
HAL Id: hal-03692186
https://hal.archives-ouvertes.fr/hal-03692186

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Real-time Adaptive Approximation
Raheleh Biglari, Joost Mertens, Joachim Denil

To cite this version:
Raheleh Biglari, Joost Mertens, Joachim Denil. Towards Real-time Adaptive Approximation. ERTS
2022, Jun 2022, Toulouse, France. �hal-03692186�

https://hal.archives-ouvertes.fr/hal-03692186
https://hal.archives-ouvertes.fr


Towards Real-time Adaptive Approximation
Raheleh Biglari

Cosys-lab, University Of Antwerp
Flanders Make@Uantwerpen

Raheleh.Biglari@uantwerpen.be

Joost Mertens
Cosys-lab, University Of Antwerp

Flanders Make@Uantwerpen
Joost.Mertens@uantwerpen.be

Joachim Denil
Cosys-lab, University Of Antwerp

Flanders Make@Uantwerpen
Joachim.Denil@uantwerpen.be

Abstract—Cyber-physical systems (CPS) are real-time systems
that operate in dynamic and non-deterministic environments.
Models are often used for control and prediction, however do
not reason on the trade-off between real-time constraints and
uncertainty. This paper presents a conceptual model to reason
on adaptive approximation in such systems. Furthermore, we
envision a framework to allow the adaptivity of models, balancing
between uncertainty and the real-time behavior of the system.

Index Terms—cyber physical systems, real-time, uncertainty,
adaptation, abstraction

I. INTRODUCTION

Cyber-physical systems (CPS) are engineered systems that
have tight integration between the cyber part (computation
and networking) and its physical components [1]. Examples
include but are not limited to industry 4.0, automotive, and
aerospace. Engineered systems have a goal to achieve in the
context of the system, e.g. an autonomous vehicle needs to
pilot the environment while not harming anyone. To achieve
this goal, multiple decision models are needed and combined.
For example, an autonomous vehicle has low-level control to
accelerate and brake, tactical decision-making models for path
planning, and strategic models to decide which roads to avoid,
e.g., as an accident occurred. All of these decision models
implement some form of (feedback) control.

Cyber-physical systems of systems are CPS that exhibit the
features of a system of systems (SoS). They are large and
spatially distributed, have distributed control, and autonomic
behavior where parts of the SoS can join or leave the system
[2]. As such it is a system composed from different CPS where
each part of the system contributes to the overall goal of the
CPSoS. The engineering of such a CPSoS has to address the
complex situations and, environments of the system, which is
characterized by ambiguity, high uncertainty and emergence
[3]. CPSoS have to allow for collaborative decision making
and, as such, need to be aware of the state of the other
constituents of the system [2].

CPS and CPSoS operate in a very dynamic environment
where lots of uncertainty is present [4]. Uncertainty points to
the lack of information that is available about the system or its
environment. An autonomous vehicle might have uncertainties
about its own position in the system and about the direction
and velocities of other vehicles and road users. Cyber-physical

Raheleh Biglari is funded by the BOF fund at the University of Antwerp.
Joost Mertens is funded by the Research Foundation - Flanders (FWO)
through strategic basic research grant 1SD3421N.

Fig. 1. Lane changing scenario.

systems are also real-time systems which means that the
time at which a decision is made is as important as the
decision itself. This means that during design time, the system
is analyzed to ensure that all the deadlines of the control
components are met in the worst-case.

One way to deal with the contradiction of better perfor-
mance and reduced cost in CPS is to allow adaptivity at run-
time and to change the underlying decision and estimation
models such that they are sufficient for computing the control
actions but at the same time computationally less intensive.
Techniques that abstract or approximate models are commonly
available in the literature, e.g., surrogate modeling [5].

In this short paper, we look at different dimensions of
the problem to allow for such a run-time adaptation of the
underlying control and decision models with more abstract
and approximate models. The rest of the paper is organized
as follows: section II introduces our running example, section
III describes the challenges in our work. We also present use
case evaluation results. In section IV we describe our strategy
to dealing with the challenges. We provide related works in
section V and section VI presents our conclusion and discusses
future directions.

II. RUNNING EXAMPLE

We use a lane change control algorithm to show the chal-
lenges of introducing adaptive abstraction and approximation
in a real-time context. While we do not aim precisely at this
class of control algorithms, lane changing allows for visual
and intuitive reasoning over the problem space.

Lane changing algorithms control the lateral direction of
the vehicle. The scenario throughout this paper is shown in
Figure 1. The ego car (in dark blue) tries to change the lane in
between two other cars. The velocity and acceleration vectors
of the two cars is shown as vectors v1,v2, a1 and a2. The
front car is lightly decelerating while the back car is lightly
accelerating. Multiple algorithms have been proposed in the
literature to solve such lane changing problems, e.g. [6]. In
the context of this paper, we use a Simulink provided model



Fig. 2. Causal Block Diagram of the Lane Change Algorithm

to simulate the lane changing behavior. Figure 2 shows the
high-level architecture of the lane changing algorithm. The
algorithm uses Frenet Coordinate System, which represents the
position of the car on the road more intuitively than traditional
(x, y) coordinates.This algorithm also uses a prediction step
to predict the trajectories of the different actors. Afterward,
path planning takes care of finding a good path in the world.
Finally, a model-predictive controller steers the vehicle over
the planned path.

In the rest of the paper, we focus on the prediction step of
the other vehicles. The prediction step simulates a trajectory
relative to the ego car for each vehicle in the environment. The
component receives information on the lateral and longitudinal
position, velocity, and acceleration of the vehicles. In the
default case, the prediction step uses a constant velocity model
to predict the vehicle’s position at multiple time-steps in a
three-second window:s(t) = v ∗ t + s0 (with s the relative
distance to the ego-car, v the relative speed to the ego vehicle,
and s0 the initial distance). However, we can imagine much
more detailed models that also take the vehicle’s acceleration
into account or even more detailed models that simulate the
complex decision-making in each of the vehicles.

III. CHALLENGES

Using a model of a car performing a lane change such as the
scenario in Section II, we elaborate on identified challenges.
The model is simulated with Simulink.

A. Model Prediction Uncertainty

Each of the different models has a different amount of
predictive power. As such, more detailed models typically have
lesser prediction uncertainty. Figure 3 depicts the prediction of
the scenario with two different models over three time-steps.
The top control bar is the uncertain position of the cars using
a constant velocity model. The lower control bar shows the
uncertain position using a constant acceleration model.

To reason over using different alternative models, we need
to map the prediction uncertainty of all the different models.
Two types of uncertainty are typically present in modeling
and simulation: aleatoric and epistemic uncertainty. Aleatory
uncertainty is known as stochastic uncertainty and is due to
probabilistic variability. Epistemic uncertainty is the uncer-
tainty that occurs because of the lack of knowledge [7].

With the simulation model, we demonstrate how the con-
stant velocity and constant acceleration models have different
predictive power. Figure 4 shows the velocity profile of car 2
and the L2-norm (Euclidean distance) between 4 predictions
and the true location of that car. The number behind each

Fig. 3. Prediction of the car position on three time steps within the time
window, relative to the leading car. On each car, the prediction uncertainty of
two different models is shown, one solid, one dashed.

Fig. 4. Car 2’s velocity profile, compared with the L2 errors made by the
constant velocity and acceleration prediction models.

prediction tells us how many steps (of 0.1s) in the future
this prediction is. The simulation includes uncertainty on the
sensor inputs of the ego vehicle, which results in slightly
jagged error traces. The velocity profile shows that the car
accelerates to 22 m/s. Afterward, it holds a constant velocity.
We observe that under acceleration, the constant velocity
model has a continuous error that only diminishes as the
vehicle approaches constant velocity. The constant acceleration
model performs better when conditions are constant, that is,
positive, negative, or 0 acceleration, and shows the largest error
when the predictions cross transitions in acceleration. Such
transitions can be seen at t = 0s, where the initial acceleration
measurement is 0, yet the car is already accelerating at
0.8m/s2, and at t = 2.4s, when the car stops accelerating.
Under constant velocity, both models perform equally. From
the results, we can say that the constant acceleration model has
better predictive power, given the generally smaller errors.

B. Dynamic Environment

The environment in which systems operate is dynamic. Cars
enter and leave the operating environment of the system. Some
highways have more lanes than others. Even more, not all of
the actors within the environment are of the same type. In a
traffic environment, we have pedestrians, bicycles, cars, trucks,
and buses that all behave differently. The prediction compo-
nent of the lane change algorithm has to set up this dynamic

2



Fig. 5. Experimental CDF of the profiled execution times of both models.

environment each time and select the most appropriate models
to include.

C. Real-time Constraints

Often our cyber-physical systems are also real-time systems.
This means that the time at which the computation result
is available is as important as that result itself. During the
design of such systems, care is taken that the computations are
finished before the expiry of the deadline of the computation.
Different analytical techniques are available to check that this
is correct. However, in the dynamic environment described
above, this is difficult. How many cars, pedestrians, and
bicycles are in the system’s environment is unknown at design
time. However, we still need a prediction of the behavior of
each of these actors in the example within a certain time-span.

With the simulation model, we can demonstrate the impact
computations can have on the number of predictions. Figure 5
shows the experimental cumulative distribution function of the
profiled execution times of the state predictor for the constant
velocity and acceleration models. 400 simulations were run
for each model. Although profiling a Simulink model does not
yield real-time results, it does allow us to relatively compare
the computational burden of its blocks, We observe that,
on average, the constant acceleration model requires 22.74%
more computation time than the constant velocity model.
This implies that for predicting 4 other cars with constant
acceleration, 5 cars with constant velocity could be computed.

IV. APPROACH

This section details our approach to handle these challenges.
In the first part of this section, we look at a conceptual manner
on reasoning over substitutability of models. We look at the
effect of approximating a model with a surrogate model and
how it impacts a decision making algorithm. The conceptual
framework is used as the foundation for a framework that
allows for the run-time adaptation of a system where models
can be swapped by more approximate models based on the
context of the system and the available library of models.

A. Language Engineering Framework

To reason on the challenges, we propose an adapted version
of the conceptual framework proposed by Barroca, Kuhne and
Vangheluwe [8]. The conceptual framework in Figure 6 inte-
grates ontological and language engineering. We extended the
framework with two different models with different approxi-
mations, and the layer of the decision-making algorithms. The
linguistic level starts with a simulation model. The simulation
model has semantics (denoted by [[.]]), which results in a

Fig. 6. Conceptual framework.

simulation behavior trace. However, the trace might not be
the quantity of interest of the decision-making algorithm or for
reasoning over the logical behavior of the system. A function
f() (e.g. integrating the signal) transforms the trace into some
quantity of interest, here called the prediction value. A logical
property is on the ontological level where it gets a real-world
meaning, e.g. will the two cars collide? The logical property
is a Boolean value; either the cars collide, or they do not
collide. Another function g() is used to transform between
the quantity of interest and the logical property. Decision
algorithms typically work directly with the prediction value
but implicitly encode the transform within its algorithm. We,
therefore, show the direct link between the logical property
and the decision-making model.

The framework is analog for a model that is approximated.
It reasons on the same logical property, however, using a
more approximate model introduces uncertainty. This means
that the function g′() should give the same answer as the
original model, except with more uncertainty. If the uncertainty
is within bounds, the original model can be substituted with
the more approximate one. This bound is defined by some
metric, which is the tolerance to this change in the logical
property (and hence later in the decision that was made by the
decision-making model). The tolerance depends on a number
of factors. In our lane changing example, the tolerance is
based on (a) the goal model: do I actually want to change
lanes, or do I want to stay in the same lane? When staying
in the same lane, the cars on other lanes are maybe less
important. (b) the context or environment of the system: is
the car close-by (less tolerance) or far away (more tolerance)
(c) the decision-making model itself: is the algorithm itself
more or less tolerant to uncertainties?

B. Adaptive abstraction and approximation for real-time sys-
tems

Based on the insights provided by the conceptual frame-
work, we propose an architecture for adaptive abstraction and

3



approximation for real-time systems. The architecture is shown
in Figure 7. The high-level architecture is based on the MAPE-
K architecture [9]. MAPE-K is a high-level control loop for
self-adaptive systems. The managed system is, in our case,
the embedded system running the control application for lane
changing.

Fig. 7. Real-time Adaptive Abstraction and Approximation Architecture

The MAPE-K loop starts with a Monitor-phase where the
necessary (processed) sensor data, the current goal function
and the decision-maker are communicated to the adaptation
mechanism. Here some processing occurs to allow for easier
Analysis. The analysis phase starts by updating a model tree.
This model tree contains, in the ordered branches, all real-
world objects that are passed by the sensor data. In the running
example, we only have two objects: the two cars. It uses
the (processed) sensor data to add or remove objects from
the model tree incrementally. The Model Selection activity
updates or selects the different models for each object in the
model tree. The update is based on the goal, context and
decision model, the quantified tolerances, and the available
models with uncertainty quantification. The combination of
these Knowledge items result in a set of rules to decide if a
certain model can or cannot be used in this specific instance.
Furthermore, the tree is also ordered with the most important
objects in the first branches, and the most appropriate model
in the first branch. In our case, the acceleration model is
placed before the constant velocity model. If another car
was present at a larger distance, the constant vehicle model
would be first, and an empty model second branch. Using
the accelerated model would not make sense as the tolerance
for the decision-maker is high. The empty model is present,
as the non-computing of the model reduces the execution
time significantly but reduces the performance of the system.
Finally, real-time constraints are imposed on top of the model
tree to prune infeasible solutions. After the analysis phase, a
set of feasible solutions is left. Based on this set of solutions,
the co-simulation scheme is adapted and a master is generated
that enables execution of the simulation. Note that each co-
simulation unit contains the different possible models (possibly
an empty model) for fast adaptation. Finally, in Execute, the
scheduler in the Managed system is updated.

The scheduler itself is an adaptive mixed-criticality sched-
uler based on [10]. This allows for responsiveness to overload

conditions and imperfections in the execution time measure-
ment of each co-simulation unit.

C. Discussion

This paper shows how to deal with the trade-off between
uncertainty and real-time behaviour using models at different
approximation levels. Consider if the number of cars increases
in a scenario, the ECU will not have sufficient time to compute
a prediction of all the different models.

The proposed conceptual model solves the dynamic envi-
ronment where you cannot reason over real-time behaviour as
worst-case bounds or where fallbacks in the decision logic are
necessary. This solution needs computation of the MAPE-K
loop and switching of models.

In this research, we address Tolerance Quantification. We
need to be able to evaluate the tolerance of the decision making
algorithm, since it is one of the model selection criteria. Off-
line experiments are needed to see how a decision making
algorithm responds to uncertainty. In the example, it is the
tolerance to the uncertain distance and velocity vector that
must be quantified.

V. RELATED WORK

In previous work [11]–[13], we worked on the adaptivity
of large scale simulations with surrogates. However, none of
these techniques use a quantification of tolerance or reason
over the real-time behaviour of the system.

The two most related techniques to our defined methods
are mixed criticality systems and the imprecise computation
model. Most of the complex embedded systems like automo-
tive and avionic industries are mixed criticality systems. These
systems deal with task-priority scheduling regarding execution
time [14]. The imprecise computation is also a technique
to deal with transient overload and improve real-time fault
tolerance. This approach ensures that all critical tasks never
miss their deadlines [15]. Both techniques do not take the
uncertainty of the models into account but allow for adaptation
based on real-time citeria.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a conceptual model for reasoning
on adaptive approximation in a dynamic environment. We
used a Simulink model for the simulation of the lane change
control algorithm as a visual and tangible use case. Guided
by it, we identify 3 main challenges faced for real-time
adaptive approximation: model prediction uncertainty, dynam-
icness of environments and real-time constraints. To handle
those challenges, we envisioned an integrated framework for
adaptive approximation in CPS that balances the uncertainty
and real-time behavior of the system. In the future, we aim
to implement the framework with a supporting architecture,
methods, and techniques to reason over the use of self-adaptive
approximations and abstractions at runtime. We also want
to create an appropriate modeling language and supporting
techniques to find better runtime deployment solutions.

4



REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC). IEEE, 2008, pp. 363–369.

[2] S. Engell, “Cyber physical sos-definition and core research and devel-
opment areas,” Working paper of the Support Action CPSoS. Retrieved
from http://www. cpsos . . . , Tech. Rep., 2014.

[3] A. Sousa-Poza, S. Kovacic, and C. Keating, “System of systems engi-
neering: an emerging multidiscipline,” International Journal of System
of Systems Engineering, vol. 1, no. 1-2, pp. 1–17, 2008.

[4] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, “Under-
standing uncertainty in cyber-physical systems: a conceptual model,”
in European conference on modelling foundations and applications.
Springer, 2016, pp. 247–264.

[5] D. Caughlin and A. F. Sisti, “Summary of model abstraction techniques,”
in Enabling Technology for Simulation Science, vol. 3083. International
Society for Optics and Photonics, 1997, pp. 2–13.

[6] D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson,
J. Woodruff, M. Barth, C. Murray, A. Kurt, K. Redmill, and U. Ozguner,
“Lane change and merge maneuvers for connected and automated
vehicles: A survey,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 105–120, 2016.

[7] W. L. Oberkampf and C. J. Roy, Verification and validation in scientific
computing. Cambridge University Press, 2010.

[8] B. Barroca, T. Kühne, and H. Vangheluwe, “Integrating language and
ontology engineering.” in MPM@ MoDELS. Citeseer, 2014, pp. 77–86.

[9] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[10] F. Guan, L. Peng, L. Perneel, H. Fayyad-Kazan, and M. Timmerman,
“A design that incorporates adaptive reservation into mixed-criticality
systems,” Scientific Programming, vol. 2017, 2017.

[11] S. Bosmans, S. Mercelis, P. Hellinckx, and J. Denil, “Towards evaluating
emergent behavior of the internet of things using large scale simulation
techniques (wip),” in Proceedings of the 4th ACM International
Conference of Computing for Engineering and Sciences, ser. ICCES’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3213187.3213191

[12] ——, “Reducing computational cost of large-scale simulations using
opportunistic model approximation,” in 2019 Spring Simulation Confer-
ence (SpringSim), 2019, pp. 1–12.

[13] S. Bosmans, T. Bogaerts, W. Casteels, S. Mercelis, J. Denil,
and P. Hellinckx, “Adaptivity in multi-level traffic simulation
using experimental frames,” Simulation Modelling Practice and
Theory, vol. 114, p. 102395, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X2100099X

[14] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, pp. 1–69, 2013.

[15] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

5


