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Abstract 

Experiments have shown that prestrain exists in the rabbit tympanic membrane (TM), also in the absence of 

external loads. To date, it is unclear how prestrain influences the vibration response of the middle ear (ME). In this 

study, a detailed 3D finite-element model of the rabbit ME was constructed based on experimentally validated 

material properties. The model incorporates different degrees of prestrain in the TM and simulates the ME 10 

vibration response to sound as a linear harmonic perturbation around the prestressed reference state. To account 

for finite deformations associated with large prestrains, a framework was developed that iteratively updates the 

initial unstrained geometry until the prestrained geometry is in agreement with the given reference geometry. After 

validating the model using quasi-static and acoustic measurement data, it was shown that small levels of prestrain 

already have a substantial impact on the normal umbo and footplate response due to a phenomenon known as 15 

prestress stiffening. Although the approach is not preferable, it was possible to replicate the effect of prestrain in 

the normal ME by appropriately scaling the elastic moduli and damping factors in the base model. To evaluate the 

effect of possible changes in TM prestrain when the normal state of the ear is altered due to pathological 

modifications in the ME structure, we created a model with a perforation in the TM. It was shown that the change 

in vibration response after perforation is affected at low frequencies by a release of TM prestrain. In future studies, 20 

it may be necessary to incorporate prestrain in ME models to better understand the function of the diseased or 

reconstructed ME, which may be relevant for the development of reconstructive tissue grafts in the middle ear. 
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1. Introduction 

Experiments on biological structures have revealed that tissues like membranes, ligaments, muscles and 30 

tendons retract after they are cut out of the body. This retraction is a result of strains and stresses that exist in the 

normal state of the body, which are partially released when the tissue is excised. Strain describes the extension or 

compression of a material with respect to a certain reference state, whereas stress describes the associated internal 

force that arises in the body to reach equilibrium. When a material holds strain and stress in its rest state in the 

absence of external loads, we speak of prestrain and prestress, often also referred to as resting or in-situ strain and 35 

stress. Prestrain and prestress occur in many biological structures and are believed to originate from the growth 

and remodeling of tissue (Ambrosi et al., 2011). 

Up till now it has not been entirely clear whether prestrain exists in the mature eardrum or tympanic membrane 

(TM). The TM is a curved and conical membrane that is composed of three layers: an outer epidermis layer, an 

inner mucosal layer, and a middle layer called the lamina propria, which is built up of two families of radially and 40 

circumferentially oriented collagen fibers embedded in connective tissue (Filogamo, 1949). To detect prestrain in 

the TM of humans and other mammals, von Békésy (1949) and Kirikae (1960) created incisions in the membrane 

and observed if the tissue showed any retraction. However, the results were not conclusive about the existence and 

nature of the prestrain, because the prestrain may be too small to be detected with early techniques based on pure 

visual observation (Funnell and Laszlo, 1982). With the advent of new sensitive measurement techniques, it has 45 

become possible to resolve microscopic changes in strain, which enables the detection of prestrain and prestress 

in biological structures (Nelson, 2013, 2014). Recently, we have performed experiments on fresh cadaveric rabbit 

ears, in which the change of the strain in the TM was measured by digital image correlation after creating radial 

and circumferential incisions in the membrane (Livens et al., 2021). The experiments indicate the existence of a 

certain degree of prestrain in the TM, with no clear differences between radial and circular cuts and between the 50 

different locations on the membrane. 

With the existence of prestrain and prestress in the TM, the question arises how they influence the mechanical 

response of the ME to sound pressure loading. Preliminary model simulations that incorporate TM prestrain in the 

human ME have revealed a clear shift in the modal frequencies of the membrane for small prestrain levels of up 

to 1% (Caminos et al., 2018). In the locust, it has been shown that TM prestrain is needed to explain the propagation 55 

of flexural waves and the localization of kinetic energy on the membrane (Malkin et al., 2014). So far, it has been 

unclear how prestrain and prestress in the TM relates to possible prestrain and prestress in other parts of the ME, 

which should be in equilibrium in the reference configuration of the geometry. It has been suggested that there are 



preloads in the suspensory ligaments of the ossicles to balance the preloads in the TM that pull the membrane 

outwards (Sim and Puria, 2008). Alternatively, the ossicles and ligaments may change their orientation during 60 

growth, pulling the TM inwards (Marcusohn and Dirckx, 2011). However, it is unclear if strain is developed in 

the TM this way, and if so, whether it is maintained during adulthood. Nevertheless, the observation that the TM 

loses its original shape when the suspensory ligaments are cut (Dirckx and Decraemer, 2001) or when the 

manubrium is fractured (Gladiné et al., 2018) suggest the existence of at least some form of (a release in) prestrain 

and prestress. 65 

In the present paper, we investigate the effect of prestrain in the TM on the vibration response of the ME in 

rabbit by means of finite-element (FE) modeling. The prestrain in the TM as measured in experiments is 

incorporated in a 3D FE model of the entire ME based on detailed micro-tomography data. The material parameters 

of the different components in the model are based on experimental data of the material properties. Prestrain is 

incorporated by radially stretching the outer rim of the membrane. To include large finite prestrains in the reference 70 

geometry of the ME, a framework is developed that iteratively updates the unstrained geometry of the ME model 

until the deformed prestrained geometry is in agreement with the original reference geometry. After the model is 

successively prestrained, the frequency response is computed as a linear perturbation around the prestressed state. 

After validating the model to experimental data, we investigate the effect of different levels of prestrain on the ME 

response for both the normal ear and pathological modifications to the normal structural condition. A sensitivity 75 

analysis is done to evaluate the influence of the different model parameters. 

2. Materials and methods 

2.1. Model geometry 

The FE model is based on the right ear of a New-Zealand white rabbit, scanned with micro-CT at the Center 

of X-Ray Tomography of Ghent University (Masschaele et al., 2013). The sample was stained with iodine (I2) to 80 

enhance soft-tissue contrast. The voxel pitch of the reconstructed 3D tomographic scan was 9 µm. Semi-automatic 

image segmentation tools were used in Amira 6.3.0 (FEI, Hillsboro, OR, USA) to identify the different ME 

components. The obtained segmented 3D data set was converted to a surface model composed of triangular 

elements. The final model includes the malleus, incus and stapes, the pars tensa (PT), the pars flaccida (PF), the 

incudomalleolar (IM) joint, the incudostapedial (IS) joint, the posterior incudal ligament (PIL), the stapes annular 85 

ligament (SAL) and the anterior mallear process (AMP). As in the gerbil ME model of Maftoon et al. (2015), the 

tensor tympani was excluded from the model. Severing this muscle was shown to have no effect on ME 

deformations (Dirckx and Decraemer, 2001). Neither the stapedial muscle tendon was included in the model: 



because the current study does not investigate the effect of active contraction of the tensor tympani and tensor 

stapedius, including these components is neither relevant in this regard. Also smaller ligaments visible in the scan, 90 

such as the lateral mallear ligament and the superior incudal ligament, were excluded from the model. The final 

model geometry is shown in Fig. 1. 

 

Fig. 1. 3D surface model of the rabbit middle ear with the different components indicated. PT, pars tensa; PF, pars flaccida; M, 

malleus; I, incus; S, stapes; AMP, anterior mallear process; PIL, posterior incudal ligament; IMJ, incudomalleolar joint; ISJ, 95 

incudostapedial joint; SAL, stapes annular ligament. 

The PT and SAL in the segmented data set are thin compared to the other structures, so their thickness 

distributions determined from the micro-CT scan have a lower relative precision than the other components. The 

segmented model of the PT has a thickness of about 25 µm in the major part of the membrane’s body, which is in 

agreement with histology measurements of the PT thickness in rabbit (Chole and Kodama, 1989). Close to the 100 

outer rim of the PT and the connection with the PF, the PT thickness increases considerably up to 80 µm. The 

thickness of the SAL around the stapes footplate comprises only about a single voxel in the scan. Due to a lack of 

more precise measurements of the SAL in rabbit, a constant thickness equal to the scan resolution of 9 µm was 

assigned to the ligament in the final surface model. 

The geometrical surface model was exported to the commercial FE software COMSOL Multiphysics 6.0 105 

(COMSOL Inc, Burlington, MA, USA), extended with the Structural Mechanics Module, the Nonlinear Structural 

Materials Module, and the LiveLink with MATLAB. The triangular surface model was converted to a volumetric 

mesh of second-order solid elements. The PT and PF were modeled as prism elements, with the quadrilateral faces 

oriented parallel to the mediolateral axis. All other structures were modeled as tetrahedral elements. A single layer 

of prism elements was considered through the thickness of the TM, because doubling the number of layers had 110 

only a minor effect on the output for all frequencies (< 0.2 dB). 



2.2. Material properties 

Although the deformations associated with sound-induced ME biomechanics can be considered as infinitesimal 

for moderate to high sound pressures levels (< 120 dB), the deformations induced by moderate to high prestrains 

cannot. For this reason, it was necessary to use finite deformation theory and describe the nonlinear stress-strain 115 

response of the ME soft-tissue structures by hyperelastic material characterizations. Hyperelastic models for 

nonlinear elastic materials are defined by a strain-energy function 𝑊, which is typically split into an isochoric part 𝑊iso and a volumetric part 𝑊vol for isotropic and nearly incompressible materials (e.g., Cescotto and Fonder, 

1979): 

 𝑊 = 𝑊iso(𝐼1̅, 𝐼2̅) +𝑊vol(𝐽). (1) 

In this equation, we have the volume ratio 𝐽 = √det(𝐂) = 𝜆1𝜆2𝜆3, where 𝜆𝑖 are the three principal stretches of the 120 

material (𝑖 = 1,2,3) and 𝐂 is the right Cauchy-Green deformation tensor given by 𝐂 = 𝐅T𝐅. The tensor 𝐅 = 𝜕𝐱/𝜕𝐗 

is the deformation gradient, with 𝐱 and 𝐗 the coordinate vectors in the deformed and undeformed configuration of 

the material, respectively. In Eq. (1), 𝐼1̅ = 𝐽−2/3𝐼1 and 𝐼2̅ = 𝐽−4/3𝐼2, with 𝐼1 = tr(𝐂) = 𝜆12 + 𝜆22 + 𝜆32 the first 

invariant of 𝐂 and 𝐼2 = [tr(𝐂)2 − tr(𝐂2)] 2⁄ = 𝜆12𝜆22 + 𝜆22𝜆32 + 𝜆32𝜆12 the second invariant of 𝐂. 

To simulate in-plane prestrain and prestress in the TM, we need material data of the in-plane stress-strain 125 

response of the PT over a sufficiently broad strain range. Such data was collected most recently in uniaxial tensile 

tests on the human PT by Cheng et al. (2007). Because their measurements were performed on cut-out PT strips, 

any possible effect of in-situ TM prestrain in the native ME on the determined elastic parameters was eliminated. 

To create a hyperelastic model of the PT, we fitted an isotropic Veronda-Westmann model to their stress-strain 

data as it was analyzed in Motallebzadeh et al. (2013). More details on how this was done can be found in our 130 

nonlinear model of the human ME (Muyshondt and Dirckx, 2021). The isochoric strain-energy density 𝑊iso of a 

Veronda-Westmann model is given by 

 𝑊iso = 𝜇 [e𝑏(𝐼1̅−3) − 1𝑏 − 𝐼2̅ − 32 ]. (2) 

with 𝜇 the shear modulus of the material in the limit of zero strain (or 𝜆𝑖 = 1), and 𝑏 a parameter describing the 

change of stress with the strain in the material. Due to the specific collagen fiber arrangement of the PT, it has 

been claimed that the elasticity of the PT is anisotropic, having different elastic moduli in the radial, circumferential 135 

and transversal direction. For the sake of simplicity, and because O’Connor et al. (2017) found that a model with 



isotropic PT Young’s modulus was able to approximate the ME frequency response largely as well as a PT model 

with anisotropic elastic moduli, we decided to use an isotropic elastic model for the PT. 

To determine the nonlinear elastic parameters of the other soft-tissue structures, we applied the same fitting 

procedure as for the PT when experimental stress-strain data was available in the literature. This was the case for 140 

the SAL (Gan et al., 2011) and the ISJ (Zhang and Gan, 2011). For the IMJ no such data exists, so we used the 

same Veronda-Westmann parameters as for the ISJ. Also for the PIL no such data is available; to describe the 

elasticity of this component we used a Neo-Hookean solid, which is defined as 

 𝑊iso = 𝜇2 (𝐼1̅ − 3), (3) 

with 𝜇 the shear modulus. Different values have been used for the elastic modulus of the PIL, with shear moduli 

ranging from 0.05 MPa (Zhang et al., 2020) to 21.6 MPa (i.e. a Young’s modulus of 65 MPa in case of 145 

incompressibility; Tian et al., 2015). We used a shear modulus of 10 MPa to obtain a good agreement with 

measurements of quasi-static and vibroacoustic ME motion (see Results section). The PF, which is a continuation 

of the ear-canal skin (Lim, 1968), is typically considered to have a lower elasticity than the PT. We simulated the 

PF as a Neo-Hookean material with a shear modulus of 1/10th of the PT. 

To simulate near incompressibility of the soft tissues, a volumetric strain-energy density defined by 150 

 𝑊vol = 𝐾2 (𝐽 − 1)2 (4) 

was used, with 𝐾 the bulk modulus of the material. For each soft-tissue component, 𝐾 was assumed to be a 100 

times higher than 𝜇, corresponding to a Poisson’s ratio 𝜈 of 0.495. The bony malleus, incus and stapes were 

modeled as linear elastic materials using a Young’s modulus 𝐸 of 16 GPa as measured by Soons et al. (2010) in 

rabbit, with 𝜈 = 0.3. The anterior mallear process in rabbit is also made of bone (Dirckx and Decraemer, 2001), so 

we used the same elastic parameters as for the ossicles. 155 

The mass densities of the bony structures in the model were taken from values reported by Buytaert et al. 

(2011) in gerbil, which were equal to 1740 kg/m3 for the malleus, incus and anterior mallear process, and 1370 

kg/m3 for the stapes. The mass density of the soft-tissue components was chosen equal to 1100 kg/m3, which holds 

the middle between pure collagen (1200 kg/m3) and water (1000 kg/m3). To take into account damping in the 

harmonic response of the ME, a constant loss factor of 0.1 was assigned to all soft-tissue structures, as was done 160 

in De Greef et al. (2017) for the TM. All materials parameters are summarized in Table 1.  



Nearly incompressible Veronda–Westmann materials 

Component 𝜇 (MPa) 𝑏 𝐾 (MPa) 𝜌 (kg/m3) 𝜂 

PT 0.5 22.02 50 1100 0.1 

SAL 9.72∙10–3 0.214 0.972 1100 0.1 

ISJ 0.142 1.47 14.2 1100 0.1 

IMJ 0.142 1.47 14.2 1100 0.1 

Nearly incompressible Neo-Hookean materials 

Component 𝜇 (MPa) 𝐾 (MPa) 𝜌 (kg/m3) 𝜂 

PIL 10 1000 1100 0.1 

PF 0.05 5 1100 0.1 

Linear elastic materials 

Component 𝐸 (MPa) 𝜈 𝜌 (kg/m3) 𝜂 

Malleus 16∙103 0.3 1740 0 

AMP 16∙103 0.3 1740 0 

Incus 16∙103 0.3 1740 0 

Stapes 16∙103 0.3 1370 0 

Table 1. Material parameters of the base model. For the PT, SAL and ISJ, we calculated 𝜇 and 𝑏 by fitting a Veronda-Westmann 

model to the stress-strain response of the Ogden model in Motallebzadeh et al. (2013), Gan et al. (2011) and Zhang and Gan 

(2011), respectively. 𝜇, shear modulus; 𝑏, second Veronda-Westmann parameter; 𝐾, bulk modulus; 𝜈, Poisson’s ratio; 𝜌, mass 

density; 𝜂, loss factor. 165 

2.3. Modeling procedure 

The modeling procedure was split up in two steps: in the first step, a method was used to generate stationary 

prestrains in the PT of different magnitudes; in the second step, the output of the first model step was used as initial 

condition to compute the long-term static and linear harmonic response of the ME to pressure loading at the level 

of the TM. 170 

2.3.1. Prestrain step 

In our measurements of TM prestrain in rabbit, we found no clear difference in the strain values between the 

radial and circumferential direction and between different locations (Livens et al., 2021). When a flat circular 

membrane is radially stretched at the rim, the strain in the membrane will be homogeneous and equal in the radial 

and the circumferential direction. Therefore, to generate prestrain in the PT in our model, the PT was stretched at 175 

the rim by prescribing a radial displacement that equals a fixed percentage of the radial distance to the umbo (0.5%, 

1%, 2%, 4% and 8%). This range was roughly based on the mean and standard deviation of the average prestrain 

values at the different TM locations reported in Livens et al. (2021), which were derived from the maximal 



prestrain values measured at the incisions. Near the connection with the PF, the prescribed displacement of the PT 

rim was gradually forced to zero to avoid prestraining of the PF. 180 

The prestrain in the TM is present in the reference geometry of the ME as imaged by the micro-CT scan. Our 

method to generate TM prestrain, however, causes a distortion of the ME geometry, which may be substantial for 

even moderate degrees of prestrain, hence affecting the model outcome. To make the prestrain compatible with 

the reference geometry, we created a method that iteratively updates the coordinates of the undeformed input 

geometry which, after successful prestraining, leads to a deformed geometry that is in agreement with the original 185 

reference geometry. If the coordinates of the model are denoted by 𝑿0 for the original undeformed reference 

geometry, 𝑿𝑖  for the undeformed geometry at iteration 𝑖, and 𝒙𝑖 for the deformed geometry at iteration 𝑖, then the 

coordinates of the undeformed geometry at the subsequent iteration 𝑿𝑖+1 are calculated by 𝑿𝑖+1 = 𝑿0 − (𝒙𝑖 − 𝑿𝑖). 
Starting at 𝑿1 = 𝑿0, the iterative process is continued until the maximal error of all vertices between the 

prestrained geometry and the original reference geometry ‖𝒙𝑖 − 𝑿0‖2 is considered small enough, with ‖∙‖2 the 190 

Euclidean norm. The updating routine was automated in MATLAB through the COMSOL LiveLink. 

As suggested in previous studies, the prestress associated with prestrain in the TM may be balanced with the 

prestress in other parts of the ME. To account for this effect in the prestrain calculation step, we constrained the 

SAL, PIL and AMP by fixing the displacement degrees of freedom at their connection to the ME cavity walls. As 

the PT is deformed during the prestrain calculation step, the other ME components are able to deform in 195 

conjunction with the PT. By fixing these components at the walls, they have the ability to develop a certain degree 

of prestress to reach equilibrium with the prestress in the PT. 

2.3.2. Pressure loading step 

After the model was successfully prestrained by stretching the rim of the PT, the PT rim was held fixed and a 

static or harmonic pressure load was applied to the lateral TM surface to compute either the long-term static or 200 

harmonic response of the ME. The long-term response of the ME to static pressure at the TM was computed for 

pressures up to +2 and ─2 kPa, taking into account nonlinearity of the deformation. The harmonic response of the 

ME to sound-pressure loading was simulated by applying a uniform harmonic pressure to the TM with frequencies 

between 0.5 and 8 kHz at 16 frequencies per octave and an amplitude of 1 Pa. Hence, the calculated vibration 

response was normalized with respect to input pressure. Because sound-induced ME motions can be considered 205 

linear for sound-pressure levels up to about 120 dB, the steady-state response was computed in the frequency 

domain as a linear perturbation around the prestressed step, as was done in Muyshondt and Dirckx (2021) to 

compute the effect of static pressure on harmonic ME vibrations. 



To take into account the impedance load of the cochlea, a uniform pressure 𝑝C = 𝑧C𝑣FP was imposed on the 

medial footplate surface, with 𝑧C the specific acoustic impedance of the cochlea and 𝑣FP the out-of-plane footplate 210 

velocity. According to Hemilä et al. (1995), 𝑧C is purely viscous and independent of animal size with a constant 

value of 140 kPa s/m for all frequencies, which was used in our model. With this assumption, the cochlear 

impedance will only affect the dynamic and not the static ME response, which is in agreement with the observation 

that removing the cochlea in rabbit has a negligible effect on quasi-static TM deformation (Dirckx and Decraemer, 

2001). The load on the footplate 𝑝C was only defined in the out-of-plane direction, hence assuming that cochlear 215 

loads induced by footplate rocking motion are negligible. As in our most recent model of the human ME 

(Muyshondt and Dirckx, 2021), the acoustic impedances of the ear canal and the ME cavity were ignored. 

2.3.3. Middle ear with structural changes 

Besides the fact that prestrain may affect the vibration response of the normal ME, it is also possible that 

structural changes in the ME due to a disease or surgical reconstruction will change the state of prestrain in the 220 

TM, hence influencing the change in ME response. For example, when the TM is perforated, the change in ME 

response may be affected by changes in TM prestrain due to the perforation. To test this hypothesis, we created an 

additional model with a 2-mm diameter hole in the posterior-inferior quadrant of TM by removing the elements 

of the perforation from the model geometry, and calculated the effect on the vibration response for a model with 

and without prestrain. The model outcome does not depend on whether the prestrain or the perforation is applied 225 

first; we first created the perforation and then incorporated prestrain, as this order is computationally more 

straightforward. Just like in the simulations of the normal ME, prestrain in the PT was induced by stretching the 

outer rim of the membrane. As a result, the boundaries of the applied perforation will deform accordingly to reach 

static equilibrium. After perforating and prestraining the TM, sound pressure loads were applied to the remaining 

portion of the lateral TM surface. Because the model does not include the ear canal and ME air spaces, the leakage 230 

of sound pressure across the hole is not taken into account, even though it was shown to have an important effect 

(Voss et al., 2001). Hence, our model can only be used to examine the effect of changes in prestrain on the vibration 

response upon perforation. In reality, a perforation will also balance possible static pressure gradients across the 

TM, but as we are studying the effect of prestrain in the absence of external loads this effect is not considered here. 



3. Results 235 

3.1. Prestrain analysis 

To evaluate the effect of different levels of prestrain in the TM, radial displacements of 0.5%, 1%, 2%, 4% and 

8% of the distance to the umbo are imposed on the rim of the PT in the prestrain analysis step. The updating 

procedure of the model geometry described in Section 1.2.1 is continued until the difference between the 

coordinates of the prestrained geometry and the original reference geometry is smaller than 9 µm for all vertices, 240 

that is, smaller than the resolution of the micro-CT scan on which the ME model is based. For the largest prestrain 

value (8%), this condition is met after 12 iterations. The generated prestrain in the membrane’s body is evaluated 

by calculating the average von Mises strain of the Green-Lagrange strain tensor, which is a positive scalar quantity 

that describes the state of strain in a material. The von Mises strain is equal to 0.52%, 1.02%, 1.99%, 3.83% and 

7.48% for the 5 chosen prestrain states, which is in close agreement with the respective fractions of the radial 245 

displacements (0.5%, 1%, 2%, 4% and 8% of the distance to the umbo) prescribed at the PT rim to generate 

prestrain in the model. The von Mises stress of the second Piola-Kirchhoff stress tensor, describing the state of 

stress in the PT, is equal to 7.95, 15.5, 32.0, 73.2 and 244 kPa for the 5 prestrain states. Fig. 2 shows the von Mises 

strain in the PT together with the direction of the first principal strain (corresponding the most positive eigenvalue 

of the Green-Lagrange strain tensor) for the different prestrain levels. Fig. 2 reveals that the prestrain in the PT is 250 

oriented more circumferentially in the outer regions near the rim and more radially in the inner parts near the 

manubrium. Also, the von Mises strain field becomes more uniform as prestrain increases.  



 

 

Fig. 2. Von Mises strain field in the pars tensa upon stretching the rim of the membrane by different prestrain values, including 255 

the direction of the first principal strain. The direction of the prestrain is more circumferential near the periphery and more 

radial near the manubrium. 

3.2. Static response 

Before studying the effect of different degrees of TM prestrain on the harmonic ME response, we validate the 

static stress-strain response of the model by comparing it to quasi-static experiments of umbo motion, which were 260 

collected most recently in rabbit by Gladiné and Dirckx (2019). Digital image correlation was used to measure 

quasi-static TM deformation in response to triangular pressure cycles at the TM with a frequency of 0.03125 Hz 

and a peak pressure of 2 kPa. Because our model computes the long-term static response, time-dependent 

viscoelastic effects such as hysteresis observed in the experiments are not taken into account. Fig. 3 compares the 

umbo displacement as a function of input pressure at the TM for the experiment (a; mean and standard deviation) 265 

and the model for different degrees of prestrain (b). It is seen that the lateral displacement of the umbo under 

negative pressure is larger than the medial displacement under positive pressure in both the experiment and model. 

When the prestrain in the model is increased, it becomes clear that the asymmetry and nonlinearity of the 

displacement curve between positive and negative pressures diminishes. For prestrains of 4% and 8%, the change 

relative to the curve with 0% prestrain and the difference with the measurements becomes too high, so these 270 

prestrain values appear too extreme for the present base model. For smaller prestrains up to 2%, the change relative 



to the 0% prestrain case is smaller than the variation between the measurements, and the model outcome is in line 

with the measurement results. 

 

Fig. 3. Umbo displacement as a function of static pressure on the tympanic membrane applied at the side of the ear canal. (a) 275 

Mean and standard deviation of measured displacement in response to quasi-static pressure cycles in rabbit (Gladiné and 

Dirckx, 2019). (b) Long-term static displacement in the model for different degrees of prestrain. Positive (resp. negative) 

displacements denote medial (resp. lateral) displacements. The nonlinearity of the displacement and the asymmetry between 

positive and negative pressures reduces as the prestrain increases. 

3.3. Harmonic response 280 

3.3.1. Normal middle-ear response 

Fig. 4 shows the velocity response of the rabbit ME for three experiments measured at the umbo (a) and for 

the model evaluated at the umbo and footplate with different degrees of prestrain (b). Measurements were obtained 

on fresh cadaveric rabbit ears using laser Doppler vibrometry. In the experiments, sound pressures were applied 

at the entrance of the ear canal in a closed acoustic chamber and measured just lateral to the TM. Vibrations were 285 

measured from the medial side of the umbo after opening the bulla. Prior to measurement, the TM was maintained 

hydrated. 



 

Fig. 4. Velocity magnitude (top) and phase (bottom) as a function of frequency in the rabbit ME. (a) Velocity measurements 

on the umbo on cadaveric rabbit ears. (b) Velocity response of the model for different degrees of prestrain, evaluated at the 290 

umbo (solid lines) and footplate (dashed lines). Increasing the prestrain substantially reduces the low-frequency magnitude and 

shifts the peak frequencies to the right. 

In the base model without prestrain, the low-frequency magnitude is higher and the first peak frequency is 

lower than in the measurements. When the prestrain is increased from 0% to 0.5%, 1%, 2%, 4% and 8%, the low-

frequency magnitude at 125 Hz decreases by respectively 1.4, 2.1, 4.0, 6.9 and 12.9 dB, while the peak frequency 295 

increases by respectively 228, 374, 623, 1038 and 2143 Hz. The velocity response at high frequencies is affected 

much less by the prestrain. For prestrains of 0.5%, 1% and 2%, the model shows the best agreement with the 

measurements. For prestrains of 4% and 8%, the peak frequency and low-frequency magnitude disagree 

considerably with the experiments, again suggesting that those prestrain levels are too extreme for the current base 

model. As the prestrain increases from 0% to 0.5%, 1%, 2%, 4% and 8%, we generally observe a small gradual 300 

increase of the umbo-to-footplate velocity ratio, with values at 125 Hz ranging from 10.9 dB to 10.9, 11.2, 11.2, 

12.0 and 15.8 dB, respectively. In previous experiments in rabbit (Peacock et al. 2015), the average umbo-to-

footplate ratio at 125 Hz was equal to 10.2 ± 1.4 dB, leaving only the 4% and 8% prestrain models outside of the 

experimental standard deviation bounds. 

The drop of the magnitude at low frequencies and the shift of the peak frequency in Fig. 4 (b) are phenomena 305 

that indicate an increase in stiffness of the structure. Similarly, it can be seen that the first magnitude peak and 

phase drop in Fig. 4 (b) become slightly sharper as the prestrain increases, which indicates a decrease in damping 

of the structure. Instead of incorporating prestrain in the TM to simulate the harmonic response of the ME, the 

traditional approach is to adjust the material parameters until a good match with experimental data is obtained, 



although this approach is not preferred when the material contains prestrain. If we test this approach by simply 310 

doubling the values of all shear moduli, bulk moduli and Young’s moduli and halving the loss factors of all 

structures, then we obtain a frequency response that shows a good agreement with the measurements and is in 

many aspects similar to the base model with a TM prestrain of 2%, as depicted in Fig. 5. 

 

Fig. 5. Comparison between experimental data, a model with 2% prestrain and a model without prestrain but with adapted 315 

material parameters (full lines = umbo, dashed lines = footplate). When prestrain is ignored, a good match with the experiments 

can be reached by appropriately increasing the elastic moduli and decreasing the damping factors of all components. 

3.3.2. Middle-ear response with structural changes 

Fig. 6 shows the change in footplate velocity magnitude and phase after creating a 2-mm diameter perforation 

in the TM for a model with and without prestrain. Prestrain values of 0.5%, 1% and 2% were evaluated, as they 320 

were found to be viable prestrain values for the present model in relation to the measurement data, as depicted in 

Fig. 4. We observe that the velocity magnitude changes relative to the intact case by maximally 10 dB but less 

than 5 dB on average, both with and without including prestrain. However, when prestrain is included there is a 

small increase of the velocity ratio of up to 1.5 dB at low frequencies that increases with increasing prestrain. To 

confirm that the change in the low-frequency response is indeed due to changes in the prestrain after perforation, 325 

we also added the result of a model with 0% prestrain but with modified material parameters to match the 2% 

prestrain model from Fig. 5. We see that the latter model produces the same velocity ratio at low frequencies as 

the base model with 0% prestrain; hence, prestrain is indeed responsible for the increase in velocity ratio. This 



conclusion cannot be drawn at higher frequencies, where differences are largely due to the difference in the 

absolute model responses of the different prestrain values. When we consider the position of the magnitude peak 330 

(not shown), we find that the peak frequency is reduced more in the base model with 2% prestrain (351 Hz) than 

in the modified model without prestrain (97 Hz) after the perforation is made. Fig. 7 shows the von Mises strain 

in the PT after creating the perforation. It can be seen that the perforation releases part of the prestrain just inferior 

and anterior to the location of the hole for all prestrain levels when compared to the normal model (Fig. 2). 

 335 

Fig. 6. Change in stapes velocity magnitude and phase after creating a 2-mm diameter perforation in the tympanic membrane, 

both with and without taking prestrain into account. The velocity magnitude changes by less than 5 dB on average for each 

condition. When prestrain is included, the magnitude ratio at low frequencies increases compared to the model without 

prestrain. 
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Fig. 7. Von Mises strain field and direction of the first principal strain in the pars tensa, after prestraining and perforating the 

membrane for prestrain levels of 0.5%, 1% and 2%. Creating the perforation partially releases the prestrain just inferior and 

anterior to the location of the hole. 



3.4. Sensitivity analysis 

To evaluate how possible uncertainty in the base parameters of Table 1 propagates to the output of the prestrain 345 

simulations, we performed a sensitivity analysis in which the base parameters of the model were varied by factors 

1/4, 1/2, 2 and 4. For this analysis we focused on the elastic parameters 𝜇, 𝐾 and 𝑏 of the PT. In addition, to 

determine the effect of uncertainty in the remaining ME parameters (the ossicles, joints and ligaments), we 

simultaneously varied 𝜇, 𝐾 and 𝐸 of these components by the same amount. To quantify the model sensitivity to 

each parameter, we computed the effect on the low-frequency magnitude drop at 125 Hz and the peak frequency 350 

shift for a TM prestrain of 2%. The results of the sensitivity analysis are shown in Fig. 8. The results make clear 

that an increase of the PT elastic parameters leads to a further decrease of the low-frequency magnitude change 

and a further increase of the peak frequency shift, with the highest effect caused by 𝜇. Hence, the higher the 

stiffness of the PT, the higher the effect of the prestrain on the harmonic response. For the other ME components, 

increasing the elastic parameters reduces the drop of the low-frequency magnitude, but increases the peak-355 

frequency shift by a small amount. 

 

Fig. 8. Effect of varying the elastic parameters of the pars tensa (PT) and the other middle-ear (ME) components by factors 

1/4, 1/2, 2 and 4 on the low-frequency magnitude change at 125 Hz (a) and the peak frequency shift (b), when the prestrain 

applied to the pars tensa is 2%. 360 

4. Discussion 

4.1. Comparison to previous work 

4.1.1. Modeling approach to include prestrain 

In the literature, different approaches have been developed to incorporate prestrain and prestress in 

biomechanical systems. Rausch and Kuhl (2013) simulated prestrain and prestress in the mitral leaflet by stretching 365 

the structure from an unstressed initial geometry to a given prestressed reference geometry, assuming that the 



deformation gradient induced by the prestress is known. Alternative methods that have been created do not require 

the existence of an unstressed geometry, because the prestress is incorporated directly in the reference geometry 

(Alastrue et al., 2007; Maas et al., 2016). Other techniques make use of a reverse engineering approach to seek the 

deformation gradient that renders the (pre)stresses in equilibrium with the given in-vivo loads in the reference 370 

geometry (Gee et al., 2010; Weisbecker et al., 2014; Grytz and Downs, 2013; Pierce et al., 2015). To achieve this, 

an iterative computation scheme is followed due to the nonlinearity associated with large deformations. A similar 

approach effectively aims to retrieve the unstressed geometry that balances the in-vivo loads in the prestressed 

reference configuration (Bols et al., 2013). The method used in our work is most similar to the latter method, 

although in our case the in-vivo loads are given by prescribed displacements applied to the rim of the TM. 375 

4.1.2. Modeling of prestrain in the tympanic membrane 

To the best of our knowledge, there are only two studies that investigated the effect of prestrain in the TM on 

the ME vibration response. In Caminos et al. (2018), prestrain was applied directly to the body of the TM as a 

homogeneous and isotropic strain in the plane of the membrane, while the TM was compressed in transverse 

direction to account for the Poisson effect. Because their model was based on infinitesimal (linear) deformation 380 

theory, they only analyzed the response to small prestrains (0.1─1%). Moreover, because there was no mechanism 

to eliminate the distortion of the geometry upon prestraining, applying larger strains would have distorted the 

reference geometry too much, affecting the model results. Their results showed that even small degrees of prestrain 

had a substantial effect on the TM’s modal frequencies. They also found that increasing the prestrain or increasing 

the Young’s modulus had a similar effect on the TM modal frequencies, although both actions led to a different 385 

distribution of the modal frequencies in the high-frequency range. Another study investigated the effect of prestrain 

on the TM response in a model of the locust ear (Malkin et al., 2014). They incorporated prestrain by applying in-

plane displacements to the TM which resulted in membrane strains of 1%. The resulting effect on the membrane’s 

time-dependent motion was evaluated in response to pure-tone stimuli of 5, 10, 15, 20 and 25 kHz. Although they 

made use of linear elasticity theory and had no mechanism to eliminate the geometrical distortion, it was shown 390 

that the inclusion of prestrain was needed to explain the presence of flexural waves and the localization of kinetic 

energy in the membrane. 

4.2. The effect of prestrain on the harmonic response 

4.2.1. The intact middle ear 

The decrease of the low-frequency magnitude and shift of the peak frequency with increasing prestrain seen in 395 

Fig. 4 (b) reflects a similar behavior as an increase of the stiffness of the system, as was deduced by Caminos et 



al. (2018) and Malkin et al. (2014). It is well-known that prestress increases the effective stiffness of a mechanical 

body, which is known as a phenomenon called prestress stiffening. For a harmonic viscoelastic system, prestress 

introduces an additive term to the global stiffness matrix, called the geometric stiffness matrix (Morman and 

Nagtegaal, 1983), hence increasing the total stiffness of the structure. In Fig. 4 (b), the first resonance peak in the 400 

ME response becomes slightly sharper with increasing prestrain, denoting a decrease of damping in the system. 

The loss factor, which characterizes the viscoelastic damping in a harmonic system, is defined as the loss modulus 

over the storage (or elastic) modulus. Because the loss modulus does not increase in the same way as the elastic 

modulus when the prestress is raised, the effective loss factor will decrease with increasing prestress (Rao et al., 

1992; Manconi et al., 2013). Although the approach is not preferable, one may choose to increase the elastic moduli 405 

and decrease the loss factors in the base model to replicate the normal ME response instead of incorporating 

prestrain, as was shown in Fig. 5. However, the adjusted material parameters may not be realistic compared to 

measurements of material properties on the respective tissue structures (e.g. Cheng et al., 2007; Gan et al., 2011; 

Zhang and Gan, 2011), which reduces the predictive power of the model beyond the conditions it was validated 

to. If one does decide to exclude prestrain and wants to verify if the assigned material parameters are in agreement 410 

with experimental observations, one should take into consideration whether the experimental data were collected 

in conditions where the prestrain or prestress was still present or had been eliminated, e.g. by excision of the 

tissues. In the current rabbit model, soft-tissue elastic parameters were used from measurements obtained in human 

(Cheng et al., 2007; Gan et al., 2011; Zhang and Gan, 2011). Depending on how the elastic parameters in human 

are representative for the unknown parameters in rabbit, the results of the model may be affected as illustrated in 415 

the sensitivity analysis of Fig. 8, which shows the effect of varying the base parameter values by factors 1/4, 1/2, 

2 and 4. 

During the generation of the TM prestrain in the model, the ME input geometry is deformed iteratively until 

all stresses in the system are in equilibrium in the prestressed reference geometry. As a result, a certain degree of 

prestrain and prestress is built up in the ME components other than the PT. The effect of this can be seen when 420 

considering the ratio of the umbo and footplate velocity depicted in Fig. 4 (b), which increases slightly with 

increasing prestrain. Sensitivity analyses of the ME response (De Greef et al., 2017) have revealed that increasing 

the stiffness of especially the SAL will reduce the footplate velocity magnitude, leading to a small increase of the 

umbo-to-footplate velocity ratio. Since our prestrain model also induces a small amount of prestress in the SAL, 

the observed behavior can be partially explained by an increase of the SAL’s effective stiffness. Sim and Puria 425 

(2008) presumed that preloads are present in the suspensory ligaments of the ossicles to balance preloads in the 



TM and stapes: the pulling force of the TM in the lateral direction associated with the TM prestress may cause a 

translation and rotation of the IM chain, resulting in prestress of the ligaments. This is also what we observe in our 

model, where the umbo and ossicles are being pulled outwards as the prestrain is applied to the TM. From a 

different perspective, the ossicles and their ligaments change their orientation during the neonatal growth process, 430 

which may lead to an inward retraction and possibly also a prestraining of the TM while it is growing, hence giving 

the membrane its inward conical shape (Marcusohn and Dirckx, 2011). Also in simulations of the IM joint, 

prestrain needed to be incorporated in the joint to obtain a sufficient agreement with measurements of quasi-static 

motion of the IM complex (Ihrle et al., 2017). The idea that the ossicles, ligaments and joints add to the preservation 

of prestrain in the TM is supported by the observation that the TM partially loses its shape when the suspensory 435 

structures of the ossicles are severed (Dirckx and Decraemer, 2001) or when the manubrium of the malleus is 

fractured (Gladiné et al., 2018). 

4.2.2. The middle ear with structural changes 

To investigate if there are model conditions for which the inclusion of TM prestrain could be important, we 

created a model with a perforation of 2-mm diameter in the TM and evaluated the change in the ME response after 440 

creating the hole, without taking into account the loss of sound pressure gradient across the perforation. We found 

that the footplate velocity changed by less than 5 dB on average, both when the prestrain was included or not (Fig. 

6). However, when prestrain was included there was a small increase of the velocity ratio up to 1.5 dB at low 

frequencies compared to when prestrain was ignored. In addition, a negative shift of the peak frequency was seen. 

These findings denote a reduction in the effective stiffness of the TM, which originates from a release in TM 445 

prestrain due to the perforation, as observed in Fig. 7. The effect of a TM perforation on the sound-induced 

footplate response was measured in human by Voss et al. (2001). Despite that they could attribute the observed 

vibration losses for the most part to a pressure gradient loss across the perforated TM, which was not accounted 

for in our study, a small difference of up to 5 dB remained after they compensated for the pressure gradient loss, 

which was ascribed to changes in the structure of the TM and the coupling to the ossicular chain.  450 

Also for other model conditions in which the normal configuration of the TM and ossicles is altered, it can be 

relevant to include TM prestrain and prestress. Gladiné et al. (2018) simulated the effect of a fracture in the 

manubrium on the vibration response of the footplate. In their analysis it was necessary to lower the stiffness of 

the TM to minimize the vibration loss at low frequencies observed in experiments. The lowering of the stiffness 

was attributed to a presumed loss in TM prestress. By effectively incorporating prestrain and prestress in ME 455 

models in future studies, we may improve our insight of ME biomechanics with regard to such phenomena. 



5. Conclusion 

In the present study, a 3D FE model of the rabbit ME was developed to investigate how different levels of 

prestrain and prestress in the TM affect the ME vibration response. The results reveal a substantial impact on the 

vibration response of the umbo and stapes footplate: with increasing prestrain, the low-frequency magnitude shows 460 

a considerable decrease, while the peak frequency shifts to the higher frequency range. This behavior indicates an 

increase in stiffness of the material, which is a well-known mechanical phenomenon that occurs when a structure 

is prestressed. It was shown that the normal ME response can be replicated by appropriately increasing the elastic 

moduli instead of incorporating prestrain in the model, although this is physically not the preferred approach. TM 

prestrain may need to be taken into account when the change in ME response is to be investigated due to 465 

pathological modifications to the ME structure. This was illustrated by modeling of a ME with perforated TM, 

which displayed small but noticeable changes in the low-frequency response that result from a release in TM 

prestrain. In future studies, including such effects may improve understanding of ME mechanics in diseased or 

reconstructed conditions, which may be relevant for e.g. the development of reconstructive TM tissue grafts. 
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