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The Electric On-Demand Bus Routing Problem with Partial
Charging and Nonlinear Functions

Ying Liana,∗, Flavien Lucasb, Kenneth Sörensena
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Abstract

Electric vehicle routing problems (EVRPs) with recharging policy consider the limited range of
electric vehicles and thus include intermediate visits to charging stations (CSs). In general, min-
imizing the resultant charging costs such as charging duration or charging amount are also part
of the objective of EVRP. Accordingly, EVRPs have received considerable attention over the past
years. Nevertheless, this type of problems in the domain of passenger transportation, a VRP vari-
ant, has been rarely studied in the literature, especially with time windows, a realistic nonlinear
charging function or partial charging policy. Hence this research extends the existing work on
EVRP to an On-Demand Bus Routing Problem (ODBRP) which transports passengers with bus
station assignment (BSA). The resultant problem is the EODBRP. Specifically, each passenger can
have more than one stations to board or alight, and they are assigned to the ones with the small-
est increase in the total user ride time (URT). In EODBRP, frequent intermediate visits to CSs
are considered. Moreover, nonlinear charging functions are in use and partial charging strategy is
applied. To solve the EODBRP, a greedy insertion method with ‘charging first, routing second’
strategy is developed, followed by a large neighborhood search (LNS) which consists of local search
(LS) operators to further improve the solution quality. Experimental data were generated by a
realistic instance generator based on a real city map, and the corresponding results show that the
proposed heuristic algorithm performs well in solving the EODBRP. Finally, sensitivity analyses
with divergent parameters such as the temporal distributions of passengers and bus ranges may
provide practical guidance.

Keywords: on-demand bus routing problem, electric vehicle, non-linear charging function, partial
charging

1. Introduction

Electric vehicles (EV) have a steady increase in the automotive market in recent years, and one
of the reasons is to reduce greenhouse gas emissions from land transportation (Zhou et al., 2015).
In parallel, the study of EV has also emerged in the vehicle routing problem (e.g. Schneider et al.,
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2014; Hof et al., 2017; Schiffer and Walther, 2017), which is referred as ‘electric vehicle routing prob-
lem’(EVRP), where the EV-related technological constraints are taken into account. In particular,
compared with gasoline- or diesel-powered vehicles, the driving range of EV is limited, as a result,
charging or battery swapping is a necessary component in route planning. Thus the main objective
of the studied EVRP is an overall efficient routing of visits to customers and CSs. Especially, the
charging process of lithium-ion batteries still generates greenhouse gases significantly (Onn et al.,
2018), which adds the importance to investigate efficient charging solutions. Specifically, the charg-
ing process of these batteries is non-linear, and research has shown that ignoring nonlinearity can
cause the solutions inefficient or even infeasible (Pelletier et al., 2017; Montoya et al., 2017).

Despite of research in EVRP, considering EV in the context of passenger transportation such
as the dial-a-ride problem (DARP) or other variants, however, has not been widely studied. To
the best of our knowledge, only a few papers (Masmoudi et al., 2018; Bongiovanni et al., 2019;
Sayarshad et al., 2020; Ma et al., 2021; Zhang et al., 2022) have investigated EDARP with focus
on detouring to battery charging or swapping stations, with small vehicles of six seats or electric
autonomous cars. While in practice, given the development of the fast charging technologies of
electric buses, a mini bus or even a regular bus can be quickly charged from empty to 80% full
within an hour or fully charged in around two hours, which provides possibility to apply EVs in
passenger transportation, both in real life and research field. In fact, there are cities have largely
replaced conventional buses by pure electric or hybrid buses, benefiting from the technologies of
fast charging and enlarged battery capacity (He et al., 2020). Hence, this work investigates an On-
Demand Bus Routing Problem (ODBRP) integrated with intermediate visits to CSs. Specifically,
partial charging and nonlinear charging functions are adopted in order to make the model more
realistic.

In this work, we propose a heuristic approach to solve the EODBRP. To start with, the term
‘leg’ is used to refer to the route of a bus between two visits of CSs. Then each request is inserted in
the leg with the minimum increase of the total URT. Related modifications are thus routing among
stations, as well as adapting CSs, including which CS to visit and how much to charge. Calculating
the recharging times is mathematically modeled as a subproblem and solved by CPLEX, if the
number of the legs within a route is larger than or equal to three (for fewer legs the optimal
recharging time can be calculated without CPLEX). In this way, optimal recharging times can be
achieved. In the second phase, a LNS with LS operators is devised to improve the solution quality.
Particularly, two parameters within the LNS framework control how many requests to destroy, and
the number of candidate solutions to choose the most promising one from for LS. The performance
of the LNS framework will be tested.

In terms of experiments, a real city map with given stations and distance matrix is in use, and
requests were generated by a realistic instance generator. Then the performance of the proposed
algorithm was tested, including the parameter setting of the LNS. Next, the features of the best
known solutions(BKSs) are analyzed and presented. In addition, the effect of bus station assignment
(BSA) is tested among various instance sizes, which distinguishes the ODBRP from the DARP and
as a result improves the overall efficiency of the solution. Moreover, experiments to compare the
performance with conventional buses were conducted, i.e. the number of buses needed, among
instances with various temporal distributions of passengers, as well as the use of mini or regular
buses. Experimental results show that intermediate charging plays an important role of applying
electric bus; BSA not only improves the total URT but also reduces the total charging times and
thus contributes both to the service quality and the environment; both mini and regular electric
buses can be qualified substitutes of conventional buses with robustness, among various passengers’
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temporal distributions.
The contributions of this work can be listed as follows: It extends the use of EV in the context

of passenger transportation, with realistic charging functions and charging policy. Subsequently, it
proposes and verifies a possible division of the integrated problem, as well as solves the subproblem
to optimality and the entire problem efficiently. Moreover, the parameter setting of the LNS
framework achieves a tradeoff between exploring more neighborhoods and maintaining the neat
attributes of the best known solution, the solution quality is thus improved. Last but not least,
it conducts extensive numerical experiments with realistic artificial instances, in order to assess
the performance of the proposed method as well as the feasibility of applying electric buses with
recharging in the ODBRP. The outcome of the experiments may provide practical guidance.

The remainder of this paper is organized as follows. Section 2 presents the related work in the
research field. Section 3 formally introduces the EODBRP. Next, section 4 describes the solution
method, i.e. the heuristic and the CPLEX subproblem, and section 5 presents the computational
experiments. Finally, section 6 concludes the paper and discusses future research.

2. Literature Review

This section provides a brief review on recent and related literature. First EVRP is introduced.
Next, since this study involves partial charging and nonlinear charging function, the relevant litera-
ture are reviewed. Subsequently, as a variant of ‘Fixed Route Vehicle Charging Problem’(FRVCP) is
the subproblem of this study for charging decisions, we revise the papers including FRVCP. Finally,
the relevant research on EDARP are presented.

Research on EVRPs originally started with the green vehicle routing problem (Green VRP)
proposed by Erdoğan and Miller-Hooks, 2012. In the Green VRP, vehicles with alternative fuels
will be fully charged at refill stations. Then Schneider et al., 2014 extended Green VRP to EVRP.
More specifically, in their paper, an EVRP with time windows was solved using a hybrid heuristic
of variable neighborhood search and tabu search.

In EVRP, the charging policy particularly can be divided into three categories: full recharging
with linear recharging function (e.g. Goeke and Schneider, 2015; Hiermann et al., 2016), partial
recharging with linear function (Ángel Felipe et al., 2014; Schiffer and Walther, 2017; Desaulniers
et al., 2016) or partial recharging with nonlinear function (Montoya et al., 2017). In this study,
partial charging policy with nonlinear function is adopted. Thus in the following, we briefly review
the literature dealing with partial charging and nonlinear function, while for more comprehensive
and recent reviews of EVRP, we refer to Kucukoglu et al., 2021; Erdelić and Carić, 2019.

2.1. Partial charging policy

Full recharging was considered initially in most EVRP literature. However, this can be time-
consuming and not eco-friendly. On the contrary, partial charging can enable the feasibility to
serve more passengers with narrow time windows, since vehicles can have a wide range of charging
time, from minutes to hours, depending on the State-of-Charge (SoC) level, charging technology
and battery capacity (Mart́ınez-Lao et al., 2017). In partial recharging, it is natural to only charge
the amount that is enough to cover the remaining route, with the range anxiety of which the
range cannot cover the whole route (Sweda et al., 2017) still taken into account. The concept of
allowing partial charging was considered in Ángel Felipe et al., 2014; Bruglieri et al., 2015. Then
Desaulniers et al., 2016 adopted partial charging in an EVRP with time windows. In addition,
Keskin and Çatay, 2016 adopted partial charging in an EVRP with time windows and provided the
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mathematical model. This problem was solved by adaptive large neighborhood search. Comparing
with the full charge strategy, they concluded partial charge can save the total costs substantially.
In terms of EVRP with time windows, Desaulniers et al., 2016 also solved a problem in this domain
and concluded that allowing multiple visits to CSs as well as partial charging both help to reduce
routing costs and the number of vehicles compared with single visit and with full charging. Exact
branch-price-and-cut algorithms was used to solve this problem. Similarly, Schiffer and Walther,
2017 concluded the benefits of partial charging in an electric location routing problem with time
window. Specifically, a partial charging strategy can reduce the total travel distance and the number
of visits to CSs.

2.2. Nonlinear charging function

The charging procedure was initially modeled as a linear function. While in fact, lithium-ion
batteries are often charged in constant-current constant voltage (CC-CV) phases: in the CC pahse,
SoC increases linearly, while in the CV phase nonlinearly and the charging time is prolonged due
to the drop of the current (Pelletier et al., 2017). The standard way to deal with the nonlinear
function is to transform it into a piece-wise linear function.

Based on the piecewise linear and concave charging functions, Zündorf, 2014 developed a prop-
agating algorithm to compute a battery-constrained route. Later, Montoya et al., 2017 fitted
piecewise linear functions according to real-world data, and showed ignoring nonlinearity can lead
to poor or even infeasible solutions. A hybrid metaheuristic combining an iterated local search
and a heuristic concentration was developed to solve the EVRP with nonlinear charging functions.
Later, based on the nonlinear charging function in Montoya et al., 2017, Froger et al., 2019 pro-
posed an arc-based model tracking of the time and the state of charge. Besides, they also proposed
a path-based model. Experimental results showed the two models outperformed the node-based
model.

2.3. FRVCP

One of the most challenging issues when solving an EVRP and its variants is the charging
decisions, especially with the partial charging policy and nonlinear functions, it is critical to decide
when and how much to charge, since the charging decisions influence significantly the feasibility
and quality of the solutions. Therefore, in terms of solution methods to position a CS in a route,
some authors have studied the FRVCP as a subproblem of EVRP. In such problems, the customer
sequence in a route is fixed while the position of CS and the amount to charge are adjusted. The
FRVCP is a variant of the Fixed Route Vehicle Refueling Problem (FRVRP) which aims to minimize
the refueling cost for a fixed route. The FRVRP is NP-hard (Suzuki, 2014), thus the FRVCP is
also NP-hard, and various solution approaches have been proposed in literature.

Montoya et al., 2016 solved an FRVCP with full charging and constant charging time. In
their work, the FRVCP was formulated as a constrained shortest path problem and solved by the
Pulse algorithm (Lozano and Medaglia, 2013). Similar approach was also applied in EVRP with
time windows (Keskin and Çatay, 2018; Hiermann et al., 2019), electric location routing problem
(Schiffer and Walther, 2018a,b). Next, some literature assumed an EV can visit at most one CS
between any pair of non-CS vertices. Among them, an FRVCP within an EVRPTW with single
charging technology and linear charging function were solved in Hiermann et al., 2016; Schiffer
and Walther, 2018a; Hiermann et al., 2019. The difference is whether the full charging (Hiermann
et al., 2016) or the partial charging (Schiffer and Walther, 2018a; Hiermann et al., 2019) was
adopted. Exact algorithms were addressed to solve these problems. Meanwhile, Montoya et al., 2017
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solved an FRVCP as a sub-problem of the EVRP with nonlinear charging functions, heterogeneous
charging stations and the partial charging policy. A mixed integer linear programming (MILP)
model was proposed and the problem was solved by a hybrid metaheuristic combining an iterated
local search (ILS) and a heuristic concentration (HC). Based on the specific MILP formulation and
the metaheuristic, Koç et al., 2019 solved an FRVCP in an EVRP with shared CSs and nonlinear
charging. They proposed a multistart heuristic performing an adaptive large neighborhood search,
together with the solution of mixed integer linear programs. Moreover, Baum et al., 2019 solved
the FRVCP for EVs with realistic and heterogeneous CSs and battery swapping stations. A specific
algorithm which combines different algorithmic techniques was developed and can solve this problem
optimally on realistic inputs.

2.4. Extension in EDARP

A typical DARP includes operational constraints related to time windows, vehicles’ capacities,
maximum route duration and maximum ride time. Then the EDARP integrates classic DARP
with the following features: routing to charging facilities, selecting charging stations, determining
recharging times, as well as adapting the arrival and departure time at passengers’ stations. In
literature, Masmoudi et al., 2018 proposed an EDARP with battery swapping stations and a re-
alistic energy consumption function. Three enhanced evolutionary variable neighborhood search
algorithms were devised to solve this problem.

Besides, there are papers adopt electric autonomous cars which are more flexible to modify
vehicles’ routes, especially in real-time. Among them, Bongiovanni et al., 2019 proposed an electric
autonomous DARP which covers detours to charging stations and recharge times. This problem
is formulated as a 2 index and 3 index MILP, and solved by a Branch-and-Cut algorithm with
new valid inequalities, with the objective to minimize a weighted sum of the total travel time
and excess URT. Later, Sayarshad et al., 2020 devised a non-myopic dynamic routing problem of
electric taxis with battery swapping stations, and proposed a formulation of traveling salesman
problem with pickup and drop-off, including the battery capacity constraints. Then Ma et al., 2021
propose a location routing problem for the car-sharing system with autonomous electric vehicles,
solved separately by genetic algorithm and GAMS. Recently, Zhang et al., 2022 proposed a routing
problem of shared autonomous electric vehicles under uncertain travel time and uncertain service
time. Branch-and-price algorithm was used to solve this problem.

To summarize, EVRP which takes charging decisions into account have drawn interest from
academia. On the other hand, EDARP and its variants has not been widely studied. Thus applying
EVs as well as considering charging decisions with partial strategy and nonlinear charging function
distinguish this study from literature. In addition, this study proposes a unique variant of FRVCP
with a ‘charging first, routing second’ strategy. Details will be explained in the following sections
3 and 4.

3. Problem Description

In this paper, we investigate the ODBRP using electric vehicles with non-linear charging func-
tion and the partial charging policy (EODBRP). Mathematically, EODBRP can be defined with a
mixed integer programming (MIP) formulation, which consists two parts: the ODBRP with con-
ventional vehicles introduced by Melis and Sörensen, 2022; in addition, the constraints concerning
electric vehicles with nonlinear charging function and the partial charging policy are from an EVRP
Montoya et al., 2017.
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Figure 1: Illustrative example of EODBRP

3.1. The electric on-demand bus routing problem

A formal description of the EODBRP is as follows.
Let S denote the set of predefined stations for passengers to board and alight. Each station

node s ∈ S can be visited more than once (even by the same bus) or never. Let F be the set of CSs
each with unlimited capacity where vehicles can be fully or partially charged, then F’ the set of β
copies of F . The use of F ′ is for the modeling convenience as each node ∈ F ′ can be restricted to
visit at most once. Next, let V be the set of nodes, i.e. V = S ∪ F ′. Let G = (V,A) be a directed
graph, where A is the set of arcs connecting any pair of vertices ∈ V . For any arc (i, j) ∈ A, the
travel time is constant over time.

Passengers are geographically dispersed within a service area, and they send in travel requests
in advance, possibly via a mobile application or website. The requests are assumed static and
deterministic. For simplicity, we set each request corresponds to one passenger. Besides, passengers
also specify their locations of origin and destination. Thus, let the sets of bus stations available for
each passenger p’s pickup/drop-off be noted aups and aops respectively. Then for each passenger the
stations within a predefined walking distance to the origin or destination are stored in aups or aops.
In our problem setting, at least one station is guaranteed for each passenger to respectively board
and alight. If there are two or more stations, then bus station assignment (BSA), namely, which
station is selected to board or alight among the sets, is a decision to be made by the algorithm. An
illustrative example is in Fig 1. A bus departs from a CS, then visits passengers’ stations as well as
an intermediate CS, finally ends at a CS. Compared with the dotted lines where passengers are only
picked up and dropped off at the closest stations to their origins and destinations, BSA reduces
the distance both between passengers’ stations and to/from CSs. BSA also allows for pooling of
passengers at stops, so that the bus does not has to stop as frequently.

Passengers also indicate either their desired departure time or arrival time, then we implicitly
calculate a hard time window for each passenger. In literature such as Cordeau and Laporte, 2003,
a general formulation of time windows distinguishes inbound or outbound requests, as well as has
separate time windows for pickup and drop-off, together with a constraint for the maximum ride
time. However, in our model, each passenger p has one single hard time window of earliest departure
and latest arrival [ep, lp], thus the passenger has to be picked up and dropped off within [ep, lp].
The duration of each time window is set to f × tdir, i.e. lp − ep = f × tdir where f is a constant,
and tdir is the direct travel time from the origin to the destination. The parameter f controls how
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strict the time windows are. A small value leads to a strict time window and vice versa. In this
way, the maximum ride time for each passenger is restricted as well.

A homogeneous fleet of electric buses is dispatched, each with a finite capacity Qcap, i.e. the
limit of the number of passengers aboard simultaneously. All the buses have a battery of capacity
Q (expressed in km). It is assumed that the EVs are equipped with a fully charged battery at the
beginning of their route. Then feasible solutions should satisfy that the battery level when an EV
arrives at and departs from any vertex is between 0 and Q. The details of the charging function
will be explained separately in section 3.2.

Travel between any two nodes ∈ V involves a travel time and a consumption of electricity.
The travel time is proportional to the distance, given the travel speed is constant; similarly, the
electricity consumption is assumed to be only proportional to the distance as well, regardless of the
load, slope, etc. Thus, the triangular inequality holds for both the travel time and the electricity
consumption.

The station sequence of each bus b is denoted SSb, which records the stations (including CSs)
that bus b has to visit in sequence. SSb is one of the decisions made by the algorithm. Each station
in SSb is visited only when needed, i.e. at least one passenger needs to get on/off, or the bus charges
a positive amount of electricity at a CS. Obviously, a visit to a charging station CS ∈ F ′ is only
allowed when no passengers are on board.

Each bus b’s arrival and departure times at station s ∈ SSb (where s ∈ V ) are respectively
denoted as tabs and tdbs. For station s ∈ F ′, tdbs = tabs + δs, where δs denotes the charging time
at s ∈ F ′. Namely, the departure time from a CS is equal to the arrival time plus the charging
time. For station s ∈ S, tdbs may be later than the arrival time tabs as well, that is to say, buses
are allowed to wait at station s ∈ S, even if there are passengers on board, under the condition
that at least one passenger p is boarding at s and the arrival tabs is prior to the earliest departure
ep. So the departure time tdbs may be later than the arrival time tabs, and the difference is called
waiting time twbs, where twbs = tdbs − tabs. The reason to allow waiting is that it is a way to decrease
the total URT, and thus indirectly increase the possibility to serve more passengers. Although it
increases the URT of passengers aboard, it can reduce others’. On the other hand, if the holding
policy does not apply, we assume passengers board and alight immediately when the bus arrives,
and this service duration is negligible, namely tdbs is simply equal to tabs.

The exact MIP formulation of EODBRP is in Appendix A. The aim of the EODBRP is to
transport all the passengers with high service quality. Thus the objective function is minimizing
the total URT. As for the service quality regarding the waiting time before passengers getting on
board, it is considered guaranteed as long as the time windows are satisfied. Similarly, the service
quality in terms of the walking distance is fulfilled implicitly when calculating aups and aops for every
passenger p. In addition to the total URT, in the subproblem FRVCP, the total charging time is
minimized for a given bus route, in order to minimize the impact on the environment, given the
charging amount monotonically increases with charging time.

Finally, the decisions to be made in this EODBRP are summarized as follows: first, the
passenger-bus assignment has to be performed, namely which bus serves which passenger; sec-
ond, the bus station assignment, i.e. which station for each passenger to board and alight; finally,
the station sequence of each bus as well as the arrival and departure time at each station, especially
when, where and how much to charge.
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Figure 2: Piecewise linear charging function

3.2. Modeling of the nonlinear charging function

For the charging-related formulation, we adopt the model of electric vehicle introduced by
Montoya et al., 2017, regardless of the constraints related to the VRP. That paper proposed an
EVRP with nonlinear charging functions which were further approximated by piecewise linear
functions.

In this study, we assume the CSs are identical, i.e. with the same charging function. Specifically,
each CS s ∈ F ′ is associated with a piecewise linear concave charging function gs(qs, δs). This
function maps the charging level qs and the charging time δs. More precisely, when a vehicle
arrives at a CS s, the electricity level is represented by variable qs, then the vehicle leaves s with
the electricity level os, and the corresponding charging duration is δs as explained before this

subsection. Moreover, in order to obtain the value of δs, let ˆgs(δs) be the charging function when
qs = 0 and the battery is charged for δs time units, therefore the generalized δs when qs ≥ 0 and

os ≥ qs is calculated by the values of the inverse function as δs =
ˆg−1

s (os)− ˆg−1
s (qs).

As gs(qs, δs) is piecewise linear, the breakpoint of each piece is represented by k ∈ Γ. For
instance, the first linear piece is bounded with breakpoints 0 and 1, while the second piece with 1 and
2, etc. Then csk and ask represent the charging time and the charging level for the breakpoint k ∈ Γ
of the CS s ∈ F ′, where Γ = {0, 1, .., γ} is the set of breakpoints of the piecewise linear function.
Figure 2 is an illustration of gs(qs, δs) with breakpoints. ϵs and ds are the mapped charging times
according to the function. In other words, the electricity level qs corresponds to the charging time
point ϵs, while os corresponds to ds. Naturally, variable δs = ds − ϵs represents the time spent at
CS s ∈ F ′. Variables zsk and wsk are equal to 1 if the charge level is between as,k−1 and ask , with
k ∈ Γ 0, when the EV arrives at and departs from CS s ∈ F ′ respectively. Finally, variables αsk

and λsk are the coefficients of the breakpoint k ∈ Γ in the piecewise linear approximation, when
the EV arrives at and departs from CS s ∈ F ′ respectively. These variables and the corresponding
constraints are included in the exact MIP formulation of EODBRP in Appendix A.

4. Solution Method

Healy and Moll, 1995 demonstrated that the standard DARP is NP-hard. Since ODBRP is
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a generalization of DARP, we deduce that it is also NP-hard. Furthermore, EODBRP can be
considered as a generalization of ODBRP, because ODBRPs are EODBRPs in the special case
where the battery has enough capacity thus charging is not needed. Equivalently,EODBRP is
NP-hard.

In order to develop an algorithm to solve the EODBRP efficiently, let us first qualitatively
analyze the problem. In EODBRP, briefly, four main decisions need to be made. First, passenger-
bus assignment needs to be made; second, the alternative bus stations of each passenger have to be
selected; third, the sequences of the passengers to be picked up and dropped off have to be fixed for
each bus; fourth, the schedule of each bus when to arrive at and depart from each station has to be
settled; finally, in each route, whether charging is necessary has to be examined, if so, when, where,
how many times to charge, as well as how much to charge have to be determined. To start with,
the first three decisions are interdependent on each other, and they then determines the scheduling
and the charging decisions. As the inter-dependency increases the complexity of the problem, we
choose the ‘charging first, routing second’ policy. Besides, two parameters K and σ are introduced
in the proposed LNS algorithm, trying to find better solutions more efficiently. The details are
explained in 4.3.

Like numerous heuristics for VRPs and the variants, our approach consists of a greedy inser-
tion and a subsequent heuristic to respectively construct the initial solution and further improve
the solution quality. More specifically, for the second stage, a large neighborhood search (LNS)
combined with local search (LS) was developed. In both stages, the algorithm makes routing and
charging decisions. The former determines the sequence of the stations where each passenger being
picked up as well as dropped off, while the latter chooses where and calculates how much to charge.
The routing and charging decisions can be made either simultaneously or sequentially, and in this
work, the option is charging first, routing second. In particular, multiple legs in each route are
created, that is, each leg is bounded by two visits to the CSs. To make charging decisions, we solve
the FRVCP which decides which CS to visit and how much to charge at this visit. Thus in the
following subsections, we respectively describe the greedy insertion (4.1), the FRVCP (4.1) and the
LNS (4.3).
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Algorithm 1: solution method

1 Input: requests’ locations and time windows, distance matrix, etc
2 Requests are ranked by ep;
3 Empty legs are created as placeholders;
4 for passenger p = 1,2,...,P do
5 for positions in nonempty legs do
6 Assume p is inserted;
7 Calculate the charging amount directly or by FRVCP;

8 If at least a feasible position exists:
9 Then insert p at the position w.r.t the least increase in the total URT;

10 Else:
11 for empty legs do
12 Assume p is inserted;
13 Calculate the charging amount directly or by FRVCP;

14 If at least a feasible position exists:
15 Then insert p at the position w.r.t the least increase in the total URT;
16 Else:
17 Assign p to a new bus;

18 x← x0; /*generated the initial solution, thus it is the best known solution so far*/
19 while stopping criterion is not met do
20 LNS:
21 for round = 1,...,σ do
22 Remove randomly K requests from x;
23 Repair operator generates x′′;
24 If f(x′′) < f(x′):
25 Then x′ ← x′′, i.e. pick the best solution x′ from neighborhood N(x);

26 Apply LS on x′;
27 Move or not:
28 If f(x′) < f(x) Then x← x′;

29 Output: best known solution

4.1. Construct the initial solution

For the initialization phase, greedy insertion method is in use. The procedure to construct the
initial solution is as follows. To start with, the requests are ranked in ascending order of their
earliest departure time. In other words, the request with the smallest earliest departure is in the
first of the request list. Next, empty legs as placeholders are created for each bus route. Then each
request is removed from the request list and inserted in one of the non-empty legs of all the buses,
in the position with the least increase of total URT that respects time windows, bus capacity and
battery level. If r cannot be inserted in any non-empty legs due to any violation of these constraints,
r is inserted into a new leg, and the station pair among its alternative get-on/off choices with the
least increase of the total URT is chosen. The bus to serve r is the one with the smallest distance
between r’s boarding station and its previous passenger station. Similarly, if r cannot be inserted
in any existing bus routes, a new bus is in use to serve this request. Again, the station pair with
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the least increase of the total URT is chosen. This insertion procedure is repeated until all requests
are served.

If there is only one leg in a bus route, in other words, the bus only charges at the beginning
and the end of its route, then the route is feasible as long as the battery level upon arrival at the
CS at the end is nonnegative. The charging at the beginning is omitted, as we simply assume the
battery has been fully charged overnight. The CS at the beginning of the route is the one closest
to the first passenger station of the route. Similarly, the CS at the end is the one closest to the last
passenger station.

If there are two legs, in other words, besides the CSs at the beginning and the end of the route
mentioned before, the bus pays an intermediate visit to a CS. In this case, an additional requirement
is, given the battery level upon arrival at the intermediate CS, and the maximum allowed charging
time (i.e. the duration that can be postponed without any violation of time windows), the battery
level upon leaving the intermediate CS is enough to reach the CS at the end, that is, the battery
level is larger than or equal to 0 upon arrival at the final CS. Same as the one-leg case, the CSs
at the beginning and the end are simply the closest ones to the first or last passenger stations.
However, for the CS in the middle, it cannot be simply chosen as the one with the smallest sum
of distance between its previous and next passenger stations, since this may cause one of the legs’
range exceed the battery level. Instead, all the CSs are ranked according to the sum of distance,
then the first one that respects the battery levels of two legs is chosen as the mid-route CS.

If there are three or more legs, the optimal total charging time of this bus route is not as
straightforward as the former two cases. To solve this case, the rule proposed by Ángel Felipe
et al., 2014 is usually adopted in literature within heuristic methods: when visiting a CS, charge
the minimum amount of energy needed to make the route energy-feasible. Specifically, if it is the
last CS before returning to the depot, the minimum amount is thus to cover the remaining route
to the depot. Or if there is at least one more CSs downstream, charge the amount needed to reach
the next CS. If reaching the next CS (or the depot) is impossible, the move is deemed infeasible.

However, the optimal charging time or amount may not be obtained by the rule mentioned above,
especially in the EODBRP passengers have hard time windows, and the buffer also determines the
maximum time can be spent at a CS. Hence in this study, the exact mathematical model is proposed
and CPLEX is called to solve the subproblem to optimal, which will be explained in section 4.2.

4.2. mathematical formulation of FRVCP

The concept of the FRVCP is explained in Montoya et al., 2017. However, the difference in the
problem setting of this work is that the positions of the intermediate CSs are fixed. However, which
CS to visit each time is still need to be determined, since it cannot be simply set as the CS with
the smallest total distance between its proceeding and succeeding stations. Nevertheless, we adopt
the variables and related constraints used in their formulation, with the details as follows.

Let i = {0, 1, ..., nr} be the index of the CSs in a specific bus route, where 0 and nr respectively
corresponds to the CS at the beginning and the end of the route, while 1, 2, ..., nr−1 correspond to the
intermediate CSs. As explained in section 3.2, all CSs ∈ F ′ have the same piecewise linear function,
where each piece is defined by the breakpoint set B. Specifically, piece k is between the breakpoint
k − 1 and k where k ∈ B \ {0}, with a slope denoted as ρk. Besides, each piece k is bounded
by the battery levels ak−1 and ak. In addition, since the positions of the CSs are determined,
together with the CSs to visit (which CSs are chosen will be explained in the last paragraph of this
subsection), the distance to travel within each leg (including the distance from the CS prior to the
leg and the CS after the leg) is simply a constant that can be easily calculated. Let dpi,i+1 where
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i = {0, 1, ..., nr − 1} denote the energy consumption of the route that only consists of passengers’
stations between the CSs with id i and i + 1. Similarly, let dij where i = {0, 1, ..., nr − 1} denote
the energy consumption between the CS with id j and its succeeding passengers’ station of leg i.
Naturally, di−1,j where i = {1, 1, ..., nr − 1} denote the energy consumption between the CS with
id j and its preceding passengers’ station of leg i − 1. Thus the energy consumption is consistent
among the entire route. Finally, let the buffer at the beginning of each leg be divided into two
components, denoted w and b, respectively represent the slack that can be consumed without/with
postponing the start time of the succeeding legs. The formulation of the buffer is the same as in
literature Savelsbergh, 1992; Cordeau and Laporte, 2003.

In terms of variables, let ϕi denote the battery level upon arrival at the CS with index i. Then let
δik denote the charging amount when the charging process finishes on the piece between breakpoints
k − 1 and k, at the CS with index i. Further, let µik denote the battery level when the charging
process finishes on the piece between breakpoints k − 1 and k, at the CS with index i. Finally, we
introduce the variables xi to indicate whether the start time of the succeeding legs are affected.
Then the mixed integer programming (MIP) formulation is as follows.

min
∑

i={1,2,...nr−1}

∑
j∈F

∑
k∈B\{0}

δijk
ρk

(1)

s.t.

ϕ1 = Q− dp01 −
∑

j∈F
ϵ0jd0j −

∑
j∈F

ϵ1jd1j (2)

ϕi = µi−1 − dpi−1,i −
∑

j∈F
ϵi−1,jdi−1,j −

∑
j∈F

ϵijdij ∀i ∈ {1, 2, ..., nr} (3)

µij1 = ϕi + δij1 ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F (4)

µijk = µij,k−1 + δijk ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0, 1} (5)

µijk ≥ aj,k−1θijk ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0, 1} (6)

µijk ≤ ajkθijk + (1− θijk)Q ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0} (7)

δijk ≤ θijkQ ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0} (8)

θijk ≤ ϵij ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0} (9)∑
j∈F

ϵij ≤ 1 ∀i ∈ {1, 2, ..., nr} (10)

xi ≥
∑

j∈F

∑
k∈B\{0}

δijk
ρk
− wi ∀i ∈ {1, 2, ..., nr − 1} (11)∑

j∈F

∑
k∈B\{0}

δijk
ρk
≤ bi + wi −

∑
n=1,...,i−1

xn ∀i ∈ {1, 2, ..., nr − 1} (12)

ϕi ≥ 0 ∀i ∈ {1, 2, ..., nr} (13)

δijk ≥ 0 ∀i ∈ {1, 2, ..., nr},∀j ∈ F,∀k ∈ B \ {0} (14)

µijk ≥ 0 ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0} (15)

θijk ∈ {0, 1} ∀i ∈ {1, 2, ..., nr − 1},∀j ∈ F,∀k ∈ B \ {0} (16)

ϵij ∈ {0, 1} ∀i ∈ {1, 2, ..., nr},∀j ∈ F (17)

xi ≥ 0 ∀i ∈ {1, 2, ..., nr − 1} (18)

The objective function (1) seeks to minimize the total charging time of all visits to the inter-
mediate CSs. Constraints (2) and (3) are the consistency of the battery level upon arrival at each
CS, namely the battery level when arriving at this CS is equal to the battery level after charg-
ing at the last CS minus the energy consumption (simply the distance). Constraints (4) and (5)
impose the battery level after charging equals to the battery level before charging plus the total
amount charged within each segment of the charging function. Constraints (6) and (7) impose if
the battery is charged within a segment, the battery level after charging is within the bounded

12



values ak−1 and ak. Constraints (8) ensures that a battery can be only charged at the selected
segment of the charging function. Constraints (9) impose that charging is allowed only if the CS is
visited. Constraints (10) forbid a bus visiting two or more CSs simultaneously. Constraints (11) use
variables x to represent whether the charging time affects the succeeding legs as explained before.
If the charging time at i is smaller or equal to wi, then the succeeding legs’ maximum charging
time are not affected; otherwise they are reduced by xi. Then constraints (12) impose the charging
time at i does not exceed the allowed slack minus the reduced values by the previous legs. Finally,
constraints (13) - (18) set the range of the decision variables.

In terms of choosing the CSs to visit, naturally the CSs at the beginning and the end are still
the closest ones as before. For the CSs in the middle, the principle is as the two-leg case while more
complicated. Instead of the rank of one single CS, all the combinations of the mid-route CSs are
ranked according to the total distance from/to CSs. Correspondingly, the first combination that
respects the battery levels is chosen. Apart from this, the CSs can be chosen by CPLEX as well,
as in the mathematical model j is the index of CS and which CS to visit is to be determined.

To accelerate the procedure of the FRVCP, a strategy that eliminates infeasible solutions is
adopted before sending them to the CPLEX, given the premise that the piecewise linear charging
function is concave (i.e., ρk−1 ≥ ρk,∀k ∈ Γ\{0, γ}), in other words, the first segment has the fastest
charging rate. Besides, since the maximum buffer at each position is known, regardless the impact
of the former legs (i.e. bi + wi in constraints (12)), if bi+wi

ρ0
is less than the travel distance of leg

i, this solution can be eliminated directly. Nevertheless, this is only a rough strategy, and more
sophisticated strategies can be developed in future work.

4.3. LNS

In order to solve the EODBRP, a large neighborhood search (LNS) (Pisinger and Ropke, 2019)
is developed. In the LNS framework, solutions are partially destroyed and reconstructed in each
iteration. In recent years, LNS has shown its effectiveness in solving the DARPs (Li et al., 2016;
Belhaiza, 2019; Gschwind and Drexl, 2019).

4.3.1. Destroy operator

In the LNS framework, solutions need to be destroyed and then rebuilt, in order to escape local
optima. In this regard, a destroy operator is needed. In our algorithm, at each iteration the destroy
operator removes a certain number (represented by K) of requests from the best known solution.
The requests are randomly chosen while the total number K is predetermined and constant. More
specifically, when requests are removed and not served by any bus, the buses can possibly have
fewer stations to visit and larger buffers, thus can leave room for new solutions. With regard to K,
it can be varied strategically, based on the fact if K is too large, the preferable properties resulting
in the best known solution are also significantly eliminated, then the new solutions will be likely of
low quality; on the other hand, a too small K results in a too small neighborhood and the searching
procedure can be thus slow. Hence in the section 5.2 different values of K are tested.

4.3.2. Repair operator

The principle of the repair operator is similar to the greedy initial solution algorithm, i.e. in-
sert the unassigned requests into the current solution, each at the best position with the minimum
increase of the objective value, respecting the constraints of time windows and bus capacity. How-
ever, there are several differences with the initial solution algorithm. First, the requests in the
repair operator are inserted in the inverse order of being removed, namely the request first removed
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is inserted at last. In this way a new solution can be possibly generated; otherwise, the original
solution is likely to be reached again. In addition, the destroy-repair operator is repeated σ times
resulting in maximum σ different candidate solutions, and the best one in terms of the objective
value is chosen as the current solution for the LS to further improve. The intention of choosing
among σ candidate solutions is to try to find a tradeoff between searching in a larger neighborhood
and maintaining the neat attributes of the best known solution. In such manner a more promising
current solution is possibly made. Divergent values of σ are tested with the combination of different
values of K in the destroy operator in section 5.2.

In the destroy-repair cycle, infeasible solutions can occur. If a new solution fails at serving all
the passengers due to the violation of time windows, bus capacity or charging, this solution will
not be considered as a candidate solution but simply discarded. Thus only feasible solutions will
be kept as candidates for further possible improvement by the LS. Note due to infeasible solutions,
the actual size of the candidate pool can be smaller than σ.

Same as in the initial stage, in the repair operator, the charging decisions are adjusted once a
route has been modified by the routing operators. More specifically, the same procedure of solving
the FRVCP in the initial stage is triggered in order to find the best charging solution for each route.

4.3.3. Local Search

LS is included in the LNS framework and applied after a new feasible constructive solution
is found by the repair operator, thus the quality of this new solution can be possibly improved
by making small changes. This is done by a reinsert operator. Specifically, each time the repair
operator generates the best new solution among σ candidates, reinsert is applied to this solution by
trying to remove and reinsert each request sequentially. Each request is inserted into the position
with the minimum objective value, without violating any constraint. If there is no better position
among all buses in terms of the objective value, the request remains in its original position. The
LS repeats until no improvement is found within the last round where it examines all the requests
in sequence.

4.3.4. Acceptance criterion

In each iteration of the LNS framework, each time a new feasible solution is generated, its
objective value is compared to that of the best known solution. If the value improves, the new
solution is accepted and it replaces the best known solution in the next iteration of the LNS.

4.3.5. Stopping criterion

After the initial solution is computed, the loop of the LNS algorithm starts. The algorithm
terminates if a predetermined runtime, or a round limit without improvement (will be specified in
section 5) is reached.

5. Computational Experiments

In this section, the experimental data and computational results are presented. To begin with,
the instance generation is explained in subsection 5.1, then the parameters in the LNS framework are
tested in subsection 5.2. Next, the properties of the BKSs are analyzed in subsection 5.3, followed
by the analysis of BSA in subsection 5.4. Then whether the local search operator contributes to
the solution quality is investigated in subsection 5.5. Last but not least, the comparison with
conventional buses are presented in subsection 5.6.
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5.1. Instance generation

The instances were generated based on the map of Antwerp, Belgium. The city’s area is 204.51
km2 with 10 randomly located clusters, each has a maximum area 4km2(2km × 2km). Figure 3
shows the city map and road network with clusters (in red). In order to make realistic instances,
real stations on the map within the clusters are in use for passengers to board and alight. The total
number of stations are 215, with the average distance between neighbors 500 meters. In addition,
passengers’ trips can be either intra- or inter-clusters. For detailed instances’ generation, we refer
to Queiroz et al., 2022.

Figure 3: map and clusters’ locations

The number of passengers ranges among small, medium to large, specifically, 100, 200, ..., 900,
1000, 1500, 2000, 3000. One instance of each and there are in total 13 instances. Topology of the
clusters and stations, as well as the generation principle of passengers remain the same among all
instances.

The travel speed is 30km/h and assumed constant everywhere for simplicity. The operation
time is from 6am to 6pm (12 hours). Passengers’ time windows are evenly distributed within the
operation time. The time window for each passenger is set to 1.5 × direct ride, where 1.5 is chosen
intuitively, thus the time windows are neither too strict nor too loose, which is in line with our
definition of on-demand bus, a tradeoff between the public transport and a direct ride.

Each request can have at most two stations respectively to board and alight.
Three different types of buses are used in this study for the variant experiments. We choose

buses on the market for the sake of a realistic formulation of the charging function and battery
capacity. They are the electric minibus Karsan e-Jest with single or double batteries (https:
//www.karsan.com/en/jest-electric-highlights), and a transit bus BYD K7MER (https:
//en.byd.com/bus/k7mer). The detailed parameters of the bus seats and maximum ranges are
listed in table 1. The capacity of the bus is equal to the number of passenger seats written in the
brochure, as standing is not considered in this work, due to the consideration of service quality and
the unknown impact on the energy consumption rate.
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On the other hand, the exact charging functions with fast charging mode are not specified in the
brochures. Instead, we calculated them based on the regulation presented by Montoya et al., 2017,
i.e., the charging rate differs among the three segments of a piecewise linear charging function (see
Fig. 2): in the first segment, 0.7 time units per 1 unit of charge from 0 to 85% (excluding) of battery
capacity; in the second segment, 1.5 time units per 1 unit of charge from 85% (including) to 95%
(excluding) of battery capacity; in the third segment, 5 time units per 1 unit charge from 95 percent
(including) to 100 percent (including) of battery capacity. The piecewise linear charging function is
merely an approximation of the real-world charging function, with relative absolute errors ranging
from 0.9% to 1.9% (Montoya et al., 2017), thus can be considered as a precise approximation.

Based on the calculation above, the detailed parameters of the charging function are also pro-
vided in table 1. Note the battery capacity is usually represented with kWh, while in this study,
as the energy consumption is assumed to be proportional to the traveled distance, we replace kWh
by the maximum range (km) given in the brochure, and the regulation described above still holds.

Table 1: bus parameters

bus seats
break points of time (min) break points of amount (km)
cs1 cs2 cs3 as1 as2 as3

mini (single) 12 58.44 73.17 97.72 89.25 99.75 105
mini (double) 12 69.06 86.375 115.2 178.5 199.5 210
regular 20 72 90 120 267.75 299.25 315

All code was written in C++ (Visual Studio 2017) and all tests were performed on a computer
with an Intel® CoreTM i7-8850H 2.60Ghz processor, 16GB RAM and Windows 10 system.

5.2. parameter setting

The first experiment evaluates the impact of different K and σ on the performance of the LNS,
as illustrated in section 4.3. The double-battery mini bus is in use for this experiment. The values
of K are 2, 5 and 10 requests despite the instances’ size. The minimum is set to 2 since 1 request
at a time is identical to the LS operator in our algorithm. Similarly, σ is chosen from 4 values: 1,
5, 10 and 15. The minimum value 1 means without selection. Since each time the destroy operator
chooses the requests randomly, the best known solution varies as well. To obtain an adequate
estimate of the performance of the LNS, each instance with each combination of K and σ was
run 10 times, and the resultant average value, standard deviation, min, max and quartiles were
computed. Each time the LNS algorithm was forced to terminate when the duration reaches 0.1 ×
instance size seconds. For example, the instance with 100 passengers is allowed to run 10 seconds,
while with 1000 passengers the algorithm stops once the duration reaches 100 seconds. The runtime
was limited due to the total number of combinations, also because the combination that achieves
the steepest descent within a short time is preferred. For each instance, the combination of each
instance that performs the best is listed in table 2, and the frequency of different combinations that
perform the best is shown in Fig 4.

Despite of the limited number of instances and randomness, there are several observations. First,
no K or σ is optimal for all instances. However, a smaller K usually performs better, K = 2 more
frequently reaches a lower total URT than K = 5 or 10. The reason is that the BKS is destroyed
less thus the preferable features are more likely to be maintained if K is small. Similar conclusion is
reached in Galarza Montenegro et al., 2021. Last but not least, although the frequencies of reaching
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the lowest total URT when σ = 5, 10 or 15 are comparable, σ = 1, i.e. without selection of the
LNS solutions to apply the LS, is less likely to be optimal.

In addition, a method for testing the robustness of the combinations is proposed, in order to
prevent selecting a combination that performs the best for some instances but poorly for others.
The rank of each combination among all the instances is recorded. In particular, if a combination
outperforms the others for one instance, it receives a score of 1. On the other hand, it receives a
score of 12 if it performs the worst out of 12 combinations, and so on. The results are shown in
Fig 5. Despite no single combination dominates the others, the previous findings are confirmed: a
smaller K is preferable, and σ = 1 is the worst for various Ks, while the disparity when σ varies
among 5, 10 and 15 is not obvious.

Table 2: Results of K and σ

instance 100 200 300 400 500 600 700 800 900 1000 1500 2000 3000
K 10 5 2 2 2 2 2 2 5 2 2 5 2
σ 15 15 10 15 5 5 5 15 10 5 10 10 1

2-5 2-10 2-15 5-10 2-1 5-15 10-15

1
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4
4

2 2 2
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Figure 4: Results of K and σ

2-15 2-10 2-5 5-5 5-10 2-1 5-15 10-10 5-1 10-15 10-5 10-1

50

100

43 45
51

70 73
78 78

103 107
112

118

136

K-σ

sc
or
e

Figure 5: Results of K and σ
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5.3. properties of BKSs

The properties of the BKSs found in our study are analyzed in this subsection, in order to provide
readers with possibly useful information in developing new solution methods for the EODBRP with
intermediate charging. The single- and double-battery mini bus are in use for the experiment in this
subsection. First, once the combination of K and σ (K = 2 and σ = 15) that performs the best on
average is found in the last subsection, it is fixed for all the experiments. In other words, the best
combination given by the double-battery mini bus are in use for all the instances with the single-
battery bus directly, despite the combination do not necessarily hold for every case. However,the
LNS does not stop when the runtime reaches 0.1 × instance size, but if the BKS has not been
improved after 1000 consecutive rounds.

Subsequently, the corresponding solutions are analyzed as below. The solutions with the double-
battery bus are presented first in subsection 5.3.1, followed by the single-battery case in subsection
5.3.2.

5.3.1. BKSs with the double-battery buses

In this subsection, the BKSs of the EODBRP with the double-battery buses are presented and
analyzed. Specifically, the average URT of each passenger, as well as the average charging time and
amount of each charged bus, are presented in table 3 and 4. Same as in the last subsection, all the
results are the average of 10 separate solutions.

The results of average URT in table 3 show that the URT does not have an obvious trend of
increasing with instance sizes, either with electric or conventional buses. Next, the last column of
table 3 is the redundant URT compared with conventional buses. A distinct gap exists between
electric and conventional buses, with the average value of all instances equal to 25.58%. This is
due to EVs need to make a detour and spend excessive time to the CSs and to be charged, despite
the detours are done with empty buses, this still occupies considerably the operation time serving
passengers. This adds further constraints to our problem. In particular, having EVs instead of
conventional vehicles is in some ways equivalent to having tighter time windows for the passengers:
this indirectly affect the solution quality.

instance
average URT (minute)

conv (%)
ave std min max

100 13.02 0.0002 11.73 14.08 25.59
200 13.22 0.0058 12.56 13.84 15.18
300 14.45 0.0038 13.88 15.65 33.12
400 13.93 0.0017 13.62 14.49 23.76
500 15.32 0.0026 14.33 16.12 29.41
600 15.74 0.0001 15.67 15.84 35.62
700 16.24 0.0017 15.10 16.73 30.76
800 16.14 0.0009 15.47 16.85 39.97
900 14.59 0.0009 13.32 14.90 16.27

1000 14.31 0.0008 13.20 14.83 21.55
1500 15.17 0.0001 15.03 15.66 25.83
2000 16.68 0.0000 16.58 16.79 25.66
3000 17.72 0.0000 17.72 17.73 9.82

Table 3: average URT of each passenger, double batteries
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instance
charging time (minute) charging amount (km)

slope
ave std min max ave std min max

100 13.11 2.63 9.19 18.03 21.17 6.81 11.03 33.89 1.62
200 26.21 0.03 26.14 26.26 35.48 0.08 35.31 35.62 1.35
300 15.38 0.25 13.75 16.89 39.75 0.64 35.53 43.66 2.58
400 23.95 0.28 23.69 24.06 61.91 0.72 61.23 62.20 2.58
500 16.34 0.13 15.66 17.75 42.22 0.33 40.48 45.87 2.58
600 20.20 0.13 18.41 21.06 52.21 0.34 47.58 54.44 2.58
700 15.63 0.08 14.93 16.83 40.40 0.20 38.58 43.51 2.58
800 22.93 0.10 22.35 24.51 59.28 0.26 57.77 63.34 2.58
900 19.45 0.06 18.72 20.33 50.26 0.16 48.38 52.53 2.58
1000 16.99 0.04 16.22 17.36 43.92 0.10 41.93 44.88 2.58
1500 17.48 0.01 17.47 17.51 45.18 0.02 45.16 45.25 2.58
2000 13.44 0.02 12.90 13.82 34.74 0.05 33.34 35.72 2.58
3000 24.87 0.01 24.57 24.97 64.28 0.02 63.51 64.54 2.58

Table 4: average charging time and amount of the charged buses, double batteries

Next, our BKSs are made up of 355 routes in total, and the fraction of which that include
intermediate charging are presented in Fig. 6. The data show that 73.2% of the routes in the BKSs
contain an intermediate CS. This percentage vary among instances, with a slight increasing trend
when the instances are larger. The results show intermediate charging and its solution quality are
essential for decent EODBRP solutions, especially in these instances the number of buses was set
as the smallest values found by the initial solution (which will be explained in section 5.6).

Thirdly, the number of intermediate charging per route is calculated. Despite charging more
than once is allowed, in the solution with double-battery buses, the 73.2% buses that charge in
mid-route only charge once. Given the data in table 4, each bus on average spends 18.92 minutes
to charge the amount covering 45.45 km’s ride.

Finally, we analyze the segment(s) within which the energy is recovered through mid-route
charging. According to the calculated slope (the charging amount divided by charging time) in
table 4, most buses only charge in the first segment, i.e., the one with the fastest charging rate.
This is reasonable since when visiting CSs, the objective is to minimize the charging time, and only
until the battery level is as low as it is in the first segment CSs are visited. In addition, whether
each bus is fully or partially charged is recorded as well, and it shows all the mid-route charges are
partial, this proves the efficiency and importance of the partial charging policy compared with full
charging.
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Figure 6: Percentage of the routes with/without an intermediate CS by instance size, double batteries

5.3.2. BKSs with the single-battery buses

In this subsection, the BKSs of the EODBRP with the single-battery buses are presented and
analyzed. Same as the last subsection, the average URT of each passenger, as well as the average
charging time and amount of each charged bus, are presented in table 5 and 6. All the results are
the average of 10 separate solutions as well.

The results of average URT in table 5 show that despite the URT is not obviously correlated
to the instance size, the URT of the EODBRP with single-battery buses is generally even larger
compared to the double-battery buses. Specifically, the average gap between electric and conven-
tional buses of all instances is 39.32%. Correspondingly, the charging time and amount drastically
increase, i.e. each bus on average spends 50.32 minutes to charge the amount covering 73.06km’s
ride. The reasons are the range of the single-battery bus is only half of the double-battery one,
plus the charging rates are substantially lower as well. In particular, the charging rate of the first
segment of the double-battery bus is 178.5

69.06 ≈ 2.58, while the single-battery one is only 89.25
58.44 ≈ 1.53.

The BKSs consist 459 routes in total, and the fraction of which that include intermediate
charging are presented in Fig. 7. In the double-battery case, certain buses charge once while
the others do not charge. However, in the single-battery case, all buses charge at least once in
mid-route. In particular, 88.9% of the routes in the BKSs contain an intermediate CS, while the
11.1% contain two. The results once again show intermediate charging and its solution quality are
essential for the EODBRP.

Finally, the calculated slope in table 6 indicates the segment(s) within which the energy is
recovered through mid-route charging. Compared with the double-battery case, it is more common
that buses not only charge in the first segment, but also the slower segment(s). Since if the frequency
of mid-route charging increases, the problem is more complicated to solve, while the positions to
insert CSs are not a decision of the FRVCP in this work. In other words, optimizing the positions
to insert CSs together with minimizing the charging time is not explicitly included in the objective
function, thus the charging solution may not be optimal, despite the charging amount calculated by
the CPLEX model with given CSs is optimal. Thus it is one limitation of this work. Nevertheless,
none of the buses is fully charged according to the records, thus it can be once again concluded
that partial charging provides more flexibility and efficiency than full charging.
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instance
average URT (minute)

conv (%)
ave std min max

100 17.77 0.0195 16.77 18.29 71.42
200 13.66 0.0190 12.57 14.81 19.05
300 16.13 0.0226 13.97 17.68 46.96
400 14.42 0.0048 13.05 15.25 28.09
500 18.44 0.0007 18.17 18.63 55.85
600 17.33 0.0017 16.59 17.57 51.88
700 18.72 0.0011 18.39 19.87 53.01
800 16.74 0.0035 15.23 17.96 43.71
900 15.60 0.0020 14.34 15.89 25.92

1000 15.29 0.0007 14.83 15.51 32.26
1500 16.76 0.0002 16.54 16.79 32.95
2000 17.24 0.0004 16.87 17.48 29.90
3000 19.39 0.0001 19.13 19.60 20.17

Table 5: average URT of each passenger, single battery

instance
charging time (minute) charging amount (km)

slope
ave std min max ave std min max

100 11.13 0.0036 11.11 11.20 16.99 0.0042 16.92 17.06 1.53
200 36.95 0.1938 34.05 38.43 56.43 0.1443 51.97 58.69 1.53
300 61.91 0.0709 60.44 63.11 84.99 0.0923 83.07 86.54 1.37
400 38.79 0.0254 37.86 39.53 59.22 0.0714 57.81 60.34 1.53
500 66.29 0.0221 65.53 66.55 99.75 0.0827 97.37 101.18 1.50
600 60.40 0.1708 55.31 63.49 88.12 0.1312 81.20 92.02 1.46
700 59.80 0.0286 58.87 60.56 86.02 0.0630 83.88 87.45 1.44
800 55.23 0.0417 52.97 57.27 81.05 0.0200 80.46 82.33 1.47
900 46.28 0.0193 45.24 46.92 69.33 0.0386 67.98 71.12 1.50

1000 52.32 0.0212 50.89 52.96 78.07 0.0484 76.15 80.17 1.49
1500 54.88 0.0308 53.20 56.77 72.04 0.0419 69.28 74.04 1.31
2000 46.76 0.0109 45.77 47.55 71.39 0.0166 69.89 72.61 1.53
3000 63.37 0.0017 63.17 63.52 86.34 0.0027 86.04 86.60 1.36

Table 6: average charging time and amount of the charged buses, single battery
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Figure 7: Percentage of the routes charging once or twice in mid-route by instance size

5.4. Effect of bus station assignment

Since the inclusion of BSA distinguishes the ODBRP from DARP in essence, the effect of BSA
is investigated in this subsection. As explained in section 3, when BSA is considered, passengers
can be assigned to alternative stations for boarding and alighting, and the number of alternates are
limited to two in our experimental setting. On the contrary, when BSA is excluded, the standard
way in the DARP literature is assigning passengers to the closest stations, or even transporting
passengers door-to-door. Since the locations of stations are predefined and buses are only allowed
to dwell at the stations in the ODBRP, when BSA is excluded, passengers are simply assigned to
the closest stations in terms of their origins and destinations. According to the experimental results
in Melis and Sörensen, 2022, excluding BSA leads to a significant increase in the objective value
(the total URT), when conventional buses are in use. Thus in this study, apart from the average
URT, we further compare the impact of BSA on the total charging time and amount. In addition,
we vary in each instance the percentage of passengers who have alternative stations, namely 0,
50% and 90% respectively. The maximum is set to 90%, as we assume in real life it might not
be the case that every passenger or every station has alternates nearby. Then for the case 50%,
40% passengers were chosen randomly to remove their alternative stations. Finally for the case 0,
simply no passenger has alternative stations. To analyze the effect of BSA, the instances with 1000,
2000 and 3000 passengers were chosen for experiments. Same as before, each instance was run 10
times with 0.1 × size seconds. The average URT, total charging time and amount are respectively
in Fig 8 (Note the y-axis starts approximately at 6 instead of 0), 9 and 10. The observations are,
first, BSA can not only reduce the URT, but also the charging time and amount, thus benefit
the environment. Next, the more passengers with alternative stations, the more effective BSA is.
Nevertheless, each passenger has at most two stations in this study, more stations can be worth
investigating for future research.
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Figure 10: BSA - average charging amount per charged bus (km)

5.5. Influence of the local search operator

The LNS algorithm is combined with a local search operator which sequentially removes and
reinserts each request, and the operator’s influence on the solution quality is investigated in this
subsection. The average runtime of LNS with LS where the BKS has not been improved within
1000 consecutive rounds is set for the LNS algorithm without LS. Three instances are chosen for
this test: 1000, 2000, 3000. The double-battery mini bus is used. Each instance is run 10 times
and the average URT, charging time and amount are calculated and presented in Fig 11, where
the values are the percentage relative to the solution solved by the LNS with the LS operator. It
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can be seen the local search operator benefits the solution quality by reducing not only the average
URT, but also the charging time and amount. This effect holds for variant instance sizes.

URT charging time charging amount

20

40 37.67

16.6 16.58
22.12

15.7 15.6917.78

35.18 35.171000 2000 3000

Figure 11: Solution quality without LS (%)

5.6. comparison with conventional buses

In this subsection, we explicitly compare the number of needed buses with conventional vehicles.
For the case of conventional buses, since the maximum range is 360km given our operation time
(12 hours) and the constant speed (30km/h), refueling is simply not considered. Thus the number
of buses needed is only constrained by the time windows and the bus capacity.

The number of either conventional or electric buses is calculated solely by constructing the initial
solution, while the LNS does not contribute to reduce the number of buses. This is a limitation of
the study, as a more sophisticated algorithm can lead to more accurate numbers of buses.

Once we obtain the number of needed conventional buses, the same number is set for electric
bus. If the solution is feasible, then the number of electric buses needed is found; otherwise, an
empty bus is added and the procedure repeats.

In order to perform sensitivity analysis of the number of buses, the passengers’ temporal distri-
bution and the bus’s maximum range are varied, as well as are described in section 5.6.1 and 5.6.2
respectively.

5.6.1. temporal distribution of passengers

In the former instances, the passengers’ earliest departure times and thus the time windows
were randomly generated. However, in this subsection, the temporal distribution is changed to
more realistic. In particular, duration from 7 am to 9 am, and from 4 pm to 6 pm are set as peak
hours where more passengers belong to. In the experiments, we intuitively set that 70% passengers
belong to the peak hours, while the rest 30% passengers are evenly scattered in the other hours of
the day. Therefore, for each instance, it has 2 temporal distributions, and in total 26 instances.
For each instance size, we compare the two passenger distributions. Note for the two temporal
distributions, for each passenger, only the time window is (possibly) different, while the stations to
get on/off remain the same. The results with even distribution or peak hours are shown in Fig 12
and 13, where the numbers correspond to electric vehicles. The results show the number of electric
buses are the same as the conventional buses for most instances, while for certain instances one
more bus is needed. In addition, the distribution with peak hours needs significantly more buses,
which also results in a smaller gap between conventional and electric buses, that is, only 1 instance
needs one more electric bus, while for the case of even distribution, the number is 5.
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Figure 12: number of conventional and electric buses

100 200 300 400 500 600 700 800 900 1000 1500 2000 3000
0

50

100

10
19 22 25 27

36 39 40 43 43

62

85

100conventional bus
additional electric bus

Figure 13: number of conventional and electric buses with peak hours

5.6.2. bus range

In this subsection, we investigate the impact of bus range and capacity on the number of needed
buses. As the results of the double-battery mini bus have been presented in the last subsection
5.6.1, here only the results of the single-battery mini bus and the regular bus are listed, in order to
evaluate the relationship of the bus range and the gap between EV and conventional buses.

The additional single-battery mini buses or regular buses with the two temporal distributions
are shown in table 7. Comparing the single- and double-battery buses, the numbers of single-battery
bus increase significantly, while the numbers of double-battery bus are generally the same as the
conventional bus. Similar to the reason of the surge in the charging time and amount explained in
section 5.3.2, the increased number of buses is also due to the smaller range of the single-battery
bus plus and the lower charging rates.

For the regular bus, despite the increased bus capacity compared with the mini one, the number
of buses do not decrease, due to the density of requests is small, this is one of the limitations of this
study. Nevertheless, since the maximum range is significantly larger, the number of electric buses
are the same as conventional bus for all the instances and two temporal distributions.
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instances conv mini reg conv, ph mini, ph reg, ph
100 7 1 0 10 0 0
200 11 2 0 19 0 0
300 13 4 0 22 0 0
400 15 5 0 25 0 0
500 19 4 0 27 1 0
600 21 5 0 36 0 0
700 23 7 0 39 0 0
800 27 7 0 40 1 0
900 29 8 0 43 0 0

1000 29 11 0 43 1 0
1500 38 14 0 62 0 0
2000 53 14 0 85 0 0
3000 65 27 0 99 3 0

Table 7: additional single-battery mini buses and regular buses

6. Conclusion

In this work, we have investigated an on-demand bus routing problem with detours to charging
stations. The charging functions were modeled as piecewise linear, and partial charging is allowed
at CSs. To solve the problem we adopted a ‘charging first, routing second’ strategy, then proposed
a hybrid heuristic with LNS and a subproblem FRVCP that can be solved by CPLEX. The LNS
consists of parameter settings and LS, and both contribute to the solution quality. The subproblem
FRVCP optimizes the charging decisions (where and how much to charge) given the fixed sequence of
passengers’ stations. Realistic instances based on a real city map were generated. The experimental
results show the proposed algorithm is able to deliver high-quality solutions. Then the analysis of
the solutions concludes that good solutions tend to partially charge in mid-route, and employ the
linear segment of the charging function. Subsequently, the bus station assignment of ODBRP not
only reduces the URT, but also the total charging time and charging amount. Finally, our results
conclude both electric mini and regular buses can substitute conventional buses under variant
passenger distributions.

Possible future research directions include a more realistic energy consumption function that may
consider road slope, speed, temperature or the number of passengers aboard. Another interesting
direction could be to develop more sophisticated heuristics or exact methods, together with speedup
techniques that can exclude quickly infeasible solutions. Furthermore, capacitated charging stations
and queuing is worth study. Last but not least, the comparison between battery charging and
swapping stations as well as location routing problem could also be an interesting research topic.
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Galarza Montenegro, B. D., Sörensen, K., and Vansteenwegen, P. (2021). A large neighborhood
search algorithm to optimize a demand-responsive feeder service. Transportation Research Part
C: Emerging Technologies, 127:103102.

Goeke, D. and Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles.
European Journal of Operational Research, 245(1):81–99.

Gschwind, T. and Drexl, M. (2019). Adaptive large neighborhood search with a constant-time
feasibility test for the dial-a-ride problem. Transportation Science, 53(2):480–491.

He, Y., Liu, Z., and Song, Z. (2020). Optimal charging scheduling and management for a fast-
charging battery electric bus system. Transportation Research Part E: Logistics and Trans-
portation Review, 142:102056.

Healy, P. and Moll, R. (1995). A new extension of local search applied to the dial-a-ride problem.
European Journal of Operational Research, 83(1):83–104.

Hiermann, G., Hartl, R. F., Puchinger, J., and Vidal, T. (2019). Routing a mix of conventional,
plug-in hybrid, and electric vehicles. European Journal of Operational Research, 272(1):235–
248.

Hiermann, G., Puchinger, J., Ropke, S., and Hartl, R. F. (2016). The electric fleet size and mix
vehicle routing problem with time windows and recharging stations. European Journal of
Operational Research, 252(3):995–1018.

27



Hof, J., Schneider, M., and Goeke, D. (2017). Solving the battery swap station location-routing
problem with capacitated electric vehicles using an avns algorithm for vehicle-routing problems
with intermediate stops. Transportation Research Part B: Methodological, 97:102–112.
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Appendix A. Mathematical model

Table A.8: Variables and parameters of the EODBRP

xsnb 1 if the n-th station of bus b is bus station s and 0 otherwise
yupnb 1 if passenger p is picked up at the n-th station of bus b and 0 otherwise

yopnb 1 if passenger p is dropped off at the n-th station of bus b and 0 otherwise

qcapnb net number of passengers picked up (or dropped off) at the n-th station of bus b
tanb arrival time of bus b at its n-th station
tdnb departure time of bus b at its n-th station
Tp user ride time of passenger p
B the fleet of buses
P the set of transportation requests, |P | denotes the number of requests
S the set of bus stations
Qcap capacity of bus
aups 1 if passenger p can be assigned to station s for pick-up
aops 1 if passenger p can be assigned to station s for drop-off
ep earliest pick-up time for passenger p
lp latest drop-off time for passenger p
TTss′ travel time between station s and station s’
unb battery level at the n-th stop of bus b
ess′ electricity consumption from s to s’, where s, s’ ∈ V
Q battery capacity
qs battery level upon arriving at s ∈ F’
os battery level upon departing from s ∈ F’
ϵs the corresponding charging time of qs
ds the corresponding charging time of os
δs the time spent at s ∈ F’
zsγ equal to 1 if the battery level is between as,γ−1 and as,γ , where γ ∈ Γ\{0}, upon arriving at ∈ F’
wsγ equal to 1 if the battery level is between as,γ−1 and as,γ , where γ ∈ Γ\{0}, upon departing from ∈ F’
αsγ coefficients of the break point γ ∈ B\{0} upon arriving at ∈ F’
λsγ coefficients of the break point γ ∈ B\{0} upon departing from ∈ F’

The objective function is to minimize total URT. Constraints (A.2) enforce the fact that a bus
can only stop at one station at the same time. Constraints (A.3) make sure stations that the
positions used in the bus route are used consecutively and start at the first position. Constraints
(A.4) and (A.5) respectively enforce a bus to stop at one station if and only if at least one passenger
uses it either to board or alight. Constraints (A.6) and (A.7) respectively impose that a station
is designated to a passenger to board/alight only if the station belongs to the passenger, i.e. it is
within the predefined walking distance. Constraints (A.9) impose for any two consecutive stations,
the arrival time at the later station is (larger than or) equal to the departure time at the previous
one plus the travel time. Constraints (A.10) guarantee the departure time at a passenger’s pickup
station is greater than or equal to the earliest allowed value. Correspondingly, constraints (A.9)
guarantee the arrival time at a passenger’s drop-off station is smaller or equal to the latest allowed
value. Constraints (A.11) impose that the pickup station precedes the corresponding drop-off one
for any passengers. Constraints (A.12) enforce each passenger gets on and gets off the same bus.
Constraints (A.13) make sure each passenger is served at most once. Together with constraints
(A.18), every request is served once and only once. Constraints (A.14) forbid two consecutive
stations be the same. Constraints (A.15) calculate the net capacity at each station, which is equal
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to the number of passengers getting on minus the one of getting off. Consequently, constraints (A.16)
forbid the violation of bus capacity. Constraints (A.17) calculate the URT of each passenger, i.e.
the arrival time at the get-off station minus the departure time at the get-on station. Constraints
(A.53) make sure the electricity level at any node is larger than or equal to 0. Constraints (A.19)
and (A.20) make the electricity level equal to os when departing from the CS s. Constraints (A.21)
compute the electricity level at the first station after leaving the depot. Constraints (A.22) - (A.25)
track the battery level of each node. Constraints (A.26) define the relationship of the battery levels
when arriving at and departing from the CS. Constraints (A.27) - (A.33) define the battery level
and its corresponding charging time from the charging function, when a bus arrives at the CS.
Similarly, constraints (A.34) - (A.40) define the counterparts when a bus departs from the CS.
Constraints (A.41) calculate the time spent at each copy of the CS. Constraints (A.42) and (A.43)
impose the relationship of the departure and arrival time at a node. Constraints (A.44) forbid visits
to the CS consecutively. Constraints (A.45) and (A.46) ensure the copies of the CS i are visited in
order. Constraints (A.54) - (A.56) define the domain of the variables. Constraints (A.47) - (A.48)
enforce that a bus can visit the CS only if no passengers aboard. Constraints (A.49) - (A.52) define
the range for each variable.
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min URT =
∑

p∈P
Tp (A.1)

s.t.∑
s∈V

xsnb ≤ 1 ∀n ∈ N, b ∈ B (A.2)∑
s∈V

(xsnb − xs(n+1)b) ≥ 0 ∀n ∈ N, b ∈ B (A.3)

M
∑

s∈S
xsnb −

∑
p∈P

(yupnb + yopnb) ≥ 0 ∀n ∈ N, b ∈ B (A.4)∑
s∈S

xsnb −
∑

p∈P
(yupnb + yopnb) ≤ 0 ∀n ∈ N, b ∈ B (A.5)

xsnb + yupnb − aups ≤ 1 ∀s ∈ S, n ∈ N, p ∈ P, b ∈ B (A.6)

xsnb + yopnb − aops ≤ 1 ∀s ∈ S, n ∈ N, p ∈ P, b ∈ B (A.7)

ta(n+1)b − tdnb − TTss′ + (xsnb + xs′(n+1)b − 2)(−M) ≥ 0 ∀s, s′ ∈ V | s ̸= s′, n ∈ N, b ∈ B (A.8)

tdnb − ep + (yupnb − 1)(−M) ≥ 0 ∀p ∈ P, n ∈ N, b ∈ B (A.9)

tanb − lp + (yopnb − 1)M ≤ 0 ∀p ∈ P, n ∈ N, b ∈ B (A.10)∑
n∈N

(nyupnb − nyopnb) ≤ 0 ∀p ∈ P, b ∈ B (A.11)∑
n∈N

(yupnb − yopnb) = 0 ∀p ∈ P, b ∈ B (A.12)∑
b∈B

∑
n∈N

yupnb ≤ 1 ∀p ∈ P (A.13)

xsnb + xs(n+1)b ≤ 1 ∀s, n, b (A.14)∑
p∈P

(yupnb − yopnb)− qcapnb = 0 ∀n ∈ N, b ∈ B (A.15)∑
n′≤n

qcapnb ≤ Qcap ∀n, n′ ∈ N | n ≥ n′, b ∈ B (A.16)

Tp + (2− yopn′b − yupnb)M − tan′b + tdnb ≥ 0 ∀n, n′ ∈ N | n′ > n, p ∈ P, b ∈ B (A.17)∑
p∈P

∑
b∈B

∑
n∈N

yupnb = |P | (A.18)

unb ≥ os + (
∑

s∈F ′
xsnb − 1)M ∀s ∈ F ′, n ∈ N, b ∈ B (A.19)

unb ≤ os + (1−
∑

s∈F ′
xsnb)M ∀s ∈ F ′, n ∈ N, b ∈ B (A.20)

u0b = Q−
∑

s∈S
e0sxs0b ∀b ∈ B (A.21)

unb − u(n+1)b ≤ (ess′ −Q)(xsnb + xs′(n+1)b − 1) +Q ∀s ∈ V, s′ ∈ S, s ̸= s′ (A.22)

unb − u(n+1)b ≥ (ess′ +Q)(xsnb + xs′(n+1)b − 1)−Q ∀s ∈ V, s′ ∈ S, s ̸= s′ (A.23)

us − qs′ ≤ (ess′ −Q)(xsnb + xs′(n+1)b − 1) +Q ∀s ∈ V, s′ ∈ F ′, s ̸= s′ (A.24)

us − qs′ ≥ (ess′ +Q)(xsnb + xs′(n+1)b − 1)−Q ∀s ∈ V, s′ ∈ F ′, s ̸= s′ (A.25)

qs ≤ os ∀s ∈ F ′ (A.26)

qs =
∑

k∈Γ
αskask ∀s ∈ F ′ (A.27)

ϵs =
∑

k∈Γ
αskcsk ∀s ∈ F ′ (A.28)∑

k∈Γ
αsk =

∑
k∈Γ\{0}

zsk ∀s ∈ F ′ (A.29)∑
k∈Γ\{0}

zsk =
∑

n∈N

∑
b∈B

xsnb ∀s ∈ F ′ (A.30)

αs0 ≤ zs1 ∀s ∈ F ′ (A.31)

αsk ≤ zsk + zs(k+1) ∀s ∈ F ′, k ∈ Γ\{0, γ} (A.32)

αsγ ≤ zsγ ∀s ∈ F ′ (A.33)

os =
∑

k∈Γ
λskask ∀s ∈ F ′ (A.34)

ds =
∑

k∈Γ
λskcsk ∀s ∈ F ′ (A.35)
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∑
k∈Γ

λsk =
∑

k∈Γ\{0}
wsk ∀s ∈ F ′ (A.36)∑

k∈Γ\{0}
wsk =

∑
n∈N

∑
b∈B

xsnb ∀s ∈ F ′ (A.37)

λs0 ≤ ws1 ∀s ∈ F ′ (A.38)

λsk ≤ wsk + ws(k+1) ∀s ∈ F ′, k ∈ Γ\{0, γ} (A.39)

λsγ ≤ wsγ ∀s ∈ F ′ (A.40)

δs = ds − ϵs ∀s ∈ F ′ (A.41)

tanb ≥ tdnb ∀n ∈ N, b ∈ B (A.42)

tanb ≥ tdnb + δs + (xsnb − 1)M ∀s ∈ F ′, n ∈ N, b ∈ B (A.43)

xsnb + xs′(n+1)b ≤ 1 ∀s ∈ F ′ (A.44)

tanb
∑

n∈N

∑
b∈B

xs′nb ≥ tanb
∑

n∈N

∑
b∈B

xsnb ∀s, s′ ∈ F ′, s ≤ s′ (A.45)∑
n∈N

∑
b∈B

xsnb ≥
∑

n∈N

∑
b∈B

xs′nb ∀s, s′ ∈ F ′, s ≤ s′ (A.46)

qcapnb ≥
∑

s∈F ′
(xsnb − 1)M ∀n ∈ N, b ∈ B (A.47)

qcapnb ≤
∑

s∈F ′
(xsnb − 1)(−M) ∀n ∈ N, b ∈ B (A.48)

xsnb ∈ {0, 1} ∀s ∈ S, n ∈ N, b ∈ B (A.49)

yupnb ∈ {0, 1} ∀p ∈ P, n ∈ N, b ∈ B (A.50)

yopnb ∈ {0, 1} ∀p ∈ P, n ∈ N, b ∈ B (A.51)

qcapnb ∈ Z ∀n ∈ N, b ∈ B (A.52)

unb ≥ 0 ∀n ∈ N, b ∈ B (A.53)

zsk ∈ {0, 1}, wsk ∈ {0, 1} ∀s ∈ F ′, k ∈ Γ\{0} (A.54)

αsk ≥ 0, λsk ≥ 0 ∀s ∈ F ′, k ∈ Γ (A.55)

qs ≥ 0, os ≥ 0, ϵs ≥ 0, ds ≥ 0, δs ≥ 0 ∀s ∈ F ′ (A.56)
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