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1 

 Introduction 

This chapter introduces the background and theoretical fundamentals for the research comprising 
this thesis. The goal of this thesis is to present robust approaches to capture the three-dimensional 
atomic scale transformations observed in metallic nanoparticles under application-relevant 
conditions. This chapter starts with a short introduction to nanomaterials and relevance of 
transmission electron microscopy for their investigation. The chapter continues with the basic 
principles and different imaging modes of transmission electron microscopy. Next, developments 
in the three-dimensional characterization of nanomaterials from two-dimensional transmission 
electron microscopy images are given. Within this purpose, the principles of three-dimensional 
characterization by electron tomography and quantitative electron microscopy under both static 
and application-relevant conditions are summarized. Finally, the motivation and outline of this 
thesis are presented. 
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1.1.  Nanotechnology and nanomaterials 

Nanotechnology is a multidisciplinary field that comprises the development, controlling, and use 
of materials at the nanometer (nm) scale which corresponds to a billionth of a meter (m). 
Nanomaterials are materials which have at least one dimension smaller than 100 nm. When three 
dimensions are confined to the nanometer scale, these materials are referred to as nanoparticles 
(NPs). 1 To get a perspective of the scale of 1 nm, a length scale of the nanomaterials range in 
comparison to the diameter of a human hair and some daily life objects is presented in Figure 1.1.  

 

Figure 1.1 Sequence of images showing the various levels of length scale. Adapted from ref 2. 

Nanomaterials are of great interest since they exhibit unique physical and chemical properties that 
cannot be observed for macroscopic systems. As the size of a material is confined to the nanoscale, 
the ratio of the surface area compared to its volume, the so-called surface-to-volume ratio, 
increases. Consequently, surface atoms start to control the properties of these nanomaterials. 1,3 For 
example, bulk gold (Au) is considered as an inert material because Au often does not react with 
chemicals present in the atmosphere, which makes it so valuable. However, Au particles smaller 
than 5 nm are effective catalysts since their surface atoms present chemically active sites for 
catalytic reactions. 4 The large surface-to-volume ratio also plays a key role in the thermal stability 
and mechanical properties of the nanomaterials. 1 It is important to note these properties are 
strongly linked to the shapes and sizes of NPs since varying shapes or sizes will produce distinct 
surface-to-volume ratios. Furthermore, as another example, the size confinement in metal NPs 
causes strong interaction with light due to localized surface plasmon resonances (LSPRs), which 
are collective oscillations of conduction electrons. An LSPR leads to efficient light absorption and 
scattering at specific wavelengths. The sensitivity of LSPRs to the size, shape, or composition of 
the NPs enables one to achieve unique and tunable optical properties, which cannot be achieved by 
bulk materials. Moreover, the intensive light absorption may cause heat generation within and 
around the metal NPs, which is known as the photothermal effect. Converting the absorbed light 
into heat by the photothermal effect turns the NPs into localized nano-heat sources. 4,5  
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It is interesting to note that the special properties of nanomaterials have been exploited long before 
one could observe them. One of the famous examples is the Lycurgus cup manufactured by Romans 
in the 4th century (Figure 1.2). 4,6 The color of the cup changes in certain lighting conditions. An 
analysis in 1990 7 showed that the different colors of the cup stem from the silver (Ag) and Au 
alloy NPs dispersed in the glass. When the cup is illuminated outside, it appears green (Figure 1.2a) 
due to the diffusion of light. However, when it is illuminated inside, it shines red-purple (Figure 
1.2b) because of the absorption of light by the metal NPs, originating from LSPRs. Using NPs to 
obtain different colors of glasses is commonly seen in the late medieval church windows, as well. 
It was also found that a glittering effect on the surface of medieval pots was obtained by the 
dispersion of alloyed NPs into the decorative glaze during the 9th century in Mesopotamia. 4,8 In 
addition to decorative purposes, nanomaterials were also used to improve the mechanical properties 
of materials in history. For example, Damascus steel swords, manufactured during the 17th century 
in ancient India, are known for their extraordinary toughness and sharp cutting edges. An electron 
microscopy study in 2009 9 surprisingly revealed that the steel blades contain cementite nanowires 
and carbon nanotubes which certainly enhanced the mechanical properties of the sword. These 
historical objects were, of course, the results of hundreds of years’ empirical optimization by 
artisans and blacksmiths who would not know the scientific origin of the properties of these 
nanomaterials. 

 

Figure 1.2 The Lycurgus Cup from the 4th century a) illuminated from the outside b) illuminated from the 
inside. The images are obtained from the free image service of the British museum. 

Broad scientific attention to materials at the nanoscale was first drawn by a talk of the Nobel 
laureate Richard Feynman titled “There’s Plenty of Room at the Bottom” in 1959, where he 
discussed the possibility of creating new devices and materials by direct manipulation of atoms. 
Although he did not use the term “nanotechnology” during his speech, Feynman raised the hope to 
make things smaller, lighter or work better than is possible with conventional materials. 10 The term 
nanotechnology was first used in 1974 by Norio Taniguchi to refer to the precise and accurate 
tolerances required for machining and finishing materials. 1 In the following years, various 
approaches to the synthesis were established, opening the possibility to create peculiar, highly 
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tunable and controllable structures, which are not possible to obtain using conventional chemical 
synthesis. 1,11 

Nowadays, nanomaterials have become a part of our daily life, even though people are not always 
aware of it.  For example, nanoparticles are used in food packaging, 12 scratch-resistant and anti-
reflection coatings, 13 sport goods, 14 and sunscreen. 15 One of the most common applications of 
nanostructures may correspond to rechargeable batteries which power most of the portable 
electronics around us, such as wireless headphones, smartphones, laptops, and electronic toys. Due 
to their large size and weight, conventional batteries were one of the limiting factors against the 
miniaturization of portable devices. To achieve high-performance and light-weight batteries, the 
tunable physicochemical properties of nanomaterials have provided great advancements in terms 
of increasing energy density, cycle life, stability, and minimizing size. 16–18 Nanotechnology is also 
expected to play a crucial role in solving many problems that our society is facing, such as reducing 
the emission of greenhouse gases and finding effective treatments for cancer. Researchers have 
already demonstrated that nanosensors are able to detect pollutants, 19,20 the large surface area of a 
nanocatalyst can speed up the transformation of harmful vapors from cars and industrial plants into 
harmless gases, 21–23 and tunable optical properties of quantum dots (confined semiconductors to 
nanoscale) can enhance the efficiency of renewable solar cells. 24–26 Furthermore, recent 
advancements in nanomedicine have shown that the unique photothermal and optical properties of 
Au NPs are promising to be used in improved, targeted, and even personalized hyperthermia cancer 
treatment and drug delivery. 27–29 

It is known that the functional properties of these materials are directly linked to their size, 
morphology, structure, and composition. If one is able to measure the positions of the atoms, their 
chemical nature, and the bonding between them, it becomes possible to predict the physicochemical 
properties of the nanomaterials. In this manner, the development of novel nanostructures can be 
triggered. For example, recent studies showed that the appearance of crystalline defects, such as 
twinnings or stacking faults, affects the optical properties of Au and Ag NPs. 30,31 Also, it has been 
observed that the atomic arrangements at the surface strongly influence the activity of platinum 
(Pt) NPs for some specific catalytic reactions, such as carbon monoxide oxidation in hydrogen fuel 
cells. 32–34 The rational design of nanomaterials with desired functional properties therefore 
strongly depends on the availability of three-dimensional (3D) structural characterization 
techniques. 

Different characterization techniques to investigate materials at the nanometer scale are available 
and some of them can even provide 3D structural information. However, scanning probe techniques 
such as scanning electron microscopy, scanning tunneling microscopy, and atomic force 
microscopy only provide surface or near-surface information. 35–37 Classical X-ray or neutron 
diffraction provides structural information, albeit averaged over an ensemble instead of local. 
Transmission Electron Microscopy (TEM) is, in comparison to all other characterization 
techniques, probably the most suitable and versatile tool to extract 3D structural information since 
it can provide atomically resolved images, which are sensitive to the local 3D structure of the 
investigated sample. Moreover, radiation damage on the investigated sample is lower in TEM 
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compared to X-rays. 38 This is because electrons in TEM are charged in comparison to X-rays, 
amplifying the interaction with the atoms of the structure. An additional advantage therefore is that 
TEM observations are not only sensitive to the atomic structure but also contain information on the 
atom type and ionization state of the atoms. 39,40 

1.2.  Transmission electron microscopy 

Historically, TEM was developed to overcome the limitations of visible light microscopes, which 
have widespread use for inspecting the microstructure of various organisms and inanimate objects. 
The main limitation of a visible light microscope is that its resolution is only to the order of 200 
nm, which is imposed by the relatively large wavelength of optical light (400-700 nm). 41 This 
length scale corresponds to thousands of atoms and is not sufficient for studying nanomaterials. To 
overcome the limitation of visible light microscopes, TEM was first developed by Max Knoll and 
Ernst Ruska in the 1930s. 42 The main idea of TEM comes from the wave-particle duality of 
electrons. The wave-particle duality states that electrons can be described not only as particles but 
also waves with a wavelength proportional to their momentum. Therefore, the wavelength of 
electrons in TEM can be manipulated by applying different accelerating voltages, achieving 
potentially much smaller wavelengths than visible light. 43 

With the development of TEM, the wavelength was no longer the main limiting factor against the 
visualization of atomic arrangements in nanomaterials. For example, electrons accelerated by a 
voltage of 300 kilovolts (kV) yield a wavelength of about 0.02 Angstrom (Å). However, when 
Richard Feynman asked “Is there no way to make the electron microscope more powerful?” in his 
famous 1959 talk, the practically attainable resolution was only about 10 Å which was inadequate 
to be able to see matter on the atomic scale. This discrepancy was mainly due to the fact that the 
optical systems used to manipulate the electrons in a TEM are affected by severe imperfections. 
Ever since, a lot of effort has been made to increase the image resolution in TEM by reducing the 
aberrations of the electromagnetic lenses with the introduction of aberration correctors, improving 
instrument stability and the brightness of the field-emission guns. Today, most of the advanced 
electron microscopes can achieve a resolution of around 0.5 Å, which is orders of magnitude better 
than the state-of-art in 1959. These achievements have allowed TEM to visualize the structure of 
nanomaterials down to the atomic scale. 44–47 

Two main modes of operation are commonly used in TEM: conventional TEM (CTEM) and 
scanning TEM (STEM). Figure 1.3 outlines simplified schemes of CTEM and STEM. In CTEM 
(Figure 1.3a), electrons are obtained from an electron source, such as a tungsten filament, by 
heating the material and simultaneously applying a strong electric field. In this manner, the 
electrons are accelerated to the desired wavelength with the applied voltage typically ranging from 
60 to 300 kV. The beam of electrons created in this manner enters the condenser system consisting 
of a series of electromagnetic lenses, which focus the beam onto the sample. The high energy of 
the incident electrons enables the electrons to propagate through the specimen and interact with the 
positive electrostatic potential of the atoms. The complex electron wave function that leaves the 
specimen is called the “exit wave”. 48 A set of objective apertures and electromagnetic lenses create 
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a virtual image of the exit wave, which is further magnified by the projector lenses. Since these 
lenses are not perfect, the exit wave is distorted by lens aberrations such as spherical aberration, 
defocus, and chromatic aberration while propagating to the image plane. Finally, electron counts 
are recorded in the detector plane by a CCD camera. 43,49 CTEM is a coherent imaging technique. 
Coherency is a wave property and refers to a phase relationship of different electron beams. The 
coherent images suffer from a phase problem where contrast reversals may appear depending on 
the aberrations of the objective lenses, thickness, and orientation of the specimen. 43,50 Therefore, 
a direct image interpretation in terms of structural information can be complicated. Moreover, 
although the exit wave function contains structural information, the phase information is lost upon 
the detection of the image intensity by a CCD camera. Therefore, for the structural interpretation 
of the investigated sample, the phase should be reconstructed, for example, using focal series 
reconstruction, off-axis holography, or using a phase plate. 51–54  

 

Figure 1.3 Simplified schematic representations of two different operational modes used in TEM: (a) CTEM 
and (b) STEM. The figure is adapted from ref 55. 

Differently from CTEM, where the electron beam is parallel, in STEM (Figure 1.3b), the electron 
beam is focused into an atomic scale probe which is used to scan the specimen point-by-point. The 
spatial resolution of an STEM image is mainly controlled by the size of the illuminating probe: the 
smaller the probe, the better resolution of STEM images. The lens system before the sample hence 
aims to provide enough demagnification of the finite-sized electron source. 50,56–58 Next, for each 
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probe position, electrons propagate through and interact with the specimen. The scattered electrons 
from the specimen as a function of probe position are collected on a detector. In STEM, a variety 
of signals can be recorded by using different detector geometries or collection angle ranges (β1 and 
β2 in Figure 1.3b).  

The transmitted electrons that leave the sample at angles smaller than the probe convergence angle 
(β1 = 0 and β2 ≤ α) form so-called the bright-field (BF) STEM image on a disked-shaped BF detector 
located in the optical axis (Figure 1.4a). Due to the principle of reciprocity, which states that the 
electron beam path in an electron microscope remains the same if their direction is reversed, a small 
BF detector located on the optical axis corresponds to the illuminating source geometry in CTEM. 
Therefore, a coherent CTEM image is formed with a BF STEM detector. 50,56,59 It should be noted 
that although both images are equivalent, the signal-to-noise ratio (SNR) may differ for the same 
incident electron dose, because, compared to CTEM, a BF detector collects only a very small 
fraction of all scattered electrons. 57,60  

Transmitted electrons that are collected by an annular detector lying within a BF disk but without 
using its central part (β1 > 0 and β2 ≤ α) form an annular BF (ABF) STEM image. As an example, 
an ABF image of a sample is shown in Figure 1.4b. The recorded image consists of atomic columns 
with black contrast on a white background. 61 Although ABF STEM images still include coherent 
details, they suffer from contrast reversals less than CTEM or BF STEM. Hence, these images are 
more easily interpretable in terms of the structure of the sample.  

The coherency of the scattered electrons is related to their scattering angle and as this angle 
becomes larger, the degree of coherency becomes less apparent. If the inner collection angle β1 of 
an annular detector is larger than the probe semi-convergence angle α, an annular dark field (ADF) 
STEM image is obtained. 43,62,63 For low-angle ADF (LAADF) STEM, the inner angle of the 
detector is slightly larger as compared to the probe semi-convergence angle. This setup gives rise 
to images of bright atomic columns on a dark background (Figure 1.4c). The signal obtained in 
LAADF STEM imaging mode can be considered as a mixture of coherent and incoherent electron 
scattering. 58 When the inner collection angle β1 of an annular detector is about three times larger 
than the probe convergence angle α and the outer angle β2 is several hundred milliradians (mrad), 
the STEM imaging is often called high-angle ADF (HAADF) STEM (see Figure 1.4d). HAADF 
STEM is one of the most commonly used STEM imaging modes. Only the electrons scattered to 
high-angles contribute to the HAADF STEM image contrast and these images provide almost a 
perfect approximation to incoherent imaging. 57 Such incoherent imaging is important in three main 
aspects. First, in contrast to coherent imaging modes, incoherent images have no phase or contrast 
reversal problem. Second, the primary interaction mechanism between the electron and the 
specimen is Rutherford scattering for high scattering angles. Since the probability of Rutherford 
scattering is proportional to the atomic number of nuclei Zn (1.6<n<2), these images exhibit 
elemental sensitivity. Third, total scattered intensity scales with the total number of atoms in the 
sample. As a result, the incoherent imaging mode is suitable for both qualitative and quantitative 
structural analysis, as discussed in the following sections. 43,50,56–58  
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Figure 1.4 Schematic illustration of STEM imaging modes using different angular ranges of an annular 
detector. In the first row, the green regions represent electron optics, the gray boxes represent the sample, 
and the blue oval regions represent collection angles of annular STEM detectors. The second row 
demonstrates simulated STEM images of a SrTiO3 structure corresponding to each imaging mode. a) BF 
STEM imaging. b) ABF STEM imaging. c) LAADF STEM imaging. d) HAADF STEM imaging. The 
simulated STEM images are obtained by using MULTEM software. 64  

Another advantage of STEM imaging is the option to simultaneously acquire STEM and spectral 
signals, such as energy dispersive X-rays (EDX) and electron energy loss spectrometry (EELS). 
The high energy of the incident electrons may excite atoms in a specimen, which will emit X-rays 
when falling back to their ground states. Since the energy of an emitted X-ray is directly related to 
the electron shell structure of an atom, the recorded signal can be used for chemical mapping. 65,66 
Measurement of EELS is an analysis of the energy distribution of electrons. The electrons which 
have lost energy through the interaction with the specimen while travelling in it can be dispersed 
using a magnetic prism. The resulting EELS spectrum can provide numerous information about the 
chemical and electronic structure of a specimen, including its bonding, valence state, and free-
electron density. 43,67  

The modes of operations used in TEM, CTEM and STEM, differ in the kind of information they 
can provide about the object of interest and in the required experimental parameters. For example, 
the main advantage of CTEM is that it avoids the time-consuming scanning process, which reduces 
acquisition time, scanning image distortions, and possible damage effects induced by the electron 
beam. On the other hand, in STEM, a wider range of useful signals is available, making this 
technique indispensable for many studies to interpret quantitative structural information of 
nanomaterials.  

1.3.  Electron tomography 

TEM is one of the most efficient and versatile tools not only for the structural characterization of 
nanomaterials down to the atomic scale but also for investigating their chemical and electronic 
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properties. 44–47 However, TEM images are only two-dimensional (2D) projections of 3D (nano)-
objects. The interpretation of a 3D structure based on only 2D projections may lead to an 
incomplete understanding. Different techniques to retrieve the 3D atomic structure have been 
suggested in the field of electron microscopy. The most known and powerful technique for the 3D 
characterization of nanomaterials is electron tomography. 68–71   

 
Figure 1.5 Schematic illustration of high resolution electron tomography applied to a Pt NP. A HAADF 
STEM tilt series was acquired by Prof. Dr. Thomas Altantzis. For the reconstruction of the Pt NP, the 
recently developed reconstruction algorithm, by Dr. Ivan Lobato at EMAT, was used. 

Electron tomography is conceptually similar to X-ray tomography, e.g. in radiology, which is 
widely used in healthcare for 3D imaging of a human body. In radiography, a patient is illuminated 
by X-rays at different angles and the rays passing through the patient are collected as 2D projection 
images by a dedicated detector. From the 2D projection tilt series acquired at different angles, the 
3D internal structure of the patient is obtained. In the same manner, electron tomography allows 
for investigating the 3D structure of NPs (Figure 1.5). Over the years, different electron microscopy 
techniques such as BF TEM, HAADF STEM, electron holography, EDX, and energy-filtered TEM 
have been extended to 3D. 71–75 

Acquisition of tilt series 

To perform a 3D reconstruction by electron tomography, a series of 2D projection images of a NP 
is acquired at different tilt angles. An important requirement, which 2D projection images need to 
fulfill for a suitable 3D reconstruction, is that the recorded intensities represent a monotonic 
function of a sum or integral of the property of interest (for example, density or thickness) within 
the investigated particle. This requirement is known as the “projection requirement”. 72 Therefore, 
certain TEM modes are more appropriate than others depending on the nature of the sample to be 
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investigated and the information to be extracted. For example, in CTEM, the intensities are 
sensitive to the orientation of the sample with respect to the electron beam. This often violates the 
monotonic relation between the intensity in the projected images and the thickness of the sample 
under study. 76 To fulfill the projection requirement for the 3D reconstruction of crystalline NPs by 
electron tomography, (HA)ADF STEM is mostly considered as an ideal imaging mode due to the 
monotonic relation between the recorded signal and the thickness of the sample. EELS and EDX 
STEM also fulfill the projection requirement since these signals have incoherent nature. 57  

For an optimal reconstruction, the ideal tilt range is ±90° with small tilt increments. In contrast to 
X-ray tomography, where a full tilt range of 360° can be achieved, TEM instruments have restricted 
physical space between the pole pieces of the objective lens. 76 By using dedicated sample holders 
for electron tomography, a typical tilt range of ±75-80° can be achieved with tilt increments 
between 1° and 3°. The limited tilt range leads to a gap of missing information and will result in 
artifacts in the final 3D reconstruction which is typically called the “missing wedge”. 72 The 
development of a dedicated on-axis tomography holder has enabled researchers to acquire images 
over a full tilt range of ± 90° using a needle-shaped sample prepared by focused ion beam milling 
which avoids missing wedge artifact. 77 However, the sample preparation to obtain needle-shaped 
samples is only possible for specific sample types.  

Electron tomography reconstruction  

Once a tilt series is collected, images are aligned with respect to a common tilt axis by cross-
correlation, which is important to eliminate relative shifts in the successive images. The aligned 
2D projection images are used as input for a reconstruction algorithm to retrieve the 3D 
morphology and interior structure of a NP.  

There are different reconstruction algorithms to perform a 3D reconstruction, each with different 
advantages and limitations. One of the most popular reconstruction algorithms for electron 
tomography is the simultaneous iterative reconstruction technique (SIRT). 78,79 This approach treats 
the 3D reconstruction algorithm as an optimization problem. It finds an optimum solution by 
minimizing the sum of squared differences between the input data and the estimated reconstruction 
in an iterative way. At each step of the iteration of the SIRT algorithm, a difference between the 
projections of the currently estimated reconstruction and projection tilt series is found. This 
difference is then backprojected onto the reconstruction to reduce the mismatch. Backprojection 
smears out the projected intensities across the 3D volume. 80 As expected, the quality of the final 
reconstructed 3D volume depends on the number of iterations applied during the SIRT algorithm. 
On the other hand, since projection and backprojection operations need to be computed at each 
iteration, applying SIRT may require large computational power, especially for a sufficiently large 
number of iterations. Even if computer power is available, increasing the number of iterations does 
not always improve the reconstruction, especially in the presence of noise in the input data. In this 
case, the SIRT algorithm may not converge to the optimal solution; instead, a larger number of 
iterations may result in a lower resolution in the reconstructed volume due to the overfitting of the 
noise during the iterations. 80 
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Recently, Dr. Ivan Lobato at EMAT proposed a new approach where SIRT is combined with an 
error reduction algorithm. 81 This approach starts with the correction of imperfections, e.g. Poisson 
noise, scanning distortions or drift, in a tilt series by a convolutional neural network (CNN) and 
rigid and non-rigid registration. 82,83 Afterwards, SIRT is applied with constraints in real and 
Fourier space. This approach allows high-quality 3D reconstruction with diminished artifacts, i.e. 
missing wedge (Figure 1.5). 

Electron tomography is a powerful method to retrieve the 3D atomic structure of NPs. However, 
there are some technical limitations for a successful 3D reconstruction by electron tomography. 
The required time to acquire electron tomography tilt series is one of the main limitations of 
electron tomography. Even under ideal conditions, approximately one or several hours are required 
to collect a tilt series for a single NP. Therefore, the sample needs to be stable under the illumination 
of the electron beam. This is challenging when one wants to investigate very small or electron 
beam-sensitive NPs since reshaping or degradation may occur in NPs during the acquisition of 
tomography tilt series. Therefore, retrieving the 3D atomic structure information from a few 
viewing directions or even from a single image is very promising to shorten the acquisition time, 
to prevent beam damage, and to avoid practical issues concerned with controlled tilting of NPs. 

1.4.  Quantitative electron microscopy  

To retrieve the 3D structure of NPs from limited (S)TEM images, quantitative interpretations of 
images are essential. For quantitative analysis, a high-resolution (S)TEM image is considered as a 
data plane where unknown structural information, such as positions of the atoms, thickness and 
types of atoms, can be extracted with high accuracy and precision.  

Quantitative electron microscopy can be performed by comparing the experimental image 
intensities with image simulations or by using statistical, model-based techniques. When 
experimental image intensities are directly compared to image simulations, accurate knowledge of 
microscope parameters, such as detector sensitivity and lens aberrations, are crucial. 84,85 
Furthermore, image intensities from the experimental electron microscopy image should first be 
put on an absolute scale. In TEM, quantification through comparison with image simulations can 
be hampered by the Stobbs factor, which is a scaling problem between the simulated and 
experimental image contrast. 86 Alternatively to the comparison with image simulations, the exit 
wave can be used to quantify the atomic structure from TEM images after the phase reconstruction. 

For ADF STEM, neither the scaling problem between simulations and experimental images nor the 
phase problem exists as it is an incoherent imaging technique. Moreover, due to its sensitivity to 
the thickness and atomic number, high-resolution ADF STEM images provide a robust approach 
for quantitative structural characterization of nanomaterials from limited data. For this purpose, a 
model-based method was introduced at EMAT for ADF STEM images. 87 The starting point is the 
availability of a parametric model that describes the expectations of the experimental 
measurements. When the atomic columns are aligned with the incoming electron beam, image 
intensities in high-resolution ADF STEM images are peaked at projected atomic column positions. 
These directions are commonly called “zone axis”. The image intensities, viewed along a major 
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zone axis, can be modelled as a superposition of Gaussian functions. Then, the unknown structure 
parameters are estimated by fitting this model to the experimental images using a criterion of 
goodness of fit, quantifying the similarity between the experimental images and the model. It has 
been shown that unknown structure parameters can be measured with high accuracy and precision 
from 2D ADF STEM experimental images using statistical parameter estimation theory. This 
enables one to retrieve local structural information of a NP, e.g. lattice parameter, identify structural 
changes, characterization of interfaces or strain measurements. 61,88–90  

In addition to column position measurements, statistical parameter estimation theory can quantify 
image intensities revealing information about the specimen thickness and composition. Using the 
empirical model-based approach, the total scattered intensity corresponding to each atomic column, 
i.e. the so-called “scattering cross section”, can be obtained. The scattering cross sections quantify 
the total intensity of electrons scattered towards the annular detector from atomic columns and can 
be estimated by the volume under fitted Gaussian peaks. Alternatively, the scattering cross sections 
can be obtained by integrating the intensities in Voronoi cells around the atomic column positions. 
91 The scattering cross sections can then be used to determine the composition of nanomaterials, 
87,92–94 and to count the number of atoms in each atomic column of monoatomic 95–98 and mixed 
columns. 99,100 As compared to peak intensities, the scattering cross sections are robust to sample 
mistilt or microscope aberrations, such as defocus, astigmatism or source size broadening. 
Furthermore, it increases monotonically with respect to thickness, which makes it suitable as a 
measure for quantification. 101,102  

The atom counting results for each atomic column of high-resolution ADF STEM images can then 
be used to build a 3D reconstruction of a NP. Van Aert et al. showed that retrieval of 3D atomic 
structures of crystalline nanomaterials is possible by discrete tomography, which combines atom 
counting results obtained from only a few zone axis orientations. As it can be seen from Figure 1.6, 
a 3D model of a Ag cluster embedded in an aluminum matrix at an atomic level can be obtained 
by using the output of the atom counting results from two high-resolution images. 103 Since ADF 
images are also sensitive to composition, the same approach has been used to characterize the 
atomic configuration of a core-shell semiconductor nanocrystal. 104 Shortly after, different 
methodologies were proposed for 3D reconstructions with atomic resolution using a limited 
number of projection images. 99,105,106  

Moreover, using atom counting results as an input of atomistic simulations showed that one could 
describe the 3D structure of a nanomaterial even from a single STEM image. Indeed, by combining 
statistical parameter estimation theory and ab initio calculations, the 3D dynamics of ultrasmall 
germanium clusters at room temperature and in a vacuum could be followed. 107 Although ab initio 
calculations give sufficiently reliable results, it requires high computational efforts for systems 
having more than a few tens of atoms. Therefore, for the 3D characterization of larger NPs from 
(HA)ADF images acquired along a single viewing direction, the atom counting method has been 
combined with a computationally more efficient atomistic simulation, such as Monte Carlo or 
molecular dynamics simulations. In this approach, a starting 3D configuration is obtained by 
positioning the atoms on a perfect crystal grid symmetrically arranged around a central plane. Then, 
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the potential energy of the starting 3D configuration is minimized by Monte Carlo or molecular 
dynamics simulations. For example, atom counting results were combined with a Monte Carlo-
based approach to retrieve the 3D structure of beam-sensitive lead selenide nanocrystals or to 
investigate the damage mechanism of Pt NPs under the electron beam. 108,109 To observe 3D 
restructuring of Au nanodumbell after heating to high temperatures, atom counting results were 
used as an input for molecular dynamics simulations. 110 

 

Figure 1.6 HAADF STEM images of an Ag nanocluster embedded in an aluminum matrix in (a) [101 ̄] and 
(b) [100] direction. c, d) Estimated number of Ag atoms per atomic column from the HAADF STEM images 
of different viewing directions. e) 3D reconstruction of the Ag nanocluster retrieved by combining the 
counting results shown in (c,d). The figure is adapted from ref 103. 

1.5.  3D structure of nanoparticles under realistic conditions 

Most of the conventional (S)TEM measurements are performed under static conditions, at room 
temperature and in ultrahigh vacuum conditions. However, it is known that the morphology and 
structure of nanomaterials are highly sensitive to the conditions for relevant applications and any 
small change in the local structure of nanomaterials at higher temperatures or pressures may 
significantly modify their performance. Therefore, 3D characterization under static conditions is 
often inadequate to predict the structure-dependent properties of nanomaterials when being 
exposed to various environments. Visualizing transformations of the nanomaterials under the 
conditions for relevant applications, therefore, has crucial importance to design and control their 
functionalities for a broad range of applications, such as catalysis or plasmonics. 76 For the 
characterization of irreversible transformations, a NP can be exposed to such stimuli outside the 
microscope. The change in structure and morphology of the NP can be measured afterwards by ex 
situ TEM analysis. 30,76,111–113 This approach is essential when environmental triggers are 
challenging to introduce inside TEM, such as laser excitation which is required for many 
applications of metallic NPs, including photocatalysis, drug delivery, biosensing and optical 
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recording. However, ex situ studies cannot provide direct visualization of ongoing transformations. 
Therefore, to observe dynamics in NPs under working conditions, such as higher temperatures or 
pressures, in situ characterization is indispensable.  

 
Figure 1.7 3D morphological changes of Au nanostars during heating at 300 and 400 °C. The figure is 

adapted from ref 114. 

Essentially two different technologies exist to perform the measurements under the relevant 
conditions, such as high temperatures or pressures. A so-called “Environmental TEM” (ETEM) is 
a dedicated TEM in which a differential pumping system separates the increased pressure in the 
sample area from the high vacuum regions surrounding the sample. Another possibility is the use 
of dedicated in situ holders. Currently, a wide variety of holders is available, ranging from the 
application of strain and heat to electric biasing. 115–118 Furthermore, different environments such 
as liquids and gasses can be created in a TEM using environmental cells. While in situ atomic-
resolution (S)TEM analysis provides great opportunities to directly observe dynamic changes in 
nanomaterials with atomic resolution, most of these investigations have been performed by using 
2D TEM techniques and extending them to 3D in situ TEM is far from straightforward.  

As mentioned before, rapid structural or morphological transformations can be observed in electron 
beam sensitive or small NPs when they are illuminated by the electron beam. Since NPs have higher 
relative content of the surface atoms than their bulk counterparts, the rapid reshaping events even 
become more likely in response to application-relevant conditions, such as high temperatures and 
a gaseous environment. Therefore, it becomes highly challenging to perform 3D in situ 
characterization of a NP by conventional electron tomography because of the long acquisition time 
required to collect a tilt series. To overcome this limitation, fast HAADF STEM tomography has 
been recently developed which allows to decrease the acquisition time of tomography series to 
around 5-6 minutes. 119,120 It has been shown that by combining fast HAADF STEM tomography 
with a Micro-ElectroMechanical Systems heating holder (Wildfire, DENSsolutions), which is able 
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to tilt over a range of ±80°, enables measuring the 3D transformations in morphology and 
composition of NPs as a function of temperature. 119,121 For example, as it is shown in Figure 1.7, 
reshaping of Au nanostars at high temperatures was captured by the fast electron tomography 
approach. Although these experiments are already state-of-art, unfortunately, fast tomography is 
not always applicable. First, the current achievable spatial resolution by fast tomography is limited 
to the nanometer regime. Second, these experiments can only be carried out in a stop-and-go 
manner, where heating cycles are interrupted to acquire tomography tilt series. Finally, the tilting 
range of most gas cell holders does not allow one to perform fast electron tomography experiments 
based on continuous tilt series. 

Therefore, to accurately describe the 3D structure of these materials at the atomic scale and capture 
the reversible or irreversible transformations under working conditions, it is often needed to 
estimate 3D models from (HA)ADF STEM images acquired along a single viewing direction. To 
that end, the combination of the atom counting approach with molecular dynamics simulations has 
been extended to measure the transformations of the 3D structure of a Pt NP under the flow of a 
selected gas. 81 As it can be seen from Figure 1.8, reversible morphological changes and surface 
restructuring of a Pt NP could be investigated quantitatively by using (HA)ADF images acquired 
from a single viewing direction. These results indicate the great potential of the technique for the 
studies where tilting of the holder to large angles is impossible. Since the data acquisition is much 
faster in comparison to electron tomography, this approach enables one to capture dynamical 
changes in the 3D structure of nanomaterials during in situ experiments providing critical 
information to understand their structure-property relationship. 

 
Figure 1.8 3D structure of a Pt NP in vacuum (a) and in repeating different gaseous environments at 300 
°C: (b, d) in 5% H2 in Ar; (c, e) in O2. The atoms are colored, according to the type of facet: blue = {100}, 
pink = {110}, purple = {111}, gray = higher index. Reprinted from ref 81. 

 
1.6.  Thesis motivation and outline 

Nanotechnology has shaped our society tremendously over the past few decades with usages in our 
everyday lives, ranging from the food industry to medicine. The developments in nanotechnology 
are furthermore expected to play a crucial role in solving many problems that our society is facing, 
such as reducing the emission of greenhouse gases and finding effective cancer treatments. For 
further developments in nanotechnology and improvements of the existing nanotechnology, it is of 
utmost importance to understand and control the properties of the underlying nanomaterials. 
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Among the variety of promising nanomaterials, metal NPs are of great interest in many 
applications, such as (bio)sensing, (photo)catalysis, optical data storage and hypothermic cancer 
treatment, since these particles exhibit superior catalytic, optical and photothermal properties, 
which cannot be observed in macroscopic systems. The unique physical and chemical properties 
of the metallic NPs are linked to their positions of the atoms and even small changes in the local 
structure of a given nanostructure may significantly affect its performance for a specific 
application. However, due to the high surface-to-volume ratio, atom positions can dynamically 
change in nanostructures in response to changes in their environment, possibly leading to 
morphological and compositional modifications. Such environmental changes can be elevated 
temperatures, or intense light illumination, which are likely to occur in actual applications. 
Therefore, in order to gain control over the structure-dependent properties and performance of 
metal NPs, an atomic-scale understanding of the structure and possible reshaping under realistic 
conditions is of crucial importance. Unravelling such environmentally-induced atomic 
rearrangements is not straightforward. Even with state-of-the-art high-resolution TEM, novel 
workflows and analysis concepts are needed to accurately interpret measurements performed in 
realistic environments. This thesis aims to present robust approaches to do so by linking the 
experimental observations and theoretical calculations to capture the 3D atomic-scale 
transformations observed in metallic NPs when they are exposed to application-relevant conditions.  

In the first part of my thesis, I focus on the 3D atomically resolved structural characterization of 
metallic NPs lying on an oxide support at high temperatures. Oxides are common supports during 
catalytic reactions and it is hence important to understand the behavior of the complete oxide-metal 
NP system during catalytic reactions at elevated temperatures. Although in situ (S)TEM 
experiments provide useful information to analyze NP changes down to the atomic scale under 
elevated temperatures, these investigations are often performed by using 2D (S)TEM techniques. 
However, for complex nanostructures, the analysis needs to be extended to 3D, which is far from 
straightforward. HAADF-STEM tomography has been developed to overcome the limitations and 
extend the investigation to 3D, but the long acquisition time required to collect a tilt series limits 
this technique when one wants to observe 3D dynamic changes with atomic resolution. Therefore, 
the ability to capture 3D atomic information from single projection images, which can be taken at 
much faster speeds compared to electron tomography, is crucial to investigate in situ structural 
transformations. 

For this purpose, ADF STEM imaging mode provides a valuable tool for quantitative structural 
investigation of nanomaterials from single 2D images due to its thickness and mass sensitivity. For 
quantitative analysis, an ADF STEM image is considered as a 2D array of pixels where the relative 
variation of pixel intensity values is proportional to the total number of atoms. By applying 
advanced statistical approaches to these images, the number of atoms can be retrieved, i.e. so-called 
atom counting, with high accuracy and precision. The outcome can then be used to build a 3D 
starting model for energy minimization by atomistic simulations. The concepts of quantitative 3D 
characterization based on 2D ADF STEM images are introduced in Chapter 2. For this purpose, 
the main principles of ADF STEM image formation, image simulations, statistical parameter 
estimation theory and atomistic simulations are explained. 
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Prior to the research presented in this thesis, the approach for the 3D characterization of NPs from 
single ADF STEM images was only applied to symmetrical particles along the electron beam 
direction in the electron microscope by ignoring particle-support interaction. However, this 
approach cannot be directly applied to the case of the oxide-supported metal NPs at elevated 
temperatures. The reason is that increased thermal displacements of atoms and particle-support 
interactions should also be taken into account as they influence the morphology of the particle. 
Moreover, it is expected that supported metallic nanoparticles at elevated temperatures may 
significantly deviate from their ground state configuration, which is difficult to determine using 
purely computational energy minimization approaches. Therefore, in this part (Chapter 3 and 
Chapter 4), I optimize several critical steps in the methodology and propose a refined approach to 
accurately measure the positions of atoms in supported NPs from ADF STEM images acquired 
along a single zone axis orientation during in situ heating experiments.   

In Chapter 3, I focus on the post-processing of the STEM images and the combined simulation and 
statistics-based atom counting approach for reliable quantification of 2D ADF STEM images 
acquired during in situ heating experiments. By combining the atom counting results with 
molecular dynamics structural relaxation by including particle-support interaction, I investigate the 
shape and surface facets evolution of supported Au NPs as a function of time, temperature, and 
size.  

In Chapter 4, a novel methodology is presented to overcome the limitations of energy minimization 
approaches for the 3D reconstruction of a given particle based on atom counting results. For this 
purpose, atom counting is combined with a local minima search algorithm by taking the particle-
support interaction and temperature into account. Validation is performed on both simulated and 
experimental Au NPs. Moreover, to test its performance, the outcome of the proposed approach is 
compared with to the previously used methods in literature.  

Despite the progress in the field of in situ STEM, atomic-scale transformations cannot be captured 
by experimental techniques alone. This is for example the case when in situ STEM experiments do 
not provide the necessary time or spatial resolution or when the specific environmental trigger 
cannot be applied in situ in the electron microscope. In the second part of the thesis, corresponding 
to Chapter 5 and Chapter 6, I show that this limitation can be overcome by combining atomistic 
simulations with experimental techniques. I demonstrate that, in this manner, it becomes possible 
to extract missing atomic-scale dynamics of NPs in response to environmental stimuli. Such 
understanding is expected to contribute toward controlling the desired structure-dependent 
functional properties of metallic NPs for many applications, including biomedicine, sensing, data 
storage, and catalysis.    

In Chapter 5, I investigate the thermal stability of Au@Pt bimetallic NPs, which is observed by in 
situ electron tomography experiments. Since these experiments are carried out in a stop-and-go 
manner, to monitor the ongoing transformations during the heating of Au@Pt NPs, experimentally 
determined 3D reconstructions are used as realistic input models in molecular dynamics 
simulations. In this manner, the influence of the detailed morphology of the Pt-shell on the thermal 
stability of Au@Pt NPs is investigated.  
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Next to in situ processes, in Chapter 6, the atomic scale structural transformations of a mesoporous 
silica-coated Au NP upon femtosecond-laser excitation are investigated. Due to the ultrafast time 
scales of pulsed laser excitation, these transformations cannot be monitored by in situ electron 
tomography experiments. Therefore, tomography tilt series of a mesoporous silica-coated Au NP 
are acquired before and after femtosecond laser excitation (ex situ). To mimic the laser experiments 
in molecular dynamics simulations, the heating regime of a femtosecond laser pulse is modelled 
considering the shape-dependent absorbed laser pulse energy and heat resistance at the surface due 
to the possible presence of a coating or surrounding medium. Using the measured 3D atomic 
structure of a mesoporous silica-coated Au NR resulting from ex situ electron tomography in 
molecular dynamics simulations, the complex atomistic rearrangements, causing shape 
deformations and defect generation, are unraveled.  

At the end of this thesis, in Chapter 7, a general conclusion is drawn and future perspectives are 
discussed. 
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 Quantitative 3D characterization from 2D STEM images 

The aberration-corrected STEM is capable of reaching atomic resolution. However, a solely 
qualitative interpretation of 2D electron microscopy images does not completely represent the 3D 
structure of nanomaterials. It has been shown that the combination of statistical parameter 
estimation theory and atomistic simulations can be used for the 3D atomic scale characterization 
of NPs from 2D STEM images when electron tomography experiments are not applicable. In this 
chapter, the concepts of quantitative 3D characterization based on 2D ADF STEM images are 
introduced. 

In the first section of this chapter, the physics behind image formation in STEM is briefly explained 
from a theoretical point of view. Also, image simulations are addressed. The aim of this section is 
not to cover the full theory of image formation but rather to introduce the main concepts that are 
addressed throughout the thesis. Herein I specifically focus on the ADF STEM imaging mode, 
which is a valuable tool to extract quantitative structural and chemical information of a 
nanomaterial. In the second section, the basic principles of statistical parameter estimation theory 
for ADF STEM images are explained. Also, the main steps of counting the number of atoms from 
ADF STEM projection images of crystalline structures are demonstrated for a simulated system. 
In the last section, the basic principles of atomistic simulations, such as the Monte Carlo approach 
and molecular dynamics simulations, are given. Moreover, the main steps to retrieve the 3D model 
of a NP from atom counting results are shown. 
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2.1.  Physics of image formation in ADF STEM  

In STEM, a set of electromagnetic lenses focuses the electron beam to form a small spot, or probe, 
onto a specimen that is scanned across the specimen surface (Figure 2.1a). The electrons scattered 
to high angles with respect to the optical axis, larger than the incident beam semi-convergence 
angle 𝛼, are recorded as a function of the probe position and form ADF STEM image. 57,58 This 
section starts with the STEM electron-probe formation which is followed by a quantum mechanical 
description of the interaction between the incident electron wave and the specimen. Due to the 
beam energies in electron microscopy, typically 60-300 kV, the electrons behave in a relativistic 
way. Although a full relativistic treatment of electron optics 122 is far from straightforward to work 
with, studies 123–126 showed that the non-relativistic Schrӧdinger equation with the relativistically 
corrected electron mass and wavelength provides an accurate description for the electron-specimen 
interaction in the typical energy ranges used in the electron microscope. 122,127–129 Next, the 
multislice method, one of the most popular and accurate solutions for the Schrödinger equation, is 
described. Finally, the integration of the intensity over the ADF STEM detector is explained.  

 

Figure 2.1 a) Simplified model of a STEM. The effect of spherical aberration on the incident electron wave 
function (b) and electron trajectories (c). The figure is adapted with permission from ref 123. Copyright 2022 
Springer Nature. 

 Electron-probe formation 

The lenses in the STEM optical system aim to provide enough demagnification of the electron 
source to form the smallest and most intense probe possible onto a specimen hence improving the 
resolution of STEM images. Ideally, a lens forms a spherical wave converging to a single point, as 
shown in Figure 2.1a. However, the aberrations of electromagnetic lenses cause a deviation in the 
electron wave function from an ideal spherical incoming wave (Figure 2.1b). 57,58,123 Hence, the 
aberration wave function should be determined to measure the wave function of the focused probe. 
50,130 



Chapter 2. Quantitative 3D characterization from 2D STEM images 

21 

For electromagnetic lenses, the most prominent type of aberration is spherical aberration. Since the 
magnetic field is stronger for the electrons away from the optic axis, off-axis electrons deflect more 
strongly than what is required to focus them. 123 As a result, spherical aberration causes a phase 
error (𝛿 in Figure 2.1b) in the electron wave function and a deviation in the electron trajectory 
(Figure 2.1c). 123 Depending on the order of the geometric aberration, spherical aberration can be 
defined as the third-order spherical aberration (𝐶ଷ,଴) or the fifth-order spherical aberration (𝐶ହ,଴) 
where the phase error is proportional to the fourth or sixth power of the convergence semi-angle 𝛼. 
123 

Defocusing the lens 𝐶ଵ,଴ also causes a deviation of the electron trajectory and phase error in the 
electron wave function, which is proportional to the second power of the convergence semi-angle 𝛼. Scherzer 131 found that the spherical aberration can be partially compensated by an optimum 
defocus value, the so-called “Scherzer defocus”. The Scherzer defocus value is calculated as a 
function of the relativistic wavelength 𝜆 of the incident electron beam and the third-order spherical 
aberration 𝐶ଷ,଴ of the magnetic lenses: 123,131 𝐶ଵ,଴ = −ඥ1.5𝜆𝐶ଷ,଴ .                                                   (2.1) 

Considering aberrations up to the fifth order 𝐶ହ,଴, the aberration wave function can be written as: 
123,124 𝜒ሺ𝛼ሻ = 2𝜋𝜆 𝛿 =  2𝜋𝜆 ൬12𝐶ଵ,଴𝛼ଶ + 14𝐶ଷ,଴𝛼ସ + 16𝐶ହ,଴𝛼଺൰ .                        (2.2) 

Since the convergence semi-angle 𝛼 is related to the spatial frequency in the Fourier transform of 
the image plane (𝑘), the aberration wave function 𝜒(𝛼) can also be expressed as a function of 𝑘: 𝜒(𝑘) = 2𝜋𝜆 ൬12𝐶ଵ,଴𝜆ଶ𝑘ଶ + 14𝐶ଷ,଴𝜆ସ𝑘ସ + 16𝐶ହ,଴𝜆଺𝑘଺൰ .                          (2.3) 

The third-order spherical aberration 𝐶ଷ,଴ mainly limits the resolution of the non-corrected electron 
microscopes. 123 In aberration-corrected instruments, the fifth-order spherical aberration 𝐶ହ,଴ 
becomes important since the third-order spherical aberration 𝐶ଷ,଴ can be controlled and reduced to 
near zero by coupling non-rotationally symmetric multipole lenses which produce negative 
spherical aberration to balance the positive spherical aberration of rotationally symmetric round 
lenses. 124 It should be noted that the other aberrations, such as astigmatism or coma can be included 
in Equation 2.2 and Equation 2.3. 87,132  

To limit the influence of aberrations, an objective aperture (Figure 2.1a) is used, allowing the beams 
to pass up to the maximum aperture angle and eliminating the remaining off-axis electron waves. 
As a result, the aberrated electron probe wave function on the plane of the specimen is calculated 
by an integration over the objective aperture: 57,123 

𝜓଴൫𝒙,𝒙𝒑൯ = 𝐴௣ න 𝑒𝑥𝑝[−𝑖𝜒(𝒌) − 2𝑖𝜋𝒌. (𝒙 − 𝒙𝒑)]𝑑ଶ𝒌௞೘ೌೣ଴  ,               (2.4) 
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where 𝒙 = (𝑥,𝑦) is the 2D Cartesian coordinates, 𝒙𝒑 = (𝑥௣,𝑦௣) is the electron probe position and 𝒌 is a 2D wave vector in the spatial frequency domain. The maximum spatial frequency 𝑘௠௔௫ is 
obtained by dividing the maximum angle in the objective aperture 𝛼௠௔௫ by the electron wavelength 𝜆, and 𝐴௣ is a normalization constant chosen to yield: 123 න |𝜓଴(𝒙,𝒙𝒑)|ଶ𝑑ଶ𝑥 = 1 .                                            (2.5) 

 

 Electron-specimen interaction 

As the electron probe 𝜓଴ passes through the specimen, the electron wave interacts with the 
electrostatic potential of the specimen. For high-angle scattering, the electrostatic potential of the 
specimen is commonly computed by linear superposition of the electrostatic potentials of nuclei in 
the specimen. 64,123,133 Since the electrons travel fast and the electron-specimen interaction occurs 
in an extremely short time, the electron-specimen interaction can be described by the time-
independent Schrödinger equation. The time-independent Schrödinger equation for the full wave 
function 𝜓௙(𝑥,𝑦, 𝑧) as a function of spatial coordinates (𝑥,𝑦, 𝑧), where 𝑧-axis corresponds to the 
direction of electron beam propagation, in the electrostatic potential 𝑉(𝑥,𝑦, 𝑧) of the specimen is: 
123 − ћଶ2𝑚∆𝜓௙(𝑥,𝑦, 𝑧) − 𝑒𝑉(𝑥, 𝑦, 𝑧)𝜓௙(𝑥,𝑦, 𝑧) = 𝐸𝜓௙(𝑥,𝑦, 𝑧) ,              (2.6) 

where ћ = ℎ/2𝜋 is Planck’s constant ℎ divided by 2𝜋, 𝑚 is the relativistic mass of an electron, 𝑒 = |𝑒| denotes the magnitude of the charge of the electron, 𝐸 represents the total kinetic energy 
of the electron, and ∆ represents the 3D Laplacian operator: ∆= ቈ 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶ𝜕𝑦ଶ + 𝜕ଶ𝜕𝑧ଶ቉ .                                            (2.7) 

For high-angle scattering, only elastic processes are considered, so the total kinetic energy 𝐸 
remains constant: 123 𝐸 = ℎଶ2𝑚𝜆ଶ .                                                       (2.8) 

In electron microscopes, operated with typical acceleration voltages of 60-300 kV, the energy of 
the incident electrons is large compared to the additional energy that the electrons gain and/or lose 
inside the specimen. Therefore, the specimen causes a relatively minor perturbation on the motion 
of electrons and the electrons propagate predominantly in the forward 𝑧-direction, parallel to the 
optical axis. This means that the full wave function 𝜓௙(𝑥,𝑦, 𝑧) can be represented as a modulated 
plane wave: 123 
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𝜓௙(𝑥,𝑦, 𝑧) = 𝜓(𝑥,𝑦, 𝑧)𝑒𝑥𝑝 ൬2𝜋𝑖𝑧𝜆 ൰ .                                      (2.9) 

Hereby, the full wave function 𝜓௙(𝑥,𝑦, 𝑧) has been written as a product of plane wave travelling 
in the 𝑧-direction and the portion of the wave function 𝜓(𝑥,𝑦, 𝑧) that varies slowly with position 𝑧. Since the portion of the wave function 𝜓(𝑥,𝑦, 𝑧) changes slowly in the 𝑧-direction, it is 
reasonable to ignore its second derivative with respect to the 𝑧-axis. This approximation is known 
as the paraxial approximation of the Schrödinger equation. 123 Consequently, the Schrödinger 
equation for fast electrons travelling along the 𝑧-direction can be written as a first order differential 
equation: 64,123 𝜕𝜓(𝑥, 𝑦, 𝑧)𝜕𝑧 = ൤ 𝑖𝜆4𝜋 ∆௫௬ + 𝑖𝜎𝑉(𝑥,𝑦, 𝑧)൨ 𝜓(𝑥, 𝑦, 𝑧) ,                       (2.10) 

where ∆௫௬ represents the 2D Laplacian operator, and 𝜎 = ଶగ௠௘ఒ௛మ  is the parameter that describes 
interaction between the specimen and incident electrons. To determine the electron wave function 
after the interaction with the specimen, the differential Equation 2.10 needs to be solved. Different 
methods under certain approximations have been proposed in the literature. 58,62,123 One of the 
solutions for this equation is provided by the multislice method. 64,123,134–138 

 Multislice simulations 

The multislice method is one of the most suitable and efficient approaches to solve the non-
relativistic Schrӧdinger equation given by Equation 2.10. For this method, the 3D specimen 
potential is divided into many slices along the electron beam propagation direction. The slices 
should be thin enough to be considered as a weak phase object which modifies only the phase of 
the incident wave. The electron beam alternately transmits through a slice and propagates to the 
next slice. In each slice, a transmission function is calculated and multiplied with the electron wave 
function. These succeeding steps continue until the electron wave function reaches the exit plane 
of the specimen. 123,134  

In the multislice method, the wave function after interaction with a thin slice of the specimen 
between 𝑧 and 𝑧 + 𝑑𝑧 can be written as: 123,124 

𝜓(𝑥, 𝑦, 𝑧 + 𝑑𝑧) = 𝑒𝑥𝑝 ൥න ൭ 𝑖𝜆4𝜋 ∆௫௬ + 𝑖𝜎𝑉(𝑥, 𝑦, 𝑧′)൱𝑑𝑧′௭ାௗ௭
௭ ൩𝜓(𝑥, 𝑦, 𝑧) ,     (2.11) 

where 𝑑𝑧 denotes the slice thickness. Equation 2.11 can be simplified by making use of a Taylor 
expansion and factorization: 56,123,124 𝜓(𝑥,𝑦, 𝑧 + 𝑑𝑧) = 𝑒𝑥𝑝 ൬𝑖𝜆𝑑𝑧4𝜋 ∆௫௬൰ 𝑡(𝑥, 𝑦, 𝑧)𝜓(𝑥,𝑦, 𝑧) + Ҩ(𝑑𝑧ଶ) .           (2.12) 

Hereby, Ҩ(𝑑𝑧ଶ) denotes the higher-order terms in Taylor expansion and 𝑡(𝑥,𝑦, 𝑧) is the specimen 
transmission function which is equal to the phase change of the electron wave while passing 
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through the specimen between 𝑧 and 𝑧 + 𝑑𝑧: 𝑡(𝑥, 𝑦, 𝑧) = 𝑒𝑥𝑝[𝑖𝜎𝑣௭(𝑥,𝑦, 𝑧)] ,                                       (2.13) 

where 𝑣௭(𝑥,𝑦, 𝑧) represents the projected potential of the specimen between 𝑧 and 𝑧 + 𝑑𝑧: 64 

𝑣௭(𝑥,𝑦, 𝑧) = න 𝑉(𝑥,𝑦, 𝑧′)𝑑𝑧௭ାௗ௭
௭ ′ .                                      (2.14) 

For an easier interpretation of the first exponential term in Equation 2.12, a 2D Fourier transform 
(𝐹𝑇) can be performed: 123,124 𝐹𝑇 ൤𝑒𝑥𝑝 ൬𝑖𝜆𝑑𝑧4𝜋 ∆௫௬൰൨  𝐹𝑇[𝑡(𝑥,𝑦, 𝑧) 𝜓(𝑥,𝑦, 𝑧)]  = 𝑃൫𝑘௫,𝑘௬,𝑑𝑧൯ 𝐹𝑇[𝑡(𝑥,𝑦, 𝑧) 𝜓(𝑥, 𝑦, 𝑧)]  (2.15) 

with 𝑃൫𝑘௫, 𝑘௬,𝑑𝑧൯ = expൣ −𝑖𝜋𝜆𝑑𝑧൫𝑘௫ଶ + 𝑘௬ଶ൯൧ .                             (2.16) 

Hereby, 𝑃൫𝑘௫, 𝑘௬,𝑑𝑧൯ is the propagator function for a distance 𝑑𝑧. Since a multiplication in Fourier 
space converts to a convolution in real space, the electron wave function after the interaction with 
a slice of thickness 𝑑𝑧 becomes: 123,139 𝜓(𝑥, 𝑦, 𝑧 + 𝑑𝑧) = 𝑝(𝑥,𝑦,𝑑𝑧) ⊗ [𝑡(𝑥, 𝑦, 𝑧)𝜓(𝑥,𝑦, 𝑧)] + Ҩ(𝑑𝑧ଶ) ,         (2.17) 

where, 𝑝(𝑥,𝑦,𝑑𝑧) is the propagator function in real space and ⊗ represents a 2D convolution (in 
x and y). When the slices have the same small thickness of 𝑑𝑧, a compact form of the wave function 
after interaction with a slice can be written as: 56 𝜓௡ାଵ(𝒙) = 𝑝௡(𝒙,𝑑𝑧) ⊗ [𝑡௡(𝒙)𝜓௡(𝒙)] + Ҩ(𝑑𝑧ଶ) .                     (2.18) 

Hereby, 𝒙 = (𝑥,𝑦) is the 2D Cartesian coordinates and subscript 𝑛 represents the slice number at 
a depth of 𝑧 = 𝑛𝑑𝑧. An overview of the multislice simulation is illustrated in Figure 2.2. For a 
given probe position 𝒙𝒑 = (𝑥௣,𝑦௣), the initial wave function is the incident probe wave function 𝜓଴൫𝒙,𝒙𝒑൯. The propagator and transmission functions for each slice are labeled as 𝑝௡(𝒙,𝑑𝑧) and 𝑡௡(𝒙), respectively. The electron wave function exits from the specimen for a given probe position 
is denoted by 𝜓௘൫𝒙,𝒙𝒑൯.  
In standard multislice simulations, the specimen is treated as being static and rigid, with the atoms 
located at their ideal positions. However, in realistic systems, atoms are in constant vibration due 
to thermal excitation. The thermal vibrations become pronounced especially at higher 
temperatures, e.g., during in situ heating experiments. These atomic vibrations produce a low-
intensity, diffuse background, which is called thermal diffuse scattering (TDS). 58,123,140,141 For 
high-angle scattering in ADF STEM imaging mode, the TDS signals play an important role. Based 
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on a rigorous quantum mechanical phonon excitation theory, it has been demonstrated that the 
frozen phonon model can be considered as the most accurate approximation to include TDS in the 
multislice simulations. 64,142–145  

 
Figure 2.2 Schematic overview of an ADF STEM image simulation for a SrTiO3 unit cell by multislice 
method. The figure is adapted from ref 146. 

The frozen phonon model is based on the idea that the interaction time between the incident 
electrons and the specimen is much shorter than the vibration period of an atom. In addition, the 
current in the microscope is small enough such that the time between two successive incident 
electrons passing through the specimen is long compared to the oscillation period of the thermal 
vibration of phonons in the specimen. Therefore, each electron “sees” a different snapshot of the 
specimen where atoms are frozen at their displaced positions. The resulting image intensity is 
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calculated by averaging the intensities obtained from different configurations where each atom is 
displaced according to a root mean square displacement (RMSD) value. The RMSDs of atoms can 
be calculated by molecular dynamics, the approximated Einstein model, or by using Debye-Waller 
Factor (DWF). 141,147–149 In this thesis, RMSDs of atoms are obtained using Equation 2.19 based 
on the parameterized DWF (Equation 2.20) measured from phonon densities of states. 150,151  

𝑅𝑀𝑆𝐷 = ඨ𝐷𝑊𝐹8𝜋ଶ                                                      (2.19) 

 𝐷𝑊𝐹 =  𝑎଴ + 𝑎ଵ𝑇 + 𝑎ଶ𝑇ଶ + 𝑎ଷ𝑇ଷ + 𝑎ସ𝑇ସ .                           (2.20) 

Hereby, the constants 𝑎଴, 𝑎ଵ, 𝑎ଶ, and 𝑎ସ are taken from the study of Cao et al. 150 

 Intensity integration over the detector 

After the interaction with the specimen, the resulting electron exit wave function 𝜓௘൫𝒙,𝒙𝒑൯ 
propagates towards the ADF detector. Commercially available ADF STEM detectors consist of a 
scintillator. Electrons hitting the scintillator are converted into a photon cascade and the output is 
digitized by an analog to digital converter providing the varying contrast in the final image. 152,153 
Since the ADF STEM detector is placed in the diffraction plane, the final wave function can be 
represented by a Fourier transform of the exit wave function: 123,154 𝛹௙௜௡௔௟൫𝒌,𝒙𝒑൯ = 𝐹𝑇[𝜓௘൫𝒙,𝒙𝒑൯] .                                    (2.21) 

The intensity of the final wave function ห𝛹௙௜௡௔௟൫𝒌,𝒙𝒑൯หଶ versus scattering angle 𝜆𝒌 is the 
convergent-beam electron diffraction (CBED) pattern. 124 To calculate the ADF STEM intensity 𝐼(𝒙𝒑) of a given probe position 𝒙𝒑 = (𝑥௣,𝑦௣), the CBED pattern is incoherently integrated over 
annular STEM detector:  𝐼൫𝒙𝒑൯ = න𝐷(𝑘)ห𝛹௙௜௡௔௟൫𝒌,𝒙𝒑൯หଶ𝑑𝒌 ,                                       (2.22) 

where 𝐷(𝒌) is the detector function: 𝐷(𝒌) = ൜1, 𝑘஽ౣ౟౤ ൑ |𝒌| ൑ 𝑘஽ౣ౗౮0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  .                                     (2.23) 

Hereby, 𝜆𝑘஽ౣ౟౤ and 𝜆𝑘஽ౣ౗౮ are the inner and outer radii of the ADF STEM detector. 123  

The calculated intensity for each probe position forms a pixel in the final 2D ADF STEM image, 
as shown in Figure 2.2. Each pixel intensity in an ADF STEM image is related to the amount of 
scattered electrons that reach the detector. Depending on the probability of the scattering event 
taking place, the image shows bright or dark pixels.  

It should be noted that the detector function in Equation 2.23, assumes a perfect circular annular 



Chapter 2. Quantitative 3D characterization from 2D STEM images 

27 

detector with homogeneous sensitivity to all the scattered electrons. In real experiments, on the 
other hand, the experimental detector exhibits a non-uniform sensitivity which implies that the 
scattered electrons are amplified differently depending on the area of the detector that they reach. 
To reproduce the experimental observations accurately by multislice simulations, the non-uniform 
sensitivity of an ADF STEM detector needs to be taken into account. 155,156 Including 
experimentally determined detector characteristics into the multislice simulations is explained in 
Section 3.2.  

So far, the electron source is modelled as a point object. In practice, however, the electron gun 
emits radiation from a finite-size source leading to an incoherent blurring of the image contrast in 
STEM images. The effect of finite source size can be included by a convolution of the simulated 
image 𝐼൫𝒙𝒑൯ and the source size distribution 𝑆(𝒙𝒑): 50,57,58,157  𝐼 ௙௜௡௔௟൫𝒙𝒑൯ = 𝑆(𝒙𝒑) ⊗ 𝐼൫𝒙𝒑൯ .                                       (2.24) 

Hereby, the source size distribution can be approximated as a normalized 2D Gaussian distribution: 
84,87,158 

𝑆൫𝒙𝒑൯ = 12𝜋𝑑௦ଶ exp ቆ− 𝒙𝒑ଶ2𝑑௦ଶቇ ,                                        (2.25) 

where 𝑑௦ is a measure for the extension of the source image and its relationship with the full width 
at half maximum (FWHM) of the source distribution can be expressed as: 𝐹𝑊𝐻𝑀 = 2√2𝑙𝑛2𝑑௦ ≈ 2.35𝑑௦ .                                   (2.26) 

In this thesis, the MULTEM software, which has been developed by Dr. Ivan Lobato at EMAT, is 
used to simulate ADF STEM images with the multislice method employing the frozen phonon 
model. 64,133 The frozen phonon model requires repeated multislice calculations for a large number 
of different phonon configurations of the specimen. Therefore, this process requires a long 
computational time. The MULTEM software is a powerful tool to perform accurate and fast 
multislice calculations by using a central processor unit (CPU) or a graphical processor unit (GPU) 
which provides a huge advantage in computing time. As an example, Ivan Lobato et al. 133 showed 
that single-thread calculations for CBED pattern simulations of a Si crystal took around 1000 
seconds (s). While the computation time of the same calculations was decreased to 450 s by CPU 
multithreading simulations (four threads), it took only 40 s by using GPU in MULTEM software.  

To accurately reproduce experimental observations, image simulations should be performed with 
carefully chosen experimental parameters such as the acceleration voltage (𝑉଴), probe convergence 
semi-angle (𝛼), the third and fifth-order spherical aberrations (𝐶ଷ,଴, 𝐶ହ,଴), and detector geometry as 
an input. In addition, simulation-specific parameters, such as a sufficient number of frozen phonon 
configurations, the thickness of a single slice, as well as simulation box size and pixel size, need to 
be defined carefully to enable reliable image simulations. The pixel size can be measured by 
dividing the simulation box size by the number of pixels corresponding to the number of scan 
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points of the probe. Fourier transforms performed during the multislice simulations are applied on 
a periodic array where an identical copy of the image appears on each side of the image. 123 
Therefore, the right and left edges, as well as top and bottom edges, wrap and touch each other. To 
avoid wrap-around errors, the simulation box size should be sufficiently large, especially for a NP 
since one cannot use periodic boundary conditions. This setup can be accomplished by adding a 
border of vacuum around the specimen. 123,159  

As an example, a simulated ADF STEM image of a Au nanowedge (Figure 2.3a,b) using the 
MULTEM software is shown in Figure 2.3c, where simulation parameters are tabulated in Table 
2.1. From Figure 2.3c, it can be clearly seen that the intensity of an ADF STEM is proportional to 
the number of atoms located in the projected atomic column.  

 

Figure 2.3 Simulated ADF STEM image of a Au nanowedge using MULTEM software. a) Input structure. 
b) Total number of atoms located in each atomic column of the input structure (a). c) Simulated ADF STEM 
image. 

Table 2.1 Parameters used for the multislice simulations of the Au nanowedge, shown in Figure 2.3c. 

Parameter Symbol Value 
Acceleration voltage 𝑉଴ (𝑘𝑉) 300 
Defocus 𝐶ଵ,଴ (Å) −83.001 
3rd order spherical aberration 𝐶ଷ,଴ (𝜇𝑚) 35.0 
5th order spherical aberration 𝐶ହ,଴ (𝜇𝑚) - 
Convergence semi-angle 𝛼 (𝑚𝑟𝑎𝑑) 21.788 
Detector inner angle (𝑚𝑟𝑎𝑑) 46.0 
Detector outer angle (𝑚𝑟𝑎𝑑) 215.0 
Number of phonon configurations - 15.0 
Simulation box size 𝐿௫௬(Å) 50.0 
RMSD - 0.09 
Pixel size 𝛥𝑥 = 𝛥𝑦 (Å) 0.09955 
Number of pixels  𝐾𝑥𝐿 320𝑥320 
FWHM of the source size FWHM (Å) 0.7 

2.2.  Model-based statistical parameter estimation for ADF STEM images 

As it has been mentioned before, the physicochemical properties of nanostructures are controlled 
by their shape, size, and atomic arrangement. Therefore, the aim of the quantitative STEM analysis 
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is to measure the unknown structure parameters as accurately and precisely as possible from the 
high-resolution ADF STEM images. 87,160,161 During this approach, an ADF STEM image is 
considered as a 2D data plane from which unknown structure parameters, such as the atomic 
positions, atomic displacements, atom types, and the number of atoms, can be estimated in a 
statistical way. For this purpose, the observed pixel values 𝑤௞௟ at position (𝑥௞ ,𝑦௟) of an STEM 
image having the dimensions of 𝐾𝑥𝐿 pixels can be summarized in a vector: 𝒘 = (𝑤ଵଵ,𝑤ଵଶ, … ,𝑤௄௅) .                                             (2.27) 

Since a high-resolution STEM image is formed by counting electrons scattered to the detector, the 
pixel values are inevitably subject to Poisson noise, causing each observed image pixel value to be 
Poisson distributed. 162 Due to the presence of noise, the intensities in a STEM image recorded 
under the same experimental conditions unavoidably fluctuate randomly around their expectation 
values. An effective way to describe this behavior is to model the observations as stochastic 
variables. 96,163 The expectation value of the STEM image intensity 𝑤௞௟ at position (𝑥௞, 𝑦௟) can then 
be described using a parametric imaging model given by the following expression: 𝔼[𝑤௞௟] = 𝑓௞௟(𝜽) ,                                                    (2.28) 

where 𝔼 represents the mathematical expectation and 𝜽 denotes unknown parameters of the 
parametric imaging model 𝑓௞௟(𝜽). Hereby, the proposed parametric model should accurately 
describe the pixel values in the formed STEM images to extract reliable quantitative structure 
information. Physics-based models can describe image intensities in detail, i.e. including the 
imaging parameters, electron-specimen interaction, and TDS, as explained in Section 2.1. 
However, such simulations would require high computational power since an iterative optimization 
procedure estimates model parameters. Furthermore, the number of unknown parameters would be 
higher for such models since unknown microscope parameters should then be included in the 
parametric model. Thus, the optimization might end up in a local minimum if appropriate starting 
values for the unknown parameters are not available. To overcome this problem, a simplified, 
empirical incoherent imaging model describing the expectations of the pixel values of an ADF 
STEM image is preferred. 87,96 

The image intensities in an ADF STEM image increase with an increasing atomic number 𝑍 and 
with increasing specimen thickness. Furthermore, for high-resolution STEM images, the image 
intensities of crystalline structures viewed along a major axis are sharply peaked at the atomic 
column positions. 49,57,164 Therefore, the projected atomic columns viewed along a major zone axis 
can be modelled as a superposition of 2D Gaussian peaks on a constant background. Although this 
model does not fully describe the physics behind the image formation process, its validity for 
describing high-resolution ADF STEM images has been proven in previously reported studies. 
160,161 This model is also acceptable since the width of an atomic column is mainly determined by 
the finite source size, which is often approximated as normalized Gaussian. 165,166 The expectation 
value of the image intensity at position (𝑥௞ ,𝑦௟) can then be described as: 167 
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𝑓௞௟(𝜽) = 𝜁 + ෍𝜂௡exp (− (𝑥௞ − 𝛽௫೙)ଶ + (𝑦௟ − 𝛽௬೙)ଶ2𝜌ଶ )ே
௡ୀଵ  ,                  (2.29) 

where 𝜁 is a constant background, 𝜌 is the width of the 2D Gaussian peaks, 𝜂௡ is the height of the 𝑛th Gaussian peak, 𝛽௫೙ and 𝛽௬೙ are the x- and y-coordinate of the 𝑛th atomic column, and 𝑁 is the 
total number of analyzed atom columns. The unknown parameters of the parametric imaging model 
of Equation 2.29 are given by the parameter vector: 𝜽 = (𝛽௫భ , … ,𝛽௫ಿ , …𝛽௬భ , … ,𝛽௬ಿ , …𝜌, … , 𝜂ଵ, … 𝜂ே, 𝜁)் .                 (2.30) 

The unknown parameters of 𝜽 are estimated by uniformly weighted least squares estimator defined 
by: 168,169 

𝜽෡ = 𝑎𝑟𝑔𝑚𝑖𝑛௧ ෍෍(𝑤௞௟ − 𝑓௞௟(𝒕))ଶ௅
௟ୀଵ

௄
௞ୀଵ  .                               (2.31) 

The parameters are then estimated by minimizing the least-squares sum, which quantifies the 
similarities between the image and the model. This is performed using an iterative optimization 
algorithm, which is implemented in the StatSTEM software package. 97 Hereby, good starting 
values are essential in order to avoid convergence to a local minimum during the model estimation 
procedure (Equation 2.31). Starting values for the projected atomic column positions (𝛽௫೙ and 𝛽௬೙) 
can be defined manually or from a peak finding routine that searches for local maxima in the 
images. 97 Figure 2.4 visualizes the working principle of model-based parameter estimation in 
STEM, where the height, width, and position of a Gaussian peak in the model are adjusted to find 
the best match with an observed atomic column. 

Statistical parameter estimation enables the determination of atomic column positions with high 
precision from ADF STEM images. As a result, local interatomic distances, strain at a particle-
support interface, or crystalline defects can reliably be measured. 88–90,170,171 Furthermore, the 
statistical parameter estimation also provides a robust methodology to quantify the atomic column 
intensities. For ADF STEM, the volume under each Gaussian peak reflects the total intensity of 
scattered electrons from a single atomic column toward the ADF STEM detector. This is the so-
called scattering cross sections (SCSs). 91,101,102 The SCS monotonically increases with increasing 
sample thickness and can therefore be used to estimate the number of atoms in a projected atomic 
column from an ADF STEM image. The advantage of using SCSs, instead of peak intensities, to 
quantify the number of atoms in a projected atomic column is their robustness to sample mistilt or 
microscope aberrations, such as defocus, astigmatism or source size broadening. The SCS of the 𝑛th Gaussian peak can be calculated as follows: 87 𝑉௡  = 2𝜋𝜂௡𝜌ଶ .                                                  (2.32) 

As an example, the procedure to count the number of atoms is demonstrated on the simulated ADF 
STEM image of the Au nanowedge shown in Figure 2.3c. Poisson-distributed image noise is also 
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added by 𝑁ௗ∆𝑥∆𝑦𝑤௞௟ 97 with an incoming electron dose of 𝑁ௗ = 10000 𝑒ି/Åଶ, the pixel area of ∆𝑥∆𝑦, and the observed pixel values of 𝑤௞௟. A noise realization of the simulated Au nanowedge is 
illustrated in Figure 2.5a and its parametric model is shown in Figure 2.5b, where fitted atomic 
column positions are indicated as red dots. 

 

Figure 2.4 Visualization of modelling a Gaussian peak to an observed atomic column by adjusting the 
height, width and position. Reprinted from ref 172. 

The set of SCSs estimated from the fitted model is shown in Figure 2.5c. From the histogram of 
estimated SCSs in Figure 2.5c, the increase in SCSs with respect to thickness can be observed. 
Ideally, this histogram would consist of isolated components, where each component corresponds 
to a set of columns having the same number of atoms projected on top of each other. In practice, 
however, the peaks are often broadened because of different factors, such as a different vertical 
onset of columns of the same number of atoms, experimental detection noise, the influence of 
neighboring columns and relaxation at the boundaries. Therefore, the SCSs corresponding to 
atomic columns containing the same number of atoms 𝑔 will not be identical but fluctuate around 
an average SCS, 𝜇௚. This makes a visual interpretation of the components from the SCS histogram 
often impossible or highly subjective. To overcome this limitation, the distribution of SCSs can be 
modelled as a Gaussian distribution such that the SCSs in the histogram are regarded as 
independent statistical draws from a Gaussian mixture model. This model describes the probability 
that a specific SCS value is observed. 103,168,173 The probability density function of the mixture 
model with 𝐺 Gaussian components can parametrically be written as: 

𝑓௠௜௫(𝑉௡;  𝜳ீ) = ෍𝜋௚𝜙௚(𝑉௡; 𝜇௚,𝜎)ீ
௚ୀଵ  .                                  (2.33) 
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Hereby, 𝐺 is the number of atoms located in the thickest atomic column and 𝑉௡ represents the 
stochastic variable for the 𝑛th SCS. The symbol 𝜳ீ represents the vector containing all unknown 
parameters in the mixture model with 𝐺 components: 𝜳ீ = (𝜋ଵ, … ,𝜋ீିଵ, 𝜇ଵ, … 𝜇ீ ,𝜎)் .                                  (2.34) 

 

Figure 2.5 Summary of the statistics-based atom counting approach applied to a noise realization of the 
simulated image shown in Figure 2.3c. a) A noise realization for an incoming electron dose of 𝑁ௗ =10000 𝑒ି/Åଶ. b) The parametric model of the image shown in (a). Fitted atomic column positions are 
indicated as red dots. c) Histogram of the estimated SCSs from the model shown in (b). d) ICL criterion 
evaluated as a function of the number of Gaussian components. e) Gaussian mixture model with the 
estimated locations 𝜇௚ and width 𝜎 of the Gaussian components. The colored curves indicate the individual 
normal components. f) Estimated number of atoms in each atomic column. 

The components 𝜙௚൫𝑉௡; 𝜇௚,𝜎൯ of the mixture model are generated by set of atomic columns having 
the same number of atoms and they are modelled as homoscedastic normal components: 168,173 

𝜙௚൫𝑉௡; 𝜇௚,𝜎൯ = 1√2𝜋𝜎 exp ቆ− (𝑉௡ − 𝜇௚)ଶ2𝜎ଶ ቇ .                           (2.35) 

The mixing proportion of the 𝑔th component, 𝜋௚, indicates the fraction of the columns having a 



Chapter 2. Quantitative 3D characterization from 2D STEM images 

33 

specific number of atoms, i.e. the weight of the 𝑔th component in the Gaussian mixture model. 
Since the mixing proportions 𝜋௚ sum up to unity, the 𝐺th mixing proportion 𝜋ீ is omitted in the 
parameter vector 𝜳ீ (Equation 2.34). Furthermore, 𝜇௚ denotes the location of the average SCS of 𝑔th component in the mixture model. The width of the components 𝜎 describes the amount of 
fluctuation on the SCSs, corresponding to atomic columns with the same thickness, from the mean 
value 𝜇௚. 168,173 

In order to compute the parameters 𝜳ீ of the probability distribution of the estimated SCSs (𝑉௡), 
the maximum likelihood estimator is used. 96,174–177 Here, estimates are found by maximizing the 
log likelihood function of the unknown parameter vector 𝜳ீ for a given set of observed SCSs 𝑉௡෡ : 

log 𝐿(𝜳ீ) = ෍𝑙𝑜𝑔ቌ෍𝜋௚𝜙௚൫𝑉௡෡ ; 𝜇௚,𝜎൯ீ
௚ୀଵ ቍே

௡ୀଵ  .                              (2.36) 

To compute the maximum likelihood estimates of 𝜳ீ, an iterative procedure is applied using the 
expectation-maximization algorithm. 178 In this manner, a solution for the parameters 𝜳ீ can be 
obtained for a fixed number of 𝐺 components. 𝐺 is the number of atoms found in the thickest 
atomic column, which is often unknown and needs to be estimated as well. In order to identify the 
correct number of components 𝐺, the integrated classification likelihood (ICL) criterion is 
evaluated as a function of the number of components. Although many different information criteria 
exist, ICL outperforms other order selection criteria for atom counting. 168 The ICL criterion is 
expressed as follows: 𝐼𝐶𝐿(𝐺) = −2𝑙𝑜𝑔𝐿൫𝜳෡ீ൯ + 2𝐸𝑁(𝜏̂) + 𝑑𝑙𝑜𝑔𝑁 ,                             (2.37) 

where 2𝑙𝑜𝑔𝐿൫𝜳෡ீ൯ is the likelihood term evaluated at the estimated parameters 𝜳෡ீ and 2𝐸𝑁(𝜏̂) +𝑑𝑙𝑜𝑔𝑁 is a penalty term depending on the number of atomic columns 𝑁, the number of parameters 𝑑 in the mixture model and the entropy term: 

𝐸𝑁(𝜏̂) = −෍෍𝜏௚(𝑉෠௡;𝜳෡ீ)𝑙𝑜𝑔𝜏௚(𝑉෠௡;𝜳෡ீ)ே
௡ୀଵ

ீ
௚ୀଵ  ,                          (2.38) 

with 𝜏௚(𝑉෠௡;𝜳෡ீ) the posterior probability that the estimated SCS 𝑉෠௡ of the 𝑛th column belongs to 
the 𝑔th component. The entropy term 𝐸𝑁(𝜏̂) favors mixture models with well separated 
components, in order to estimate physically relevant Gaussian mixture models. The first term of 
ICL criterion (Equation 2.37), measuring the model fit, will decrease with increasing order, 
whereas the penalty term, measuring the complexity of the model, will increase with increasing 
order. Therefore, the ICL reaches a minimum value at the optimum solution. 

The ICL criterion for the simulated Au nanowedge is shown in Figure 2.5d. Here, one searches for 
a local minimum and the red arrow indicates the selected local minimum at 𝐺 = 7 components. 
This suggests that a particular column contains 1 up to a maximum of 7 Au atoms. Finally, by 
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assigning the measured SCSs to the corresponding number of atoms with the largest probability, 
the total number of atoms in each atomic column can be estimated. The histogram of estimated 
SCSs together with the underlying Gaussian mixture model and atom counting results are shown 
in Figure 2.5e and Figure 2.5f, respectively. It can be seen that this counting result is identical to 
the original input used for the MULTEM simulation shown in Figure 2.3b.  

Using the statistical parameter estimation theory framework, atoms can be counted with single-
atom sensitivity from high-resolution ADF STEM images. 168,173 However, the precision of the 
counting results is limited by the overlap between the Gaussian components. To illustrate this effect 
on the atom counting results, Poisson-distributed noise was added to the simulated ADF STEM 
image of the Au nanowedge for lower electron doses, 𝑁ௗ = 5000 𝑒ି/Åଶ, 𝑁ௗ = 1500 𝑒ି/Åଶ and 𝑁ௗ = 1000 𝑒ି/Åଶ. The resultant images are shown in the first column of Figure 2.6 (Figure 
2.6a,d,g). From the Gaussian mixture models in Figure 2.6b,e,h, it can be seen that the reduced 
electron dose resulted in more fluctuation of SCSs about their mean values and a larger overlap 
between the neighboring Gaussian components. The overlapped regions are indicated as dark gray 
in Figure 2.6e,h. In accordance with the literature, 97,98,168,173 for a larger overlap, the probability 
that a wrong number of atoms is assigned to a particular column increases. 173 Although high 
precision in atom counting is observed in Figure 2.6c, where there is nearly no overlap between 
neighboring components (Figure 2.6b), the increased overlap between the components due to the 
limited electron dose causes a discrepancy between the estimated number of atoms per column 
(Figure 2.6f,i) and the original input shown in Figure 2.3b. In addition to the overlap between the 
Gaussian components, previously reported studies demonstrated that there should be a sufficiently 
large number of atomic columns for a reliable atom counting by statistical parameter estimation 
theory. 98,173 Therefore, performing reliable atom counting can be challenging for very small NPs 
presenting a limited number of projected atomic columns, or for images exhibiting low SNR due 
to scanning distortions and a low electron dose. 81  

The true number of components often corresponds to a local minimum in the evaluation of the ICL 
but the presence of more than one minimum may complicate the analysis. For example, from Figure 
2.6j, it can be seen that the shape of ICL is affected by different incoming electron doses and can 
show extra minima at different component numbers in addition to the correct component number 
at 𝐺 = 7 (red arrows in Figure 2.6j). ICL may also equal-likely favor the mixture models having 
different component numbers (see Figure 2.5d for 𝐺 = 8 and 𝐺 = 9 components). More details 
regarding the interpretation of ICL are given in Appendix A. Moreover, depending on the 
nanostructure under study, it is possible that the first component does not correspond to one atom 
but to a higher number of atoms. In that case, an offset should be taken into account when assigning 
the number of atoms to atomic columns of the different components. However, finding the true 
number of components of the underlying distribution by using ICL and selecting the correct offset 
value can be highly subjective without prior knowledge about the shape and thickness of the 
experimentally imaged NP. To overcome these limitations, the outcome of statistics-based atom 
counting results can be validated with accurate multislice simulations. Therefore, in this thesis, the 
combination of simulation and statistics-based atom counting is used where the estimated SCSs 
from an experimental image are compared with SCSs obtained from multislice simulations. 173 In 
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Section 3.2, the procedure of combined simulation and statistics-based atom counting is explained 
in detail on an experimental system. 

 

Figure 2.6 An example to show the effect of overlapped neighboring Gaussian components on the atom 
counting results. A noise realization (a) for an incoming electron dose of 𝑁ௗ = 5000 𝑒ି/Åଶ, the 
corresponding Gaussian mixture model (b) and resultant atom counting map (c). A noise realization (d) for 
an incoming electron dose of 𝑁ௗ = 1500 𝑒ି/Åଶ, the corresponding Gaussian mixture model (e) and 
resultant atom counting map (f). A noise realization (g) for an incoming electron dose of 𝑁ௗ = 1000 𝑒ି/Åଶ, 
the corresponding Gaussian mixture model (h) and resultant atom counting map (i). j) ICL as a function of 
number of components for different incident electron doses. The correct component number (𝐺 = 7) is 
indicated as a red arrow for each ICL. 

2.3.  Atomistic simulations 

To reconstruct 3D models of the experimentally imaged NP based on atom counting results, two 
additional steps were performed in the previously reported studies: initialization of an appropriate 
starting model and structural relaxation of the starting model by the use of atomistic-based 
simulations, such as ab initio calculations, a Monte Carlo (MC) method or molecular dynamics 
(MD) simulations. 81,107,109,110 

Ab initio calculations are based on atoms and electrons interacting with each other according to the 
laws of quantum mechanics. During such simulations, one solves the electronic Schrӧdinger 
equation given the positions of the nuclei and number of electrons. Ab initio calculations yield 
accurate results; however, the large number of quantum mechanical interactions makes the 
modelling of many-body systems computationally intensive. Although the developments in 
supercomputers and parallel programming allow increasing computational speed, investigating the 
dynamical behavior of systems having more than a few tens of atoms by quantum mechanical 
calculations is still highly challenging.   
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The MC method is a computationally more efficient approach compared to ab initio calculations. 
A standard MC method describes systems with a constant number of particles 𝑁, a constant volume 𝑉 and a constant temperature 𝑇 (𝑁𝑉𝑇), which corresponds to canonical ensemble. The equilibrium 
average of some quantity < 𝐵 >, e.g. the potential energy, for systems in canonical ensemble can 
be given by: 179 

< 𝐵 >= ∑ 𝑒ି ாഀ௞ಳ்ఈ 𝐵ఈ∑ 𝑒ି ாഀ௞ಳ்ఈ = ෍ 𝐵ఈ𝜌ఈఈ  .                                    (2.39) 

Hereby, 𝑘஻ is the Boltzmann constant, and 𝜌ఈ is the probability of being in a possible configuration 𝛼: 

𝜌ఈ = 𝑒ି ாഀ௞ಳ்∑ 𝑒ି ாഀ௞ಳ்ఈ = 𝑒ି ாഀ௞ಳ்𝑄                                              (2.40) 

with 𝑄 is partition function: 𝑄 = ෍ 𝑒ି ாഀ௞ಳ்ఈ  .                                                  (2.41) 

From Equation 2.40, the relative probability between two states, such as the probability of an 
atomic configuration 𝛼 with energy 𝐸ఈ relative to the probability of configuration 𝛽 with energy 𝐸ఉ, can be calculated as follows:   𝜌ఈ𝜌ఉ = 𝑒ି(ாഀିாഁ)/௞ಳ் .                                            (2.42) 

Since 𝑘஻ and 𝑇 are constant in MC, the relative probabilities of the two states does not vary with 
the partition function 𝑄 and depend only on the energy difference: if 𝐸ఈ is equal to or smaller than 𝐸ఉ, the relative probability (ఘഀఘഁ) is larger than 1; otherwise it becomes smaller than 1.  

A simplified flowchart of MC algorithm for atomistic simulations is illustrated in Figure 2.7a. MC 
simulations start with random atomic displacements in an initial atomic model. Then, the energy 
corresponding to the new configuration with displaced atoms is calculated. The new configuration 
is accepted if the energy decreases. This process is repeated until either the energy of the system 
remains unchanged or a user-defined number of iterations is reached. It should be noted that MC 
method can be simply extended to other ensembles, e.g., isobaric-isothermal ensemble, associated 
with different thermodynamic constraints by modifying the partition function (Equation 2.41). 179 

During the MC method, all possible configurations should be explored. However, many of the 
configurations of a system may not be probable. For example, if two atoms in a candidate structure 
are very close to each other compared to their equilibrium positions, the resultant energy of that 
configuration will be large and the probability of being in that state will be vanishingly small. 
Moreover, the MC method considers only the configuration space and ignores the dynamical 
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behavior of a system. 179 Therefore, it is limited to the static properties of a system and often fails 
when one wants to investigate the physical atomic trajectories or dynamical behavior of a NP under 
certain conditions, such as structural and morphological evolution of a NP upon heating. 180 

MD simulations, on the other hand, can generate the dynamic behavior of systems. MD simulations 
are based on the idea of classical mechanics, which is the study of the dynamical response of objects 
under applied forces. 179,181 A simplified algorithm for MD simulations is shown in Figure 2.7b. 
Classical MD simulations start with a set of atomic positions. Next, these simulations progress in 
time by computing the force acting on each atom in a system and solving Newton’s equation of 
motion to obtain the time evolution of the set of interacting atoms. Thermodynamic and statistical 
mechanics quantities, such as energy, temperature, pressure, are then measured from the obtained 
trajectory of the atoms.   

 

Figure 2.7 Simplified flowcharts of (a) MC algorithm and (b) MD simulations.  

According to Newton’s second law, the force 𝐹 acting on a particle having mass 𝑚 can be 
calculated as follows: 𝐹 = 𝑚𝒂 = 𝑚𝑑𝒗𝑑𝑡 = 𝑚𝑑ଶ𝒓𝑑𝑡ଶ  ,                                       (2.43) 

where 𝑡 is time, 𝒗 is velocity and 𝒂 is the time rate of position change (𝑑ଶ𝒓/ 𝑑𝑡ଶ). From classical 
mechanics, the force acting a particle equals to the negative gradient of the potential energy with 
respect to the position of that particle. Hence, the force acting on an atom 𝑖 is given by: 179 𝑭௜ = −𝛁௜𝑈(𝒓ଵ, 𝒓ଶ, … , 𝒓ே) .                                     (2.44) 

Hereby, 𝑈 denotes the potential energy of a system as a function of position of the atoms (𝒓௜ =𝑥௜ , 𝑦௜ , 𝑧௜) and the gradient is taken with respect to the coordinates of the atoms: 𝛁௜𝑈(𝒓ଵ, 𝒓ଶ, … , 𝒓ே) = 𝜕𝑈(𝒓ଵ, 𝒓ଶ, … , 𝒓ே)𝜕𝑥௜ + 𝜕𝑈(𝒓ଵ, 𝒓ଶ, … , 𝒓ே)𝜕𝑦௜ + 𝜕𝑈(𝒓ଵ, 𝒓ଶ, … , 𝒓ே)𝜕𝑧௜  . (2.45) 

By substituting Equation 2.44 into Equation 2.43, Newton’s equation of motion for an atom 𝑖 yields 
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to: 𝑑ଶ𝒓𝑑𝑡ଶ = 1𝑚௜ 𝑭௜ = 1𝑚௜ [−𝛁௜𝑈(𝒓ଵ, 𝒓ଶ, … , 𝒓ே)] .                          (2.46) 

From Equation 2.46, it can be interpreted that atoms tend to minimize the energy under a force. 
The forces needed to integrate the equations of motion (Equation 2.46) can be determined from ab 
initio calculations, the so-called “ab initio MD”. However, since ab initio calculations are 
computationally intensive for the simulations of many-body systems, in classical MD simulations, 
the system potential energy 𝑈 as a function of atomic positions is often approximated by 
mathematical functions, which are known as force-fields or interatomic potentials or often just 
called as potentials. 182,183  

One of the best known interatomic potentials is the Lennard-Jones (LJ) potential. LJ potential is a, 
so-called, pair potential that describes the potential energy 𝑈 of a system from the interaction 
between individual pairs of atoms depending on the distance between the pairs. According to the 
LJ potential, the potential energy of a system, containing 𝑁 number of atoms, is calculated as 
follows: 180 

𝑈 = 12෍෍𝜙௜௝(𝒓௜ , 𝒓௝)ே
௝ୀଵ

ே
௜ୀଵ                                             (2.47) 

with 

𝜙௜௝൫𝒓௜ ,𝒓௝൯ = 4𝜖 ൥ቆ 𝜎𝑟௜௝ቇଵଶ − ቆ 𝜎𝑟௜௝ቇ଺൩          𝑓𝑜𝑟 𝑟௜௝ < 𝑟௖ .                  (2.48) 

Here, 𝜙௜௝൫𝒓௜ , 𝒓௝൯ represents the interaction between the pairs of atoms 𝑖 and 𝑗 located at 𝒓௜ and 𝒓௝ 
with an interatomic distance 𝑟௜௝ = |𝒓௜ − 𝒓௝|. The first term in Equation 2.48 represents a short-
range repulsion force, and the second term represents attraction between the interacting atoms 
within a defined cut-off distance 𝑟௖. 179 The parameters 𝜖 and 𝜎 are specific constants that are related 
to the types of interacting atoms. The parameter 𝜖 controls the strength of the interaction and the 
parameter 𝜎 defines the distance at which potential is zero. Typically, these parameters are chosen 
such that the estimated properties of a material under investigation by the LJ potential match a set 
of reference data obtained from either experimental observations or ab initio calculations.  

The simplicity of the LJ potential provides a great advantage in the simulations of large systems. 
However, LJ potential considers atoms as neutral, point-like particles and does not represent the 
free-electrons in metals, which are of significant importance for reliable simulations of metallic 
systems. 180,184 Therefore, the embedded atom method (EAM) has been developed. At about the 
same time, conceptually similar potentials having different functional forms were also developed, 
such as the glue model, 185 Finnis-Sinclair, 186 or Voter-Chen-type 187 potentials.  

The EAM can be interpreted in the framework of density-functional theory. In this approach, the 
energy of a metallic system is described as the required energy to embed an atom into the local 
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electron density provided by the surrounding atoms. The energy contribution from two-body 
interactions is also included. In EAM, the total internal energy 𝐸௧௢௧ can be expressed as: 184,188 

𝑈 = ෍𝐹௜(𝜌௜) + 12෍෍𝜙௜௝(𝑟௜௝)ே
௝ୀଵ

ே
௜ୀଵ௜                                           (2.49) 

and 𝜌௜ = ෍ 𝜌௜(𝑟௜௝)௝ஷ௜  .                                                       (2.50) 

Hereby, 𝜙൫𝑟௜௝൯ is the pair-wise potential term and 𝐹௜(𝜌௜) is the embedding energy required to place 
atom 𝑖 in an electron density 𝜌௜. The latter can be defined as the sum of the electron density of 
individual surrounding atoms. Generally, these functions are generated by a numerical fitting 
procedure. A typical fitting procedure involves a set of reference atomic forces of many atomic 
configurations produced by first-principles calculations. 179,181,189,190 The optimum set of 
parameters of EAM (Equation 2.49) is determined by matching the prediction of EAM with the 
properties or forces supplied by reference first-principles calculations or experimental studies. Such 
potentials have been shown to be very successful in the modeling of the properties of metallic 
systems. 184,190–192 Therefore, in this thesis, the EAM is used for the MD simulations of metallic Au 
and Pt particles. The validity of EAM for the MD simulations of Au and Pt NPs performed in this 
thesis is discussed in Appendix B. 

Once the forces acting on each atom have been calculated, the positions of these atoms are updated 
according to Newton’s laws of motion (Equation 2.46). A number of methods have been developed 
for the numerical integration of Newton’s equation of motion. 193 A standard way is to discretize 
time 𝑡 into the so-called “time steps 𝛿𝑡” and then solve the equations of motion over those time 
intervals. By approximating the force 𝑭௜ acting on atom 𝑖 and the acceleration 𝒂௜ as constant over 
the time interval 𝛿𝑡, the position 𝒓௜ and velocity 𝒗௜ of atom 𝑖 at time 𝑡 + 𝛿𝑡 can be evaluated from 
its position and computed force acting on it at time 𝑡: 181 𝒓௜(𝑡 +  𝛿𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)𝛿𝑡 + 12𝒂௜(𝑡)𝛿𝑡ଶ                                (2.51) 

with 𝒗௜(𝑡 +  𝛿𝑡) = 𝒗௜(𝑡) + 𝒂௜(𝑡)𝛿𝑡 ,                                           (2.52) 
and 𝒂௜(𝑡) = 𝑑ଶ𝒓௜(𝑡)𝑑𝑡ଶ = 1𝑚௜ 𝑭௜(𝑡) . 

                                             (2.53) 

Hereby, 𝒓௜(𝑡) is the position, and 𝒗௜(𝑡) is velocity at time 𝑡. While this approach is straightforward, 
the solution of Equation 2.51 and 2.52 may not yield self-consistent results. 181 A better solution is 
provided by velocity Verlet algorithm where velocities at 𝑡 +  𝛿𝑡 are computed from the average 
of the accelerations at 𝑡 and 𝑡 +  𝛿𝑡: 179,194 
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𝒗௜(𝑡 +  𝛿𝑡) = 𝒗௜(𝑡) + 12𝑚௜ [𝑭௜(𝑡) + 𝑭௜(𝑡 + 𝛿𝑡)]𝛿𝑡 .                      (2.54) 

The accuracy of velocity Verlet algorithm is related to the defined time step 𝛿𝑡. 195 While large 
time steps allow simulations for larger time scales in reasonable computational time, the 
approximation of constant force over a large time interval 𝛿𝑡 leads to larger numerical errors in the 
calculations. The numerical errors can be reduced using smaller time steps. However, since the 
force acting on each atom is evaluated at each time step, using a too-small time step value may 
require high computational power. 179,195 Therefore, defining an optimum time step 𝛿𝑡 is a matter 
of balance between accuracy and computational time. During the MD simulations presented in this 
thesis, a time step in femtosecond (fs) time scale is defined, i.e. 0.5-1 fs, for the resolution of the 
individual atomic vibrations.  

Various ensembles can be applied to mimic different thermodynamic states during MD 
simulations. It is often desirable to study a system in a canonical ensemble (𝑁𝑉𝑇) or at constant 
temperature 𝑇 and pressure 𝑃 in an isothermal-isobaric ensemble (𝑁𝑃𝑇) to replicate a 
complementing experiment in a controlled environment. These thermostats and/or barostats are 
imposed by either rescaling the atom velocities or system pressure during the simulation via the 
Andersen and Berendsen methods or modifying the equations of motion with Nose-Hoover 
dynamics. 196 It has been shown that Nose-Hoover dynamics often outperform the other 
temperature control schemes and produce accurate canonical distribution. 197,198 Thus, during the 
MD simulations presented in this thesis, Nose-Hoover thermostat was employed to control the 
temperature of the simulated systems.  

For the MD simulations employing the Nose-Hoover thermostat in the 𝑁𝑉𝑇 ensemble, an 
additional degree of freedom 𝜁 is introduced into the equation of motion: 199 𝑚௜ 𝑑ଶ𝒓𝑑𝑡ଶ = 𝑭௜ − 𝜁𝑚௜𝒗௜                                                 (2.55) 

with  𝑑𝜁(𝑡)𝑑𝑡 = 1𝑄 ൥෍𝑚௜ 𝒗௜ଶ2 − 3𝑁 + 12 𝑘஻𝑇ே
௜ୀଵ ൩ .                                   (2.56) 

Hereby, 𝑇 denotes the target temperature and 𝑄 controls the relaxation of the dynamics of the 
friction 𝜁(𝑡) which slows down or accelerates atoms until the target temperature is reached. The 
equations of motion of the Nose-Hoover thermostat can be implemented velocity Verlet algorithm 
by a similar modification.  

During MD simulations, at each time step, the forces acting on atoms are calculated using 
interatomic potential. The position and velocity of each atom are then updated by solving the 
equation of motion with a defined ensemble. The iterative process is repeated until the overall 
simulation time is reached. The overall simulation time is defined according to system-specific 
purposes. Often, convergence of energy or a stationary behavior of the properties of interest, such 
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as temperature, pressure, RMSD of atoms, is considered as a criterion. Since complete trajectories 
of atoms are available, it is also possible to measure time-dependent variables and equilibrium 
thermodynamic properties of a simulated system. It should be noted that the calculated properties 
obtained from MD are not exactly the same as the real thermodynamic quantities of the materials 
due to error arising from the approximated interatomic potential functions, numerical solution of 
the equation of motion, and the size difference between the input model used in MD simulations 
and real systems. 200  

Considering the time scale of the MD simulations, which is in the nanosecond or microsecond 
range, and a proper time step, these calculations are repeated at around millions of times. Therefore, 
MD simulations are often performed on computer clusters or supercomputers using dozens or even 
hundreds of processors in parallel. Many different software packages have been developed to run 
MD in parallel. In this thesis, the Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) open source code is used to perform MD simulations. 183,201 

MD simulations are a powerful approach to simulate both static properties and dynamic behaviors 
of solids, fluids and gases as well as their mixtures, solutions, alloys at the atomic scale. 202–206 
Moreover, it has been shown that combining MD simulations with atom counting results, estimated 
from ADF STEM images by statistical parameter estimation theory, allows one to determine the 
unknown 3D positions of atoms in a NP. In Figure 2.8, this procedure is summarized on an 
experimental ADF STEM image of a cubic Pt NP. 

 

Figure 2.8 3D atomic reconstruction using a combination of atom counting and structural relaxation by MD 
simulations. (a) High resolution ADF STEM image. (b) Statistics-based atom counting. (c) Final 3D model 
of the Pt NP. 

This procedure starts with creating an input model based on the atom counting results (Figure 2.8b). 
The fitted atomic column coordinates of the parametric model obtained by statistical parameter 
estimation, as explained in Section 2.2, were used as x and y coordinates of the starting input model. 
Along the z-direction, parallel to the beam direction, the estimated number of atoms in each atomic 
column were positioned symmetrically around a central plane using prior information about the 
[100] sample orientation and Pt face-centered cubic (FCC) crystal structure. The neighboring atoms 
along the beam direction were separated by fixed distances according to the lattice parameter of 
the projected crystalline structure. Next, structural relaxation by MD simulations was performed at 
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room temperature on the created starting model for 10 nanoseconds (ns) with 𝑁𝑉𝑇 ensemble to 
determine the final 3D model, which is shown in Figure 2.8c. 

To validate this approach, the outcome of this procedure was compared to a high-resolution 3D 
reconstruction obtained from electron tomography on the same Pt NP. Unlike the 3D reconstruction 
by electron tomography, the reconstruction using atom counting combined with MD simulations 
was based on a single projection image shown in Figure 2.8a. This high-resolution image was also 
part of a tomography series of the Pt NP. Tomographic reconstruction was retrieved by using the 
SIRT reconstruction algorithm developed by Dr. Ivan Lobato at EMAT. 81 The reconstructed model 
by electron tomography is shown in Figure 2.9b. In Figure 2.9c,d, a comparison is shown between 
the two reconstruction methods. It can be seen that atom counts from both reconstructions are 
overlapped in Figure 2.9c,d, and an excellent visual match of the overall morphology of the Pt NP 
has been found. This shows a very good agreement with high-resolution electron tomography. 
However, it should be noted that this agreement can be possible only with the high accuracy of the 
estimated atom counts from ADF STEM image.  

 
Figure 2.9 Comparison of 3D reconstructions by atom counting/relaxation and high-resolution electron 
tomography. a) Reconstruction based on the atom counting/relaxation approach. b) Reconstruction of a Pt 
NP using high-resolution tomography. c,d) Comparison of atom counts from slice-1 and slice-2. 

2.4.  Conclusion 

In this chapter, the concepts that are used and extended in the remaining parts of this thesis have 
been introduced. First, an overview of the basic concepts of image formation for ADF STEM 
imaging mode was given. I also introduced multislice image simulations and highlighted some 
important aspects to consider when performing image simulations for quantitative analysis of 
STEM images. The Z-contrast and thickness dependence of ADF STEM images makes them 
suitable to extract quantitative structural information. Therefore, throughout this thesis, ADF 
STEM images are used to investigate 3D atomic structural information. In this thesis, I use the 
combined simulation and statistics-based atom counting approach, where the outcome of statistics-
based atom counting results is validated with STEM image simulations to accurately and precisely 
quantify the atomic structure from ADF STEM images. Therefore, in this chapter, the principles of 
the quantitative STEM using statistical parameter estimation theory were described. This 
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framework enables one to accurately estimate the projected atomic column positions and the SCSs, 
which quantify the total intensity of electrons scattered towards the annular detector from a given 
atomic column. These SCSs are used to count the number of atoms in each atomic column with 
single-atom sensitivity as long as the ADF STEM image provides sufficiently high SNR. In this 
chapter, I also explained the basic principles of atomistic simulations, specifically focused on MD 
simulations. The 3D characterization of NPs by combining atom counting results and MD structural 
relaxations was also demonstrated. So far, this approach has been applied to free-standing particles 
roughly symmetrical along the electron beam. However, this methodology needs to be further 
evaluated for in situ experiments of metallic NPs lying on an oxide support as often used in 
catalysis. Within this perspective, each step of this method is optimized in Chapter 3 and Chapter 
4.  

 
Appendix A: Interpretation of ICL  

To count the number of atoms located in the projected atomic columns, the distribution of measured 
SCSs is decomposed using a Gaussian mixture model, as explained in Section 2.2. The Gaussian 
mixture model describes the probability that a specific SCS value is observed, and the components 
of the model are defined as normal components with a constant width (Equation 2.35). 168 The 
component width describes the amount of fluctuation on the SCSs, corresponding to the atomic 
columns containing the same number of atoms, from the mean value. The component width and 
other parameters of the Gaussian mixture model (Equation 2.34) can be estimated using the 
maximum likelihood estimator for a fixed number of components 𝐺. To identify the correct number 
of components 𝐺 in the Gaussian mixture model, the ICL criterion is evaluated as a function of the 
number of components. 168 The purpose of this section is to get more insight in the ICL criterion. 

In the ICL criterion (Equation 2.37), the first term, −2𝑙𝑜𝑔𝐿൫𝜳෡ீ൯, represents the log-likelihood 
function of the unknown parameter vector 𝛹෡ீ of Gaussian mixture model for a given set of 
measured SCSs. This term measures the goodness of model fit. As an example, Figure 2.10a shows 
a noise realization of the simulated Au nanowedge with an incoming electron dose of 𝑁ௗ =10000 𝑒ି/Åଶ (the same system as in Figure 2.5). The estimated SCSs corresponding to all 
projected atomic columns are visualized in Figure 2.10b. The evaluation of the first term of ICL 
with respect to component number is presented in Figure 2.10c. It can be seen that  the first term 
of ICL, −2𝑙𝑜𝑔𝐿൫𝜳෡ீ൯, decreases, and so maximizes the likelihood function 𝐿൫𝜳෡ீ൯ of the parameter 
vector (𝜳෡ீ) of the Gaussian mixture model, with an increasing component number. Since the 
Gaussian mixture model applies the same width for each component, the term represents log-
likelihood function improves by adding extra components having a width as small as possible to 
decompose the measured SCSs into normal distributions with the largest probability. However, this 
may not correctly describe the true stochastic characteristics of the observations and degrade the 
model quality.  
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Figure 2.10 (a) A noise realization of the simulated Au nanowedge with an incoming electron dose of 𝑁ௗ =10000 𝑒ି/Åଶ. b) The measured SCSs corresponding to atomic columns shown in (a). c) The evaluation of 
the first term of ICL with respect to component number. d) The evaluation of ICL with respect to component 
number. The correct component number at 𝐺 = 7 is indicated as a red circle. 

The second term of the ICL (Equation 2.37) thus aims to balance the model fit and model quality 
by introducing a penalty term (2𝐸𝑁(𝜏̂) + 𝑑𝑙𝑜𝑔𝑁). The penalty term is dependent on the number 
of atomic columns, the number of parameters in the mixture model, and the overlap between the 
neighboring Gaussian components. In this manner, ICL evaluates the statistical significance of an 
extra component in the model: 173 while the first term decreases with an increasing number of 
components, the penalty term increases with increasing order. Eventually, the ICL reaches a 
minimum value at the correct component number, as shown in Figure 2.10d.  

Here, it has been observed that ICL almost equal-likely favours the models with 8 and 9 
components with the model corresponding to the true component number at 7. For better 
visualization, a magnified version of the ICL criterion evaluated as a function of the number of 
Gaussian components is presented in Figure 2.11a. The Gaussian mixture models and resultant 
atom counting maps for the selected component numbers at 𝐺 = 7, 𝐺 = 8 and 𝐺 = 9 are shown in 
Figure 2.11b-d, respectively.  
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Figure 2.11 a) A magnified visualization of the ICL criterion which is shown in Figure 2.10d. (b-d) present 
Gaussian mixture models and atom counting maps for 𝐺 = 7, 𝐺 = 8 and 𝐺 = 9 components as shown in 
(a) by purple, black and gray arrows. Extra components in the Gaussian mixture models are shown as blue 
and black arrows for the selected 𝐺 = 8 and 𝐺 = 9 number of components, respectively. The width of 
Gaussian components 𝜎 for each selected component number in (a) is indicated on each Gaussian mixture 
model in (c) and (d).  

Observing very similar ICL values for the mixture models having 8 and 9 components with the 
corresponding value of the 7 components is related to the contribution of the first term of ICL. As 
explained above, the likelihood function 𝐿൫𝜳෡ீ൯ of the parameter vector (𝜳෡ீ) of the Gaussian 
mixture model promotes assigning additional components having a smaller width to decompose 
the distribution of SCSs into homoscedastic components with the largest probability. However, the 
Poisson-like distributed SCSs corresponding to atomic columns containing the same number of 
atoms are not identical but fluctuate around an average SCS. Moreover, depending on the imaging 
parameters, the fluctuation in SCSs from their mean value often becomes larger for a thicker atomic 
column compared to the columns having a lower number of atoms. 207 This results in an increase 
in the component width. Therefore, ICL favours the models with 8 and 9 components where extra 
components are added for larger SCSs. In this manner, the width of components is reduced (see 
Figure 2.11b-d) to attain the largest probability for a given SCS. The extra components added into 
the Gaussian mixture models are indicated as a blue arrow in Figure 2.11c for 𝐺 = 8 components 
and indicated as black arrows in Figure 2.11d for 𝐺 = 9 components.  

It is important to note that, in this example (Figure 2.10 and Figure 2.11), Poisson noise was 
included that results in components with an increasing width for an increasing SCS value, since the 
variance of a Poisson distributed variable equals its expected value. However, the model with 
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homoscedastic components is applicable in experiments since many other contributions will affect 
the width of the components which are independent of the expected value of the SCSs, including 
the carbon support, different vertical onset of columns of the same number of atoms, intensity 
transfer between the columns, and the influence of neighbouring columns of different number of 
atoms. 

Appendix B: Validation of EAM potential for Au and Pt systems 

In this thesis, MD simulations were performed using EAM for Au 190 and Pt atoms. 192 The lattice 
parameter is an important parameter for identifying crystal structure, phase identification, and 
physical properties. Therefore, the validity of EAM for the MD simulations of Au-Pt systems was 
first tested in terms of lattice parameters. The lattice parameters of Au and Pt were calculated based 
on the average energy per atom values corresponding to created FCC input structures having 
different lattice constants by employing EAM potentials. The calculations were performed with 
periodic boundary conditions. The change in energy with respect to the lattice parameter of Au and 
Pt FCC crystals is shown in Figure 2.12. The minimum value of each graph (black triangles in 
Figure 2.12) provides the lattice constant of Pt and Au, which are tabulated in Table 2.2 and Table 
2.3, respectively.  

 
Figure 2.12 Potential energy change graphs of Au and Pt with respect to different lattice constants. 

For nanostructured metals, the surface energy is an important descriptor that affects their shape and 
stability. 208,209 Therefore, the surface energies of (100), (110), and (111) surfaces of Au and Pt 
were calculated by employing EAM. The surface energy of each facet can be calculated as: 210,211 𝛾 = 𝐸௦௟௔௕ − 𝑁𝐸௕௨௟௞2𝐴  ,                                                (2.57) 

where 𝐸௦௟௔௕ is energy of a slab composed of 𝑁 layers, 𝐸௕௨௟௞ is the energy of the bulk material per 
one layer and 𝐴 is the area of the surface. The factor 2 results from the fact that the slab has two 
surfaces. For each slab, a layer of surface primitive cell having (111), (100) or (110) surface was 
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created perpendicular to the z-axis. Then, each system was extended along the x- and y-axis, and 4 
layers were stacked along the z-axis followed by 10 Å thick vacuum, in accordance with the 
literature. 210,211 To obtain 𝐸௦௟௔௕, the positions of all atoms located in created each slab were relaxed 
by the conjugate gradient energy minimization method at 0 𝐾 with a force-stopping convergence 
criterion of 10ି଼ 𝑒𝑉/Å. The calculated surface energies of (111) surface facet 𝛾(ଵଵଵ), (100) facet 𝛾(ଵ଴଴), and (110) facet, 𝛾(ଵଵ଴) are tabulated in Table 2.2 and Table 2.3.  

According to Table 2.2, it can be seen that the predicted lattice parameter of Pt by EAM potential 
192 and corresponding energy per atom agree well with ab initio calculations. The calculated surface 
energies of Pt in this work are slightly lower than the reported values, but they present the same 
trend (𝛾(ଵଵଵ) < 𝛾(ଵ଴଴)< 𝛾(ଵଵ଴)) with the previously reported values. 208,209,212 Therefore, it can be 
concluded that the EAM potential gives the structural parameters and surface energies comparable 
with ab initio calculations that show the reliability of EAM to model Pt inter-atomic interactions. 
192 

Table 2.2 Computed parameters of Pt obtained predicted by EAM potential. 192 

Parameters EAM 192  Ab initio 

Lattice properties   𝑎 (Å)  3.98 3.92 213 𝐸଴ (𝑒𝑉/𝑎𝑡𝑜𝑚)  -5.51 -5.77 213 
   
Surface energies   𝛾(ଵଵଵ) (𝑗/𝑚ଶ)  1.30 1.34-1.98 214 𝛾(ଵ଴଴) (𝑗/𝑚ଶ)  1.42 1.81-1.92 215–217 𝛾(ଵଵ଴) (𝑗/𝑚ଶ)  1.43 1.85-2.49 215,216,218 

 
According to Table 2.3, it can be seen that the calculated lattice parameter of Au and the 
corresponding energy per atom value by using EAM 190 are in excellent agreement with previously 
published results which were obtained from ab initio calculations. Moreover, the predicted surface 
energies of Au for the (100), (110), and (111) surfaces are also in a reasonable agreement with the 
previously reported values. Here, the obtained values exhibit the same ordering 𝛾(ଵଵଵ) < 𝛾(ଵ଴଴)< 𝛾(ଵଵ଴) which demonstrates the stability of (111) facets compared to {100} and {110} surface. 

In this thesis, the structural transformations of Au NPs upon heating and intense light illumination 
are also investigated. Therefore, in addition to the lattice properties and surface energies, employed 
EAM should accurately reproduce the stacking fault energy as well as FCC-HCP and FCC-BCC 
lattice energy differences of Au lattice. The reported parameters of Au obtained by using EAM 
potential, which is used to define the interaction between Au atoms in this thesis, are tabulated in 
Table 2.3. From Table 2.3, it can be seen that the EAM potential reproduces the stacking fault 
energy and structural energy differences in a reasonable agreement with the experimental 
information. Grochola et al. 190 stated that the slight error in FCC-HCP energy difference is due to 
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the fact that these reported values are room-temperature thermodynamically derived values. 
However, the overestimation of FCC-HCP energy, as in Table 2.3, is often preferred instead of an 
underestimation as it would make FCC more likely to be stable.  

Table 2.3 Computed and previously reported parameters of Au predicted by EAM potential.  

Parameters EAM 190   Experiment or ab initio 

Lattice properties   𝑎 (Å)  4.08  4.078 213 𝐸଴ (𝑒𝑉/𝑎𝑡𝑜𝑚)  -3.92 -3.93 213 

Surface energies   𝛾(ଵଵଵ) (𝑗/𝑚ଶ)  0.99 0.72–1.51 210,214,219–221 𝛾(ଵ଴଴) (𝑗/𝑚ଶ)  1.08 0.87- 1.63 210,219 𝛾(ଵଵ଴) (𝑗/𝑚ଶ)  1.22 0.91-1.70 210,219 

Stacking fault energy (j/m2) 0.043 190 0.032-0.055 213,222 

Structural energy differences (𝛥𝐸) 
  𝐹𝐶𝐶 − 𝐻𝐶𝑃 (𝑒𝑉/𝑎𝑡𝑜𝑚)  0.009 190 0.003 213 𝐹𝐶𝐶 − 𝐵𝐶𝐶 (𝑒𝑉/𝑎𝑡𝑜𝑚)  0.06 190 0.04 213 

 

According to the calculated values in this section and previously reported results, the EAM 
potential, developed by Grochola et al. 190, shows a satisfactory agreement to the experimental 
observations and ab initio calculations, in terms of lattice properties, surface energies, stacking 
fault energy, as well as FCC-HCP and FCC-BCC lattice energy differences. This potential has been 
successfully applied in the literature to investigate the stability of various nanorods with differing 
ratios of surface facets, 223 surface driven crystallization of icosahedral clusters, the instability of 
FCC structured NPs during vapor growth, 224 size and temperature-dependent aggregation of Au 
NPs, plastic deformation of Au nanocrystals, 225 dislocation nucleation and stacking fault formation 
in Au nanowires, 226 mechanical properties and coarsening of nanoporous Au.  227 Moreover, 
throughout this thesis, the outcome of MD simulations is compared with the experimental 
observations based on 2D (S)TEM images and 3D reconstructions by electron tomography. Very 
good agreement between the simulations, and the experimental observations confirms that the MD 
simulations employing EAM for Au 190 and Pt atoms 192 can be used to model the atomistic 
processes.  
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 3D atomic structure of supported Au nanoparticles at 
high temperature* 

Au NPs deposited on CeO2 are extensively used as thermal catalysts since the morphology of the 
NPs is expected to be stable at elevated temperatures. Although it is well known that the activity 
of Au NPs depends on their size and surface structure, their 3D structure at the atomic scale has 
not been completely characterized as a function of temperature. In this chapter, to overcome the 
limitations of conventional electron tomography, atom counting applied to aberration-corrected 
STEM images is combined with MD structural relaxation. In this manner, an atomic resolution 3D 
investigation of supported Au NPs is performed. The results presented in this chapter enable 
characterizing the 3D equilibrium structure of single NPs as a function of temperature. Moreover, 
the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer 
jumping and crystalline transformations, is studied.   

                                                 
* This chapter is based on the following paper: 

Liu, P.†, Arslan Irmak, E.†, De Backer, A., De wael, A., Lobato, I., Béché, A., Van Aert, S., Bals, S. Three-dimensional 
atomic structure of supported Au nanoparticles at high temperature. Nanoscale (2021) doi: 10.1039/D0NR08664A. 
† Equal contribution to the published work. 

My contribution consisted of implementing post-processing of STEM images, STEM detector characterization, 
applying combined simulation and the statistics-based atom counting method, designing and performing molecular 
dynamics simulations, as well as their analysis and discussion. 
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3.1.  Introduction 

Understanding the catalytic activity of CeO2 supported Au NPs has been an intensive research topic 
for the last decades. Supported Au NPs smaller than 3–5 nm are highly effective catalysts in a wide 
range of catalytic reactions, e.g. CO oxidation and the water–gas shift reaction. 33,34,206,228,229 It is 
generally recognized that the activity of Au NPs depends on their size and surface structure. For 
example, it has been observed that the presence of highly under-coordinated atoms or stepped facets 
at the surface promotes the adsorption of CO molecules or O2 molecules. 33,230,231 However, the 
general shape and surface facets of supported NPs are also highly dependent on environmental 
conditions, such as pressure and temperature. 232–234 Quantitative investigations of the atomic 
configuration at the surface under relevant conditions are thus essential to reveal the active sites of 
the NPs.  

To study these effects, in situ TEM has been used extensively. For example, it was shown that 
CeO2 supported Au NPs yield a rounded morphology in an oxidative atmosphere, whereas they 
appear faceted in a reducing environment. 235 A reversible dynamics for Au NPs under reactive 
environments 116,117,235,236 was furthermore revealed, yielding crystalline transformations 117 and 
surface atom diffusion. 116 Phase transformations and morphological evolution of free-standing Au 
NPs have been extensively studied, 232 particularly at temperatures approaching the melting point 
of Au NPs. 116,235 However, most of these observations are based on 2D information only, which is 
not sufficient to connect the entire 3D structure of the catalysts to their properties.  

In this chapter, Au NPs deposited on CeO2 are investigated. Supported Au NPs are used as thermal 
catalysts since it is expected that their morphology is stable at elevated temperatures. 
Experimentally imaging changes of the 3D atomic structure of catalytic NPs at high temperatures, 
including facet distribution and surface dynamics, is technically challenging but essential for design 
and control over the catalyst structure and performance. Although high-resolution electron 
tomography has been used to investigate the atomic structure of NPs in 3D, the combination with 
in situ measurements is far from straightforward because of several technical and more fundamental 
reasons, as explained in Section 1.5. Since catalysts can be in active or nonequilibrium states, 
conventional tomography approaches cannot be applied to investigate the fast changes that 
supported catalyst NPs undergo when being exposed to a relevant environment. Therefore, in this 
chapter, a 3D characterization method is applied based on counting the number of atoms in an 
atomic column from ADF STEM images and MD simulations to investigate the 3D atomic 
structure of supported Au NPs. 81,110 This enables direct estimation of the 3D shapes of the NPs 
from the experimental observations.  

As it has been shown in Section 2.2, the number of atoms in an atomic column of a NP can be 
counted with single-atom sensitivity from ADF STEM images provided that they yield a 
sufficiently large SNR. 96,173 Therefore, Section 3.2 starts with ADF STEM image restoration and 
a registration performed to improve the SNR of the images. Also, in the same section, main steps 
of a combined simulation and statistics-based atom counting method are explained. In Section 3.3, 
the equilibrium morphology of CeO2 supported Au NPs at different temperatures is investigated in 
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a quantitative manner. In Section 3.4, the dynamic 3D structure evolution of the NPs at high 
temperatures is characterized, including surface layer jumping and crystalline transformations.  

3.2.  Methods 

 ADF STEM image acquisition 

Au NPs on a CeO2 support were prepared by a physical sputtering coating method. 116 Commercial 
CeO2 powder (Sigma-Aldrich) was dispersed in ethanol and drop-casted on a DENSsolutions 
Nano-chip with a SiN membrane. Next, the chip was mounted in a DENSsolutions Wildfire double 
tilt holder and inserted into a Thermo Fisher Scientific Themis Z microscope. After heating at 500 
°C in the vacuum of the microscope column for 1 h, Au NPs on CeO2 was obtained for further in 
situ STEM experiments at 300 kV. The supported Au NPs were studied at 21 °C, 300 °C, 400 °C, 
500 °C and in ultrahigh vacuum conditions. The image acquisition parameters of ADF STEM 
images are tabulated in Table 3.1. Sample preparation and the acquisition of ADF STEM 
experimental images were performed by Dr. Pei Liu. 

Table 3.1 Image acquisition parameters. 

Parameter Figure 3.1, 3.4-3.6 Figure 3.7 Figure 3.8 
Acceleration voltage (kV) 300 300 300 
3rd order spherical aberration (μm) 0.467 0.424 0.244 
5th order spherical aberration (μm) 19.8 -874 - 
Convergence semi-angle (mrad) 30.0 30.4 21.4 
Detector inner angle (mrad) 46.1 46.1 46.0 
Detector outer angle (mrad) 198.6 198.6 215.0 
Image size (pixels) 2048 x 2048 1024 x 1024 512 x 512 
Beam current (pA) 50 50 50 
Frame time (s) 2.52 0.629 2.00 

 

 ADF STEM image restoration and registration 

A combination of different distortions can be observed in experimental ADF STEM images, such 
as sample drift, scan distortion or scan noise. 81,82 These distortions depend on the instrument 
environment, scanning instabilities, scan-speed and electron dose. 81,82 Indeed, Altantzis et al. 81 
showed that the distortions are likely related to particle rotation and become dominant with 
increasing acquisition time. Moreover, during in situ heating experiments, increased atomic 
movement due to thermal excitation or sample rotation while scanning may hamper reliable 
quantification. 81,82,88,237 To overcome these limitations and to minimize the effect of particle 
rotation, multiple consecutive time frames were acquired with a low beam current of 50 pA. 
Recording multiple consecutive frames allows separating time-varying scanning distortions from 
sample information. 83 ADF STEM images of a supported Au NP at different temperatures are 
presented in Figure 3.1.  
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An in-house developed deep CNN was used to correct distortions. This approach is based on the 
use of a CNN that directly learns how to differentiate between distorted and undistorted ADF 
STEM images. By training the CNN, it implicitly learns to detect the presence of distortions and 
correct them, regardless of the level and combination of distortions present in the image. The CNN 
used in this thesis was trained using simulated ADF STEM images in the presence and absence of 
different types of distortions that can be expected for the experimental ADF STEM images. 
Training the CNN for the restoration of ADF STEM images was carried out by Dr. Ivan Lobato at 
EMAT and more details can be found in ref 81.  

 

Figure 3.1 Original ADF STEM images of a supported Au NP at (a) room temperature, (b) 300 °C, (c) 400 
°C, (d) 500 °C. Corrected and averaged images (based on ten consecutive frames) of the same Au NP at (e) 
room temperature, (f) 300 °C, (g) 400 °C, (h) 500 °C. Close-up images from the bottom part of the NP are 
given below each image. 

Sample drift or rotation can be observed as a shearing of the known crystallographic angles and 
becomes more pronounced with slower scans. To correct sample drift or rotation, each time series 
of corrected images was then used as an input for an in-house developed rigid and non-rigid 
registration procedures. 83 In rigid registration, all points in the restored consecutive ADF STEM 
images are shifted with respect to each other by a single vector. Rigid registration assumes that the 
drift rate remains constant. However, the reported studies demonstrated that sample drift can occur 
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at different rates. 83,238 In non-rigid image registration, different sub-regions of an image can 
therefore be shifted by different registration vectors. For non-rigid registration, the accelerated 
demons method 83,239–241 has been implemented by Dr. Ivan Lobato in an iterative manner where 
differences between images are used to infer the direction of local motion.  

Next, every series of individually corrected and registered ADF STEM images was averaged to 
increase SNR. Averaging of the restored and registered 2D images allowed clearly resolving 
projected atomic columns, especially at the surface region. The resulting corrected and averaged 
images of the supported Au NP at different temperatures are shown in the second row of Figure 
3.1. It should be noted that to investigate the non-equilibrium transformations of supported Au NPs 
presented in Section 3.4, no averaging of consecutive corrected and registered images was 
performed. 

 Normalization of ADF STEM images 

Image intensities in the simulated ADF STEM images are expressed in fractions of the incident 
electron dose. In order to compare the experimental observations with image simulations in a 
quantitative manner, the experimentally acquired ADF STEM images were normalized using the 
so-called “detector scan”. To obtain the detector scan, a sharp image of the probe was created on 
the detector plane in the absence of a specimen and the image of the probe is scanned over the 
detector under vacuum conditions. Figure 3.2a shows the acquired experimental detector scan. 
Here, it can be seen that the sensitivity of the detector is not homogeneous; instead, the intensities 
are proportional to the local sensitivity of the ADF STEM detector surface. 152,156,242 For example, 
the area right to the inner hole shows a more variable response as compared to the other regions. 

 
Figure 3.2 a) ADF STEM detector scan. b) Radial sensitivity curve. 

For normalizing the experimental images, the first step is to measure the image mean intensity in 
vacuum 𝐼௩௔௖, and the averaged detector intensity 𝐼ௗ௘௧ (Figure 3.2a). Both values were extracted 
from the detector scan by using a threshold value with Otsu’s method. 243 Otsu’s method is a 
multilevel image thresholding algorithm for the reduction of a gray level image to a binary image. 
These measured values were used to normalize the experimental ADF STEM images: 152,156,244 
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𝐼௡௢௥௠ = 𝐼௥௔௪ − 𝐼௩௔௖𝐼ௗ௘௧ − 𝐼௩௔௖  ,                                             (3.1) 

where 𝐼௥௔௪ and 𝐼௡௢௥௠ represent the intensity of an experimental image before and after 
normalization. 

 Multislice simulations to create library values 

In the combined simulation and statistics-based atom counting method, experimental observations 
were quantitatively validated by means of independent multislice simulations. For this purpose, a 
so-called library of simulated SCS was created by multislice simulations. In order to accurately 
simulate thermal diffuse scattering during the multislice simulations, the frozen phonon model with 
100 phonon configurations was used. The simulation parameters were chosen in accordance with 
the experimental imaging conditions, which are tabulated in Table 3.1. For the defocus value, the 
Scherzer condition was assumed. Moreover, the temperature effect was included in the simulations 
by defining the temperature-dependent RMSD values based on the parameterized DWF, as 
explained in Section 2.1.  

To perform reliable simulations, the non-uniform detector sensitivity was also taken into account. 
153,155,242 To do so, after normalizing the detector scan by using Equation 3.1, the scan was averaged 
azimuthally, resulting in a radial sensitivity curve as shown in Figure 3.2b. For multislice 
simulations by the MULTEM software, a 2D detector sensitivity map should be supplied. 
Therefore, a new 2D detector map was created by the interpolation of the 1D radial sensitivity 
curve. Afterward, the interpolated detector sensitivity was set to 0 for the regions corresponding to 
angles that are smaller than the detector inner angle or larger than the outer angle. The final detector 
map was then loaded into the MULTEM software. Although azimuthal averaging neglects the 
anisotropy of the experimental detector, it has been stated that it is a reasonable approach if the 
scattering distribution is approximately rotationally symmetric. Previous studies have shown that 
high angle scattering, which forms ADF STEM signals, well fulfill this approximation. 156,242 

For the simulations of the SCS library values as a function of thickness, one unit cell of a periodic 
Au FCC structure along a [110] zone axis was scanned, corresponding to the experimentally 
investigated Au NP shown in Figure 3.1. The library values were computed by measuring the total 
intensity corresponding to the simulated unit cell for each thickness and dividing the measured total 
intensity by the total number of Au atoms in one unit cell. The scanned unit cell of Au FCC structure 
from [110] zone axis is shown in Figure 3.3a. In Figure 3.3b, the computed library SCS values as 
a function of thickness are compared in the presence and absence of the detector sensitivity map 
and the temperature effect. The latter accounts for the increase in thermal diffuse scattering with 
temperature. It can be seen that, for example, when ignoring the nonhomogeneous detector 
sensitivity and temperature effect, a specified SCS would be matched with a thickness of 13 atoms, 
whereas it actually corresponds to around 15 atoms (see green dashed arrows in Figure 3.3b), 
limiting the error by around ~2 atoms per atomic column. Including the detector sensitivity and 
temperature effect is therefore of crucial importance in order to generate a correct library of 
simulated SCS values. Moreover, the individual effect of temperature and nonhomogeneous ADF 
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STEM detector surface on the simulated SCS library values are shown in Figure 3.3c and Figure 
3.3d, respectively.  

 

Figure 3.3 Multislice simulations to create library SCS values. a) Periodic Au FCC structure along a [110] 
zone axis. The scanned unit cell of the structure is shown by a yellow box. b) Simulated SCS library values 
including the detector nonuniformity and temperature effect into multislice simulations. Individual effect of 
temperature (c) and detector sensitivity map (d) on the library values. 

 Combined simulation and statistics-based atom counting 

The statistics-based counting procedure was first performed independently from the multislice 
simulations. 96,99 In this method, as introduced in Section 2.2, the intensities in the ADF STEM 
images were modeled as a superposition of 2D Gaussian functions. Then, the unknown parameters 
and the volumes under the Gaussian peaks, i.e. the SCSs, were estimated by fitting an incoherent 
parametric imaging model to the experimental images using the criterion of goodness of fit.  

As an example, the parametric model of the normalized and averaged STEM image of the Au NP 
at room temperature (Figure 3.1e) is presented in Figure 3.4a. Next, from the volume under the 
Gaussian peaks of the parametric model, the SCS of each atomic column was measured. In a 
subsequent analysis, the distribution of the SCSs of all atomic columns was decomposed into 
overlapping normal distributions using a Gaussian mixture model analysis. The histogram of the 
estimated SCSs, together with the estimated mixture model and its individual components, is shown 
in Figure 3.4b. In order to identify the correct number of components in the Gaussian mixture 
model, the ICL criterion was evaluated as a function of the number of components (Figure 3.4c). 
Since there is more than one local minimum in the ICL criterion, a validation step was required. 173 
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Therefore, the computed library SCSs values from multislice simulations using the MULTEM 
software were used to validate the statistics-based atom counting results. Figure 3.4d shows the 
experimental mean SCSs corresponding to the selected 19 component number in the ICL criterion 
(Figure 3.4c) together with the computed library values under the same experimental conditions. 
The excellent match of the experimental and simulated SCSs validates the choice for 19 
components. Here, the number of atoms associated with the first component corresponds to 2, and 
there are no atomic columns with 3, 4 and 5 atoms. The estimated number of Au atoms per column 
resulting from the combined simulation and statistics-based atom counting method is shown Figure 
3.4e.  

 

Figure 3.4 Summary of the combined simulation and statistics-based atom counting method. a) The 
parametric model of the normalized and averaged STEM image of the Au NP at room temperature presented 
in Figure 3.1e. b) Histogram of SCSs of the Au columns together with the estimated mixture model (black 
line) and its individual components. c) Evaluation of the ICL criterion. d) Comparison of the experimentally 
estimated mean SCSs with the simulated library SCSs. e) Number of Au atoms per column. 

3.3.  3D equilibrium structure of supported Au NPs as a function of 
temperature 

The averaged and normalized ADF STEM images of a supported Au NP at different temperatures 
are displayed in Figure 3.5a. It can be seen that the 2D projected shape of the NP remains almost 
the same up to 500 °C. Applying the combined simulation and statistics-based atom counting, it is 
found that the total number of detected atoms decreases from 3785 to 3676 (Figure 3.5b). 
Considering the total number of atomic columns indicated in Figure 3.5b, this means that on 
average less than one atom per column disappears, likely because of sputtering caused by the 
electron beam or due to the increased thermal vibrations, which may complicate the atom detection.  
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Figure 3.5 Structural characterization of a supported Au NP at different temperatures. a) Averaged and 
normalized ADF STEM images. b) Atom counting results. The total number of atoms and total number of 
atomic columns are labeled for each temperature. c-e) Side, top and bottom view of the relaxed structures. 
The atoms are presented in different colors according to the coordination numbers (CN). {111} facets: 
yellow atoms, {100} facets: green atoms, {110} facets: light blue atoms. f) Coordination number histogram 
of all atoms at different temperatures.  
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The atom counting results were then used to generate 3D starting configurations by positioning the 
atoms in each atomic column parallel to the beam direction based on the Au FCC crystal structure 
and a [110] specimen orientation. All atoms were placed symmetrically around the central plane. 
First, the energy of the 3D models was minimized using the conjugate gradient method. Then, to 
obtain the equilibrium structures of the Au NP at different temperatures, a full MD structural 
relaxation with the EAM 190 was performed for each experimental temperature in the canonical 
ensemble for 5 ns. Hereby, the substrate was assumed to have a constant thickness, and a model 
for CeO2 was generated based on the fluorite structure. 245,246 To incorporate the interaction 
between the particle and the substrate, the LJ potential was used. The simulations were carried out 
without periodic boundary conditions and with a time step of 0.5 fs. Also, the total linear and 
angular momenta were conserved to avoid drift or rotation throughout the simulations of the 
supported Au NPs. All the 3D structures were visualized by the OVITO open visualization tool. 247 

Figure 3.5c-e show the side, top, and bottom view of the relaxed 3D structures. In order to further 
quantify our results, the coordination numbers of the atoms at different temperatures were 
determined (Figure 3.5f). The coordination analysis was applied through OVITO Python open-
source scripts. 248 The cutoff radius is an important parameter to control the range of neighbors 
taken into account during the coordination analysis. Here, the first minimum of the pair distribution 
function was used as a cutoff radius, which was found 3.48 Å. 

In accordance with the literature, 212,249 the NP has a truncated octahedron shape at room 
temperature, which is enclosed by {100} and {111} surface facets, as indicated by the color codes 
in Figure 3.5e, although small variations can be observed in the coordination number of the atoms 
located at the {111} interface due to the lattice mismatch between the NP and substrate. As the 
temperature increases, the percentage of atoms with a coordination number equal to 12 gradually 
increases, whereas the percentage of atoms with coordination number 10 and 11 decreases since 
the shape of the NP becomes more symmetric and round. Hereby, atoms displace from the surface 
to the interior of the particle. Although there is little change for the coordination numbers as a 
function of temperature, it should be noted that the shape of the local surface facets changes, as can 
be seen by comparing the results for different temperatures in Figure 3.5c-e. Since the coordination 
numbers are important in terms of the activity of the NP during catalysis, our quantitative 3D results 
prove that this specific particle is indeed expected to be thermally stable up to at least 500 °C. 

It is known that the equilibrium shape of supported Au NPs depends on their size. Therefore, a 
comparison for NPs with different sizes was made in Figure 3.6, where the particle at the right is 
the same as the one in Figure 3.5. ADF STEM images of the NPs having a different number of 
atoms are shown in the first row. In addition to the size effect, the lattice mismatch between the Au 
NP (4.08 A°) and oxide substrate (5.41 A°) can also affect the shape of the supported NPs. 190,212,245 
Therefore, the positions of the atomic columns were fitted using statistical parameter estimation 
theory, and the projected atomic displacement maps of each NP were extracted according to the 
ideal positions of the Au atoms. The displacement maps are shown in the second row of Figure 3.6. 
Then, the same methodology as explained above was used to extract the shape and the coordination 
numbers as a function of temperature. The side and the bottom view of the relaxed 3D structures 
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are illustrated in the third and the fourth row, respectively. Finally, the coordination numbers are 
shown in the fifth row. 

 

Figure 3.6 3D structural characterization of the supported Au NPs with different sizes at 21 °C and 500 °C. 
a) Au NP having around 1000 atoms. b) Au NP having around 2400 atoms. c) Au NP having around 3700 
atoms. The atoms are presented in different colors according to the CNs (see Figure 3.5). 

According to Figure 3.6a, high strain can be observed at the interface between the particle and the 
oxide substrate at room temperature. At 500 °C, on the other hand, the projected displacement map 
shows that the strain at the interface of this particle is more relaxed. This is likely related to the 
observation that the interface area is also reduced from approximately 13.7 nm2 to 11.9 nm2, which 
was measured from the 3D models. Accordingly, the NP grows in height and becomes more 
rounded and the percentage of 12-coordinated atoms increases significantly. Moreover, the 
contribution of the edge atoms (7-coordinated atoms) increases, accompanied by a decrease in 
{100} and {111} facets corresponding to 8 and 9-coordinated atoms. A similar mechanism is 
observed for the larger particle shown in Figure 3.6b. To relax the strain at the interface at high 
temperature, the area of the interface between the NP and the substrate is decreased from 20.6 nm2 
to 19.4 nm2, which leads to a small rise in the percentage of atoms with a coordination number 
equal to 12. On the other hand, as the size of the Au NP increases (Figure 3.6c), the transformation 
of the morphology at higher temperature becomes less apparent, in accordance with literature. 212 
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As discussed above, although the contribution of the energetically more favorable {100} and {111} 
facets increases slightly, the interfacial area for the largest Au NP (Figure 3.6c) remains stable 
(around 23 nm2). Also, the morphology is maintained while increasing the temperature. 

3.4.  Non-equilibrium transformations of supported Au NPs at high 
temperature 

To investigate the non-equilibrium shape transformations for this type of supported Au NPs, a time 
series of images at 400 °C was acquired after an initial acquisition time of 0.14 seconds (Figure 
3.7a). At these temperatures, it has been shown previously that entire surface layers of atoms 
abruptly displace, a phenomenon which is referred to as “layer jumping”. 116 To reliably count the 
number of atoms from a time series of images, a hidden Markov model, which explicitly models 
the possibility of structural changes over time, was used. The hidden Markov model was performed 
by Dr. Annelies De wael and detailed information about this model can be found in ref 250. The 
atom counting results are displayed in Figure 3.7b. The total number of atoms was found to be 
close to 1125 for all frames, except for frame 3, for which the number of atoms was equal to 1103. 
This observation is related to the layer jump, which can be seen more clearly in Figure 3.7c, 
illustrating the counting difference between the consecutive frames. The blue colour code indicates 
a decreasing number of atoms, and the red colour code corresponds to an increase in the number 
of atoms. Figure 3.7 demonstrates that a layer on the (010) surface facet disappears on the third 
frame and reappears in frame 4. 

Based on the counting results, input structures for MD simulations were again created, and the 
results are illustrated in Figure 3.7d and Figure 3.7e. It is clear that the NP in Figure 3.7 has a 
similar morphology as the particle in Figure 3.5, with {100} and {111} surface facets. Based on 
the 3D models, it can be seen that an entire (010) plane disappears and reappears (pink atoms in 
Figure 3.7e). Moreover, from the MD simulations, the potential energy was extracted for each 
system. In the potential energy curve, shown in Figure 3.7e, it can be seen that the energy slightly 
increases after frame 2. This means that the particle becomes less stable around the event of the 
layer jump. Afterwards, the potential energy decreases and the particle becomes more stable again. 
It can be seen in Figure 3.7e that for the model corresponding to frame 4, the layer (in pink) is not 
in exact agreement with the original plane (frame 1 and 2) and deviates from a perfect (010) facet. 
In frame 5, however, the facet is recovered, and the potential energy decreases. Our 3D models 
indicate that the process of layer jumping cannot be simply considered as a reversible rigid 
displacement of an entire facet. Indeed, there is a significant change in the surface structure and 
sites (e.g. frame 3 and 4). 
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Figure 3.7 Reversible shape transformation of a supported Au NP. a) Time series ADF STEM images of a 
supported Au NP at 400 °C. b) Atom counting results of the Au NP at different time frames. The total 
number of atomic columns and the total number of atoms are listed for each time snapshot. c) The change 
in the number of atoms for all atomic columns between consecutive time frames. d) 3D relaxed structure of 
the Au NP at each time frame. The atoms are presented in different colors according to the CNs (see Figure 
3.5). e) Averaged total potential energy per atom and 3D relaxed structures for each time snapshot. 

Finally, in addition to changes in the surface structure, crystalline transformations that appear for 
the entire NP at 500 °C was also characterized. It has been reported that Au NPs in an oxygen 
atmosphere can transform between two crystalline orientations by electron irradiation or thermal 
heating since the potential energies of these two orientations are close.117 These orientations are 
referred to as Type I: (111)[−110]CeO2 // (111)[−110]Au and Type II: (111)[−110]CeO2 // 
(111)[1−10]Au. Figure 3.8 shows an example of a crystalline transformation of a NP which 
alternates between a Type I and Type II structure, albeit here under high vacuum conditions. The 
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number of atoms for each atomic column is presented in Figure 3.8b. Figure 3.8c displays the 3D 
models based on MD simulations, whereas in Figure 3.8d, the percentage of internal atoms that can 
be classified as FCC or HCP is presented, together with the contribution of the disordered atoms. 
For the structural classification, polyhedral template-matching approach was applied through 
OVITO Python open-source scripts. 251 Also the average potential energy per atom for the Au NP 
was extracted from MD simulations and is displayed in Figure 3.8d. 

 

Figure 3.8 Crystalline orientation transformation of a supported Au NP. a) Raw ADF STEM images of the 
supported Au NP at different time frames at 500 °C. b) Atom counting results of the Au NP at different time 
frames. The number of atomic columns and the total number of atoms are listed for each time snapshot. c) 
3D models of the supported Au NP. The atoms are presented in different colors according to the CNs (see 
Figure 3.5). d) Structural changes and the average potential energy change per atom with the reversible 
structural transformation. 

In frame 1 and frame 76, the NP yields a Type II structure, with an FCC internal structure according 
to the graph in Figure 3.8d. In between frame 1 and frame 76, a structural transformation takes 
place. First, a disordered structure (frame 16) is observed without any ordered facet on the surface 
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(Figure 3.8c). Then, a Type I structure is found to be dominant in frame 51, and a twin boundary 
appears within the NP, which is marked by a dashed white line in Figure 3.8a. As it can be seen in 
Figure 3.8d, this structural transformation is reflected as an increase in the average potential energy 
per atom and HCP internal structure. In frame 76, the NP has completely transformed back to Type 
II by having energetically stable {111} and {100} facets, and the potential energy drops again. 
Moreover, during this reversible transformation, it should be noted that there is always one layer 
at the interface between the Au NP and oxide support that remains Type II, which indicates the 
strong interaction between Au and CeO2. 

3.5.  Conclusion 

The surface dynamics of CeO2 supported Au NPs have been previously investigated by high-
resolution TEM. However, given that such images invariably correspond to 2D projections of 3D 
objects, the interpretation of the particle morphology might be challenging. Conventional electron 
tomography is not applicable to evaluate the surface structure due to the fast dynamics of the atom 
movement. The methodology that is presented here enables going beyond these limitations since it 
has been possible to directly describe dynamic changes in the 3D atomic structure in a quantitative 
manner, also at high temperatures. Moreover, it is clear from our experiments that events such as 
layer jumping or crystalline transformation between type I and II structure are accompanied by 
intermediate disordered structures with higher potential energies, which may have an influence on 
the catalytic activity of the particle.  

In conclusion, by combining atom counting based on aberration-corrected ADF STEM images and 
MD relaxation, an atomic-resolution 3D investigation of supported Au NPs was performed. In this 
manner, the 3D equilibrium structure of single NPs was investigated as a function of temperature. 
It has been observed that the overall shape appears to become more rounded at higher temperatures, 
especially for relatively small NPs, which might be related to the relaxation of interfacial strain. 
Moreover, an analysis of the surface dynamics was performed, including atomic layer jumping, 
which is most likely driven by surface atom diffusion. Finally, the crystalline transformation of a 
supported NP in 3D at high temperatures was characterized.  

In Chapter 4, the capabilities and limitations of this method are further discussed in detail, and then 
a new approach is presented to overcome the limitations of this approach. 
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 3D atomic structure of supported metallic nanoparticles: 
a combination of atom counting and a local minima search 
algorithm†  

As illustrated in the previous chapter, determining the 3D atomic structure of NPs is critical to 
understand their structure-dependent properties. It is hereby important to perform such analyses 
under conditions relevant for the envisioned application. Here, the 3D structures of supported Au 
NPs are investigated at high temperatures, which is of importance to understand their behavior 
during catalytic reactions. To overcome limitations related to conventional high-resolution electron 
tomography at high temperature, 3D characterization of NPs with the atomic resolution has been 
performed by applying atom counting using atomic resolution ADF STEM images followed by 
structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF 
STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a 
NP investigated at elevated temperature deviates from a ground state configuration, which is 
difficult to determine using purely computational energy minimization approaches. Therefore, in 
this chapter, an optimized approach is proposed by using an iterative local minima search algorithm 
followed by MD structural relaxation of candidate structures associated with each local minimum. 
In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which 
may deviate from their ground state configuration.  

                                                 
† This chapter is based on the following paper: 

Arslan Irmak, E., Liu, P., Bals, S., Van, S. 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 
2D ADF STEM Images: A Combination of Atom-Counting and a Local Minima Search Algorithm. Small Methods 
(2021) doi: 10.1002/smtd.202101150. 

My contribution consisted of applying the atom counting method, designing and performing molecular dynamics 
simulations, proposing, designing, and implementing the local minima search algorithm for 3D characterization of 
nanoparticles based on atom counting results, as well as their analysis and discussion. 
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4.1.  Introduction 

An accurate description of the morphology and the structure of metallic NPs is of great importance 
since these aspects determine many of their physical and chemical properties. Supported Au NPs 
smaller than 3-5 nm are highly reactive for a variety of important catalytic applications where the 
reacting molecules adsorb on the catalytically active surface.33,34 It has been shown that the binding 
energy of the reacting molecules decreases with the presence of stepped facets or decreasing 
coordination number of Au atoms at the surface. In addition, the metal-support interaction between 
the NP and the oxide support, often CeO2, plays a critical role. The Au-CeO2 interface may yield 
active sites leading to high catalytic activities during e.g., CO oxidation and water-gas shift 
reactions.252–254 However, the general shape and surface facets of supported NPs are also highly 
dependent on environmental conditions, such as pressure 116,235,236 or temperature 232–234. Therefore, 
it is essential to characterize the structure of the catalytic NPs at the atomic scale under relevant 
conditions and to hereby consider the role of the support. 

Among different experimental techniques, ADF STEM is a valuable technique to investigate 
materials at the atomic scale. ADF STEM images can be obtained with atomic resolution and the 
image intensity is sensitive to sample thickness and the atomic number of the elements that are 
present. 95,153,255,256 Nonetheless, these 2D images are usually inadequate to analyze the structure–
property relation of nanomaterials because they only provide a projected image of a 3D structure. 
Electron tomography is one of the most known and powerful methods to retrieve the 3D atomic 
structure of NPs.68,72,257 However, as explained in Chapter 1, it is not always straightforward to 
apply conventional electron tomography since the approach requires a tilt series of many images 
to be acquired over a tilt range that is as large as possible. Conventional electron tomography 
therefore becomes very challenging when one wants to investigate very small or electron beam-
sensitive NPs. Moreover, performing 3D in situ experiments or 3D characterization of dynamic 
processes is nearly impossible using conventional electron tomography since the NPs will change 
during the acquisition of the tilt series. Although the recently developed fast tomography approach 
shows great promise to accelerate the acquisition of tomographic tilt series from hours to minutes, 
the resolution is currently limited to the nanometer regime.121,258  

As an alternative method, 3D characterization of NPs with atomic resolution has been performed 
by combining atom counting on 2D ADF STEM images using statistical parameter estimation and 
structural relaxation.81,107,109,110 ADF STEM is a valuable technique to investigate materials at the 
atomic scale since they can be obtained with atomic resolution and the image intensity is sensitive 
to sample thickness and the atomic number of the elements that are present.95,153,255,256 Hereby, a 
high-resolution ADF STEM image is considered as a data plane to estimate the total number of 
atoms in each atomic column with the highest possible precision and accuracy.96,173 Next, the 
unknown positions of the atoms are determined based on the atom counting results by performing 
atomistic simulations, such as MC or MD simulations.81,109,110 Since the data acquisition is much 
faster in comparison to electron tomography, this approach enables one to study 3D dynamical 
changes of nanomaterials at the atomic scale during in situ experiments. 
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The present work is focused on the 3D characterization of Au NPs deposited on CeO2 at high 
temperatures, at which catalytic reactions are often performed.33,254 In order to reliably count the 
number of atoms for NPs at high temperatures, it is shown that thermal displacements of the atoms 
need to be taken into account since this may affect the ADF STEM intensities and hence the 
quantification, especially for small NPs. Moreover, it is expected that supported NPs at high 
temperature may significantly deviate from their ground state configuration. At high temperatures, 
kinks and steps at the surface of the NP, acting as active sites for catalytic reactions, may appear. 
Also, the particle-support interaction will influence the atomic configuration at the surface of a 
supported NP. Hence, it is very likely that the structures of interest in this study can have a 
metastable state located in one of the local minima in the energy landscape, containing a huge 
number of local minima, each corresponding to a different atomic arrangement.259 Purely 
computational energy minimization approaches, such as MC or MD simulations, may easily result 
in a closest local minimum where the reconstructed structure may deviate from the experimental 
observation. To overcome the aforementioned limitations and obtain a reliable 3D model of 
supported NPs at high temperatures, the energy landscape should be exhaustively explored to find 
the local minimum corresponding to the experimentally observed structure. 260–264 Therefore, an 
iterative local minima search algorithm is proposed, which is followed by MD structural relaxation 
at the experimental temperature and by including the particle-support interaction. 

In the following part, the methodology for atom counting and 3D reconstruction is explained. 
Moreover, simulations of small Au NPs at high temperatures are performed to evaluate the 
accuracy of the atom counting and validate the proposed 3D reconstruction methodology. 

4.2.  Experimental details 

Au NPs on CeO2 were prepared by a physical sputtering coating method. ADF STEM projection 
images of the samples were acquired using a Thermo Fisher Scientific Themis Z microscope. The 
electron microscope was operated at 300 kV with a 30.4 mrad probe convergence semi-angle and 
a beam current of 50 pA. The inner and outer detector collection angles of the ADF detector were 
equal to 46.1 mrad and 198.6 mrad, respectively. For the acquisition of the high-resolution 
projection images of the supported Au NP, a DENSsolutions in situ heating holder (Wildfire) was 
used. During the experiment, images of 1024×1024 pixels in size with a frame time of 0.629 s were 
recorded at 400 °C under vacuum conditions. Figure 4.1.a shows an experimental ADF STEM 
image of a supported Au NP along a [110] zone axis. It can be seen that the epitaxial relationship 
between the support and the NP is Au{111}//CeO2{111}, which is extensively observed for ceria-
supported Au NPs. 117,235 Experimental analysis, including sample preparation and the acquisition 
of ADF STEM experimental images, was performed by Dr. Pei Liu. 

In order to compare the experimental data with multislice simulations in a quantitative manner, the 
acquired ADF STEM images were first normalized using a so-called detector scan, as explained in 
Subsection 3.2.3. 
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Figure 4.1 a) Experimental ADF STEM image of a supported Au NP. b) Measured interface distance 
between the Au NP and support. 

4.3.  Details of MD simulations and particle-support interaction 

In order to evaluate the ability to reliably count the number of atoms in NPs from experimental 
ADF STEM images acquired at high temperatures, atom counting was first tested using accurate 
ADF STEM image simulations in which all factors affecting the image intensities were accounted 
for. As a test structure, a truncated octahedral Au NP (1215 atoms) was created with a size 
comparable to the experimentally imaged NP in Figure 4.1a. Moreover, to include the NP-support 
interaction, a CeO2 substrate was created according to the fluorite structure and the experimentally 
observed epitaxial relationship between the support and the NP. This structure was relaxed by MD 
simulations at different temperatures (21°C, 400°C and 800°C) for 10 ns with NVT ensemble. 
During structural relaxations, non-periodic boundary conditions were applied in all three directions 
with a large vacuum area. The equations of motion were integrated using the velocity Verlet 
algorithm with a time step of 0.5 fs. Also, the total linear and angular momenta were conserved so 
that the supported Au NPs do not drift or rotate throughout our simulation. To define the interaction 
between Au-Au atoms during the structural relaxation, the EAM 190 was used. For the interaction 
between the CeO2 support and the Au NP, the LJ potential was used. Since the interaction between 
the Au NP and oxide support is sensitive to several parameters, such as the size of the NP, the 
orientation of the NP on the support, the epitaxial relationship between the NP and the support, 
steps or defects on the oxide surface as well as the experimental environment, 212,265,266 it is 
important to define the particle-support interaction directly based on the experimental observation. 
Therefore, the average interface spacing between the NP and the CeO2 support observed from the 
experimental observation (Figure 4.1b), was taken as a reference to define the LJ parameters used 
in MD simulations.To measure the interface distance, the atomic column positions of the Au NP 
and CeO2 support were obtained after fitting the ADF STEM images by statistical parameter 
estimation theory. 96  

Figure 4.1b shows that the interface spacing between the Au{111} and CeO2{111} surface is 
approximately 2.86 Å and the spacing remains the same for the consecutive time frames under 
vacuum conditions. Therefore, this observation was taken as a reference while adjusting the LJ 
parameters. For this purpose, MD simulations were performed with the combination of five 
different LJ parameters that define the interaction between Au-Ce and Au-O (εCe-Au , εO-Au, σCe-Au, 
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σO-Au, cut-off). After each iteration, the distance between the Au atoms, located at the bottom of 
the particle and the surface of the support is measured. Then, the LJ parameters were selected for 
which the distance between the NP and support showed good agreement with the experimental 
observation. Figure 4.2 shows the change in the NP-support distance during a MD simulation where 
the following LJ parameters were used: εCe-Au = 0.3, εO-Au = 0.1, σCe-Au = 3.0, σO-Au = 2.0, cut-off = 
5.5 Å. It can be seen that the mean distance between the particle and support is approximately 2.87 
Å and this distance remains almost constant for the consecutive MD simulation steps. This result 
is very close to the experimental observation, 2.86 Å. Moreover, it is important to note that although 
the LJ parameters defined here are system-specific, these parameters can be adjusted based on the 
experimental observations of the different systems i.e. for different NP orientation, or different 
particle-support epitaxial relationship. 

 

Figure 4.2 a) Input structure of a Au NP on a CeO2 support. b) Measured interface distance between the Au 
NP and support at different steps during MD simulations at constant temperature. c) Au NP on CeO2 support 
after the successive MD steps performed by using the following LJ parameters: εCe-Au = 0.3, εO-Au = 0.1, σCe-

Au = 3.0, σO-Au=2.0, cut-off = 5.5 Å. 

4.4.  Atom counting for NPs at high temperatures 

 Accuracy of the atom counting approach evaluated on simulated images 

The atomic positions of the relaxed structures at different temperatures (Figure 4.3a) were used as 
an input for ADF STEM image simulations. Multislice calculations within the frozen phonon 
framework were used to accurately simulate thermal diffuse scattering in ADF STEM images. 
Hereby, the simulation parameters were chosen in accordance with the experimental imaging 
conditions. Moreover, a temperature-dependent DWF 150 and experimentally determined detector 
characteristics were included. 156 Next, the simulated image was convoluted with a 2D Gaussian to 
mimic the source size effect and Poisson noise was included corresponding to the experimental 
electron dose (5843 e-/Å2). The simulated ADF STEM images of the Au NP imaged along the 
[110] zone axis at 21°C, 400°C and 800 °C are presented in Figure 4.3b. Hereby, it can be seen 
that as the temperature increases, larger thermal displacements of Au atoms destroy the coherence 
along the beam direction so that a reduction in the intensities was observed at high temperatures. 
140 

 



Chapter 4. 3D atomic structure of supported metallic nanoparticles: a combination of atom counting 
and a local minima search algorithm 

70 

 
Figure 4.3 Temperature effect on atom counting performed at 21 °C, 400 °C, 800°C. a) Relaxed 3D models 
of the Au NP on a CeO2 support at the given temperature. Au atoms are presented in different colors 
according to their coordination numbers. b) Simulated ADF STEM images of the relaxed structures shown 
in (a). c) Histogram of estimated SCSs together with Gaussian components. d) Number of atoms in each 
atomic column. e) Difference in the total number of atoms in each projected atomic column between the 
reference model and the estimated number of atoms using the atom counting method. 
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To determine the number of atoms in each atomic column from the simulated images, the SCS 
corresponding to each atomic column was extracted from the ADF STEM images using statistical 
parameter estimation theory as explained in Section 2.2. 97,168,173 Using this approach, the images 
were first modeled by a superposition of Gaussian peaks located at the atomic column positions. 
Based on the estimated height and width, the volume under the modeled Gaussian peak, i.e., the 
SCS was determined for each projected atomic column (Figure 4.3c). Next, the distribution of SCSs 
from all the atomic columns was decomposed into overlapping normal distributions using the 
Gaussian mixture model analysis, 174 enabling one to determine the locations and the width of each 
Gaussian component (Figure 4.3c). The number of Gaussian components, corresponding to the 
number of atoms found in the thickest atomic column of the NPs, was here selected based on the 
known size and shape of the original structures (Figure 4.3a). To determine the number of atoms 
in each atomic column of the simulated images, each estimated SCS was assigned to the Gaussian 
component with the largest probability (Figure 4.3d).  

The precision of the atom counts is limited by overlap of the Gaussian components as shown in in 
Section 2.2. 168,173 The overlap can be quantified in terms of the relative width of the Gaussian 
components (σ/δ) where σ is the width of the normal component and δ is the distance between the 
location of two neighboring components. This overlap is set by different factors including 
experimental detection noise, different vertical onset of columns of the same height, relaxation at 
the boundaries, but also by the increased thermal vibration of Au atoms at high temperature. From 
Figure 4.3c, it can be seen that the overlap (σ/δ) increases with increasing temperature. This affects 
the precision of the atom counting method (Figure 4.3d). For example, it can be seen that the total 
number of atoms estimated from atom counting method for the NP at 21 °C is identical to the total 
number of atoms in the original input structure, 1215 atoms. For the ADF STEM image of the 
relaxed Au NP at 400 °C, the difference between the ground truth used as an input for the simulation 
and the estimated number of atoms for each atomic column is ±2 at maximum (Figure 4.3e) but far 
less on average. This demonstrates the high accuracy and precision of the atom counting 
methodology for NPs imaged at 21 °C and 400 °C temperature. However, at 800 °C, the increased 
overlap (Figure 4.3c) causes a larger discrepancy between the estimated number of atoms per 
column in the simulated image and the original input (Figure 4.3e). 

 Counting the number of atoms from experimental images 

In Subsection 4.4.1, a priori knowledge concerning the shape and size of the 3D original structures 
could be used to determine the number of components of the Gaussian mixture model. On the other 
hand, the number of components from experimental images is typically determined using the ICL 
criterion. 96,174,267 However, a correct interpretation of the ICL is affected by the overlap (σ/δ) 
between the normal components and the number of columns having a specific thickness. 96 Previous 
studies have shown that the number of atomic columns present in the experimental images should 
be sufficiently large to allow for a correct interpretation of the ICL and hence for reliable atom 
counting. 96,98,267 If the relative width of the components (σ/δ) is of the order of 0.33, as expected 
from the simulation of the Au NP at 400 °C (see Figure 4.3c), the required average number of 
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atomic columns per component (N/G) should be around 90 in order to correctly count 95 % of all 
atomic columns, whereas it is only equal to around 11 for the small NPs investigated in this study. 
To overcome this problem, a time series consisting of ten frames of the same particle of interest is 
collected (Figure 4.4a). By collectively analyzing all SCSs resulting from these experimental time 
frames, the average number of atomic columns per component (N/G) will increase to around 100, 
enabling a reliable interpretation of the ICL. 

 

Figure 4.4 The ADF STEM quantification of the experimentally imaged supported Au NP at 400 °C. a) 
Ten consecutive time frames. b) Histogram of the set of SCSs of the Au columns collectively obtained from 
the time frames and normal components of the estimated Gaussian mixture model. c) Evaluation of the ICL 
criterion. d) Comparison of the experimentally estimated mean SCSs with the simulated library SCSs. e) 
Estimated total number of atoms with respect to the frame number. f) Atom counting maps for all time 
frames.  

The estimated SCS values of the Au atomic columns obtained from ten consecutive frames are 
visualized in the histogram of Figure 4.4b and the evaluation of the ICL criterion as a function of 
the number of components of the Gaussian mixture model is shown in Figure 4.4c. The true number 
of components often corresponds to a local minimum, but the presence of more than one minimum 
complicates the analysis. Therefore, to confirm the choice of twelve components (highlighted in 
red in Figure 4.4c), the experimental mean SCSs (corresponding to the component locations in 
Figure 4.4b) were compared with SCSs resulting from independent multislice simulations. 133,267 
To obtain these so-called simulated library values for increasing number of Au atoms, it is 
important to use the actual microscope settings, to include the contribution of thermal diffuse 
scattering through the frozen phonon approximation, to model the non-uniform experimentally 
determined detector sensitivity, and to incorporate the temperature effect by the DWF. The details 
regarding the multislice simulations and the effect of the detector sensitivity and temperature on 
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the simulated library values are given in Section 2.1 and Section 3.2. As shown in Figure 4.4d, a 
nearly perfect match is observed between the simulated and experimentally estimated SCSs 
validating the choice for twelve components where the number of atoms associated with the first 
component corresponds to three. 

The total number of atoms in the NP and estimated number of atoms for each atomic column for 
the individual frames are shown in Figure 4.4e and Figure 4.4f, respectively. It can be seen that the 
estimated total number of atoms in the Au NP for the ten time frames remains almost constant over 
time. The remaining fluctuations result from the inherent experimental uncertainties and the 
statistical nature of the methodology. Therefore, it can be concluded that also at high temperatures 
and with a limited number of atomic columns, it is possible to accurately count the number of atoms 
for each atomic column provided that the analysis is based on a times series of images rather than 
on a single image and that the temperature effect is taken into account in the simulated SCSs. 

4.5.  3D reconstruction based on atom counting results 

 Validation of the method on the simulated image 

Based on the estimated number of atoms for each atomic column, our final goal is to reconstruct 
the 3D atomic structure. The proposed method was validated on the simulated NP relaxed at 400 
°C at which experiments were performed. The atom counts from the simulated ADF STEM image 
of the NP relaxed at 400 °C, shown in Figure 4.3d, were used to create a starting 3D model for the 
Au NP by placing the atoms symmetrically around the central plane using prior knowledge about 
the [110] specimen orientation and the FCC crystal structure. The distance between neighboring 
Au atoms, parallel to the beam direction, has been fixed according to the lattice parameter. This 
provided a reliable starting input model (Figure 4.5a) for the next steps in our study since Au NPs 
on an oxide support are fairly close to being symmetrically distributed according to the 
thermodynamics perspective. 212 

Next, an iterative local minima search algorithm was applied to reconstruct the final 3D structure 
from the starting input model. The role of this step is to provide a broad sampling of the energy 
landscape to avoid being stuck in the closest local minimum. During each iteration of this 
algorithm, a random atomic column was selected and shifted upwards or downwards in the range 
[-a, 0, a], where a is the lattice parameter of the FCC Au structure. Based on the resulting change 
in the energy of the system, 𝛥𝐸, the Boltzmann probability factor (𝑃) was computed: 259,268,269 𝑃 = exp (∆𝐸/𝑘஻𝑇)                                                    (4.1) 

with 𝑘஻ the Boltzmann’s constant and 𝑇 the temperature which was chosen as 673 K. If the value 
of 𝑃 corresponding to the candidate structure with the displaced atoms was equal to or larger than 
a specified threshold, the candidate structure was accepted and used as a starting point for the next 
iteration. Otherwise, the previous configuration was used for the next step. This process continued 
until the morphology of the candidate structure deviates from a convex shape due to the displaced 
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atomic columns. A threshold value of 0.9 was chosen to efficiently explore neighboring 
configurations within the energy range close to the created input model. Although a high threshold 
imposes a narrow energy range, this threshold value works efficiently when the algorithm already 
starts with a reliable input model. Moreover, it brings computational advantages since this narrow 
energy range enables for a neighborhood search through a relatively small number of local minima, 
rather than a global search with a huge number of local minima. 262 This process took around six 
hours with two CPU cores. However, the computational time can be further decreased by using 
larger number of CPU cores or GPU. The obtained neighborhood energy landscape resulting from 
the iterative local minima search algorithm is illustrated as a gray line in Figure 4.5b. Here, points 
having the lowest value in regions where at least ten previous points showed a continuously 
decreasing trend were selected as local minima and are indicated by black dots. 

 

Figure 4.5 Main steps of the iterative local minima search algorithm demonstrated for the simulated Au NP. 
a) Starting 3D model created based on the atom counting results shown in Figure 4.3d. b) Neighborhood 
energy landscape obtained by the iterative local minima search algorithm. c) The components of the defined 
fitness function. d) Reconstructed final Au NP on the support. Au atoms are presented in different colors 
according to their coordination numbers. e) Difference in number of atoms in each projected atomic column 
between the original input and reconstructed model. f) Comparison of the surface structure of the 
reconstructed NP and the original NP. The histogram is obtained from the coordination numbers of the 
atoms. 

Afterward, each candidate structure associated with a local minimum (black dots in Figure 4.5b) 
was relaxed by MD simulations in a canonical ensemble at 400 °C for 5 ns with Nose-Hoover 
thermostat to locate the low energy structures from the explored local minima. Structural relaxation 
of each candidate structure took around eighty minutes with six CPU cores. Standard energy 
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minimization algorithms, i.e. a conjugate gradient method, are typically performed without 
temperature parameter, at 0K, where the surface energy anisotropy is maximal. However, at high 
temperatures, the surface energy anisotropy decreases, and rounded parts in the equilibrium shape 
or some kinks and steps at the surface which act as sources of atoms or growth sites for diffusing 
adatoms may appear. 212 Therefore, rather than applying a standard energy minimization, 270 MD 
structural relaxation was applied at a specified temperature, enabling one to investigate atomic 
structures that may be observed at high temperatures.  

During the iterative local minima search algorithm and MD simulations, the EAM potential was 
used to define the interaction between the Au atoms. Moreover, the presence of the support has a 
strong influence on the stability of the catalytic NP and certainly affects its morphology and 
structure, especially under the heating environment. Therefore, the interaction between the 
CeO2{111} support and the particle, which is often neglected in many of the previous studies, 
81,107,109,110 was taken into account using a LJ interaction as explained in Section 4.3. 

Afterwards, to select the most plausible 3D structure corresponding to the explored local minima, 
a fitness function (𝑓) has been defined: 𝑓 =  𝐸𝑎𝑡𝑜𝑚 + 𝛼𝜒                                                       (4.2) 

 

𝜒 =  ∑ ඥ(𝐺௖௔௡ௗ௜ௗ௔௧௘(𝑛) − 𝐺௥௘௙(𝑛))ଶே௡ୀଵ 𝑁+ ∑ ඥ(𝑥௖௔௡ௗ௜ௗ௔௧௘(𝑛) − 𝑥௥௘௙(𝑛))ଶ + (𝑦௖௔௡ௗ௜ௗ௔௧௘(𝑛) − 𝑦(𝑛))ଶே௡ୀଵ 𝑁  
. (4.3) 

Equation 4.2 includes the average potential energy per atom (𝐸/𝑎𝑡𝑜𝑚) and a quantitative measure 
of the goodness of fit of each candidate structure located in a local minimum with the reference 
observation (𝜒). A weighting parameter 𝛼 was chosen empirically to make variations in the 𝐸/𝑎𝑡𝑜𝑚 term and the 𝜒 term of the same order of magnitude. The choice of the fitness function is 
based on the work of Yu et al., 271 where instead of image matching, the atom counts and projected 
atomic column displacements were used to define the discrepancy between the relaxed 3D structure 
and the observation (Equation 4.3). The first term of Equation 4.3 determines the average difference 
between the number of atoms located in each projected atomic column of a candidate model and 
the estimated atom counts resulting from an ADF STEM image. Here, 𝑁 and 𝐺 represent the 
number of projected atomic columns and the corresponding number of atoms in an atomic column, 
respectively. The second term in Equation 4.3 measures the average shift in the projected atomic 
column positions of each candidate structure compared to the atomic column positions observed in 
the ADF STEM image. The projected atomic column positions of the candidate structures were 
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estimated by averaging the xy-coordinates of atoms located in the same column along the z-
direction. 

The evolution of the fitness function for each candidate structure and the three contributing terms 
are shown in Figure 4.5c. The minimum value in the fitness graph (indicated with a red circle in 
Figure 4.5c) provides the final 3D structure that has the best agreement with the reference ADF 
STEM image (in terms of number of atoms for each atomic column and projected atomic column 
position) among all relaxed candidate structures associated with different local minima. The 
retrieved structure (Figure 4.5d) is mainly composed of {100} (green atoms) and {111} (yellow 
atoms) facets which are separated by edges (light blue atoms) and corners (dark blue atoms). Since 
the exact 3D model (Figure 4.3a) of the reference ADF STEM image is available, a one-to-one 
comparison has been made to quantitatively verify the proposed methodology. For this purpose, 
the difference in the number of atoms in each projected atomic column between the reconstructed 
NP and original input model used for MULTEM simulations was determined (Figure 4.5e). It can 
be seen that the total number of atoms in each atomic column differs maximum ±2 atoms but far 
less on average. This discrepancy results from the limited precision of the statistics-based atom 
counting method and the atom movement between the atomic columns during MD structural 
relaxations. Furthermore, a surface structure analysis was performed by determining the 
coordination number of all surface atoms. The comparison between the surface structures of the 
reconstructed NP and the original 3D model has been shown in Figure 4.5f. According to the 
results, it can be concluded that the surface structure of the reconstructed Au NP has been identified 
with an accuracy of more than 95 % where the maximum difference of 2.22 % was observed in the 
percentage of {111} facets as indicated in Figure 4.5f. 

 Experimental results 

Once validated, the iterative local minima search algorithm was applied to reconstruct the 3D 
structure of the experimentally investigated NP (Figure 4.4). The reconstructed 3D atomic 
structures of the supported NP from ten consecutive time frames and their surface structures are 
illustrated in Figure 4.6. According to the percentage of the average coordination number from 
each reconstructed NP and the standard deviation from the mean value, indicated in Figure 4.6b, 
the surface structure of the NP was reconstructed with high precision. The standard deviation is 
mainly due to atom diffusion under the electron beam, limited precision of the atom counting 
method and the optimization algorithm. Around 3.5 % of the atoms are located at the corners, 7.7 
% of the atoms are on edges or surface steps, 5.0 % and 25.8 % of the atoms are located on {100} 
and {111} surface facets, respectively. 
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Figure 4.6 3D characterization of the experimentally observed Au NP on CeO2 retrieved from 10 
consecutive time frames. a) 3D structures where atoms are presented in different colors according to their 
coordination numbers. b) Surface structure of the reconstructed NPs. The histogram is obtained from the 
coordination number of the atoms. 

4.6.  Comparison to other approaches 

The performance of the proposed methodology was tested by comparing it to the outcome 
determined using previously applied approaches in the literature where 3D atom counting results 
were combined with a MC approach or MD simulations. For this purpose, energy minimization by 
a MC approach and full structural relaxation by MD simulations were performed on the same 
starting 3D model shown in Figure 4.5a. Then, the outcome of each method was compared with 
the original 3D structure (Figure 4.3a at 400 °C and Figure 4.7a).  

When using the MC approach, movement of atoms between the atomic columns was not allowed 
and only the z-positions of the atomic columns moved up and downwards for each iteration while 
keeping the number of atoms in each atomic column fixed. The new configuration is accepted only 
if the potential energy decreases. This process was repeated until the potential energy of the system 
remains unchanged. The final 3D model obtained from this methodology is shown in Figure 4.7b. 
Since the atoms were not permitted to move between the atomic columns during the MC approach, 
the final structure was likely affected by the limited precision of atom counting. 110 The counting 
imprecision, with an error of ±2 as explained in Section 4.4, and the restriction in the atomic 
movement between columns resulted in more roughness at the surface of the 3D reconstructed NP 
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compared to the original model in Figure 4.7a. In the second approach, full structural relaxation at 
400 °C was performed by MD simulations for 5 ns where the NP-support interaction is ignored. 
According to the 3D model shown in Figure 4.7c, MD simulations ended up with relatively large 
structural deviations from the original model due to the large atomic movement between the 
columns during the structural relaxation at high temperature. However, when using the method 
proposed in this work (Figure 4.7d), there is visually a very good agreement with the original 
structure. 

 

Figure 4.7 Comparison of different approaches. a) Original structure. b-d) The final structures obtained 
from MC approach, MD simulations, and local minima search algorithm. e) Projected atomic column 
displacement compared to the target structure. f) Comparison of the surface structure of the reconstructed 
NPs and the original NP. The histogram is obtained from the coordination number of the atoms. 

Moreover, a quantitative comparison has been performed between the different approaches. Figure 
4.7e shows the difference in the projected atomic column positions of each reconstructed NP with 
respect to the atomic column positions of the original structure. Here, larger atomic column 
displacements indicate a large deviation of the projected structure from the observed structure in 
the reference ADF STEM image. Since atomic movement was not allowed during energy 
minimization by the MC approach, no atomic column displacements were observed (black color in 
Figure 4.7e) so that the reconstructed particle had the same projected shape as observed in the ADF 
STEM image. However, more roughness was observed at the surface due to the restriction in the 
atomic movement between the columns. This is clear from Figure 4.7f where the surface structure 
is determined from a coordination number analysis. Indeed, a larger percentage in the low-
coordinated corner atoms is observed for the particle reconstructed using the MC approach. As it 
has already been observed in Figure 4.7c, the discrepancy between the NP shape retrieved from 
MD structural relaxations and the original structure can also be seen from the large atomic column 
displacements (yellow color in Figure 4.7e). However, the proposed local minima search algorithm 
(Figure 4.7d) successfully reproduced the target structure both in terms of the projected atomic 
column positions and the atomic configuration at the surface.  
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To evaluate the overall accuracy of each approach, the fraction of atoms in the final 3D structures 
that have the same coordination number as in the original structure was calculated. It was found 
that iterative local minima search algorithm, which is followed by MD structural relaxation at the 
experimental temperature by including the particle-support interaction, correctly identified the 
coordination number of 94.50 % atoms in the 3D structure. However, this value remained below 
90 % for the MC approach (84.29 %) and MD structural relaxation (87.42 %).  

 

Figure 4.8 a) A metastable Au NP on a CeO2 support at 400 °C obtained from melting and rapid quenching 
of the structure shown in Figure 4.3a. b) Simulated ADF STEM image. c) Number of atoms in each atomic 
column. d) Neighborhood energy landscape. e) Fitness function components.  

The original test structure (Figure 4.3a), a truncated octahedron, is a thermodynamically stable 
structure for Au NPs with clear surface facets. On the other hand, it is known that metastable 
structures have rough surfaces containing some defects. Therefore, our approach was also tested 
on a metastable structure. A metastable structure was created by melting the Au NP, shown in 
Figure 4.3a, at 1300K for 20 ns and rapid quenching to 673 K at which the structure was relaxed 
for 10 ns with NVT ensemble. The obtained structure is displayed in Figure 4.8a and its 
corresponding ADF STEM image is shown in Figure 4.8b. The same imaging parameters as in 
Figure 4.3b were used for the ADF STEM simulations. The number of atoms in each atomic 
column in the simulated ADF STEM image (Figure 4.3b) was estimated by the atom counting 
method explained in Subsection 4.4.1. The resultant atom counting map is displayed in Figure 4.8c 
and the detected total number of atoms was found as 1200. Considering the total number of atoms 
in the original structure in Figure 4.8a (1215 atoms), the discrepancy in the estimated number of 
atoms, which corresponds to less than one atom per column on average, most likely comes from 
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the large displacement of Au atoms in the metastable structure. By using the atom counts, a starting 
model was created as it is explained in Subsection 4.5.1 and the iterative local minima search 
algorithm was applied (Figure 4.8d and Figure 4.8e.) taking both the effect of temperature and 
particle-support interaction into account.  

 
Figure 4.9 Comparison of different approaches on the same metastable Au NP at 400 °C. a-c) The final 
structures obtained from the proposed local minima search algorithm, MC approach and MD simulations. 
d) Coordination number histogram of all atoms in the final structures. 

The reconstructed 3D model obtained from the local minima search algorithm is displayed in 
Figure 4.9a. Moreover, to compare the outcome of this approach, again, energy minimization by 
MC and structural relaxation by MD at 400 °C were applied to the same starting model created 
based on the atom counting map (Figure 4.8c). The final structures obtained from MC approach 
and MD simulations are displayed in Figure 4.9b and Figure 4.9c, respectively. Similar to the 
observations in Figure 4.7, the restriction of atomic movement between the projected atomic 
columns caused more roughness at the surface of the 3D reconstruction (Figure 4.9b) and large 
atomic movement during MD structural relaxation resulted in a rounder shape (Figure 4.9c) 
compared to the original structure (Figure 4.8a). These observations were also reflected in the 
coordination number histogram of atoms in the final structures (Figure 4.9d). While a higher 
fraction in the low-coordinated atoms was observed in the particle reconstructed using the MC 
approach, a larger percentage of atoms with coordination number 12 was found in the NP retrieved 
from MD relaxation due to having a rounded shape. On the other hand, according to Figure 4.9a 
and Figure 4.9d, the proposed approach in this chapter successfully reconstructed the imaged NP 
and correctly identified the coordination number of 92.41% atoms in the structure.  

It should be noted that our approach shows similarities with the basin-hopping algorithm. 259,260,272 
However, due to the system-specific needs, it was necessary to adapt the algorithm for our system. 
In the basin-hopping algorithm, a standard energy minimization approach is performed at each step 
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without temperature parameter, at 0K. Since the structure of NPs depends on temperature, MD 
structural relaxation was preferred to apply at a specified temperature rather than an energy 
minimization approach. Since performing structural relaxations at each step by including the 
particle-support interaction and the effect of temperature is computationally expensive, a 
computationally more efficient model was employed without sacrificing accuracy. For this 
purpose, first the neighborhood energy landscape was obtained. Afterward, to use computer 
resources efficiently, the local maxima and unstable points of the energy landscape were eliminated 
and MD simulations were applied only for the structures located in regions of interest of the energy 
landscape where at least ten previous points showed a continuously decreasing trend. 

Overall, with the combination of atom counting and an iterative local minima search algorithm, 
where both the temperature effect and particle-support interaction were taken into account, the 3D 
structure of the simulated and experimentally imaged supported NPs were successfully 
reconstructed with high accuracy and precision. Since the proposed method does not only rely on 
energy minimization, it outperforms the previously applied approaches, where 3D atom counting 
results were combined with a MC approach or MD simulations. 81,109,110 Figure 4.7 and Figure 4.9 
show that the MC approach may lead to wrong interpretations for the surface-catalytic property 
relation, while the full MD structural relaxation can easily end up with a different structure from 
the originally imaged NP. However, the proposed approach in this study enables us to overcome 
those limitations. Due to its ability to search the local energy landscape and to find the local 
minimum that corresponds to the imaged NP, the original target structures observed from ADF 
STEM images can be successfully estimated both in terms of atomic column positions and atomic 
configuration at the surface. Therefore, the proposed methodology provides a powerful approach 
to retrieve the 3D atomic scale information of both stable and metastable structures under a catalytic 
environment, i.e., at high temperature. 

4.7.  Conclusion 

In conclusion, it has been demonstrated that a local minima search algorithm based on atom counts 
resulting from ADF STEM images can be used to successfully reconstruct the 3D atomic structure 
of supported Au NPs even at high temperatures. This approach is initiated with a reliable starting 
configuration based on the atom counting results where the atoms are positioned symmetrically 
along the beam direction. The proposed method, taking both the effect of experimental temperature 
and particle-support interaction into account, explores different local minima in the energy 
landscape while quantitatively validating the reconstructed structure with the observations from 
ADF STEM images. In this manner, the atomic scale information of supported NPs observed at 
high temperatures were accurately reconstructed from 2D ADF STEM images acquired along a 
single viewing direction. The accuracy of this method was tested on a simulated Au NP lying on a 
support by considering all experimental parameters that may affect the image intensities and 
quantification. According to the results, the proposed method predicts the 3D atomic structure of a 
simulated Au NP on a CeO2 support with high accuracy and outperforms the previously reported 
approaches. This method, therefore, enables an accurate refinement of experimentally observed 3D 
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atomic structures providing critical information to understand the structure-property relationship 
from limited data. 
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 Unravelling Pt-driven morphological transformations in 
Au@Pt nanorods upon heating‡ 

Understanding the thermal stability of bimetallic NPs is of vital importance to preserve their 
functionalities during a variety of applications. In contrast to well-studied bimetallic systems such 
as Ag-coated Au (Au@Ag), heat-induced morphological and compositional changes of Pt-coated 
Au (Au@Pt) NPs are less understood, even though Au@Pt is an important material for catalytic 
applications. To investigate the thermal instability of Au@Pt nanorods (NRs) at temperatures 
below their bulk melting point, in this chapter, different 2D and 3D electron microscopy techniques 
are applied, including EDX spectroscopy, HAADF STEM, and combined with in situ heating. By 
using the experimental results as an input for MD simulations, the mechanisms behind the 
morphological transformations of Au@Pt core-shell NRs are unravelled. In this chapter, it is 
demonstrated that the thermal stability of Au@Pt core-shell NRs is influenced by both the 
continuity and the detailed morphology of the Pt shell surrounding the Au core. 

  

                                                 
‡ This chapter is based on the following paper: 

Pedrazo-Tardajos, A.†, Arslan Irmak, E.†, Kumar, V., Sánchez-Iglesias, A., Chen, Q., Wirix, M., Freitag, B., Albrecht, 
W., Van Aert, S., Liz-Marzán, L. M., Bals, S. Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods. 
(Submitted) 
† Equal contribution to the published work. 

My contribution consisted of creating input structures for MD simulations based on the 3D electron tomography 
reconstructions of the experimental nanoparticles, designing and performing molecular dynamics simulations, as well 
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5.1.  Introduction 

Colloidal Au@Pt bimetallic NPs have attracted considerable interest due to the possibility to 
synthesize them in a wide variety of shapes and with different chemical compositions, making their 
properties easily tunable for multiple plasmonic and catalytic applications. 273–275 Particularly 
interesting bimetallic systems are Au@Pt NPs, resulting from the combination of excellent 
plasmonic properties of Au 276,277 and attractive catalytic properties of Pt. 278 This synergy has 
enabled novel applications in various fields, such as nanoenzymes, 279 antbacterials, 280 and 
catalysts for formic acid electro-oxidation. 281,282 Since the properties of NPs are directly connected 
to their 3D structure, including surface facets 23,283,284 and composition, 111 controlling the shape 
and elemental distribution during the synthesis of bimetallic systems is crucial. 285–293 In a recent 
development, a micelle-directed seeded approach using chiral additives was shown to direct the 
growth of regular surface Pt spikes on Au NRs, potentially showing chiral features. 294 Such 
systems are of great interest as they present tunable catalytic and optical properties by controlling 
the structure improve the overall catalytic activity and may have promising applications in 
biocatalysis, disease diagnostics and bioassays. 279,295,296 

Despite of the interesting properties of this system, its application has been hindered by their 
sensitivity to environmental conditions, such as annealing 293 and gaseous environments, 297 which 
often result in complex changes of their morphology and elemental distribution. 298 As a first step 
toward preserving the carefully designed structure and functionalities of bimetallic NPs, it is 
necessary to understand the mechanisms underlying unwanted modifications. 299,300 Among the 
limited number of investigations concerning the stability of Au@Pt NRs, TEM has been a preferred 
technique. He et al. 301 studied the stability of Au@Pt NRs by ex situ annealing at 200 °C followed 
by TEM characterization. It should be noted however, that only 2D images were acquired in this 
study which in general provide insufficient information regarding complex transformations in 
nanostructures with 3D morphological features. 76 A more appropriate tool for the study of 
morphological and compositional changes in bimetallic NPs at a local scale is in situ TEM, 302 
which even allows 3D in situ measurements when combined with electron tomography. 114,303–305   

In this chapter, a systematic investigation of thermal effects on the morphology and composition 
of Au@Pt NRs with different structures of the Pt shell, obtained by applying a surfactant-driven 
seed-mediated approach, either with and without chiral additives. Electron tomography was used 
as a key tool to investigate changes in the surface features and morphology of Au@Pt NRs during 
in situ heating up to 200 °C. In this manner, a deformation of the particles was observed at 
temperatures hundreds of degrees below the bulk melting temperatures of the individual elemental 
components (1769 °C for Pt 142 and 1024 °C for Au 306). To gain a detailed understanding of the 
atomistic mechanisms behind the observed instabilities, MD simulations were performed by using 
the results of the electron tomography experiments as an input. From the combined experimental 
and theoretical analysis, it was shown that the observed thermal instability is strongly influenced 
by a delicate balance between Pt shell thickness and coverage of the Au core. 



Chapter 5. Unravelling Pt-driven morphological transformations in Au@Pt nanorods upon heating 

85 

5.2.  Synthesis and 3D characterization of Au@Pt NRs 

The samples investigated in this chapter were provided by the group of Prof. Dr. Luis Liz-Marzán 
(research center CIC BiomaGUNE in San Sebastian). Moreover, HAADF STEM imaging, 
tomography and EDX STEM measurements in this chapter were performed by Dr. Adrián Pedrazo 
Tardajos. Au@Pt NRs were obtained using a micelle-directed seeded approach following previous 
work. 294 Single-crystalline (SC) Au NRs were hereby used as seeds to grow shells with a variety 
of Pt patterning. Different Pt-shell configurations were obtained by a precise control in the Pt 
deposition. Different continuity of the shell and its thickness was obtained by combining both a 
chiral additive and changing the temperature during the synthesis.  

An overview of different samples, imaged by HAADF STEM, is presented in Figure 5.1. HAADF 
STEM imaging was performed using a ThermoFischer Scientific™ Osiris electron microscope 
operated at 200 kV at a camera length of 115 mm. It can be seen that samples grown without chiral 
additives (Figure 5.1a), resulted in Au NRs covered with a rough and seemingly continuous Pt 
shell. On the other hand, in the presence of a chiral additive (BINAMINE) during the synthesis at 
20 ˚C, Au@Pt NRs featured Pt spikes growing radially outward from the central Au NR surface 
(Figure 5.1b). Furthermore, Au@Pt NRs synthesized using BINAMINE at a temperature of 40 ˚C 
resulted in Au@Pt NRs with a Pt shell composed of longer spikes (Figure 5.1c). The measured 
sizes and aspect ratios for these samples are summarized in Table 5.1. The values correspond to 
the average size of the particles observed in each sample including the Pt shell. The elemental 
distribution for these three samples was investigated by EDX STEM measurements. Figure 5.2a 
illustrates a clear core-shell structure and Pt/Au ratios ranging from 0.1 to 1, as extracted from the 
EDX STEM measurements (Table 5.1). 

 

Figure 5.1 HAADF STEM overview of the three different Au@Pt NRs. a) Au@Pt NRs synthesized without 
chiral additives. b) Au@Pt NRs synthesized using chiral additives at 20 ˚C. c) Au@Pt NRs synthesized 
using chiral additives at 40 ˚C. 
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Table 5.1 Average morphological and compositional parameters of the different samples investigated by 
HAADF STEM and EDX at room temperature. 

Sample ID Size Aspect ratio [Pt/Au] ratio  

Sample-1 100 x 30 nm ~3.30 0.8 ± 0.4 

Sample -2 130 x 37 nm ~3.50 0.1 ± 0.3 

Sample-3 130 x 43 nm ~3.00 0.3 ± 0.1 

However, as these results were obtained from single 2D HAADF STEM images, HAADF STEM 
tomography was performed to investigate the 3D morphology of the Pt shell. HAADF STEM 
tomography tilt series were acquired within a ± 70° tilt range and a tilt increment of 3° in a 
ThermoFischer Scientific Osiris electron microscope operated at 200 kV and a camera length of 
115 mm. Tomographic reconstructions were retrieved by using the reconstruction algorithm 
developed by Dr. Ivan Lobato at EMAT. 81 3D visualizations of the electron tomography 
reconstructions are presented in Figure 5.2b which confirms the presence of regularly arranged 
spikes for Sample-2 and Sample-3, whereas Sample-1 contains a rough (disordered) Pt shell, with 
no obvious Pt spikes. From a careful analysis of orthoslices acquired through the 3D 
reconstructions, it can be confirmed that the Pt spikes in Sample-2 and Sample-3 show a periodic 
distribution. The helical nature of this ordering is furthermore clear from the 3D visualizations of 
the electron tomography reconstructions for Sample-2 and Sample-3. 

 

 
Figure 5.2 a) EDX STEM maps of the different Au@Pt NPs, as labeled. From left to right, the [Pt/Au] 
ratios calculated from the EDX STEM data obtained from the three different samples are: 0.80, 0.11 and 
0.34. b) 3D visualizations and orthoslices (right sides) through the HAADF STEM tomography 
reconstructions obtained for the different samples at room temperature. c) 3D visualization of the EDX 
STEM tomography reconstruction obtained from a representative sample prepared using chiral additives. 
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The difference in atomic number Z for Au and Pt is too small to generate sufficient contrast 
difference in a 3D HAADF STEM reconstruction. To visualize the Au-Pt interface and investigate 
the coverage of Au by Pt in more detail, an EDX STEM tilt series were acquired by exploiting the 
high efficiency of a novel Ultra-XTM EDX detector. A 3D visualization of the EDX STEM 
tomography reconstruction of a representative Au@Pt NR, prepared in the presence of 
BINAMINE, is presented in Figure 5.2c. The high SNR of EDX STEM tomography reconstruction 
enables to conclude that the Pt shell is solely composed of Pt spikes, directly grown on the Au 
surface and that no intermediate Pt layer is present at the surface of the Au NR. 

5.3.  Thermal stability of Au@Pt NRs 

To study heat-induced morphological transformations, a DENSsolutions Wildfire heating 
tomography holder was used. 307 Au@Pt NRs were deposited on a dedicated silicon nitride (Si3N4) 
MEMS heating chip and heated to 200 °C (temperature selected to compare our in situ results with 
ex situ results in ref. 301). After heating the NRs for 5 min, they were instantaneously cooled down 
to room temperature (in ~ 1 s) to prevent further transformations while imaging. HAADF STEM 
images (Figure 5.3a) indicated the heat-induced formation of indentations or voids in all 
investigated samples. Such voids are especially noticeable in Sample-3, whereas a smaller one is 
indicated by an arrow for Sample-1. Sample-2 mostly showed indentations, rather than voids.  

 
Figure 5.3 In situ STEM experiments for the three different samples as labeled. a) 2D HAADF STEM 
images and b) 3D visualizations with orthoslices (right sides) through the HAADF STEM tomography 
reconstructions obtained after heating at 200 °C for 5 minutes. Small voids and indentations observed in 
Sample-1 and Sample-2 are marked in the 2D images by white arrows and by black arrows in the orthoslices. 

A better understanding of this complex transformation required additional investigation in 3D, 
which was achieved by using in situ electron tomography. 114,304,305,308 3D reconstructions of NRs 



Chapter 5. Unravelling Pt-driven morphological transformations in Au@Pt nanorods upon heating 

88 

from the three different samples after heating to 200 °C are shown in Figure 5.3b. From the 
orthoslices through the 3D reconstructions of Sample-1, which originally had a rough, but 
continuous Pt shell, small voids were observed close to the surface, along with narrow channels 
connecting the void to the surface (Figure 5.4). Moreover, for all samples, depleted Au was found 
to form Au clusters on the otherwise empty regions of the Si3N4 support as confirmed by EDX 
STEM measurements (Figure 5.5). Based on these observations, it can be hypothesized that the 
observed channels formed a pathway for Au atoms to diffuse out of the core, which ultimately 
resulted in the creation of voids inside the Au NRs, in agreement with the postulation by He et al. 
301 

 
Figure 5.4 3D reconstruction of a Au@Pt NR from 
Sample-1 after heating to 200 °C. Orthoslice 
through the 3D reconstruction along the (a) yz 
plane and (b) xy plane. c) A magnified region from 
panel (a). The presence of diffusion pathways for 
Au atoms are marked by red arrows. 

 
Figure 5.5 Au clusters depleted from the Au@Pt 
NRs after heating to 200 °C. a) HAADF STEM 
image of the Si3N4 MEMS heating chip covered by 
small Au NPs. b) Higher magnification image of 
one of those Au NPs. c) EDX map of the NP in 
panel (b), showing a composition of 100% Au.  

On the other hand, Sample-2 did not contain any voids inside the NR, but indentations were clearly 
observed at the surface of the particle in agreement with the 2D projection image shown in Figure 
5.3a. For Sample-3, it was observed that the large voids extended far inside the NP (Figure 5.3b). 
Since the degree of void formation significantly varied for different samples, it is likely that the 
local Pt surface morphology has an effect on Au migration. However, the details of the underlying 
processes are difficult to understand from the experimental observations alone. To gain insight into 
these mechanistic details, MD simulations were performed. 

5.4.  MD simulations 

 MD simulations by using experimental morphology 

MD simulations started by using the experimentally measured morphologies for Samples 1-3. 
Based on literature reports 309 and electron tomography reconstructions obtained for Au NRs used 
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during synthesis (Figure 5.6a-c), the input structure of the Au NR was constructed to have eight 
{520} lateral facets and {100}, {110}, {111} facets at its tips. For that, an FCC Au structure in a 
rectangular prism was created. The ends of the prism, having the configurations of {100} crystal 
facets, were then truncated to form {110} and {111} facets. Afterward, the lateral facets were 
truncated according to a {520} configuration. The side view of the created NR is shown in Figure 
5.6d. 

 

Figure 5.6 a) Visualization of the HAADF STEM tomography reconstruction of a Au NR with the 
corresponding crystallographic facets highlighted. b) Analysis of the crystallographic facets of the rod 
according to the model presented in reference 309, suggesting the presence of {520} lateral facets. c) 
Symmetry of the side of the facets and 3D-FFT projection image confirming the symmetry of {520} lateral 
facets. Electron tomography experiments and 3D-FFT analysis were performed by Dr. Adrián Pedrazo-
Tardajos. d) Created 3D Au NR model with eight {520} lateral facets. e) Model of the Au@Pt NR based on 
the experimentally determined morphology. 

The Pt-shell around the input structure of Au NR was created based on the morphology of the 3D 
reconstructions shown in Figure 5.2b. The reconstructed volumes were first binarized by setting 
the values above a threshold to 1 and setting the others to 0. Hereby, the threshold value was defined 
by using Otsu’s method. 243 Next, each binarized 3D volume was filtered with a 3-D Gaussian 
smoothing kernel to create a mask. At the same time, an FCC Pt structure (lattice parameter = 
3.9764 Å) 192 was created in a rectangular simulation box. Then, Pt structures were extracted by 
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applying the created masks to the FCC rectangular simulation box. Finally, the previously created 
Au NR was placed at the center of the created Pt structures. Since using the actual size of the 
experimental NPs (Table 5.1) in MD simulations requires vast computational power, overall sizes 
of the created Au@Pt NRs were scaled down. However, for all the other parameters, such as aspect 
ratio and Pt/Au ratios, experimentally determined values were used. As an example, a created input 
structure of Au@Pt NR for MD simulations is shown in Figure 5.6e.  

After creating input structures corresponding to the Au@Pt NRs, conjugate gradient energy 
minimization 310 was applied by controlling the maximum distance that an atom can move in a one-
time step. The maximum displacement distance was set as 0.01 Å. A time step of 1 fs was used to 
track the movements of atoms and the EAM was used to define the interaction between the atoms. 
192 Non-periodic boundary conditions were applied in all three directions with a large vacuum area. 
Also, the total linear and angular momenta were conserved so that the rod did not drift nor rotate 
throughout our simulation. Next, the NRs were relaxed for 20 ns at room temperature with the 
canonical ensemble and a damping factor of 0.1. Subsequently, to mimic the experimental 
observations, temperature was increased with a constant heating rate of 0.5 K/ps and relaxed for 
20 ns at 200 °C. 

In Figure 5.7a-c, the resulting 3D morphologies based on Samples (1-3) are shown before and after 
heating. Also, orthoslices through the simulated NRs after heating are presented (right sides). After 
heating of the simulated NRs, indentations were found for all samples, indicating a good agreement 
between the experiments and simulations. It should be noted that the size of these indentations, 
appearing during MD simulations, are relatively small compared to the size of the indentations and 
voids observed in the experiments. This apparent discrepancy is related to the limited time scale 
and smaller input structures used during MD simulations. Moreover, our simulations were 
performed without the presence of a Si3N4 sample support and with the constraint of keeping the 
total volume of the NRs constant, which explains why indentations rather than voids are formed.     

These simulations allowed to capture the dynamics of void formation, which could not be extracted 
from the experiments, in which only the structure before and after heating could be investigated. 
The MD results in Figure 5.7d demonstrate that Au atoms close to the Au-Pt interface (indicated 
in black for better visualization) created diffusion channels and migrated towards the NR surface 
during heating, as hypothesized from our experiments. This process resulted in the formation of a 
small indentation, as shown in Figure 5.7a,d. The MD simulations further showed that during 
heating at 200 °C, 2.8% of Au atoms in Sample-1 (Figure 5.7a) migrated towards the NR surface, 
whereas this percentage increased to 8.2% for Sample-2 and 9.0% for Sample-3 (Figure 5.7b,c). 
As expected, it can also be seen that higher percentages of Au migration lead to larger indentations. 
This percentage of migrated Au atoms was defined as the ratio between the number of migrated 
Au atoms and the total number of Au atoms that were initially in the core.   

Figure 5.7 moreover suggests that the size and location of the formed indentations is different for 
the different samples, in agreement with the experimental observations. For instance, it can be seen 
that the NR in Figure 5.7c, which had a Pt surface coverage of 65% (to mimic Sample-3), yielded 
a larger number of indentations in comparison to the NR in Figure 5.7a, which had initially a 99% 
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surface coverage (to mimic Sample-1). The surface coverage of the Pt shell was defined as the ratio 
between the number of Au surface atoms covered by the Pt-shell and the total number of atoms at 
the surface of the Au core. In addition to surface coverage, also the thickness of the Pt spikes 
apparently played a role during Au migration. The NR in Figure 5.7b, which initially had short 
spikes, mimicking Sample-2, yielded smaller indentations at 200 ºC in comparison to the NR in 
Figure 5.7c, which initially had thicker spikes but a similar coverage, in agreement with Sample-
3. 

 
Figure 5.7 MD simulations based on electron tomography reconstructions. a-c) Tomography-based 3D 
models and orthoslices (right sides) of Au@Pt NRs before and after heating at 200˚C resembling Sample-
1, Sample-2 and Sample-3 represented in Figure 5.2b. Pt atoms are shown in red and Au atoms are shown 
in blue. d) Snapshots of the intermediate steps during the transformation of the NR in Figure 5.7a. Black 
dots represent Au atoms migrating towards the NR surface during heating at 200 °C. 

The very good agreement between the simulations and the experimental observations confirms that 
the MD approach can be used to model the mechanistic processes explaining the instability of these 
samples at elevated temperature. MD simulations in this section showed that there is a direct 
relationship between the morphology of Pt-shell and the percentage of migrated Au atoms towards 
the NR surface and so the size of the appeared voids at 200 °C. Herein, it is also important to get 
an insight into the thermodynamic behavior of bimetallic Au-Pt NPs to be able to interpret the 
reason behind the migration of Au atoms toward the NR surface at high temperatures. Therefore, 
in the next section, the core-shell preference of Au-Pt bimetallic systems is overviewed on a model-
like spherical NPs before a detailed investigation of the Pt surface morphology effect on the thermal 
instability of NRs (Section 5.4.3).  

 Thermodynamic behavior of Au-Pt NPs 

Recent studies revealed that the cohesive energy and Wigner-Seitz radius, which is defined as the 
radius occupied by one atom, 311 are the two primary factors affecting the preference for an element 
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to be at the core or the shell in core-shell bimetallic NPs. In general, the less cohesive element with 
a larger Wigner-Seitz radius prefers to segregate at the surface to minimize compressive strain 
within the bimetallic NP arising from the size mismatch. 312–315 The total cohesive energies per 
atom for Au and Pt NPs were determined from conjugate gradient energy minimization by 
employing EAM potential. 192 It was found that Au is less cohesive, -2.89 eV, compared to Pt, -
5.19 eV (Table 5.2) which is consistent with literature. 312,314,315 Moreover, Au has a larger Wigner-
Seitz radius (3.01 Bohr radius) than Pt (2.90 Bohr radius). 316 Therefore, from a thermodynamics 
point of view, Au atoms prefer to be located on the surface in Au-Pt bimetallic systems. 

Table 5.2 Formation energies of Au-Pt bimetallic systems.  

3D 
models 

Type of 
structures Component Average cohesive 

energy per atom (eV) 

Total 
formation 

energy (eV) 

 
Pure Au NP 1865 atoms -2.89 - 

 
Pure Pt NP 2123 atoms -5.19 - 

 

Pt-shell/ 
Au-core 

1865 Au atoms 
1952 Pt atoms -4.01 236.5 

 

Au-shell/ 
Janus-like 
structure 

1865 Au atoms 
1952 Pt atoms -4.18 -473.6 

 

This hypothesis was supported by MD simulations of spherical Au@Pt and Pt@Au with 5 nm 
diameter and a double-layer shell. MD simulations started with conjugate gradient energy 
minimization. 263 Then, the NPs were relaxed for 10 ns at room temperature with the NVT ensemble 
and a damping factor of 0.1. Subsequently, to observe the thermal stability of each bimetallic NP, 
the temperature was increased with a constant heating rate of 0.5 K/ps to 2000K. The change in 
elemental distribution in the Pt@Au NP as a function of temperature is displayed in Figure 5.8a, 
and at the same temperatures, the snapshots of Au@Pt NP are shown in Figure 5.8b.  

Since Au segregation at the surface is thermodynamically preferable, Pt@Au NP in Figure 5.8a 
preserved its initial elemental distribution even at a high temperatures. On the other hand, as the 
temperature increased, the Au atoms in Au@Pt NP (Figure 5.8b) started to move from the core to 
the outer shell. The migration of Au atoms became pronounced at 600 °C, and eventually, Au atoms 
completely covered the surface at 800 °C and formed a segregated Janus-like structure. Moreover, 
the formation energies of Au@Pt (the left-most row of Figure 5.8b) and the final Janus-like 
structure (the right-most row of Figure 5.8b) were calculated from the difference of the cohesive 
energies of bimetallic NPs and their pure components (Table 5.2). The negative formation energy 
of the final Janus-like structure demonstrates its thermal stability. Therefore, it can be concluded 
that heat-induced movement of Au atoms arises from the tendency to minimize the energy of the 
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Au@Pt NP and to reach a thermodynamically more stable configuration. Although these 
simulations are performed on relatively simple systems, they provide an insight regarding the 
thermodynamic behavior of Au@Pt NPs at high temperatures. However, these observations are 
still inadequate to enlighten the experimentally observed void formation, which significantly varied 
for different samples having different Pt-shell morphology. Therefore, as a next step, the effect of 
Pt surface morphology on the thermal instability of Au@Pt NRs at mild temperatures is 
investigated in detail. 

 
Figure 5.8 MD simulations of the thermal stability of spherical Au-Pt NPs having different structure in the 
core-shell. The snaphots of Pt@Au (a) and Au@Pt (b) NPs are shown as a function of temperature.  

 The effect of Pt surface morphology on thermal stability of NRs  

In this section, the morphological parameters of the Pt shell, namely the thickness of Pt spikes and 
the surface coverage are decoupled. To investigate the latter, different Pt islands, mimicking Pt 
spikes were placed on an Au(111) surface (Figure 5.9). All islands had the same Au-Pt interfacial 
area, but they all had a different height corresponding to 2, 4 or 5 atomic layers. Prior to the heating 
simulations, the Au(111) surface was relaxed for 10 ns at room temperature. During the relaxation, 
periodic boundary conditions were applied in the x and y-directions and a non-periodic boundary 
condition was applied along the z-direction. Also, the bottom layer in the z-direction was frozen. 
After different Pt islands were placed on the relaxed Au(111) surface, a full relaxation was 
performed for 20 ns at room temperature. Then, the relaxed Pt islands on Au(111) surface were 
gradually heated with a 0.5 K/ps heating rate. Side- and top-views of these islands are presented in 
Figure 5.9a-c, as a function of temperature. 

Already at room temperature, Au atoms were observed to move towards the top of the Pt islands, 
independent of the thickness of the islands. As a result, small indentations were formed at the 
surface (as indicated by grey dots). However, after 10 ns this process did not propagate any further. 
Next, the temperature was increased to 200 °C and the system was relaxed for 20 ns. From Figure 



Chapter 5. Unravelling Pt-driven morphological transformations in Au@Pt nanorods upon heating 

94 

5.9, it can be seen that the higher temperature significantly enhanced Au migration toward the top 
of the Pt islands, resulting in larger indentations at the Au surface. Because of larger thermal 
vibrations, it is typically expected that the potential energy of a system monotonically increases 
with increasing temperature, prior to reaching the melting point. On the contrary, Figure 5.9d shows 
that the average potential energy of the Pt atoms decreased as temperature was increased from room 
temperature to 400 °C. 

 

Figure 5.9 Effect of the thickness of Pt(111) islands on the number of Au atoms migrating to the surface of 
Au@Pt NRs. Pt atoms are presented in red, Au atoms in blue and voids in gray. a-c) Side-views of 2, 4, and 
5 atoms-thick Pt-islands, and top views illustrating their structural evolution as a function of temperature. 
d) Average change of potential energy per atom for the Pt islands as a function of temperature. e) Histogram 
of the number of migrated Au atoms as a function of temperature and thickness of the Pt-islands. 

These observations can be rationalized from a thermodynamics point of view as it has already been 
explained in the previous subsection. Since Au is less cohesive and has a larger Wigner-Seitz radius 
than Pt, 316 Au atoms prefer to migrate toward the surface, so as to reduce strain at the Au-Pt 
interface and to consequently minimize the overall energy (Figure 5.9d). It is important to note that 
although Au migration continued at higher temperatures, the formation of the voids and 
indentations at the Au surface prevailed at mild temperatures only. When the temperature was 
increased further to 400 °C and above, it was observed that the voids diminished since a higher 
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thermal vibration results in larger spacing between Au atoms at the surface. This was followed by 
surface melting (sharp increase in Figure 5.9d) at 600 °C.  

As a consequence of the thermodynamic instability, thicker Pt islands induced the formation of 
larger indentations on the Au surface, as more Au atoms were required to cover the thicker Pt-
islands. Figure 5.9e shows the increase in the total number of migrated Au atoms as a function of 
temperature, for each system. This explains why the voids became more pronounced in our 
experiments for samples with larger Pt spikes (Sample-3).  

Next, the influence of Pt shell completeness (coverage of the Au core surface) was investigated. 
Therefore, Pt-coatings with helical shapes were created by extending Pt-islands, with similar 
thickness, on Au NR surfaces (Figure 5.10). The reason of using helical coatings is that it gives 
one good control over the coverage (by simply changing the number of spirals) while making it 
possible to keep the thickness of the coating the same. Moreover, the experimental observations 
demonstrated that the Pt coating contains helical features for Sample-2 and Sample-3 (see Figure 
5.2b).  

By changing the number of helices, Au@Pt NRs with different Pt surface coverage, ranging from 
44.5% (leftmost) to 89% (rightmost) were obtained (Figure 5.10a). The structures, obtained after 
heating to 200 ºC, are shown in Figure 5.10b, along with a visualization of Au atoms only (Figure 
5.10c). The resulting percentages of Au atoms that migrated from the core to the surface of the Pt 
shell are plotted in Figure 5.10d. Since the same Au core was used for all Au@Pt NRs shown in 
Figure 5.10, these percentages can also be interpreted in an absolute manner. As the surface 
coverage increased from 44.5% to 65.3%, the number of migrated Au atoms increased. This can 
be expected from the results above, demonstrating the tendency of Au atoms to cover the Pt islands. 
However, for Pt coverages above 65.3%, a decrease in the number of migrated Au atoms was 
observed. This is not surprising since for higher Pt coverage less Au diffusion pathways between 
the Pt spikes are present. Consequently, for an Au@Pt NR with 89% Pt coverage, the number of 
Au atoms that could migrate upon heating was significantly reduced and the initial shape of the 
core Au NR was almost fully preserved after heating (Figure 5.10c). 

Finally, to obtain a complete understanding of the interplay between surface coverage and thickness 
of dendrites, MD simulations were carried out for different Pt-coatings by varying both the surface 
coverage and the thickness of the Pt islands. The created input structures used for the simulations 
are shown in Figure 5.11. The results of the simulations for the 40 combinations of different 
morphologies are summarized in Table 5.3, which shows the percentage of diffused Au atoms at 
200 °C. For the sake of visualization, the results in Table 5.3 are color-coded, with red representing 
the largest number of diffused Au atoms and blue corresponding to negligible migration of Au 
atoms. 
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Figure 5.10 Surface-coverage effect of the Pt shell around the Au NR, on the number of migrated Au atoms. 
a) Created input structures. b) Structures after heating at 200 °C. c) Au atoms within the Au@Pt NR after 
heating to 200 °C. d) The percentage of migrated Au atoms from structures with different Pt surface 
coverage. 
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Figure 5.11 Input structures of Au@Pt NRs used in the MD simulations from which Table 5.3 was 
obtained. 

 
Two different trends can be observed from Table 5.3. At Pt surface coverages below 74%, an 
increasing number of Pt atoms, in terms of either surface coverage or thickness of the Pt islands, 
resulted in a higher percentage of migrated Au atoms. Therefore, the highest percentage of Au 
diffusion was observed for NRs with 65% Pt surface coverage and 5 atom-thick Pt dendrites. This 
system had long-enough Pt-spikes to stimulate the diffusion of Au atoms, while at the same time 
yielding sufficient Pt-free Au surface to enable Au migration. On the other hand, once the Pt surface 
coverage reached 74%, fewer Au atoms could diffuse because of the lack of Pt free pathways. 
Obviously, this effect was most dominant for NRs with a continuous Pt-shell (rightmost column), 
for which Au atoms would have to create diffusion channels toward the surface and hereby 
overcome the energy barrier imposed by the Pt shell. 
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Table 5.3 Percentage of diffused Au atoms after heating at 200 °C by MD simulations for Au@Pt NRs with 
different Pt surface coverage and thickness of the Pt shell. 

 
Surface Coverage of Pt Shell 

44.5% 50.8% 54.6% 57.8% 65.3% 74.1% 82.1% 83.9% 89.0% 100% 

Th
ic

kn
es

s o
f P

t s
he

ll 2 atom-
thick 

4.9 % 6.4 % 7.2 % 8.1 % 9.7 % 9.8 % 9.2 % 7.6 3.3 2.0 % 

3 atom-
thick 5.1 % 6.6 % 7.2 % 8.1 % 9.7 % 7.3 % 5.6% 3.4 2.0 0.5 % 

4 atom-
thick 5.1 % 6.5 % 7.4 % 8.5 % 9.6 % 6.3 % 5.4% 3.8 2.2 0.0 % 

5 atom-
thick 5.3 % 6.8 % 7.8 % 8.9 % 9.8 % 6.2 % 5.5 % 4.1 % 2.3 % 0.0 % 

           
 2% 3% 4% 5% 6% 7% 8% 9% 10% 

 

 

To be more precise on the effect of continuous Pt-shell thickness on the thermal stability of Au@Pt 
NRs, the required energy barriers of Au@Pt NRs having a continuous but varying thickness of Pt-
shell was estimated. Hereby, NRs with a continuous Pt-shell (rightmost column of Figure 5.11) 
were heated to 1350K with a heating rate of 0.5 K/ps. Then, the required energy was simply 
calculated as the energy difference between the initial state and the state where the first Au atom 
appeared on the surface of the Pt-shell. It should be noted that the energy difference was determined 
based on the defined inter-atomic potential, EAM, during MD simulations, and so it should be 
interpreted in a relative manner. 3D models of the NR having a continuous 2 atom layer-thick Pt-
shell before and after heating are shown in Figure 5.12a-c. The calculated energy barriers for NRs 
having continuous Pt-shells with 2 atom layer, 3 atom layer and 4 atom layer-thick are shown in 
Figure 5.12d. As illustrated in Figure 5.12, due to the thin coating around the NR having a 2 atom-
thick Pt-shell, Au atoms could easily diffuse through the outer surface even at room temperature. 
However, for a thicker Pt-shell, heating to higher temperatures was required to overcome the 
energy barrier and to create a Pt-free pathway for the diffusion of Au atoms. Although the imposed 
energy barrier was overcome at 200 °C for the NR with a 3 atom-layer Pt-shell, the first Au atom 
on the surface was observed only at around 1300 K for the NR with a 4 atom-layer Pt-shell. During 
heating of the Au@Pt NR having a 5 atom-thick Pt-shell, none of the Au atoms could overcome 
the energy barrier and diffuse through the Pt-surface below the melting temperature. These results 
hence indicate that Au surfaces with a high Pt coverage or larger Pt spikes can significantly improve 
the thermal stability of Au@Pt NRs due to a stronger kinetic trapping effect against the heating-
induced migration of Au atoms. 
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Figure 5.12 MD simulations of Au@Pt NRs which were fully covered by Pt-shell. a) 3D model having 
continuous Pt-shells with 2 atom layer before heating. b) Magnified visualization that shows the 
intermediate steps of creation of gaps on the continuous Pt shell and the diffusion of Au atoms through the 
appeared gap upon heating. c) The final structure of the NR at 200 °C. Pt atoms are shown in red and Au 
atoms are shown in blue. d) Energy barrier against the heat-induced diffusion of Au atoms in Au@Pt NRs 
with different thicknesses of the Pt-shell.  

5.5.  Discussion and conclusion 

All of the results presented in this chapter contribute to understanding the driving forces behind Au 
migration and the resulting thermal instability of Au@Pt NRs. It has been shown that the 
experimentally-observed heat-induced transformations depend on the exact morphology of the 
nanostructure, where Pt surface coverage as well as the thickness of Pt spikes on the Au surface 
were the main factors influencing the thermal stability. At elevated temperatures, Au atoms diffuse 
from the core to the outer part of the Pt shell to reach a thermodynamically more stable 
configuration, with Pt spikes acting as the nucleation sites for Au atoms. Longer Pt spikes lead to 
an increased number of migrated Au atoms and consequently larger voids. However, this process 
was mainly dominated by the continuity of the Pt shell. At Pt surface coverage exceeding 74%, the 
Pt coating was found to act as a barrier against Au atom diffusion, thereby reversing the 
mechanism: longer Pt spikes lead to a decrease in the percentage of diffused Au atoms.  

There is general agreement with literature reports showing that core-shell formation in Pt-Au 
bimetallic NPs is affected by the atomic size and cohesive energy of the constituent elements. 312–

315 In addition to such previous reports, the findings presented in this chapter show that heat-
induced deformation at mild temperatures can be explained by a delicate interplay between 
thermodynamics and kinetics. This study therefore provides an atomistic insight towards tuning 
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the thermal stability of Au@Pt NPs by changing the morphology of Pt shells, for relevant 
applications at which elevated temperatures are needed. 

In conclusion, the thermodynamic behavior of Au@Pt NPs with different spatial distributions of 
Pt-shell was investigated by electron microscopy and MD simulations. Combined results from both 
techniques enabled to understand the complex cooperative effect between Au and Pt at the atomic 
scale. In brief, the experiments revealed that Au@Pt NRs exhibited structural deformation at 
temperatures well below the melting point of both Au and Pt, creating voids and indentations in 
the Au core. It has been observed that such structural transformations largely depended on the 
morphology and coverage of the Pt shell. Using the experimentally determined 3D morphology of 
the real particles as an input, MD simulations enabled to conclude that the observed deformations 
take place because the system aims to reduce its total energy by migration of Au atoms from the 
core through the interface to the outer surface, leading to a thermodynamically favorable structure. 
The process is highly influenced by the amount of Pt in the coating spikes, as well as Pt surface 
coverage. The findings in this chapter can be ultimately exploited to improve the design of these 
systems to preserve their functionalities for electro- and photo catalytic applications operated at 
elevated temperatures.    
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 3D atomic-scale dynamics of laser light induced 
restructuring of nanoparticles unraveled by electron tomography 
and molecular dynamics simulations§ 

In the previous chapters, the transformations of morphology and composition in NPs have been 
measured as a function of temperature by combining in situ heating experiments and atomistic 
simulations. However, the investigation of NP transformations becomes more challenging when 
the specific environmental triggers cannot be applied in situ. For example, due to the ultrafast time 
scales of laser-light-induced restructuring of NPs, these transformations cannot be monitored by 
simply heating the particles during the experiments.  

Understanding light-matter interactions in nanomaterials is crucial for optoelectronic, photonic and 
plasmonic applications. Specifically, metal NPs strongly interact with light and can undergo shape 
transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for 
technological applications, insights into the underlying atomistic processes is still lacking due to 
the complexity of such measurements. In this chapter, atomic resolution electron tomography on 
the same mesoporous silica-coated Au NR, before and after femtosecond laser irradiation, is 
performed. By performing MD simulations based on the experimentally determined 3D atomic 
scale morphology, the complex atomistic rearrangements, causing shape deformations and defect 
generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, 
facet restructuring and strain formation, and are influenced by subtleties in the atomic distribution 
at the surface. 

  

                                                 
* This chapter is based on the following paper: 

Albrecht, W.†, Arslan Irmak, E. †, Altantzis, T., Pedrazo-Tardajos, A., Skorikov, A., Deng, T.-S., van der Hoeven, J. 
E. S., van Blaaderen, A., Van Aert, S., Bals, S. Three-Dimensional Atomic Scale Dynamics of Laser Light Induced 
Restructuring of Nanoparticles Unraveled by Electron Tomography. Advanced Materials (2021) doi: 
10.1002/adma.202100972.  
† Equal contribution to the published work. 

My contribution consisted of the determination of surface facets of an experimentally imaged nanoparticle from high-
resolution electron tomography, creating input models for molecular dynamics simulations, developing numerical 
calculations to model femtosecond laser induced heating, designing and performing molecular dynamics simulations, 
as well as their analysis and discussion. 
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6.1.  Introduction 

The interaction of metal NPs with ultrashort laser pulses has been an intensive research topic due 
to their unique optical and photothermal properties, which led to numerous applications in, amongst 
others, biomedicine, 317,318 sensing, 319–321 imaging, 322,323 data storage 324–326 and catalysis. 327–329 
These properties stem from the efficient interaction of metal NPs with light via LSPRs. 
Specifically, the electronic absorption of the laser energy and subsequent electron-phonon 
scattering heats up the NP's crystal lattice, possibly leading to atomic restructuring. 330–333 This 
reshaping depends on the laser pulse width, 334 fluence 331,333,335 and repetition rate. 336 Excitation 
with femtosecond laser pulses generally results in more uniform reshaping of anisotropic NPs, 
whereas nanosecond pulses are likely to induce fragmentation and irregular morphologies. 334 

Next to the above-mentioned factors, the NP's environment plays a pivotal role due to possible 
hindrance of surface atom diffusion and its effect on heat dissipation. 335,337–341 To improve the 
robustness and durability in applications, surface coating of NPs was investigated, with silica-
coated Au NPs emerging as one of the most well-suited systems in practice. 342,343 For biomedical 
applications, for example, silica coatings were shown to provide biocompatibility, large surface 
areas for drug delivery and prevent aggregation of NPs inside cells. 344 Next to their increased 
colloidal and thermal stability, silica-coated Au NPs also exhibited superior performance for 
imaging applications such as photoacoustic imaging 345 and a higher dynamic range for optical data 
storage. 336 In the case of catalytic applications, porous silica coatings provide accessibility to the 
NP's surface while inhibiting sintering, 299,346 which is one of the main deactivation channels of 
catalytic metal NPs.  

Despite their relevance in applications, little is known about the atomistic processes occurring in 
(porous) silica-coated Au NRs when exposed to high temperatures or laser irradiation as most work 
so far has focused on bare Au NPs. For uncoated NRs, surface atom diffusion is believed to be the 
driving mechanism of photothermal reshaping for absorbed energies below the melting energy, 332 
but internal crystal defects in irradiated NPs have also been reported. 333,347 Matsumura and co-
workers observed twinning and different crystallographic orientations in initially single-crystalline 
and defect-free Au NRs upon excitation with nanosecond laser pulses. 348 Several MD studies 
reported the creation of stacking faults, which originated at the NP surface upon heating. 223,349 
Moreover, more accurate modeling of laser heating of a Au NR revealed that surface pre-melting 
predominantly occurred at {110} lattice planes and started before the creation of parallel twin 
boundaries, appearing in the middle of the NR. 350 

Unfortunately, accessible time and length scales are generally different between experiments and 
simulations. Most experimental work to understand photothermal reshaping has been performed at 
the ensemble level using optical techniques. Although optical single-particle studies gained 
additional insight on this mechanism, 331,332 few reports exist on structural changes of excited NPs. 
Such studies were mainly performed by SEM 331,332 or TEM at medium spatial resolution and via 
observing 2D projections of the 3D NP. 338,348,351 On the other hand, simulation studies are generally 



Chapter 6. 3D atomic-scale dynamics of laser light induced restructuring of nanoparticles unraveled 
by electron tomography and molecular dynamics simulations 

103 

performed at the single particle level using short time and atomic spatial scales. A complete picture 
of the reshaping and defect formation mechanism, combining experiments and simulations, is still 
lacking. In this chapter, to bridge the gap between simulations and experiments, atomic resolution 
electron tomography of the same mesoporous silica-coated Au NR is performed before and after 
femtosecond laser excitation. The experiments enabled to perform MD simulations using the 
experimentally determined morphology, thereby extending previous simulation studies to an 
experimental system with realistic surface morphologies. 

6.2.  Synthesis and femtosecond laser excitation 

Au NRs were obtained by a modified version of the method by Ye et al. 352, in which the seed 
concentration was increased. The CTAB stabilized Au NRs were coated with a 18nm mesoporous 
silica shell via the method of Gorelikov et al. 352  

For femtosecond laser excitation, a Leica SP8 confocal setup (63×/1.4 oil-immersion objective) 
equipped with a Coherent Chameleon II Ti:Sapphire laser (80 MHz repetition rate, 140 fs laser 
pulses) was used. The laser wavelength was set at the ensemble-averaged longitudinal plasmon 
resonance of the corresponding silica-coated Au NRs immersed in glycerol. During the laser 
excitation, the early stages of below-melting-point deformation were investigated as these contain 
most information about the interplay between structural and morphological changes. Furthermore, 
below-melting-point deformation is highly relevant for applications since it can, for example, be 
used to shape or weld NPs into desired configurations. 340,353 Consequently, a laser fluence that 
induced only mild NR reshaping was selected. 

6.3.  2D STEM characterization 

To understand the impact of the absorbed laser energy on the structure and morphology, the same 
mesoporous silica coated and uncoated Au NRs were imaged before and after multi-shot 
femtosecond laser excitation at their ensemble-average LSPR. Hereby, the NRs were deposited on 
a TEM grid. For bare NRs, this leads to symmetry breaking and hindered deformation of the NR 
side touching the support. A mesoporous silica coating around the Au NRs, on the other hand, 
guarantees a homogenous surrounding, while enhancing the thermal stability of Au NRs. 335,336 

Figure 6.1 shows bright-field scanning TEM (BF STEM) images of bare Au NRs before and after 
laser irradiation with two different applied fluences. BF-TEM images were acquired using a 
TECNAI12 electron microscope by Dr. Wiebke Albrecht. It can be seen that a range of defects, 
such as stacking faults and twinning planes, appeared for bare NRs after laser irradiation. In 
addition, the formation of irregular, asymmetric shapes and volume loss are observed. The 
irregularity in shapes for uncoated NRs mainly stems from non-uniform properties of their 
environment, specifically its rigidity and heat conductivity due to the contact with the TEM 
support, which is prevented by the silica shell. 112 
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Figure 6.1 BF-TEM images of the same Au NRs without a silica shell, before and after laser irradiation at 
890 nm with a fluence of 7.9 mJ/cm2 (a) and 10.4 mJ/cm2 (b). All scale bars represent 50 nm. 

Figure 6.2a and Figure 6.2b show HAADF STEM images of two silica-coated NRs before and after 
laser excitation. HAADF STEM images were acquired by Prof. Dr. Thomas Altantzis and Dr. 
Wiebke Albrecht using an aberration-corrected ‘cubed’ FEI-Titan electron microscope, operated 
at 300 kV. The NR shown in Figure 6.2a was defect-free before laser excitation. Upon laser 
excitation, its aspect ratio (AR), which is the ratio of NR’s length to its width, decreased from 4.4 
to 3.8 and twinning planes occurred. Similarly to the NR in Figure 6.2a, a defect-free NR in Figure 
6.2b contained lattice defects after femtosecond laser excitation and its AR reduced from 4.3 to 
3.5. Mostly, twin boundaries were observed and for the majority of the investigated NRs, these 
were perfectly parallel to each other (Figure 6.2a and Figure 6.2b). However, Figure 6.2c suggests 
that under the same irradiation conditions twin boundaries were also found along more than one 
direction. In addition to twinning boundaries, the deformed NRs in Figure 6.2a-c show a bullet-
like intermediate shape, as was also previously observed for silica-coated Au NRs after 
femtosecond laser excitation. 112 

Interestingly, almost all silica-coated Au NRs did not show crystal defects when heated in a furnace 
at 500°C for 2 hours (as illustrated in Figure 6.2d as an example). Moreover, the silica-coated Au 
NRs did not fully transform into a spherical shape under these conditions, as expected for as-
synthesized Au NRs without a silica shell. 354 This is due to the hindrance of surface atoms induced 
by the silica confinement. For all of these observations, however, caution needs to be taken when 
interpreting the shape of a 3D object from 2D projection images. To unambiguously determine the 
3D morphology and to understand the role of surface facets during reshaping, a 3D analysis is 
indispensable. 
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Figure 6.2 Defect creation upon femtosecond laser excitation at 925nm with a fluence of 6.5 mJ/cm2. a) 
HAADF STEM images of a mesoporous silica-coated Au NR with an initial length of 51.2nm and width of 
11.6 nm before and after laser excitation. b) HAADF STEM images of a mesoporous silica-coated Au NR 
with an initial length and width of 40.9nm and 9.6 nm before and after laser excitation. c) Another silica-
coated Au NR of the same sample batch after laser excitation. d) Silica-coated Au NR of the same sample 
batch after oven heating at 500°C for 2 h. The colors in (a)-(c) correspond to different crystal orientations. 
It should be noted that although the silica coating is surrounding the NRs, it is not visible in the HAADF 
STEM images due to the large contrast difference between silica and Au. All scale bars represent 5 nm. 

6.4.  3D characterization by electron tomography 

High-resolution electron tomography tilt series from the NR shown in Figure 6.2a were acquired 
before and after laser excitation within a tilt range from -69°to +72°and from -68°to +74°, with a 
tilt increment of 3°and 2°, respectively. The high-resolution electron tomography of silica-coated 
Au NRs was performed by Dr. Adrián Pedrazo-Tardajos using the 3D reconstruction algorithm 
developed by Dr. Ivan Lobato. 81 The 3D visualization of the reconstructions are presented in 
Figure 6.3a. 
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Figure 6.3 3D characterization of the mesoporous silica-coated Au NR shown in Figure 6.2a before and 
after femtosecond laser excitation. a) 3D visualization of the high-resolution electron tomography before 
and after excitation along the same viewing direction. A magnified visualization shows the single-crystalline 
nature of the particle before laser excitation. After excitation, a magnified visualization and a slice through 
the middle of the NR (right box) confirm twinning defects. b) 3D visualization of redistributed volume upon 
laser excitation. The left and right sides show areas of local volume decrease and increase, respectively, 
overlaid on visualization of the segmented original NR (purple). c) Visualization and quantification of the 
facet distribution at the two tips before and after laser excitation. 

As expected, prior to laser excitation, the Au NR yielded a defect-free FCC lattice, without 
significant surface roughness (Figure 6.3a left side). After exposure to about 104 femtosecond laser 
pulses, the NR’s surface roughened (Figure 6.3a right side) along with the appearance of twin 
boundaries, which is common for FCC lattices. Because the 3D information of the same NR before 
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and after laser excitation were extracted, the redistributed volume could be calculated, displayed in 
Figure 6.3b. The overall volume of the NR was 5.16 × 103 nm3 and did not change after laser 
excitation. 9% of the NR’s volume redistributed upon laser excitation. During this redistribution, 
about 28 000 atoms diffused from the tips of the NR (left image in Figure 6.3b) to its side (right 
image in Figure 6.3b). 

The surface facets of the NR before and after femtosecond laser irradiation were determined by 
using the 3D reconstructions. To determine the facet distribution of the experimental NR before 
femtosecond laser irradiation, first the reconstructed volume (Figure 6.3a left side) was scaled 
according to the pixel size of the experimental image. Then, the rescaled 3D volume was binarized 
by setting the values above a threshold to 1 and setting the others to 0. Here, the threshold value 
was defined by using Otsu’s method. 243 Later, the 3D volume was filtered with a 3D Gaussian 
smoothing kernel to create a mask. Meantime, a Au structure was created in a rectangular 
simulation box according to the defect-free FCC structure of the NR before laser irradiation which 
was proven by the high-resolution electron tomography. Then, the Au NR was extracted by 
applying the created mask to the FCC Au structure created in a rectangular simulation box. Finally, 
to identify the surface facets, coordination analysis was applied through Ovito Python open source 
scripts. 247 To control the range of neighbors taken into account during the coordination analysis, a 
cutoff radius of 3.48 Å, which corresponds to the first minimum of the pair distribution function, 
was defined.  

According to determined surface facets, the Au NR before laser excitation yielded 35% {100}, 
22% {110}, and 20% {111} as well as higher-order surface facets. When the same approach was 
applied to the 3D reconstruction after laser excitation (Figure 6.3a right side), it has been observed 
that the volume redistribution (Figure 6.3b) did not only lead to the observed AR reduction but also 
to facet restructuring (Figure 6.3c), where the more stable {111} surface facets expanded at the 
expense of less stable {100} and {110} facets. 

6.5.  MD simulations for femtosecond laser excitation of NRs 

In Sections 6.3 and 6.4, it has been observed that a range of morphological deformations and 
structural defects may appear upon femtosecond laser excitation. Considering many promising 
applications of Au NRs, a full understanding of the mechanisms behind the observed deformations 
is crucial. Although 3D electron tomography allows to measure the structural and morphological 
properties of the NRs before and after femtosecond laser excitation, presently it is impossible to 
experimentally capture dynamic information of the underlying processes. Therefore, to unravel the 
mechanism behind the atomic scale transformations causing morphological changes and defect 
generation upon femtosecond laser irradiation, MD simulations were performed.   

Hereby, a representative heating regime of the laser irradiation is crucial for MD simulations 
because the laser-induced structural changes in a Au NR depend on the heating rate and the 
maximum temperature that is reached. 223 However, for experiments, it is not straightforward to 
measure the temperatures of NPs. On the one hand, the absorbed laser energy, and thus the 
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temperature of a Au NR depends on its exact AR, volume and orientation with respect to the laser 
polarization. On the other hand, inhomogeneities in the TEM grid can lead to changes in the 
absorbed energy when illuminating a NR. Therefore, to reliably mimic the experiments, the heating 
regime of a femtosecond laser pulse was modelled as explained in Subsection 6.5.1 and the 
temperature profiles were obtained for mesoporous silica coated and bare Au NRs with three 
different ARs (3.0, 3.5, 4.5).  

In Subsection 6.5.2, the AR effect on the deformation of NRs is investigated by using model-like 
facet distribution as typically applied for MD simulations. 223,349,350 The experimental observations 
indicate that, in addition to the importance of the AR, the mesoporous silica coating around bare 
Au NRs influences the final structure after laser excitation. However, the role of coating on the 
laser-induced deformation mechanism of the Au NRs was never investigated in the simulations. 
Therefore, in contrast to previous studies, the effect of mesoporous silica coating around Au NRs 
is investigated in Subsection 6.5.2.  

In Subsection 6.5.3, the information from high-resolution electron tomography (Figure 6.3a) is 
directly used to construct an input structure, which resembles the experimental NR more accurately 
than the model-like systems. In this manner, the deformation dynamics of the experimental NR can 
be better understood. 

 Modelling heating regime of a femtosecond laser pulse 

The absorption of a femtosecond laser pulse by the NP can be summarized in three main steps: 
electronic absorption, electron-phonon thermalization and heat dissipation. In this study, the 
approach proposed by Baffou et al. in refs 355,356 was followed to model electronic absorption and 
electron-phonon thermalization. It has been found that this approach is a simpler approach than the 
so-called two-temperature model 357,358 and can reliably reproduce the experimental results in this 
study. To model the heat dissipation, the lumped capacitance method was applied. 359 

Electronic absorption 

When exciting the longitudinal plasmon resonance with a high-energy femtosecond laser pulse, the 
photon energy is absorbed by the free electrons of the Au NR. The electronic gas thermalizes very 
fast over a timescale of around 100 fs. 355,356,360,361 This leads to a state of non-equilibrium within 
the NR where the temperature of the free electron gas increases whereas the temperature of the 
phonons (lattice) remains unchanged. The total energy transferred from the laser pulse to the 
electron density can be expressed by: 𝐸 = 𝜎௔௕௦𝐹 ,                                                            (6.1) 

where 𝜎௔௕௦ is absorption cross section and 𝐹 is the applied fluence, which are given in Appendix 
A. 
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Electron-phonon thermalization 

Subsequent to the electronic absorption process, the hot electron gas relaxes through the internal 
electron-phonon interaction. 355 This electron-phonon interaction leads to a temperature increase in 
the lattice. The characteristic time scale of the electron-phonon scattering is often independent from 
the size of the NP. It has been stated that, for the use of Ti:sapphire laser, a typical electron-phonon 
relaxation time (𝜏௘௣) approximately corresponds to 1.7 ps. 355,356,362,363 For femtosecond laser 
pulses, the energy transfer from the electrons to the lattice occurs according to an exponential decay 
function: 355 𝑝(𝑡) = 1𝜏௘௣ exp ቆ− 𝑡𝜏௘௣ቇ .                                              (6.2) 

Therefore, the femtosecond laser-induced temperature increase in the Au NR with respect to time 
(𝜕𝑇/𝜕𝑡) can be expressed by: 355  𝑐௣𝜌𝑉 𝜕𝑇𝜕𝑡 = 𝜎௔௕௦𝐹𝑝(𝑡) ,                                                (6.3) 

where 𝑐௣ represents the specific heat capacity of Au, 𝜌 is the density of Au and 𝑉 is the volume of 
the Au NR. 359 The physical constants are tabulated in Table 6.1. 

Heat dissipation 

Finally, the absorbed heat dissipates through the surrounding medium which leads to a cooling in 
the lattice and heating of the surrounding medium. The heat dissipation usually occurs at longer 
time scales, depending on the size of the NP and its surrounding medium, compared to the time 
scales of electronic absorption or electron-phonon thermalization. For example, a typical heat 
dissipation time for silica-coated Au NPs is around 50-100 ps for water and ethanol environments. 
364 To mimic the cooling regime of the NRs during heat dissipation, the lumped capacitance method 
was used. 359 The lumped capacitance suggests a uniform temperature distribution in the particle 
during heat dissipation, depending on the volume-to-surface ratio of the NP under investigation, 
the thermal conductivity of the NP and the heat transfer coefficient of the surrounding medium. 
The validity of this approach is confirmed by calculating a dimensionless number, the so-called 
Biot number, which provides a measure of the temperature drop in the NP relative to the 
temperature difference between the NP surface and the surrounding medium. 359 When the Biot 
number smaller than 0.1, the temperature gradients within a particle remains negligible during the 
heat transfer between the particle and its surroundings. 359 As shown in Appendix A, Biot number 
was calculated by considering the size and surface-to-volume ratio of the experimental NR with a 
length of 51.2 nm and width of 11.6 nm (Figure 6.3a), and so the validity of the lumped capacitance 
method was confirmed for this study. Consequently, the heat dissipation of the NP can be 
summarized as: 𝑐௣𝜌𝑉 𝜕𝑇𝜕𝑡 = 𝑈௠௘ௗ௜௨௠𝐴(𝑇 − 𝑇௠௘ௗ௜௨௠)                                   (6.4) 
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where 𝐴 is the surface area of the NP and 𝑈 represents the thermal resistance which is calculated 
by using Equation 6.5 for a glycerol medium (uncoated Au NRs) or by using Equation 6.6 for a 
glycerol/silica medium (Au NRs coated with mesoporous silica). 

𝑈௚௟௬௖௘௥௢௟ = 11ℎ௚௟௬௖௘௥௢௟ + 𝐿௖𝑘஺௨                                              (6.5) 

 𝑈௚௟௬௖௘௥௢௟/௦௜௟௜௖௔ = 11ℎ௚௟௬௖௘௥௢௟ + 𝐿௖௢௔௧௜௡௚𝑘௣௢௥௢௨௦ ௦௜௟௜௖௔ + 𝐿௖𝑘஺௨ 
                            (6.6) 

Hereby, 𝐿௖௢௔௧௜௡௚ represents the thickness of the mesoporous silica coating (18 nm) which is filled 
with glycerol and 𝐿஼ is the volume-to-surface ratio of the Au NP. Moreover, 𝑘஺௨ is the thermal 
conductivity of Au, 𝑘௣௢௥௢௨௦ ௦௜௟௜௖௔ is the thermal conductivity of the porous silica filled with glycerol 
and ℎ௚௟௬௖௘௥௢௟ is the convective heat transfer coefficient of glycerol. The calculation of these 
coefficients including nano-size effects section are given in Appendix A and the physical constants 
are tabulated in Table 6.1.  

Due to the sufficiently short duration of femtosecond laser excitation and the small size of the NR 
in this study, it can be assumed that there is no overlap between these successive steps. This is also 
the reason why femtosecond-heating is more efficient than nanosecond-heating since the total 
energy from the laser pulse can be transferred to the crystal completely before lattice cooling takes 
place. 355,356,361 Moreover, because of the same reasons (short duration of femtosecond laser 
excitation and small size), it has been assumed that the temperature uniformly changes within the 
NP during laser excitation. The details of the validation of the assumptions and derivation of the 
heating-cooling model are explained in Appendix A.  

The obtained temperature profile for mesoporous silica coated and uncoated Au NRs with three 
different ARs (3.0, 3.5 and 4.5) are shown in Figure 6.5. According to the calculated temperature 
profiles of the laser irradiation, the maximum temperature that the NR reached during laser heating 
increased with increasing AR and volume due to the shape-dependent plasmonic properties. The 
heat dissipation was slower for silica-coated NRs due to the additional heat resistance at the surface. 
The latter indicates the crucial importance of including the cooling process in the simulations. 

 MD simulations by using model-like inputs 

Creating input structures  

Based on earlier works 223,349,350 and the determined surface facets of the Au NR using electron 
tomography (Figure 6.3), model-like input structures of Au NRs with three different ARs (3.0, 3.5 
and 4.5) were constructed to have {110} and {100} lateral facets, and a combination of {100}, 
{110}, {111} facets at its tips. As generally known, high computational costs limit the size range 
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and time scales of MD simulations. Hence, using the actual size of common realistic experimental 
NPs remains challenging. Therefore, Au NR models with a diameter of 4 nm were used throughout 
the MD simulations. These NRs were constructed by cutting out octagonal prisms from an FCC 
Au matrix with a lattice parameter of 4.08 Å. The two base faces of the octagonal prisms correspond 
to Au {100} facets, and the other eight faces were alternate {100} and {110} facets. The ends of 
the prism were truncated to form {110} and {111} facets.  

A realistic mesoporous silica structure was created based on the study of Patil et al. 365 First, a β-
cristobalite silica structure was created because it has a density of 2.17 g cm−3, which is close to 
that of amorphous silica. In this structure, the silicon atoms occupy the positions they take in the 
diamond structure, while the oxygen atoms form bridges between them. Next, a random velocity 
was assigned to atoms at 7000 K which was followed by a rapid quenching to 300 K using the 
NVT ensemble. Then, energy minimization was applied using the conjugate gradient method. 
Afterward, the system was relaxed to atmospheric conditions (300 K and 1 bar) for 7.5 ps using 
the NPT ensemble followed by an instantaneous expansion to the desired density. The expanded 
system was then heated to 3000 K for 50 ps and relaxed using the NVT ensemble. The final porous 
silica structure was formed by quenching the system to 0 K, followed by energy minimization. The 
consecutive annealing and quenching processes to obtain the porous silica structure are illustrated 
in Figure 6.4. During these simulations, a time step size of 0.5 fs was used. The obtained structure 
exhibited a porosity around 70%, which is close to typical values of 60-70 % for mesoporous silica 
coating around NRs. 366 

 
Figure 6.4 The main steps for the creation of the mesoporous silica. 

The created input structures of Au NRs were then placed at the center of the simulation box, which 
was filled with the created porous silica. Next, the input structures of Au NRs with a 4 nm 
mesoporous silica coating were extracted. Then, the mesoporous silica coated Au NRs were placed 
in a larger simulation box with enough vacuum area in all three directions and relaxed for 10 ns at 
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room temperature before starting the MD simulations for laser heating. During the MD simulations, 
EAM 190 was used for the interaction between Au atoms. Moreover, the inter-atomic potential of 
Vashishta et al. was defined for the interaction between the atoms of silica. 203 For the interaction 
between the Au atoms and the mesoporous silica coating, the Lennard-Jones potential was applied 
where the following LJ parameters were used: εO-Au = 0.1, εSi-Au = 0.1, σO-Au = 3.5, σSi-Au = 3.5, cut-
off = 6.0 Å. In addition, since the density of the porous silica was low and the interaction between 
the Au and the coating was weak, a low spring force of 0.0002 was applied on the atoms of silica. 

The results of the MD simulations for femtosecond laser excitation 

Side views and interior structures of the NRs before and after the modeled laser excitation from 
MD simulations, as well as the obtained temperature profiles are shown in Figure 6.5. For the 
internal structure identification of the NRs, the polyhedral template matching (PTM) approach was 
used with Ovito Python open-source scripts. 247,251 In the PTM method, a convex hull is formed by 
the set of neighboring atoms to construct a small set of candidate structures. Then, local crystalline 
order is identified by matching the local atomic neighborhood to the templates of the structural 
types determined by the PTM algorithm, which is sensitive to the RMSD value. RMSD is a measure 
of the spatial deviation of the atoms from their expected positions in the crystal phase. Therefore, 
defining accurate RMSD values is essential to avoid errors in the local structure identification due 
to the increased thermal displacements at high temperatures during laser heating. In this study, the 
temperature-dependent RMSD was calculated based on the parameterization of the temperature 
dependence of DWF presented in the study of Gao et al. 150. Since the PTM approach considers the 
effect of thermal vibration, it promises greater reliability to describe the local structure around an 
atom, especially in the presence of strong thermal fluctuations and strain, compared to other 
structural identification methods, such as Voronoi analysis or the common neighbor analysis. 248,367 

Figure 6.5 shows that MD simulations of femtosecond laser heating resulted in an increase in {111} 
as well as the formation of twinning planes resulting from internal restructuring from pure FCC to 
FCC with twinning planes (Figure 6.5b,c). It can be seen that the density of twinning planes after 
laser excitation differed according to the initial AR and the presence of a coating. Hereby, the twin 
density increased with increasing AR (red atoms in Figure 6.5b,c). Moreover, the effect of the silica 
coating resulted in the development of a multiple parallel twin structure, whereas for uncoated 
particles a range of defects, e.g. stacking faults and twinning planes, along the long axis of the NR 
were also observed. These observations are in excellent agreement with the experiments as we 
observed parallel twin planes for the coated NRs (Figure 6.2 and Figure 6.3), and a range of defects 
for uncoated NRs (Figure 6.1). It is important to note that, depending on the view, twins appear to 
extend in different directions, although they have the same 3D nature (Figure 6.5b,c). This explains 
the reason why twinning planes seemed to occur along seemingly different crystallographic 
directions in 2D HAADF STEM images (Figure 6.2a-c). 

A quantitative comparison of the change in AR, {111} facets and HCP of NRs after laser excitation 
is presented in Figure 6.6. As already visually observed in Figure 6.5, the uncoated NR with the 
highest AR, 4.5, deformed the most. This is confirmed by the significant change in the AR, 
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percentage of {111} surface facets, and HCP structure in Figure 6.6. Moreover, it is clear that the 
mesoporous silica coating improved the stability of the NRs. The coating hindered the atomic 
surface diffusion and consequently led to a decrease in the percentage of {111} facets change and 
AR change. For the uncoated NRs, the AR decreased by 34%, 36% and 56% for initial ARs of 3.0, 
3.5 and 4.5, respectively. For the coated Au NRs the AR changes were smaller with 0%, 5% and 
24%, respectively. The stronger deformation at larger ARs in the simulation can be attributed to 
the higher maximum heating temperature (Figure 6.5b,c) due to the shape dependent plasmonic 
properties of the NRs.  

 

 
Figure 6.5 MD simulations of laser-heated Au NRs with a model-like input structure. a) Cut through the 
input structures. b) Side views (left sides) and interior structure (right sides) before and after simulated laser 
pulse excitation and the calculated temperature profile for three different bare Au NRs with varying ARs. 
c) Side views (left sides) and interior structure (right sides) before and after simulated laser pulse excitation 
and the calculated temperature profiles for three different mesoporous silica-coated Au NRs with varying 
ARs. The silica coating is omitted in the visualizations. The cross sectional views of the deformed NRs after 
femtosecond laser irradiation are shown from two different viewing directions. 
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Figure 6.6 Comparison of the change in (a) AR, (b) {111} facets and (c) HCP internal structure for the NRs 
from Figure 6.5. The uncoated NRs are represented by the solid lines and the coated ones by the dashed 
lines. 

 MD simulations based on the experimentally determined morphology 

To capture dynamic information of the underlying processes of the experimental NRs, which is 
presently impossible to assess experimentally, the information from atomic resolution electron 
tomography (Figure 6.3c) was directly used to construct an input structure. To compare with the 
model-like input structure of the coated 4.5-AR Au NR (Figure 6.5), the experimentally-based 
input structure was scaled down to the same diameter of 4 nm but all the other parameters, such as 
the percentage of surface facets and AR were preserved. The same heating profile of the model-
like coated 4.5-AR Au NR was used (Figure 6.7a) since the volume and AR of the two NRs are 
very similar. The main difference between the experimental-based and the model-like structure is 
the facet distribution. The rescaled experimental input structure contained a larger amount of {111} 
facets (18.3% compared to 3.4%) and a smaller amount of {100} and {110} facets.  

Upon laser heating, the shape transformation started almost immediately by a drop in the AR 
(Figure 6.7b), which did not change significantly during the rest of the cooling. Around 1024K 
(point 2 in Figure 6.7d) hexagonal close-packed (HCP) and body-centered cubic (BCC) interior 
regions occurred within the FCC structure. Afterwards, the percentage of HCP and BCC atoms and 
{111} facets increased continuously (point 3 in Figure 6.7c,d). Upon reaching the maximum 
temperature (point 4 in Figure 6.7d), the growth of the HCP structure resulted in stacking faults 
that concentrated in the middle of the NR. Disordering continued until the NR cooled down to 
about 1150K (point 7 in Figure 6.7d), when the minimum of internal FCC structure was reached. 
During cooling, the distance between the twin planes increased while surface reorganization 
continued until 500K (point 9 in Figure 6.7c,d). The slower heat dissipation for coated NRs, 
compared to uncoated NRs, resulted in more time for the HCP internal regions to grow into 
twinning (Figure 6.7d). It has been experimentally confirmed that the ordering into multiple twins 
occurred after surface diffusion as twins extended over multiple NPs which welded together upon 
laser excitation. 

To evaluate whether the internal lattice defects were caused by induced strain due to the surface 
transformation, atomic strain analysis was performed (Figure 6.8a). The local shear strain was 
determined based on the displacement vector of each atom using OVITO Python open-source 
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scripts. 368 Calculation of the local strain requires a reference configuration, which was defined as 
the atomic configuration of the Au NR at the beginning of the simulations. This method also 
considers the relative displacement of the neighbor atoms within a cutoff radius when computing 
the atomic deformation gradient tensor for a particle. Here, the cutoff radius was again taken as 
3.48 Å. 

 

Figure 6.7 MD simulations for a mesoporous silica-coated Au NR with the experimentally measured surface 
facets as input structure (silica not shown). a) Applied laser heating profile (same as blue curve in Figure 
6.5c.). b) AR change overlaid with the heating profile. c) Side views at the time points indicated in a) and 
quantification of corresponding facet changes. d) Internal structure at the time points indicated in a) and 
quantification of structural changes. All colors in the graphs correspond to the same colors in the 
visualizations. 

Figure 6.8b connects the change in AR, shear strain, occurrence of {111} surface facets and HCP 
internal transformation. At the beginning of laser heating, the shear strain increased almost 
instantaneously due to the displacement of atoms out of their equilibrium position (magenta arrow 
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in Figure 6.8b). The onset of surface diffusion was reflected in the increase in {111} surface facets 
and change in AR. Simultaneously, the first HCP interior atoms appeared prior to localized melting 
in accordance with literature. 333 Until the maximum temperature was reached (point 4 in Figure 
6.8a), the atomic strain was only related to displaced atoms due to heating. Then, localized stress 
propagated from the surface through the internal structure (white arrows in Figure 6.8a). The sharp 
increase in potential energy around point 4 (as labeled in Figure 6.8c) indicates local melting after 
the occurrence of the first point defects (point 3). Together with localized melting around the 
interior areas with HCP and BCC defects occurring around point 4, internal planes shifted, forming 
stacking faults in the middle of the NR. During cooling at 1080K (around point 8) the HCP 
percentage reached its maximum. The change in AR and {111} facets was maximal at around 900 
K, while the shear strain continued to slowly increase until around 660 K, causing the separation 
of neighbouring stacking fault HCP layers, which resulted in multi-twin boundaries. 

 
Figure 6.8 Strain analysis of the simulated silica-coated Au NR in Figure 6.7. a) Atomic shear strain maps 
taken at the same time points as in Figure 6.7. The atoms are colored according to their local shear strain, 
which is measured by the displacement gradient of atoms with respect to their initial positions and taking 
into account the relative displacements of the neighboring atoms. b) Comparison of strain, AR change, 
{111} facet evolution and HCP atoms occurrence. c) Average potential energy of Au atoms shown for the 
first 100 ps.  

Although the final morphology of the model-like (Figure 6.5) and the experimental (Figure 6.7) 
input structures appear qualitatively similar, quantitative differences exist. Figure 6.9b 
demonstrates the relative difference in the final shapes of the NRs from the top and side view. Also, 
in Figure 6.9c-e, the relative change in AR, HCP occurrence and the change in {111} facets are 
shown, respectively. The NR based on the experimental input facets was less stable as evident from 
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the larger change in shape (Figure 6.9b) and AR (Figure 6.9c). Although the transformation of the 
internal structure was almost identical (Figure 6.9d), the relative facet changes (Figure 6.9e) 
differed significantly. The relative {111} facet transformation occurred faster for the model-like 
input structure in the initial stage and also an additional 10% of the surface facets were transformed 
into {111} facets (Figure 6.9e) compared to the experimental input structure. This observation 
clearly shows the importance of using experimental structures as input for simulations. Moreover, 
it demonstrates that morphology-dependent surface diffusion and facet restructuring 
simultaneously drive the deformation of metal NPs. 

 

Figure 6.9 a) Comparison of input structures for the experimental-based (black curves) and model-like (red 
curves). (b) Change in the shape of NRs from top and side view, c) AR change, d) HCP occurrence and e) 
relative change in {111} facets after the MD simulations of laser heating. 

6.6. Discussion 

From a thermodynamics point of view, all anisotropic Au NPs are unstable or far out of equilibrium 
and will strive to reach an equilibrium shape. According to the Wulff theorem, the equilibrium 
shape of our Au NPs is a truncated octahedron exposing {100} and {111} facets. 249 On the other 
hand, surface coatings can kinetically stabilize an out-of-equilibrium shape, at least at room 
temperature. At elevated temperatures, these kinetic barriers can be overcome and the particles will 
transform towards their thermodynamically stable shapes. Two critical parameters of this 
transformation process are heating temperature and time. 112,333,354 For heating temperatures above 
the melting point, the NP will melt and recrystallize into its thermodynamically stable shape. For 
laser-heated NRs, the heating time and the achievable deformation is limited. 354 Allowing the NR 
more time to reach its thermodynamically stable state, led to a stronger deformation despite the 
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same maximum heating temperature as shown in Figure 6.10. 

As demonstrated in the previous sections, the NR did not only lower its AR but also developed 
multiple twin boundaries after laser illumination. Concerning the atomistic mechanism in creating 
lattice defects, the results presented in this chapter bridge different studies in literature. On the one 
hand, surface diffusion was responsible for the start of the deformation, 223,349 which resulted in 
stress propagating from the surface to the interior and facilitating internal point defects to evolve 
into stacking faults, accompanied by local melting as suggested by Link et al. 347 Then, the high 
strain around stacking faults caused a transformation into multiple twin structures. On the other 
hand, although observed in, 350 surface melting did not happen prior to the occurrence of planar 
defects. A plausible reason for the discrepancy is that the common neighbor analysis used in 350 
ignores thermal displacement of the atoms that can easily cause inaccuracies in detecting point 
defects of HCP structures at high temperatures. Although extended twin and double twin 
boundaries were observed to be almost free from atomic displacements compared to an ideal FCC 
lattice, 369 the ideal thermodynamic minimum corresponds to a single-crystalline FCC structure. 
For laser-heated NRs, the heating and cooling rates are too fast to allow reorganization into a single 
crystalline lattice. With enough time at higher temperatures and during cooling, the Au NR will 
strive towards eliminating the internal defects resulting in NRs with reduced twin boundaries 
(Figure 6.2d and Figure 6.11). 

 

Figure 6.10 Snapshots of a “slow” heating process of a bare Au NR with an initial aspect ratio of 4.5. The 
NR was heated to the same maximum temperature as for the laser heating (Figure 6.5b) with a constant 
heating rate of 0.1 K/ps and then cooled to room temperature with a cooling rate of 0.1 K/ps. The NR 
deformed more compared to laser heating. 

The results in this chapter thus show that laser-induced deformation is a complex process defined 
by a delicate interplay between thermodynamics and kinetics. The actual kinetic pathway of the 
transformation is difficult to predict and a controversy exists between curvature-driven, 332 defect-
driven 347 and facet-driven 349,350 below-melting-point deformation. By performing slow heating 
experiments inside the TEM, it was proposed that the shape determines the kinetic pathway. 370 
Whereas for NRs, curvature was the dominant factor with reshaping to rounder shapes with higher 
index facets, deformation of triangular nanoplates was driven by surface faceting. Indeed, in our 
case the NP's tips became more rounded indicating curvature-driven surface diffusion. However, 
the changes in surface facets can only be quantified based on 3D information as done here. The 
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change in morphology actually allows for an increase of stable {111} surface facets and decrease 
of more unstable facets. Despite having the same curvature with the NR from the experimental 
input, the facets of the model-like NR were found to change more, reducing the overall energy. 
Thus, curvature and facet-driven below-melting-point deformation are not necessarily competing 
processes but are rather intertwined. 

 
Figure 6.11 Snapshots of a “slow” heating process of a bare Au NR with an initial aspect ratio of 3.5 
simulated by MD. The NR was heated to the same maximum temperature as for the laser heating (Figure 
6.5b) with a constant heating rate of 0.1 K/ps and then cooled to room temperature with a cooling rate of 
0.1 K/ps. The NR exhibited fewer internal defects compared to laser heating. 

The amount of facet transformation was indeed linked to the initial facet distribution and the same 
initial AR and volume of the NR did not result in the same deformation dynamics (Figure 6.9). 
This becomes clear from the comparison of the model-like NR with the morphology based on 
experiments. In the latter case, the amount of stable {111} facets were higher but yet it deformed 
more. This can be explained by the fact that the initial surface disorder present for the experimental 
NR influenced the deformation dynamics, providing kinks and steps on the side of the NR as a 
low-energy path for atoms diffusing from the tips. On the contrary, the nucleation of new atomic 
planes was necessary for diffusing atoms for the model-like structure, 371 leading to an increase in 
stability. This will not only depend on the amount of disorder but also on the exact ratio of initial 
facets. 

Deeper knowledge about reshaping and restructuring is tremendously important for the routine use 
of silica-coated metal NPs in actual applications. For this purpose, the results presented in this 
chapter provide an understanding concerning the conditions under which defects are formed and 
reshaping occurs. For most plasmonic applications such as imaging, sensing and biomedicine, 
reshaping and atomic restructuring is unwanted because it changes the carefully designed optical 
properties. Moreover, the creation of even a single lattice defect already causes plasmon 
broadening. 30 Our work demonstrates that local temperatures of more than 1000K can be achieved 
for silica-coated Au NRs without inducing structural and morphological modifications, which is 
not possible for bare Au NRs. Furthermore, it is essential to particularly highlight the importance 
of controlled restructuring for catalytic applications. It was recently demonstrated that a high 
density of stacking faults in Ag NPs immensely increased the activity for the hydrogen evolution 
reaction, thereby outperforming conventional Pt catalysts. 31 Being able to control the internal 
restructuring as well as occurrence of specific surface facets will be a powerful tool in future 
catalytic research. 372 As shown in our work, a mesoporous silica coating gives a significantly better 
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control over the density of stacking faults, strain and surface coordination numbers compared to 
bare Au NPs. Our work paves the way towards tuning these parameters by changing the amount of 
absorbed heat (either by changing the AR of the NP or excitation power) to create highly active 
and stable future catalysts. 

6.7.  Conclusion 

By combining experimentally retrieved 3D atomic scale information and MD simulations, it has 
been shown that femtosecond laser induced deformation with energies below the melting point 
proceeds twofold: 1) the NR deforms towards its thermodynamic equilibrium shape by curvature-
driven surface diffusion and 2) the nanocrystal additionally lowers its free energy by creating more 
low-energy surface facets at the cost of internal twin boundaries. The latter are induced by a 
combination of atomic strain and localized melting. To reproduce the experimental data, 
femtosecond laser heating regime was modelled where the cooling process was specifically 
included in the simulations. By doing so, it has been observed that a mesoporous silica coating did 
not only stabilize Au NRs upon laser heating but also influenced the structure after deformation, 
which is due to the combination of a modified cooling profile and hindrance of surface diffusion. 
Finally, it has been demonstrated that subtleties in atomic scale morphology can significantly 
influence the physical properties of nanomaterials and their transformation mechanisms. Hence, 
the actual experimental morphology needs to be considered when studying dynamic atomistic 
processes. Therefore, incorporating realistic morphologies in models and simulations will be 
imperative for understanding and predicting the behavior of nanomaterials in practically relevant 
conditions. The methodology and insights demonstrated in the present study are expected to be 
valuable for open questions such as the effect of atomic distribution and crystal defects in NPs on 
their optical properties and catalytic performance. 

 

Appendix A: Derivation of heating-cooling model to mimic femtosecond laser 
pulse 

The validity of the heating model and the approximations were first checked by considering the 
experimental NR shown in Figure 6.3a (initial length and width of 51.2 nm and 11.6 nm, 
respectively). After the validation, the heating model was applied to simulated Au NRs having a 4 
nm diameter. It should be noted that, although the validity of some approximations was tested by 
using the concepts of "effective diameter" or "characteristic length", the heat equations were solved 
by considering the size of the Au NR. 

Validation of Approximation 1: Uniform temperature increase within the NP during electron-
phonon scattering 

During electron-phonon scattering, the temperature within a NP does not necessarily increase 
uniformly. When the lattice temperature starts to increase while the NP is still being illuminated, 
i.e. in nanosecond laser excitation, the temperature possibly differs radially inside the NP. On the 
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other hand, the time scale of electron-phonon thermalization is much longer than the pulse duration 
of femtosecond laser excitation. Therefore, it is reasonable to assume that there is no overlap 
between electron absorption and electron-phonon thermalization as long as the size of the NP is 
sufficiently small. Studies have shown that this approximation is valid if the size of the NP is 
smaller than 50 nm. 355,356,361 To test the validity of this assumption for the anisotropic systems, the 
effective diameter (𝐷௘௙௙) is calculated as follows:  

𝐷௘௙௙ = ൬6𝑉𝜋 ൰(ଵ/ଷ)
 .                                                 (6.7) 

Hereby, 𝑉 represents the volume. The volume of the Au NR shown in Figure 6.3a (initial length 
and width of 51.2nm and 11.6 nm, respectively) was calculated by considering the geometry as a 
hemispherically capped cylinder:  

𝑉 = 𝜋𝐷ଶ4 (𝐿 − 𝐷) + 𝜋𝐷ଷ6  ,                                             (6.8) 

where 𝐷 is the diameter and 𝐿 is the length of the NR. According to Equation 6.7 and Equation 6.8, 
the effective diameter of the Au NR was found to be around 21 nm, which is smaller than 50 nm. 
Hence, it is reasonable to assume that the temperature is not dependent on the distance and it 
changes only as a function of time 𝑇(𝑟, 𝑡) ≈ 𝑇(𝑡). 

Validation of Approximation 2: Lumped capacitance approach for heat dissipation 

To check the validity of this Lumped capacitance method, the Biot number was calculated as a 
ratio of convection at the surface of a particle to the conduction within the particle is given by: 359  𝐵𝑖 = ℎ௠௘ௗ௜௨௠𝐿஼𝑘஺௨                                                    (6.9) 

where ℎ௠௘ௗ௜௨௠ is the convective heat transfer coefficient of the surrounding medium, 𝑘஺௨ is the 
thermal conductivity of Au, and 𝐿஼ is the volume-to-surface ratio of the NP. The Biot number 
smaller than 0.1 means that the resistance to conduction within the solid is much less than the 
resistance to convection across the boundary to the surrounding medium, which leads to a uniform 
temperature distribution in the particle during heat dissipation. ℎ௠௘ௗ௜௨௠ was calculated as follows: 

ℎ௠௘ௗ௜௨௠ = 𝑘௠௘ௗ௜௨௠ × 𝑁𝑢/𝐷௘௙௙ ,                                 (6.10) 

where 𝑁𝑢 represents the Nusselt number for natural convection and more detailed information can 
be found in ref 359 and 𝑘௠௘ௗ௜௨௠ is the thermal conductivity of the surrounding medium, which is 
either glycerol or silica/glycerol in our case and is detailed below.  
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Thermal conductivity of Au NR 

The thermal conductivity of Au 𝑘஺௨ for bulk systems is 317 W/m.K. 359 However, when the size 
of the system gets close to the electron mean free path, the thermal conductivity decreases and 
when the ratio between the size and the mean free path becomes close to 1, the nano-size effect 
needs to be taken into account for the thermal conductivity, which can be determined by: 373 𝑘஺௨𝑘஺௨,௕௨௟௞ = 11 + 𝐾௡ .                                                (6.11) 

Here, 𝐾௡ is the Knudsen number and it equals ఒ೘೑೛஽೐೑೑ . 373 The electron mean free path, 𝜆௠௙௣, of Au 

is equal to 31 nm 359 and the effective diameter of the experimental Au NR was already calculated 
as 21 nm. Since the ratio between the electron mean free path and the effective diameter is close to 
1, the nano-size effect was included into the calculations and the thermal conductivity of the Au 
NR (𝑘஺௨) was hence estimated as 128.8 W/m.K. As a consequence, the Biot number was calculated 
as 0.0008 for glycerol and 0.0006 for glycerol/silica medium, and hence the assumption of uniform 
temperature distribution within the NR is reasonable which allows to approximate 𝑇(𝑟, 𝑡) ≈ 𝑇(𝑡) 
during heat dissipation. 

Thermal conductivity of porous silica filled with glycerol 

The thermal conductivity of the porous silica filled with glycerol 𝑘௣௢௥௢௨௦ ௦௜௟௜௖௔ was calculated by: 
359 𝑘௣௢௥௢௨௦ ௦௜௟௜௖௔ = 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 × 𝑘௚௟௬௖௘௥௢௟ + (1 − 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦) × 𝑘௦௜௟௜௖௔                  (6.12) 

where 𝑘௚௟௬௖௘௥௢௟ is the thermal conductivity of glycerol and 𝑘௦௜௟௜௖௔ is the thermal conductivity of the 
silica. 359 The constants are tabulated in Table 6.1. 

Table 6.1 Physical constants. 

Parameter Symbol Value 
Density of Au 𝜌 (𝑘𝑔/𝑚3) 19300 359 
Dielectric constant marginally changes for silica-glycerol 𝜀௦௜௟௜௖௔ି௚௟௬௖௘௥௢௟  2.17 366 
Dielectric constant marginally changes for glycerol 𝜀௚௟௬௖௘௥௢௟  2.1 366 
Electron mean free path of Au 𝜆௠௙௣ (𝑛𝑚) 31 359 
Specific heat capacity of Au 𝑐௣ (𝑗/𝑘𝑔.𝐾) 129 359 
Thermal conductivity of Au for bulk systems  𝑘஺௨ (𝑊/𝑚.𝐾) 317 359 
Thermal conductivity of glycerol  𝑘௚௟௬௖௘௥௢௟  (𝑊/𝑚.𝐾) 0.286 359 
Thermal conductivity of the silica 𝑘௦௜௟௜௖௔ (𝑊/𝑚.𝐾)  0.014 359 

 

Absorbed energy for simulated NPs 

Due to the time and size differences between the experimental and simulated NRs, the absorbed 
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energy, 𝜎௔௕௦𝐹, was carefully determined for the much smaller simulated NRs to fit the experimental 
conditions. This is necessary because the laser fluence 𝐹, which is used for the experiments, cannot 
be directly applied to calculate the excitation energy for the simulations due to the differences in 
volume between the experimental and simulated NRs. 374 Therefore, the change in absorption cross 
section (𝜎௔௕௦) was calculated using the MNPBEM toolbox 374 by Dr. Wiebke Albrecht for the 
average experimental sizes of the NRs with three different ARs which is depicted in Figure 6.12.  

 
Figure 6.12 Calculated absorption cross sections of mesoporous silica-coated Au NRs with three different 
ARs.  

Furthermore, as described in the section ‘Synthesis and femtosecond laser excitation’, the absorbed 
energy, inducing mild NR reshaping, was generally below the melting energy of the NRs. In order 
not to apply more energy than the melting threshold in the simulations, the melting energy of the 
smaller simulated NRs (with a constant diameter of 4 nm) was calculated as shown in Table 6.2   

Table 6.2 Calculated melting energies 𝑄௠௘௟௧ and applied heating energies 𝜎௔௕௦𝐹 for the simulated NRs. 

AR 𝑄௠௘௟௧ (fJ) 𝜎௔௕௦𝐹 (gJ) 
3 0.51 0.25 

3.5 0.61 0.33 
4.5 0.80 0.51 

 
To stay below the melting threshold, half of 𝑄௠௘௟௧ was used as an excitation energy for AR=3. 
Based on the absorption cross section ratios calculated in Figure 6.12, the appropriate excitation 
energies for simulated NRs have an AR of 3.5 and 4.5. The resulting applied excitation energies in 
the simulations are summarized in Table 6.2 . It should be noted that these energies do not change 
for the uncoated NRs, because the surrounding dielectric constant marginally changes from 2.17 
for silica-glycerol to 2.1 for glycerol. 
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 General conclusion & Outlook 

In this chapter, a general conclusion of the methodologies and insights presented in this thesis is 
drawn, future perspectives for the research presented in this thesis are discussed, and promising 
results to be further explored are demonstrated.    
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7.1.  General conclusion 

Metallic NPs, in comparison to their bulk counterparts, exhibit unique physical and chemical 
properties that make them attractive for an increasing number of applications in various fields, such 
as (photo-)catalysis, biomedicine, sensing, and data storage. The emergent properties of metallic 
NPs are directly linked to their size, shape, structural defects, surface facets, and elemental 
distribution. However, when these NPs are exposed to environmental stimuli, such as heating and 
intense light illumination, rapid structural and morphological transformations are often observed 
in NPs. Since any small change in the local structure of the NPs may significantly modify their 
performance, to gain control over their structure-dependent properties and to relate their design for 
specific applications, an atomic scale understanding is of primary importance. Therefore, this thesis 
was devoted to presenting robust approaches by joining the STEM imaging techniques and 
theoretical calculations in an adequate way to capture 3D atomic-scale transformations of metallic 
NPs when they are exposed to the application-relevant conditions. Within this framework, the 
research presented in this thesis was conducted twofold. 

First, I focused on the 3D atomic-resolution structural characterization of metallic NPs lying on a 
support from ADF STEM images acquired along a single viewing direction during in situ heating 
experiments. Previously reported studies demonstrated that 3D characterization of nanoparticles, 
combining atom counting on 2D high-resolution STEM images acquired along a single viewing 
direction and structural relaxation by atomistic simulations, was a very useful tool. This method 
enabled the 3D atomic structure of NPs in a quantitative manner, as was explained in Chapter 1 
and Chapter 2. However, prior to the research presented in this thesis, this approach was applied to 
free-standing particles roughly symmetrical along the electron beam direction in the electron 
microscope. In order to obtain reliable 3D atomic-scale characterization of the supported metallic 
NPs at high temperatures, which is typical for catalytic applications, several critical steps in the 
methodology were further optimized in Chapter 3. Moreover, in Chapter 4, I introduced the local 
minima search algorithm followed by MD structural relaxation at experimental temperature by 
including the particle-support interaction. This method explores different local minima in the 
energy landscape while quantitatively validating the reconstructed structure in terms of the 
projected atomic column positions and atom counts in atomic columns. It has been shown that the 
proposed approach outperforms the previously applied methodologies and enables the 3D 
investigation of both stable and metastable states of the experimentally imaged particles that may 
appear at high temperatures.  

On the other hand, atomic-scale transformations cannot be visualized by only experimental 
techniques when in situ STEM experiments do not provide the necessary time or spatial resolution.  
The 3D investigation of atomic-scale transformations becomes even more challenging when the 
triggers cannot be applied in situ. To overcome this limitation, I used the outcome of the electron 
tomography experiments as realistic input models for the atomistic simulations. This approach is 
unique and highly important as it enables performing simulations based on the experimentally 
measured surface facets, the distribution of which is tremendously important for nanoscale 
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processes. Moreover, this method provides a powerful approach since it enables us to capture the 
ongoing processes at atomic scale, which cannot be achievable by experimental observations, as 
well as to understand the driving mechanisms behind the complex atomistic rearrangements, 
causing shape deformations and defect generation. 

The methodologies and insights demonstrated in this thesis are expected to be valuable for 
controlling the desired structure-dependent functional properties of metallic NPs for medical and 
optical applications as well as in the field of catalysis. For example, an accurate refinement of 
experimentally observed 3D atomic structures of supported metallic NPs in a realistic environment 
can provide critical information for the structure-dependent properties of catalytic NPs. Moreover, 
a full understanding of the mechanisms behind the transformations by incorporating realistic 
morphologies in simulations can allow improving the thermal stability of photo- and 
electrocatalytic NPs and to overcome the degradation of nanostructures, e.g. during biomedical 
applications triggered by laser irradiation.   

7.2.  Outlook 

Several development directions that are yet to be addressed for the proposed methods in this thesis 
can be further explored. Promising developments for the research presented in this thesis can be 
carried out in three main topics: 

o 3D characterization of different types of nanomaterials 
o 3D operando studies 
o Combination of 3D operando studies and atomistic simulations 

 3D characterization of different types of nanomaterials 

All the methods in this thesis have been developed for metallic NPs, which are relatively stable to 
the incident electron beam. However, the application of the proposed methodologies is by far not 
limited to metallic systems. This approach can also enable an accurate 3D characterization of 
different classes of materials, such as semiconductor nanocrystals. As a semiconductor nanocrystal, 
Indium Phosphide (InP) quantum dots have become a subject of intense interest in recent years. 
The tunable electronic properties of InP quantum dots make them promising for many applications, 
such as in electronic devices, sensors, and catalysis. Considering their shape and size-dependent 
functionalities, 3D characterizations of InP quantum dots are essential to control their functionality.  

These quantum dots are too electron beam-sensitive to be studied by conventional electron 
tomography. Therefore, the local minima search algorithm based on atom counting results, as 
introduced in Chapter 4, can be employed to retrieve the 3D structure of these quantum dots from 
STEM images acquired along a single viewing direction. However, in order to obtain a reliable 3D 
model, some challenges need to be pursued. In the HAADF STEM imaging mode, visualizing light 
P-atomic columns together with heavy In-atomic columns can be challenging since light elements 
only scatter electrons weakly to high detector angles leading to low intensities in HAADF STEM 
images (Figure 7.1a). Recently introduced integrated differential phase-contrast (iDPC) imaging 
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method enables direct imaging of the phase transmission function for non-magnetic samples. 375 
This imaging mode is of great interest to observe both light and heavy elements since the image 
contrast varies approximately linear according to the atomic number Z of the elements in a sample. 
376 On the other hand, quantification of an iDPC image is not straightforward due to the high 
sensitivity of the image to phase modifications and amplified frequency noise during the integration 
step. 61 

 

Figure 7.1 3D modelling of an InP quantum dot. a) Simultaneously acquired (a) HAADF STEM and (b) 
iDPC images of the same InP quantum dot. The imaged InP quantum dots were synthesized by Kim 
Dümbgen and the STEM images were acquired by Dr. Nadine Schrenker. c) Number of atoms in each In-
atomic column acquired by applying the combined simulation and statistics-based atom counting on the 
HAADF STEM image shown in (a). d) A close-up image of the highlighted area of the iDPC image shown 
in (b). From this magnified image, both light P-atomic columns and heavier In-atomic columns can be 
distinguished. e) A final 3D model of InP quantum dots from the local minima search algorithm where a 
starting model was created based on (c), (d), and zinc blend crystalline structure of InP quantum dots. To 
define the interaction between the atoms during the 3D reconstruction algorithm, the Vashishta inter-atomic 
potential 377 was used.  

To overcome these limitations, the advantages of the simultaneously acquired HAADF STEM 
(Figure 7.1a) and iDPC (Figure 7.1b) images have been exploited for the 3D characterization of 
InP quantum dots. On the one hand, the use of combined simulation and statistics-based atom 
counting on a high-resolution HAADF STEM image enabled us to count the number of atoms in 
In-atomic columns (Figure 7.1c). The estimated atom counts were then used to create a starting 
model according to the sample zone axis and the configuration of In atoms in a zinc blend 378 
crystalline structure of InP quantum dots. On the other hand, based on the relative positions of 
projected P-atomic columns with respect to In-atomic columns, as observed in the iDPC STEM 
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image (Figure 7.1d), and zinc blend structure of the InP quantum dots, the P-atoms could be located 
in the created starting model. Afterwards, the created starting model was used as an input for the 
local minima search algorithm to obtain the final 3D structure of the InP quantum dots as shown 
in Figure 7.1e. These results demonstrate the power of the proposed approach by simultaneously 
using different STEM imaging modes for high throughput 3D structural investigation of promising 
classes of materials with minimum electron irradiation damage. 

 3D operando studies 

The 3D in situ heating studies are insightful and crucial to understand the structural and 
morphological changes of a catalytic NP upon heating. In this thesis, I have demonstrated that NPs 
change their surface faceting during in situ experiments. However, to link the surface structure of 
a nanocatalyst to its catalytic activity, one must also be able to measure reactant and product species 
generated in real-time combined with the simultaneous observation of the working catalyst. This 
can be achieved by operando studies using a dedicated mass spectrometer in TEM.  

 

Figure 7.2 Correlation of the activity and 3D surface structure of Pt NP catalyzing CO oxidation. a) Mass 
spectrometry of the CO pressures. b) ADF STEM images of the same Pt NP acquired at the different states 
of the reaction, as indicated by triangles. c) 3D models retrieved from the ADF STEM images shown in (b). 
The atoms are presented in different colors according to the coordination numbers (CN). d) Surface structure 
of the reconstructed NPs. The histogram is obtained from the coordination number of the atoms. The samples 
were provided by the group of Prof. Dr. Luis Liz-Marzán, and operando STEM experiments were performed 
by Dr. Kellie Jenkinson. 

To this end, an operando STEM study of a Pt NP was performed during CO oxidation with mass 
spectrometry measurements in real-time (Figure 7.2). The CO oxidation reaction is a benchmark 
heterogenous reaction catalyzed by costly precious metals such as Pt, Pd and Au, and is primarily 
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focused on for its automotive emission control to convert the toxic and hazardous CO to CO2. From 
mass spectrometry of CO pressure shown in Figure 7.2a, it can be seen that the catalytic activity of 
Pt NP for CO oxidation drops with respect to time (from black triangle to purple triangle). It is 
commonly hypothesized that this activity drop is associated with the reduction in under-
coordinated atoms at the surface. However, to date, most of the reported operando studies are based 
on 2D information only, which is not sufficient to connect the entire 3D structure of the catalysts 
to their activity. To go beyond the current studies, the 3D characterization techniques presented for 
in situ studies in this thesis can be extended to operando studies. Since, the tilting range of most 
gas cell holders does not allow one to perform electron tomography experiments based on 
continuous tilt series, the 3D characterizations of the Pt NP at different stages of CO oxidation 
reactions were performed from ADF STEM images (Figure 7.2b) acquired along a single zone axis 
of the sample. The reconstructed 3D models of the same Pt NP are shown in Figure 7.2c. As the 
3D structures of the same NP at the different states of the reaction were extracted, I could also 
quantify the changes in facet evolution throughout the reaction (Figure 7.2d). In this manner, it has 
been possible to relate the quantitative change in the surface facets to the catalyst performance of 
the NP. In the future, it would be highly important to extend this framework for 3D operando 
studies of anisotropic and bimetallic NPs to investigate their structure-dependent performance. 

 Combination of 3D operando studies and atomistic simulations  

In this thesis, it has been shown that the combination of 3D experimental characterization 
techniques and MD simulations is a powerful approach to understand a wide variety of atomic scale 
transformations. Extending this approach to systematically investigate the effect of size, shape, 
surface structure, crystalline defects, and alloying on the catalytic performance of the 
experimentally observed NPs under a gaseous environment will be highly important. However, due 
to their size and time constraints, classical MD simulations are limited to relatively small systems. 
Also, due to the same limitations of the classical MD simulations, this approach may have poor 
performance in investigating the diffusion, alloying, or defect migration observed in experimental 
systems since these processes take orders of magnitude longer (beyond microseconds) than MD 
simulations are able to address. Recent studies have shown that machine learning-based MD 
simulations can provide accurate and fast predictions addressing a variety of problems in chemistry, 
physics, and materials science at reduced computational cost and for larger length and time scales 
that cannot be accessible by conventional MD simulations.34-37 Therefore, using experimentally 
determined 3D structures of NPs in machine learning-assisted simulations can enable one to capture 
atomistic transformations, including alloying, defect formation and morphological transformations, 
on experimentally relevant time and length scales. Since machine learning-based simulations can 
be trained to accurately reproduce the quantum mechanical behavior of NPs, coupling 3D 
reconstructed NPs to such simulations performed under a gaseous environment can provide 
valuable information to enlighten the complicated dynamics of experimental NPs at the atomic 
scale and their elusive structure-activity relationship during catalytic reactions. In this manner, the 
developments of novel nanocatalysts possessing the optimum catalytic activity and selectivity for 
specific applications can be triggered. 
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Summary 

Nanomaterials are materials that have at least one dimension in the nanometer length scale, which 
corresponds to a billionth of a meter. When three dimensions are confined to the nanometer scale, 
these materials are referred to as nanoparticles. These materials are of great interest since they 
exhibit unique physical and chemical properties that cannot be observed for bulk systems. Due to 
their unique and often superior properties, nanomaterials have become central in the field of 
electronics, catalysis, and medicine. Moreover, they are expected to be one of the most promising 
systems to tackle many challenges that our society is facing, such as reducing the emission of 
greenhouse gases and finding effective treatments for cancer. 

The unique properties of nanomaterials are linked to their size, shape, structure, and composition. 
If one is able to measure the positions of the atoms, their chemical nature, and the bonding between 
them, it becomes possible to predict the physicochemical properties of nanomaterials. In this 
manner, the development of novel nanostructures can be triggered. However, the morphology and 
structure of nanomaterials are highly sensitive to the conditions for relevant applications, such as 
elevated temperatures or intense light illumination. Furthermore, any small change in the local 
structure at higher temperatures or pressures may significantly modify their performance. Hence, 
three-dimensional (3D) characterization of nanomaterials under application-relevant conditions is 
important in designing them with desired functional properties for specific applications. 

Among different structural characterization approaches, transmission electron microscopy (TEM) 
is one of the most efficient and versatile tools to investigate the structure and composition of 
nanomaterials since it can provide atomically resolved images, which are sensitive to the local 3D 
structure of the investigated sample. However, TEM only provides two-dimensional (2D) images 
of the 3D nanoparticle, which may lead to an incomplete understanding of their structure-property 
relationship. The most known and powerful technique for the 3D characterization of nanomaterials 
is electron tomography, where the images of a nanostructured material taken from different 
directions are mathematically combined to retrieve its 3D structure. Although these experiments 
are already state-of-the-art, 3D characterization by TEM is typically performed under ultra-high 
vacuum conditions and at room temperature. Such conditions are unfortunately not sufficient to 
understand transformations during synthesis or applications of nanomaterials. This limitation can 
be overcome by in situ TEM where external stimuli, such as heat, gas, and liquids, can be 
controllably introduced inside the TEM using specialized holders. However, there are some 
technical limitations to successful perform 3D in situ electron tomography experiments. For 
example, the long acquisition time required to collect a tilt series limits this technique when one 
wants to observe 3D dynamic changes with atomic resolution.   

A solution for this problem is the estimation of the 3D structure of nanomaterials from 2D 
projection images acquired along a single viewing direction. For this purpose, annular dark field 
scanning TEM (ADF STEM) imaging mode provides a valuable tool for quantitative structural 
investigation of nanomaterials from single 2D images due to its thickness and mass sensitivity. For 
quantitative analysis, an ADF STEM image is considered as a 2D array of pixels where relative 
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variation of pixel intensity values is proportional to the total number of atoms and the atomic 
number of the elements in the sample. By applying advanced statistical approaches to these images, 
structural information, such as the number or types of atoms, can be retrieved with high accuracy 
and precision. The outcome can then be used to build a 3D starting model for energy minimization 
by atomistic simulations, for example, molecular dynamics simulations or the Monte Carlo method. 
However, this methodology needs to be further evaluated for in situ experiments. 

This thesis is devoted to presenting robust approaches to accurately define the 3D atomic structure 
of nanoparticles under application-relevant conditions and understand the mechanism behind the 
atomic-scale dynamics in nanoparticles in response to environmental stimuli. For this purpose, the 
thesis is organized as follows. 

Chapter 1: Introduction 

This chapter presents the background and the motivation for the research comprising this thesis. It 
starts with a short introduction to nanomaterials and relevance of TEM for their investigation. The 
chapter continues with the basic principles and different imaging modes of TEM. Moreover, 
developments in the 3D characterization of nanomaterials from 2D TEM images are given. 

Chapter 2: Quantitative 3D characterization from 2D STEM images 

In this chapter, the concepts of quantitative 3D characterization used and extended throughout this 
thesis are introduced. First, the physics behind image formation in ADF STEM is briefly explained 
from a theoretical point of view. In the second section, the basic principles of statistical parameter 
estimation theory, which is applied to extract structural information from single ADF STEM 
images, are given. In the last section, the atomistic simulations, such as the Monte Carlo approach 
and molecular dynamics simulations, are explained. 

Chapter 3: Three-dimensional atomic structure of supported Au nanoparticles at high temperature 

In this chapter, an atomic resolution 3D investigation of supported gold nanoparticles is performed 
from ADF STEM images acquired along a single viewing direction during in situ heating 
experiments. By combining atom counting and structural relaxation by molecular dynamics 
simulations, the 3D equilibrium structures of nanoparticles are investigated as a function of 
temperature and size, which is of importance to understand their behavior during catalytic 
reactions. In this manner, the surface dynamics and crystalline transformations at high temperature 
are also characterized. 

Chapter 4: 3D atomic structure of supported metallic nanoparticles: a combination of atom 
counting and a local minima search algorithm 

At high temperatures, it is very likely that the structure of a nanoparticle deviates from a ground 
state configuration, which is difficult to determine using purely computational energy minimization 
approaches. Therefore, this chapter presents a novel methodology to overcome the limitations of 
purely computational energy minimization approaches for accurate 3D structural characterization 
of supported nanoparticles at high temperatures. For this purpose, atom counting on ADF STEM 



Summary 

163 

images acquired along a single viewing direction is combined with a local minima search algorithm 
by taking the particle-support interaction and temperature into account. 

Chapter 5: Unravelling Pt-driven morphological transformations in Au@Pt nanorods upon 
heating 

Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve 
their functionalities during a variety of applications. This chapter investigates the thermal stability 
of Au@Pt bimetallic nanoparticles since these particles are important for photo- and electro-
catalytic applications. 3D in situ investigations of heat-induced morphological and compositional 
changes of Au@Pt core-shell nanoparticles are performed using electron tomography. Due to some 
fundamental and technical limitations, these experiments are carried out in a stop-and-go manner. 
Thus, to understand the ongoing atomic scale transformations during the heating of Au@Pt 
nanoparticles, experimentally determined 3D reconstructions are used as realistic input models in 
molecular dynamics simulations. Combined results from both techniques enable to understand the 
atomistic mechanism behind the transformations and the influence of the detailed morphology of 
the Pt-shell on the thermal stability of Au@Pt nanoparticles. 

Chapter 6: 3D atomic-scale dynamics of laser light induced restructuring of nanoparticles 
unraveled by electron tomography and molecular dynamics simulations 

The investigation of nanoparticle transformations becomes even more challenging when the 
transformation triggers cannot be applied in situ. As an example, intriguing transformations have 
been observed upon laser excitation of nanoparticles, not achievable by simply heating the material. 
Understanding laser-induced changes in nanomaterials is crucial to control their structure and 
shape-dependent properties for optoelectronic, photonic and plasmonic applications. Due to the 
ultrafast time scales of pulsed laser excitation, these transformations cannot be monitored in situ. 
In this chapter, atomic-scale structural transformations of a mesoporous silica-coated Au 
nanoparticle upon femtosecond-laser excitation are investigated using the measured 3D atomic 
structure resulting from ex situ electron tomography as an input for molecular dynamics 
simulations. In this manner, the complex atomistic rearrangements, causing shape deformations 
and defect generation, are unraveled. 

Finally, the last chapter draws a general conclusion of this thesis and presents several perspectives 
that can be further explored for this research. 
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Samenvatting 

Nanomaterialen zijn materialen waarvan minstens één dimensie een afmeting heeft in de 
grootteorde van een nanometer, een miljardste van een meter. Als de drie dimensies beperkt zijn 
tot de grootteorde van een nanometer, spreken we van een nanodeeltje. Deze materialen zijn van 
groot belang, aangezien ze unieke fysische en chemische eigenschappen vertonen, die in bulk 
systemen niet voorkomen. Door hun unieke, vaak betere eigenschappen, zijn nanomaterialen 
ondertussen van centraal belang in de elektronica, katalyse en geneeskunde. Ze worden bovendien 
aanzien als de meest veelbelovende systemen om vele uitdagingen in onze maatschappij aan te 
pakken, zoals het verlagen van de uitstoot van broeikasgassen en de zoektocht naar een effectieve 
behandeling voor kanker.  

De unieke eigenschappen van nanomaterialen worden bepaald door hun grootte, vorm, structuur 
en samenstelling. Als we de posities van de atomen kunnen meten, alsook het type atomen en de 
bindingen ertussen kennen, is het mogelijk om de fysische en chemische eigenschappen van de 
nanomaterialen te voorspellen. Op die manier wordt het gericht ontwikkelen van nieuwe 
nanostructuren mogelijk. De morfologie en structuur van de nanomaterialen zijn echter heel 
gevoelig aan de condities waarin ze hun toepassingen vinden, zoals hoge temperaturen of intense 
belichting. Bovendien kan elke kleine verandering in de lokale structuur bij hogere temperatuur of 
druk hun prestaties sterk beïnvloeden. Daarom is de driedimensionale (3D) karakterisering van 
nanomaterialen onder condities die relevant zijn voor hun toepassingen heel belangrijk om ze 
gericht te ontwikkelen met de gewenste functionele eigenschappen voor specifieke toepassingen. 

Eén van de meest efficiënte en veelzijdige methoden voor structurele karakterisering is transmissie 
elektronenmicroscopie (TEM). Het is een uiterst geschikte methode om de structuur en compositie 
van nanomaterialen te onderzoeken, omdat het beelden met atomaire resolutie kan opleveren, die 
gevoelig zijn aan de lokale 3D structuur van het bestudeerde staal. TEM levert echter slechts 
tweedimensionale (2D) beelden op van het 3D nanomateriaal, waardoor het inzicht in de relatie 
tussen hun structuur en eigenschappen onvolledig is. De meest bekende en krachtige techniek om 
nanomaterialen in 3D te karakteriseren is elektronentomografie, waar de beelden van een 
nanomateriaal uit verschillende richtingen gecombineerd worden in een wiskundig algoritme om 
de 3D structuur te achterhalen. Hoewel deze experimenten reeds state-of-the-art zijn, wordt de 3D 
karakterisering met TEM typisch uitgevoerd onder ultrahoge vacuüm condities en bij 
kamertemperatuur. Zo’n condities volstaan niet om de transformaties die optreden tijdens synthese 
of toepassing van nanomaterialen te begrijpen. Daarvoor is in situ TEM nodig, waarbij externe 
factoren, zoals warmte, gas en vloeistoffen, gecontroleerd in de TEM gebracht kunnen worden, 
dankzij gespecialiseerde houders. Er zijn echter wel enkele technische beperkingen die beletten om 
succesvolle 3D in situ elektronentomografie experimenten uit te voeren. De lange opnametijd die 
nodig is om een tiltserie te verkrijgen, verhindert bijvoorbeeld om met deze techniek dynamische 
3D veranderingen met atomaire resolutie te observeren.  

Een oplossing voor dit probleem is om de 3D structuur van nanomaterialen te schatten op basis van 
2D projectiebeelden opgenomen langs één kijkrichting. Daarvoor is ringvormige donkerveld raster 
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transmissie elektronenmicroscopie (ADF STEM) een waardevolle beeldvormingstechniek, die 
uitermate geschikt is voor kwantitatief structuuronderzoek van nanomaterialen op basis van een 
enkel 2D beeld, dankzij de gevoeligheid aan de dikte en het atoomnummer. Voor zo’n 
kwantitatieve analyse wordt een ADF STEM beeld beschouwd als een 2D set van pixels, waarbij 
de relatieve variatie in de pixelintensiteiten evenredig is aan het totaal aantal atomen in het 
materiaal en aan hun atoomnummer. Door geavanceerde statistische methoden toe te passen op 
deze beelden, kan structuurinformatie zoals het aantal of type atomen achterhaald worden met hoge 
accuraatheid en precisie. Het resultaat kan dan gebruikt worden om een 3D startmodel op te stellen 
voor een energieminimalisatie met behulp van atomistische simulaties, zoals moleculaire dynamica 
simulaties of de Monte Carlo methode. Deze methode moet echter verder bestudeerd worden voor 
in situ experimenten.  

In deze thesis worden daarom robuuste methoden gepresenteerd om de 3D atomaire structuur van 
nanomaterialen accuraat te bepalen onder de relevante condities voor een specifieke toepassing. 
Dit laat toe om de mechanismen van de dynamica op atomaire schaal in de nanomaterialen als 
reactie op omgevingsfactoren te begrijpen. Om dit te bereiken, wordt de thesis als volgt 
georganiseerd. 

Hoofdstuk 1: Inleiding 

Dit hoofdstuk geeft een inleiding tot de achtergrond en motivatie voor het onderzoek in deze thesis. 
Het begint met een korte introductie over nanomaterialen en het belang van TEM om ze te 
bestuderen. Dan komen de basisprincipes en verschillende beeldvormingsmodes van TEM aan bod. 
Vervolgens worden de ontwikkelingen voor de 3D karakterisering van nanomaterialen uit 2D TEM 
beelden besproken. 

Hoofdstuk 2: Kwantitatieve 3D karakterisering van 2D STEM beelden 

In dit hoofdstuk worden de concepten geïntroduceerd die in de overige delen van deze thesis zullen 
worden gebruikt en uitgebreid. Eerst wordt de fysica achter ADF STEM kort uitgelegd vanuit een 
theoretisch standpunt. In het tweede deel worden de basisprincipes van statistische 
parameterschattingstheorie uitgelegd. Deze worden toegepast om structurele informatie uit 
afzonderlijke ADF STEM beelden te verkrijgen. In het laatste deel worden de basisprincipes van 
atomistische simulaties, waaronder de Monte Carlo methode en moleculaire dynamica simulaties, 
uitgelegd. 

Hoofdstuk 3: Driedimensionale atomaire structuur van gedragen Au nanodeeltjes bij hoge 
temperatuur 

Dit hoofdstuk beschrijft de studie van gedragen gouden nanodeeltjes in 3D met atomaire resolutie,  
op basis van ADF STEM beelden genomen vanuit één kijkrichting tijdens in situ 
verwarmingsexperimenten. Door atomen tellen te combineren met structurele relaxatie via 
moleculaire dynamica simulaties, wordt de 3D evenwichtsstructuur van de nanodeeltjes onderzocht 
in functie van temperatuur en grootte. Dit is belangrijk om hun gedrag tijdens katalytische reacties 
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te begrijpen. Op deze manier worden de oppervlaktedynamica en kristallijne transformaties bij 
hoge temperaturen gekarakteriseerd. 

Hooftstuk 4: 3D atomaire structuur van gedragen metalen nanodeeltjes: een combinatie van 
atomen tellen en een lokale minima zoekalgoritme 

Bij hoge temperaturen is de kans groot dat de structuur van een nanodeeltje verschilt van de 
evenwichtstoestand. Dit is echter moeilijk aan te tonen met enkel computationele methodes 
gebaseerd op energieminimalisatie. Daarom wordt in dit hoofdstuk een nieuwe methodologie 
geïntroduceerd, die voorbij de beperkingen van een uitsluitend computationele 
energieminimalisatie gaat voor de nauwkeurige 3D karakterisering van de structuur van gedragen 
nanodeeltjes. Hiervoor wordt atomen tellen via ADF STEM beelden vanuit één kijkrichting 
gecombineerd met een lokale minima zoekalgoritme, door rekening te houden met de temperatuur 
en de interactie tussen het nanodeeltje en de drager. 

Hoofdstuk 5: Pt-gedreven morfologische transformaties van Au@Pt nanostaafjes ontcijferen bij 
verhitting 

Het begrijpen van de thermische stabiliteit van bimetallische nanodeeltjes is van groot belang om 
hun functionaliteiten te behouden voor verschillende toepassingen. In dit hoofdstuk wordt de 
thermische stabiliteit van Au@Pt bimetallische nanodeeltjes onderzocht.  Dit type deeltjes zijn 
belangrijk in foto- en elektrokatalytische toepassingen. Met elektronentomografie worden 
veranderingen in compositie en morfologie van Au@Pt kern-schil nanodeeltjes in 3D in situ 
bestudeerd. Omwille van enkele fundamentele en technische beperkingen worden dit soort 
experimenten op een stop-en-go manier uitgevoerd. Om de transformaties op atomaire schaal tijden 
de verhitting van Au@Pt nanodeeltjes te begrijpen worden experimentele 3D reconstructies 
gebruikt als realistische startmodellen voor de moleculaire dynamica simulaties. De 
gecombineerde resultaten van deze twee technieken maken het mogelijk om het atomair 
mechanisme van de transformaties en de invloed van de gedetailleerde morfologie van de Pt-schil 
op de thermische stabiliteit van Au@Pt nanodeeltjes te begrijpen. 

Hoofdstuk 6: 3D dynamica op atomaire schaal van de herschikking van nanodeeltjes veroorzaakt 
door laserlicht ontcijferen met behulp van elektronentomografie en moleculaire dynamica 
simulaties 

Het onderzoeken van transformaties van nanodeeltjes wordt nog uitdagender wanneer bepaalde 
triggers voor transformaties onmogelijk in situ kunnen worden verwezenlijkt.  Een voorbeeld zijn 
de intrigerende transformaties die worden geobserveerd bij laserexcitatie van nanodeeltjes. Het is 
onmogelijk deze omstandigheden experimenteel na te bootsen door simpelweg het materiaal te 
verwarmen. Nochtans is het begrijpen van laser-geïnduceerde veranderingen in een nanomateriaal 
cruciaal om hun opto-elektronische, fotonische en plasmonische eigenschappen te kunnen 
controleren.  Echter, gezien de ultra-snelle tijdsschaal van gepulste laserexcitatie, is het onmogelijk 
om deze in situ te volgen. Dit hoofdstuk behandelt de structurele transformaties in 3D, die een 
mesoporeus silica gecoat Au nanodeeltje op atomair niveau ondergaat na femtoseconde laser 
excitatie. Het resultaat van ex situ elektronentomografie wordt als input voor moleculaire dynamica 
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simulaties gebruikt. Op deze manier worden de complexe atomaire herschikkingen die aanleiding 
geven tot vormveranderingen en defecten blootgelegd. 

Tenslotte wordt in het laatste hoofdstuk een algemene conclusie voor deze thesis getrokken, en 
worden enkele toekomstperspectieven besproken die de moeite zijn om verder te onderzoeken. 



 

169 
 

Acknowledgements 

Doing a PhD has been a special period in my professional and personal life. Although there have 
been many ups and downs, I am glad all of them turned into very nice studies that I am proud of 
and a unique experience in my life. Here, I would like to start by expressing my gratitude to my 
supervisors, Prof. Dr. Sandra Van Aert and Prof. Dr. Sara Bals, for giving me the opportunity of 
working in such a wonderful team and guiding me throughout my PhD. Your comments helped me 
a lot to improve my scientific work as well as my personal skills. I would also like to thank the 
members of my PhD committee for their valuable time and for all contributions to shape this thesis 
into its final form.  

A special thanks go to all the colleagues I worked with on the projects presented in this thesis. Ivan, 
your passion and dedication to science have always inspired me. I am thankful for all our 
discussions and your help, especially for your friendship! Annick and Annelies, thank you so much 
for all your guidance on both work-related and non-related issues. Your help during my PhD and 
especially the preparation of my thesis and defense mean a lot to me. Many thanks Pei, for 
providing the wonderful STEM images, which became the central point of my thesis. Thank you 
Adrian, for a very nice collaboration which also resulted in the cover of my thesis. Your friendship 
and unique sense of humor always made my day  I would like to thank Nadine for the 
collaboration during the last year of my PhD and for spending a great time together. It is great 
having you as a friend. Many thanks Kellie, for your kindness and always being understanding to 
me. I would particularly like to thank Wiebke. Having a chance to work with you was a great 
pleasure and an inspiring experience for me. I feel so lucky that you are always there whenever I 
have a problem or good news to share. Thank you Wiebke for being in my life! 

A big thank you go to my friends at EMAT. Thomas and Chu-Ping thank you for the many 
enjoyable evenings and happy moments that we shared. Your valuable companionship made the 
last four years special to me. I would like to thank Zezhong, Andrey and Saeid for great 
organizations outside work and such a great trip to Madrid  Gizem, Safiyye, Selma and Nesli 
thank you for being such good friends and making me always feel at home. Many thanks Alex, 
Noopur, Dani, Nathalie, Ajinkya, Misha, Saskia, Sven, Yansong, and Debora, for all the fruitful 
discussions during our meetings and for your valuable feedback. Furthermore, I would like to thank 
Lydia and Miek for their extensive administrative assistance. Also, thank you Armand, for sharing 
your technical knowledge without any hesitation and for tasteful wines  

Most importantly, I would like to thank my husband Erdem. The last couple of months were very 
difficult for me. I am so grateful that you always found a way to cheer me up and fill my happiness 
bar during these times. Thank you so much for all the support and encouragement you give me in 
every moment. I wouldn’t get through this period without you. I love you! 

Finally, I would like to thank my parents and brother from home. Anne, baba, ve abi, bu süreçte 
çoğu zaman yanınızda olamayışıma rağmen hiçbir zaman bu durumdan şikayet etmediğiniz, tersine 
her zaman destekleyici ve özverili olduğunuz icin çok minnettarım. Sizleri çok seviyorum! 


