enhancements in TEMOS in terms
of NLP and mapping to the NS metamodel.

Realization of the NS module in TEMOS including export functionality and
text-to-NS pipeline has been done by Marek Suchédnek.

Supervising the work, collaboration on evaluation has been done by Petr Kroha,
Herwig Mannaert, and Robert Pergl.

Expanding NS from Text using TEMOS 25

Acknowledgments

The research was performed in collaboration of Czech Technical University in
Prague, University of Antwerp, and NSX bvba. The research was supported by
Czech Technical University in Prague grant No. SGS20/209/OHK3/3T/18.

References

11.

12.

13.
14.

15.

16.

. Arellano, A., Zontek-Carney, E., Austin, M.: Frameworks for Natural Language Processing

of Textual Requirements. International Journal on Advances in Systems and Measure-
ments 8(3 & 4), 230240 (2015)

. Beydeda, S., Book, M., Gruhn, V., et al.: Model-Driven Software Development, vol. 15.

Springer (2005)

. De Bruyn, P.: Towards Designing Enterprises for Evolvability Based on Fundamen-

tal Engineering Concepts. In: OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”, pp. 11-20. Springer (2011). DOI 10.1007/
978-3-642-25126-9_3

. De Bruyn, P., Mannaert, H., Verelst, J., Huysmans, P.: Enabling Normalized Systems in

Practice — Exploring a Modeling Approach. Business & Information Systems Engineering
60(1), 55-67 (2018). DOI 10.1007/s12599-017-0510-4

. Ferrari, A., Spagnolo, G.O., Gnesi, S.: PURE: A Dataset of Public Requirements Docu-

ments. In: 2017 IEEE 25th International Requirements Engineering Conference (RE), pp.
502-505 (2017). DOI 10.1109/RE.2017.29

. Huysmans, P., Verelst, J.: Towards an Engineering-Based Research Approach for Enter-

prise Architecture: Lessons Learned from Normalized Systems Theory. In: International
Conference on Advanced Information Systems Engineering, pp. 58-72. Springer (2013).
DOI 10.1007/978-3-642-38490-5_5

. Kof, L.: An Application of Natural Language Processing to Domain Modelling: Two Case

Studies. International Journal on Computer Systems Science Engineering 20, 37-52 (2004)

. Kof, L.: Natural Language Processing: Mature Enough for Requirements Documents Anal-

ysis? In: A. Montoyo, R. Munoz, E. Métais (eds.) Natural Language Processing and
Information Systems, pp. 91-102. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

. Laplante, P.A.: Requirements Engineering for Software and Systems. CRC Press (2017)
. Mannaert, H., De Cock, K., Uhnék, P.: On the Realization of Meta-Circular Code Gener-

ation: The Case of the Normalized Systems Expanders. In: ICSEA 2019, The Fourteenth
International Conference on Software Engineering Advances. IARIA (2019)

Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems Theory: From Foundations
for Evolvable Software Toward a General Theory for Evolvable Design. Koppa, Kermt
(Belgium) (2016)

NSX bvba: NS course: EU Rent exercises (domain description) (2017,
https://doi.org/10.5281/zenodo.4629503). DOI {10.5281/zenodo.4629503}. URL
https://zenodo.org/record/4629503#. YFmOLnv9aiM

NSX bvba: NSX: Normalized Systems (2020). [online]. https://normalizedsystems.org
Oorts, G., Huysmans, P., De Bruyn, P., Mannaert, H., Verelst, J., Oost, A.: Building
Evolvable Software Using Normalized Systems Theory: A Case Study. In: 2014 47th
Hawaii International Conference on System Sciences, pp. 4760-4769. IEEE (2014). DOI
10.1109/HICSS.2014.585

Oorts, G., Mannaert, H., Bruyn, P.D., Franquet, I.: On the Evolvable and Traceable
Design of (Under)graduate Education Programs. In: D. Aveiro, R. Pergl, D. Gouveia (eds.)
Advances in Enterprise Engineering X - 6th Enterprise Engineering Working Conference,
EEWC 2016, Funchal, Madeira Island, Portugal, May 30 - June 3, 2016, Proceedings,
Lecture Notes in Business Information Processing, vol. 252, pp. 86—-100. Springer (2016).
DOI 10.1007/978-3-319-39567-8_6

Overmyer, S.P., Lavoie, B., Rambow, O.: Conceptual Modeling Through Linguistic Anal-
ysis Using LIDA. In: Proceedings of the 23rd International Conference on Software Engi-
neering, ICSE ’01, pp. 401-410. IEEE Computer Society, Washington, DC, USA (2001).
URL http://dl.acm.org/citation.cfm?id=381473.381515

26

D. Senkyf et al.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Robeer, M., Lucassen, G., van der Werf, J.M.E.M., Dalpiaz, F., Brinkkemper, S.: Au-
tomated Extraction of Conceptual Models from User Stories via NLP. In: 2016 IEEE
24th International Requirements Engineering Conference (RE), pp. 196-205 (2016). DOI
10.1109/RE.2016.40

Rolland, C., Proix, C.: A Natural Language Approach for Requirements Engineering. In:
P. Loucopoulos (ed.) Advanced Information Systems Engineering, pp. 257-277. Springer,
Berlin, Heidelberg (1992)

Senky¥, D.: SHACL Shapes Generation from Textual Documents. In: R. Pergl, E. Babkin,
R. Lock, P. Malyzhenkov, V. Merunka (eds.) Enterprise and Organizational Modeling and
Simulation, pp. 121-130. Springer International Publishing, Cham (2019)

Senky#, D., Kroha, P.: Patterns in Textual Requirements Specification. In: Pro-
ceedings of the 13th International Conference on Software Technologies, pp. 197-204.
SCITEPRESS — Science and Technology Publications, Porto, Portugal (2018). DOI
10.5220/0006827301970204. URL http://www.scitepress.org/DigitalLibrary/Link.
aspx?doi=10.5220/0006827301970204

Senkyf, D., Kroha, P.: Patterns of Ambiguity in Textual Requirements Specification. In:
A. Rocha, H. Adeli, L.P. Reis, S. Costanzo (eds.) New Knowledge in Information Systems
and Technologies, vol. 1, pp. 886-895. Springer International Publishing, Cham (2019)
Senky¥, D., Kroha, P.: Problem of Incompleteness in Textual Requirements Specification.
In: Proceedings of the 14th International Conference on Software Technologies, vol. 1, pp.
323-330. INSTICC, SCITEPRESS — Science and Technology Publications, Porto, Portugal
(2019). DOI 10.5220/0007978003230330

Senky#, D., Kroha, P.: Patterns for Checking Incompleteness of Scenarios in Textual Re-
quirements Specification. In: Proceedings of the 15th International Conference on Eval-
uation of Novel Approaches to Software Engineering, vol. 1, pp. 289-296. INSTICC,
SCITEPRESS — Science and Technology Publications, Porto, Portugal (2020). DOI
10.5220,/0009344202890296

Senky#, D., Kroha, P.: Problem of Inconsistency and Default Consistency Rules. In: H. Fu-
jita, H. Pérez-Meana (eds.) New Trends in Intelligent Software Methodologies, Tools and
Techniques — Proceedings of the 20th International Conference on New Trends in In-
telligent Software Methodologies, Tools and Techniques, SoMeT 2021, Cancun, Mexico,
21-23 September, 2021, Frontiers in Artificial Intelligence and Applications, vol. 337, pp.
674-687. I0S Press (2021). DOI 10.3233/FAIA210063

Suchdnek, M., Mannaert, H., Uhndk, P., Pergl, R.: Bi-directional Transformation between
Normalized Systems Elements and Domain Ontologies in OWL. In: R. Ali, H. Kaindl,
L.A. Maciaszek (eds.) Proceedings of the 15th International Conference on Evaluation of
Novel Approaches to Software Engineering, ENASE 2020, Prague, Czech Republic, May
5-6, 2020, pp. 74-85. SCITEPRESS (2020). DOI 10.5220/0009356800740085

Suchédnek, M., Pergl, R.: Towards Evolvable Documents with a Conceptualization-Based
Case Study. International Journal on Advances in Intelligent Systems 11, 212-223 (2018)
Talele, P., Phalnikar, R.: Software Requirements Classification and Prioritisation Using
Machine Learning. In: A. Joshi, M. Khosravy, N. Gupta (eds.) Machine Learning for
Predictive Analysis, pp. 257-267. Springer Singapore, Singapore (2021)

van Rooijen, L., Baumer, F.S., Platenius, M.C., Geierhos, M., Hamann, H., Engels, G.:
From User Demand to Software Service: Using Machine Learning to Automate the Require-
ments Specification Process. In: 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW), pp. 379-385 (2017). DOI 10.1109/REW.2017.26

Senky¥, D., Kroha, P.: Problem of Inconsistency in Textual Requirements Specification.
In: R. Ali, H. Kaindl, L.A. Maciaszek (eds.) Proceedings of the 16th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering — ENASE, pp. 213-220.
INSTICC, SciTePress (2021). DOI 10.5220/0010421602130220

Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J., Ajagbe, M.A., Chioasca, E.V., Batista-
Navarro, R.T.: Natural Language Processing (NLP) for Requirements Engineering: A Sys-
tematic Mapping Study (2020)

