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Abstract Inspired by the well-known cross ratio proposed by Clayton, we study
a new and appealing alternative risk ratio to describe the relation between the
components of a bivariate random vector (T1, T2). The new measure is defined as
the ratio of the conditional hazard rate function of T1 at t1, given that T2 ≥ t2
and the conditional hazard rate function of T1 at t1, given that T2 < t2. A
nonparametric estimator is proposed and its asymptotic distribution is obtained
via Bernstein-based methods applied to the survival copula of (T1, T2) and its
partial derivatives. The finite sample performance of the new estimator is studied
via simulations. The practical meaning of the risk ratio function and its estimator
is illustrated in two real datasets, one on food expenditure and net income and
one on the relation between cholesterol and age, and between maximum heart rate
achieved and age, for patients suffering from heart disease as compared to control
patients without heart disease. Interesting extensions of the proposed risk ratio
are given in the discussion section.
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1 Introduction

Bivariate survival distributions, conditional survival distributions and conditional
hazard rates are key functions for the statistical analysis of bivariate survival data.
They, indeed, provide local information on the relation between the components.

Using copulas it is easy to show that all such quantities can be written in terms
of (derivatives) of survival copulas and therefore copulas are the right tool to study
conditional distributions and conditional hazard rates in a unified way.

For a bivariate vector of (positive) event times (T1, T2), define S(t1, t2) =
P(T1 > t1, T2 > t2) the joint survival function and let, for j = 1, 2, Sj(tj) =
P(Tj > tj) denote the marginal survival functions with fj(tj) the corresponding
densities. Copulas provide a natural way to capture the relation between T1 and
T2. Indeed, assuming absolute continuous marginal survival functions, there is a
unique copula C(·, ·) satisfying S(t1, t2) = C[S1(t1), S2(t2)] (Sklar, 1959). Further,
with C(1)(·, ·) and C(2)(·, ·) denoting the partial derivatives of C(·, ·) with respect
to the first and second component and with c(·, ·) = C(1,2)(·, ·) the copula density,
the following conditional distributions and hazards are easily obtained (see, e.g.,
Section 3 in Janssen et al. (2016) and Abrams et al. (2020)):

P(T1 > t1 | T2 = t2) = C(2) [S1(t1), S2(t2)] ,

λ(t1 | T2 = t2) =
c [S1(t1), S2(t2)] f1(t1)

C(2) [S1(t1), S2(t2)]
,

P(T1 > t1 | T2 ≥ t2) =
C [S1(t1), S2(t2)]

S2(t2)
,

λ(t1 | T2 ≥ t2) =
C(1) [S1(t1), S2(t2)] f1(t1)

C [S1(t1), S2(t2)]
,

P(T1 > t1 | T2 < t2) =
S1(t1)− C [S1(t1), S2(t2)]

1− S2(t2)
,

λ(t1 | T2 < t2) =

{
1− C(1) [S1(t1), S2(t2)]

}
f1(t1)

S1(t1)− C [S1(t1), S2(t2)]
.

Parametric and semi-parametric models have been proposed to estimate these
quantities, e.g., Cox and Oakes (1984) proposed the proportional hazards model
of the first kind for λ(t1 | T2 = t2); and Arnold and Kim (1996) proposed the
proportional hazards model of the second kind for λ(t1 | T2 > t2).

Also risk ratios have been studied, e.g., the cross ratio (CR)

CR(t1, t2) =
λ(t1 | T2 = t2)

λ(t1 | T2 > t2)
,

is introduced by Clayton (1978) and used to describe the local relation between
the components of the random vector (T1, T2). In Abrams et al. (2020) a smooth
nonparametric estimator of the cross ratio is studied and a short review, including
references, of earlier work (mainly in the context of frailty modeling) is given.

An appealing alternative to the CR is our newly proposed risk ratio (RR)

RR(t1, t2) =
λ(t1 | T2 ≥ t2)

λ(t1 | T2 < t2)
(1)
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This ratio compares the instantaneous risk for event one to happen at time T1 = t1
in the group with T2 ≥ t2 (occurrence of event two later than or equal to time
t2) and the group with T2 < t2 (occurrence of event two before t2). Consequently,
RR(t1, t2) = 1 for all (t1, t2) if T1 and T2 are independent. Interesting to note
is that the conditioning in (1), i.e., T2 ≥ t2 versus T2 < t2, partitions the whole
population in a natural way whereas this partitioning property does not hold for
the cross ratio function. In a number of applications the conditioning in (1) might
be more appealing than the conditioning used for the cross ratio. For example, if
T2 represents a prognostic index, it is interesting to compare the instantaneous
risk for groups with T2 ≥ t2 and T2 < t2 (where t2 defines some threshold value
for the prognostic index). Moreover, several possible extensions of the risk ratio
that emerge from the risk ratio defined by (1), e.g., comparing the two disjoint
subpopulations {t21 ≤ T2 < t22} and {t23 ≤ T2 < t24}, are discussed in Section 6.

In this paper, we propose a nonparametric Bernstein type estimator for the
risk ratio and we study the finite sample behaviour and asymptotic distributional
behaviour of this estimator. Since copulas are defined on [0, 1]×[0, 1], the choice for
Bernstein type estimators is logical (given the uniform convergence of Bernstein
approximations). The reader is referred to Section 6 for a further discussion. We
use a food expenditure dataset (Example 1) and a heart disease dataset (Example
2) to demonstrate the practical use of the risk ratio RR(t1, t2). The paper is orga-
nized as follows. In Section 2 we propose, for complete data, the nonparametric,
Bernstein type, estimator for the risk ratio RR(t1, t2) and we give the risk ratios
corresponding to the Clayton, Gumbel and Frank copula. Simulation results are
presented in Section 3. The asymptotic distributional behaviour of the Bernstein
type estimator of RR(t1, t2) is established in Section 4. The real data examples are
discussed in Section 5. In the discussion section (Section 6), we show that, based
on the ideas and results in the present paper, challenging new research questions
on risk ratios for, e.g., right-censored data emerge and we indicate the method-
ological hurdles to be solved. Extra details on the simulations are collected in the
Supplementary Material. All R code and datasets are available on www.ibiostat.be.

2 Methods and materials

2.1 Nonparametric estimator

The risk ratio in (1) can be written as

RR(t1, t2) =
λ(t1 | T2 ≥ t2)

λ(t1 | T2 < t2)
=
C(1)[S1(t1), S2(t2)]

C[S1(t1), S2(t2)]
×

{S1(t1)− C[S1(t1), S2(t2)]}

1− C(1)[S1(t1), S2(t2)]
(2)

=

{
S1(t1)

C[S1(t1), S2(t2)]
− 1

}
×

{
1

C(1)[S1(t1), S2(t2)]
− 1

}−1

. (3)

Note that S1(t1) > C[S1(t1), S2(t2)] and C
(1)[S1(t1), S2(t2)] = P (T2 ≥ t2 | T1 =

t1) ≤ 1 leading to RR(t1, t2) ≥ 0. To obtain a nonparametric Bernstein type

estimator, denoted by R̂Rm(t1, t2), for the risk ratio RR(t1, t2), we replace in (2)
and (3) the quantities C[S1(t1), S2(t2)], C

(1)[S1(t1), S2(t2)], S1(t1) and S2(t2) by
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Cm,n[S1n(t1), S2n(t2)], C
(1)
m,n[S1n(t1), S2n(t2)], S1n(t1) and S2n(t2), respectively,

where

Cm,n[S1n(t1), S2n(t2)] =
m∑

k=0

m∑

l=0

Cn

(
k

m
,
l

m

)
Pm,k[S1n(t1)]Pm,l[S2n(t2)],

C(1)
m,n[S1n(t1), S2n(t2)] = m

m−1∑

k=0

m∑

l=0

[
Cn

(
k + 1

m
,
l

m

)
− Cn

(
k

m
,
l

m

)]
×

Pm−1,k[S1n(t1)]Pm,l[S2n(t2)],

with

Pm,k(u) =

(
m
k

)
uk (1− u)m−k ,

Cn(u, v) = Sn

[
S−1
1n (u), S−1

2n (v)
]
,

Sn(t1, t2) =
1

n

n∑

i=1

✶(T1i > t1, T2i > t2),

S1n(t1) =
1

n

n∑

i=1

✶(T1i > t1) = 1− F1n(t1),

S2n(t2) =
1

n

n∑

i=1

✶(T2i > t2) = 1− F2n(t2),

and m is the so-called Bernstein order. The function ✶(·) is the indicator function
where ✶(A) = 1 if condition A holds and zero otherwise.

The nonparametric Bernstein-based estimator for the risk ratio is then:

R̂Rm(t1, t2) =
C

(1)
m,n[S1n(t1), S2n(t2)]

Cm,n[S1n(t1), S2n(t2)]
×

{S1n(t1)− Cm,n[S1n(t1), S2n(t2)]}{
1− C

(1)
m,n[S1n(t1), S2n(t2)]

} .

To estimate the risk ratio, several approaches can be considered: one can think
in terms of conditional hazards, of bivariate survival functions (and its derivatives),
or of copulas (and its derivatives). Since copulas capture the relation between T1
and T2, the copula approach is a logical choice. Given that copulas are defined on
[0, 1]× [0, 1] and given the Weierstrass approximation theorem, it is natural to use
a truncated series based on Bernstein polynomials as nonparametric estimators
for the copula and the copula derivative in the risk ratio expression (3). The
advantages of using Bernstein estimators have been described in several papers in
the literature: Janssen et al. (2012, 2014, 2016); Abrams et al. (2020); Bouezmarni
et al. (2009, 2013). In Section 1 of Janssen et al. (2016), a detailed discussion is
given on the superior behaviour of Bernstein estimators. For example, the order
of the asymptotic variance is typically O(m1/2/n) in interior points (also in our
present Theorem 1) versus O(m/n) for kernel smoothers (Sancetta and Satchell,
2004; Leblanc, 2012).
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2.2 Computational formulas

For the random sample (T11, T21), . . . , (T1n, T2n) let, for i = 1, 2, Ti(1) ≤ Ti(2) ≤
. . . ≤ Ti(n) denote the ordered Tij-values; and let Rij denote the rank of Tij ,
j = 1, . . . , n. We use the following computational formulas:

Cm,n(u1, u2) =
1

n

n∑

j=1

m∑

k=
⌊

m(n−R1j )

n+1

⌋

+1

Pm,k(u1)×
m∑

l=
⌊

m(n−R2j )

n+1

⌋

+1

Pm,l(u2),

C(1)
m,n(u1, u2) =

m

n

n∑

j=1

P
m−1,

⌊

m(n−R1j )

n+1

⌋(u1)×
m∑

l=
⌊

m(n−R2j )

n+1

⌋

+1

Pm,l(u2),

where ⌊·⌋ refers to the floor notation; i.e., ⌊2.3⌋ = 2.

2.3 Risk ratio for Archimedean copulas

2.3.1 Clayton copula

First, we consider the Clayton copula (θ ∈ [−1,∞) \{0}) given by

Cθ(u, v) =
{
max

[
u−θ + v−θ − 1, 0

]}−1/θ

Hence, the first derivative with respect to u is

C
(1)
θ (u, v) = u−(θ+1)Cθ+1

θ (u, v),

for C(u, v) > 0, which is fulfilled if θ > 0 and implies that v > (1 − u−θ)−1/θ if
θ < 0 (Nelsen, 2006). In order to avoid restrictions on the domain of the risk ratio,
we will restrict attention to positive parameter values for θ in the simulation study
(Section 3).

Consequently, the aforementioned risk ratio is:

RR(t1, t2) =

{
S1(t1)

Cθ[S1(t1), S2(t2)]
− 1

}
×

{
Sθ+1
1 (t1)

Cθ+1
θ [S1(t1), S2(t2)]

− 1

}−1

=
ψc(t1, t2)− 1

ψθ+1
c (t1, t2)− 1

,

where

ψc(t1, t2) =
S1(t1)

Cθ[S1(t1), S2(t2)]
.

If θ → 0, the risk ratio tends to one (implying independence between the event
times). Furthermore, one can easily show that RR(t1, t2) < 1 for θ > 0, and
RR(t1, t2) > 1 for θ ∈ [−1, 0). For exponentially distributed event times Ti with
intensities λi, i = 1, 2, the risk ratio is given by

RR(t1, t2) =
exp(−λ1t1) [exp(θλ1t1) + exp(θλ2t2)− 1]1/θ − 1

exp[−λ1(θ + 1)t1] [exp(θλ1t1) + exp(θλ2t2)− 1](θ+1)/θ − 1
.
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In Fig. 1, we graphically depict the functional form of the risk ratio for vary-
ing values of the θ parameters (i.e., θ = −1/3,−0.2, 0, 0.5, 2) and exponential
marginal distributions with unit mean and variance for the event times T1 and
T2. More specifically, S1(t1) = exp(−t1) and S2(t2) = exp(−t2) represent the
marginal survival functions for T1 and T2, respectively, and we choose t2 to be
equal to the solutions of the equations S2(t2) = 0.25, 0.5 or 0.75, i.e., the first
quartile, median event time and third quartile of the distribution of T2 being
t2 = −ln(0.75) = 0.2877, t2 = −ln(0.5) = 0.6931 and t2 = −ln(0.25) = 1.3863,
respectively. Furthermore, we also show the risk ratio curve in case t2 = t1 (right
lower panel). Note that θ = 0 (corresponding to independence of T1 and T2)
represents the limiting value when θ → 0. For this specific example, the range of
t1-values on the x-axes of the plots is chosen to cover 99.5% of the probability mass
(i.e., S−1

1 (1 − 0.995) ≈ 5.30). As mentioned previously, if θ < 0, the domain of
the risk ratio RR(t1, t2) is constrained in the sense that t1 < (1/θ)ln [1− exp(θt2)]
(red lines) (see also Table 1). For the risk ratio on the main diagonal, it should
hold that t1 = t2 < (1/θ)ln(0.5).

[Table 1 about here.]

Kendall’s τ is θ/(θ + 2) (Nelsen, 2006), implying that the selected values for θ
correspond to Kendall’s τ values of −0.2, −0.11, 0, 0.2 and 0.5.

[Fig. 1 about here.]

2.3.2 Gumbel copula

Second, a Gumbel copula is considered to induce time-varying association among
the infection times, i.e., for θ ∈ [1,∞):

Cθ(u, v) = exp

(
−
{
[−ln(u)]θ + [−ln(v)]θ

}1/θ
)
,

with Kendall’s τ being equal to (θ − 1)/θ. We have for the Gumbel copula:

C
(1)
θ (u, v) = C(u, v)

{
[−ln(u)]θ + [−ln(v)]θ

}1/θ−1
u−1 [−ln(u)]θ−1 .

The risk ratio has the following functional form:

RR(t1, t2) =

{
S1(t1)

Cθ[S1(t1), S2(t2)]
− 1

}
×

{
S1(t1) {−ln [S1(t1)]}

1−θ

Cθ[S1(t1), S2(t2)] (−ln {Cθ[S1(t1), S2(t2)]})
1−θ

− 1

}−1

.
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In case of exponential event times with intensities λ1 and λ2 for T1 and T2, the
expression becomes:

RR(t1, t2) =

{
S1(t1)

Cθ[S1(t1), S2(t2)]
− 1

}
×





exp(−λ1t1)(λ1t1)
1−θ

Cθ[S1(t1), S2(t2)]
[
(λ1t1)

θ + (λ2t2)
θ
]1/θ−1

− 1





−1

=

{
exp(−λ1t1)

Cθ[S1(t1), S2(t2)]
− 1

}{
ζ(t1, t2)

Cθ[S1(t1), S2(t2)]
− 1

}−1

,

where

ζ(t1, t2) = exp(−λ1t1)(λ1t1)
1−θ

[
(λ1t1)

θ + (λ2t2)
θ
]1−1/θ

.

For θ = 1, ζ(t1, t2) = exp(−λ1t1) = S1(t1) and RR(t1, t2) ≡ 1. Furthermore, for
θ > 1, RR(t1, t2) < 1, for all t1, t2. In Fig. 2, we show the risk ratio for θ = 1, 10/8
and 2, and exponential marginal distributions with unit mean and variance for the
event times T1 and T2. Again, we select t2 = 0.2877, t2 = 0.6931, t2 = 1.3863 and
t2 = t1. Kendall’s τ = (θ − 1)/θ is 0, 0.2 and 0.5 for the selected θ values.

[Fig. 2 about here.]

2.3.3 Frank copula

Finally, a Frank copula is considered with parameter θ. The copula is defined as

Cθ(u, v) = −θ−1ln

{
1 +

[exp(−θu)− 1] [exp(−θv)− 1]

exp(−θ)− 1

}
,

for θ ∈ (−∞,∞) \{0}. Consequently, the first derivative of the copula with respect
to the first argument is given by:

C
(1)
θ (u, v) =

exp(−θu) [exp(−θv)− 1]

[exp(−θ)− 1] + [exp(−θu)− 1] [exp(−θv)− 1]
.

Hence,

{
1

C
(1)
θ [S1(t1), S2(t2)]

− 1

}−1

=

{
C

(1)
θ [S1(t1), S2(t2)]

1− C
(1)
θ [S1(t1), S2(t2)]

}

=

(
exp[−θS1(t1)] {exp[−θS2(t2)]− 1}

exp(−θ)− exp[−θS2(t2)]

)
,

since

1− C
(1)
θ (u, v) =

exp(−θ)− exp(−θv)

[exp(−θ)− 1] + [exp(−θu)− 1] [exp(−θv)− 1]
.
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The risk ratio has the following expression:

RR(t1, t2) =

{
S1(t1)

Cθ[S1(t1), S2(t2)]
− 1

}(
exp[−θS1(t1)] {exp[−θS2(t2)]− 1}

exp(−θ)− exp[−θS2(t2)]

)
.

When θ → 0, the risk ratio RR(t1, t2) tends to one. Furthermore, for θ < 0 (> 0),
RR(t1, t2) > 1 (< 1), for all t1, t2. Fig. 3 presents the risk ratio curves for θ =
−1.8609, 10−6(≈ 0), 1.8609 and 5.7363, and exponential marginal distributions
with unit mean and variance for the event times T1 and T2 as before. Again, we
select t2 = 0.2877, t2 = 0.6931, t2 = 1.3863 and t2 = t1. Kendall’s τ = 1 −
4θ−1 [1−D1(θ)], with D1(.) the Debye function of the first kind defined as

D1(θ) = θ−1

∫ θ

0

t

exp(t)− 1
,

has values of -0.2, 0, 0.2 and 0.5 for the selected θ values.

[Fig. 3 about here.]

Some further insight in the limiting behaviour of the risk ratio (for the situa-
tions in Fig. 1– Fig. 3) can be gained from the discussion in Appendix A of the
Supplementary Material.

3 Simulations

In this section, we use simulation results to study the behaviour of the proposed
nonparametric estimator for the risk ratio RR(t1, t2). In order to get a closer look

at the finite-sample performance of our estimator, denoted by R̂Rm(t1, t2), for the

risk ratio RR(t1, t2), we show R̂Rm(t1, t2) evaluated in a set of points (t1, t2) in the
rectangle [a1, b1]× [a2, b2], where a1, a2, b1 and b2 are defined below. Furthermore,
we compare the integrated squared error, denoted by ISE, which is approximated
by evaluating R̂Rm(t1, t2) at different points (t1, t2) in [a1, b1] × [a2, b2]. More
specifically, we consider points (t1, t2) = (F−1

1 (u1), F
−1
2 (u2)), where (u1, u2) are

inner grid points in the unit square [0, 1]× [0, 1], such that

ISERR =

∫ b1

a1

∫ b2

a2

[
R̂Rm(t1, t2)− RR(t1, t2)

]2
dt1dt2

=

∫ b∗1

a∗

1

∫ b∗2

a∗

2

{
R̂Rm

[
F−1
1 (u1), F

−1
2 (u2)

]
− RR

[
F−1
1 (u1), F

−1
2 (u2)

]}2
dF−1

1 (u1)dF
−1
2 (u2).

ISERR is approximated on a bivariate grid of N1×N2 values with equally spaced
grid points (i.e.,N1 = N2 = N) in [a∗1, b

∗
1]×[a∗2, b

∗
2] ≡ [F1(a1), F1(b1)]×[F2(a2), F2(b2)],

i.e.,

IRR = ∆1∆2

N1∑

k=1

N2∑

l=1

wkl

{
R̂Rm

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]
− RR

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]}2
,

where ∆1 = (b∗1−a
∗
1)/N1, ∆2 = (b∗2−a

∗
2)/N2, u1[k] = a∗1+(b∗1−a

∗
1)(k−1)/(N1−1)

and u2[l] = a∗2+(b∗2−a
∗
2)(l−1)/(N2−1), k = 1, . . . , N1, l = 1, . . . , N2. The weights

are equal to wkl = (dF−1
1 (u1)/du1)(dF

−1
2 (u2)/du2) evaluated in (u1[k], u2[l]). The
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mean integrated squared error MISERR is then approximated by averaging over
M = 100 replications based on simulated datasets of sample size n (denoted by
MIRR):

MIRR =
1

M

M∑

r=1

I
(r)

RR,

where I
(r)

RR is the approximation of ISE based on the r-th simulated dataset. Fi-
nally, we also calculate an approximation of the integrated squared bias and inte-
grated variance, defined as:

ISBRR = ∆1∆2

N1∑

k=1

N2∑

l=1

wkl

{
R̂Rm

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]
− RR

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]}2

,

IVRR =
1

M

M∑

r=1

(
∆1∆2

N1∑

k=1

N2∑

l=1

wkl

{
R̂R

(r)

m

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]
− R̂Rm

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]}2
)

where

R̂Rm

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]
=

1

M

M∑

r=1

R̂R
(r)

m

[
F−1
1 (u1[k]), F

−1
2 (u2[l])

]
,

and R̂R
(r)

m represents the Bernstein-based estimator for the risk ratio relying on
the r-th simulated dataset. Note that the aforementioned quantities add up to
the mean integrated squared error. Throughout this simulation study, we select
[a∗1, b

∗
1] = [a∗2, b

∗
2] = [0.1, 0.9] and N1 = N2 = 80 (i.e., implying ∆1 = ∆2 = 0.01).

As mentioned in Appendix A of the Supplementary Material, we focus on the
interior points of the unit square to avoid boundary issues (see also Appendix B).
Confidence limits provided in this section are pointwise simulation-based ones.

We generate n pairs of uncensored event times (t1j , t2j), j = 1, . . . , n using the
‘copula’ package in R version 3.3.2. More specifically, random samples (u1j , u2j)
are drawn from three different copulas (i.e., Clayton, Gumbel and Frank copulas)
after which dependent exponential event times are obtained with constant hazards
λ1(t1) ≡ λ1 = 1 and λ2(t2) ≡ λ2 = 1, as follows:

tij = −
ln(1− uij)

λi
= −ln(1− uij).

Since nonparametric Bernstein estimators critically depend on the choice of the
Bernstein order m, we explore different choices thereof. More specifically, we select
m from a grid of values An = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

In this section we look at the Clayton copula. Similar results for the Gumbel
and Frank copula are presented in Appendix C in the Supplementary Material.
More specifically, we consider the Clayton copula with parameter values for θ = 0
(independence), 0.5 and 2.0. We restrict attention to positive parameter values
to avoid boundary constraints (see the discussion related to Table 1). In Table 2,
we show MIRR, ISBRR and IVRR for different choices of the Bernstein order m.
In Fig. 4, we graphically show a heatplot of the relative difference between the
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estimated risk ratio R̂Rm(t1, t2) averaged over the M = 100 replications and the
true risk ratio RR(t1, t2) (left panel), i.e.,

[
(1/M)

∑M
r=1 R̂R

(r)

m (t1, t2)
]
− RR(t1, t2)

RR(t1, t2)
.

Furthermore, we give the estimated risk ratio R̂Rm(t1, t2) (black solid line in the
right panel) as a function of t1 with t2 = F−1

2 (0.5) fixed (right panel) for θ = 0,
m = 5 and n = 500. Pointwise 95% simulation-based confidence bounds (gray
dashed lines) and the true risk ratio (red dash-dotted line) are included as well.
The shaded colors from dark to light indicate regions bounded by the 2.5th, 5th
and 10th percentile (left-hand side) and the 97.5th, 95th and 90th percentile (right-
hand side). Contourplots and additional figures are presented in Appendix C in
the Supplementary Material.

[Fig. 4 about here.]

In Fig. 5, we graphically show a heatplot of the relative difference between the
estimated risk ratio R̂Rm(t1, t2) averaged over the M replications and the true

risk ratio RR(t1, t2) (left panel). Moreover, the estimated risk ratio R̂Rm(t1, t2) is
shown (black solid lines in the right panel) as a function of t1 with t2 = F−1

2 (0.5)
fixed for θ = 0.5, m = 20 and n = 500. Pointwise 95% simulation-based confidence
bounds (gray dashed lines) and the true risk ratio (red dashed line) are again
included.

Note that the choice m = 5 (in Fig. 4) and m = 20 (in Fig. 5) is based on the
findings in Table 2.

[Table 2 about here.]

[Fig. 5 about here.]

4 Asymptotic normality of the Bernstein risk ratio estimator

Our main theorem gives the asymptotic distributional behaviour of R̂Rm(t1, t2)−
RR(t1, t2), with

R̂Rm(t1, t2) =
C

(1)
m,n[S1n(t1), S2n(t2)]

Cm,n[S1n(t1), S2n(t2)]
×

{S1n(t1)− Cm,n[S1n(t1), S2n(t2)]}{
1− C

(1)
m,n[S1n(t1), S2n(t2)]

} .

Theorem 1 Assume

(C1) The copula function C(., .) has bounded third order partial derivatives on (0, 1)×
(0, 1),

(C2) m = Knα with 2
5 < α < 3

5 , K > 0.
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Then, for all (t1, t2) such that 0 < S1(t1), S2(t2) < 1 and 0 < C(1)[S1(t1), S2(t2)] <
1, as n→ ∞,

( n

m1/2

)1/2 [
R̂Rm(t1, t2)− RR(t1, t2)

]
d
−→ N (0;VarRR(t1, t2)) ,

with

VarRR(t1, t2) =
RR2(t1, t2)

2C(1)[S1(t1), S2(t2)]
{
1− C(1)[S1(t1), S2(t2)]

}√
πS1(t1)[1− S1(t1)]

.

The risk ratio RR is a non-linear function of the copula C, the copula derivative
C(1) and the marginal survival functions S1 and S2. The estimator R̂Rm is the

same expression with Cm,n, C
(1)
m,n, S1n and S2n. The first step in the proof is to

linearize the difference R̂Rm−RR and to find out that the dominating contribution

to R̂Rm − RR comes from C
(1)
m,n[S1n(t1), S2n(t2)] − C(1)[S1(t1), S2(t2)] and that

the contributions from S1n−S1 and Cm,n[S1n(t1), S2n(t2)]−C[S1(t1), S2(t2)] are
negligible after scaling (Lemma 1). The limiting distribution of the dominating
term is then derived in Lemma 2.

Proof We use D, Dm,n (D for Derivative); C, Cm,n (C for Copula) and S1, S1n (S

for Survival) as shorthand notation for C(1)[S1(t1), S2(t2)], C
(1)
m,n[S1n(t1), S2n(t2)];

C[S1(t1), S2(t2)], Cm,n[S1n(t1), S2n(t2)] and S1(t1), S1n(t1), respectively.
We then can write

R̂Rm(t1, t2)− RR(t1, t2) =
Dm,n (S1n − Cm,n)

Cm,n (1−Dm,n)
−
D (S1 − C)

C (1−D)

=
(1−D)Dm,nC(S1n − Cm,n)−D(1−Dm,n)Cm,n(S1 − C)

(1−D)(1−Dm,n)CCm,n

:=
NUM

DENOM
.

The numerator can be rewritten as

NUM = C(S1n − Cm,n)(Dm,n −D)−DS1(Cm,n − C)(1−Dm,n)+

D(1−Dm,n)C(S1n − S1).

From the discussion that follows we will obtain that Cm,n−C = oP (1),Dm,n−D =
oP (1) and S1n − S1 = oP (1). Using a Slutsky argument we therefore have that

R̂Rm(t1, t2)− RR(t1, t2)

L
∼

S1 − C

(1−D)2C
(Dm,n −D)−

DS1

(1−D)C2
(Cm,n − C) +

D

(1−D)C
(S1n − S1),

where
L
∼ means that they have the same asymptotic distributional behaviour.

Note that S1n − S1 = OP (n
−1/2). In Lemma 1 we show that Cm,n − C =

OP (n
−1/2) +O(m−1).

Since the scaling factor in our theorem is n1/2m−1/4 we have that n1/2m−1/4(S1n−
S1) = OP (m

−1/4) = oP (1) and n
1/2m−1/4(Cm,n−C) = OP (m

−1/4)+OP (n
1/2m−5/4) =

oP (1) if α > 2/5. The distributional behaviour of R̂Rm(t1, t2)−RR(t1, t2) is there-
fore determined by the distributional behaviour of (Dm,n−D), as can be seen from
Lemma 2. �
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Lemma 1 Assume (C1). Then, with 0 < S1(t1), S2(t2) < 1, as n→ ∞,

Cm,n[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)] = OP (n
−1/2) +O(m−1).

Proof We use the following inequalities
∣∣ Cm,n[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)]

∣∣
≤
∣∣ Cm,n[S1n(t1), S2n(t2)]− C[S1n(t1), S2n(t2)]

∣∣
+
∣∣ C[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)]

∣∣
≤ sup

0<u,v<1

∣∣ Cm,n(u, v)− C(u, v)
∣∣

+
∣∣ C[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)]

∣∣ .

With

Bm(u, v) =
m∑

k=0

m∑

l=0

C

(
k

m
,
l

m

)
Pm,k(u)Pm,l(v)

we have

sup
0<u,v<1

∣∣ Cm,n(u, v)− C(u, v)
∣∣

≤ sup
0<u,v<1

∣∣ Cm,n(u, v)−Bm(u, v)
∣∣ + sup

0<u,v<1

∣∣ Bm(u, v)− C(u, v)
∣∣

≤ sup
0<u,v<1

∣∣ Cn(u, v)− C(u, v)
∣∣ + sup

0<u,v<1

∣∣ Bm(u, v)− C(u, v)
∣∣ .

Weak convergence of the process Cn(u, v) − C(u, v) implies sup
0<u,v<1

∣∣ Cn(u, v) −

C(u, v)
∣∣= OP (n

−1/2), see Fermanian et al. (2004). Moreover, under (C1), we have

sup
0<u,v<1

∣∣ Bm(u, v)− C(u, v)
∣∣= O(m−1) (see (5) in Janssen et al. (2012)).

This yields

sup
0<u,v<1

∣∣ Cm,n(u, v)− C(u, v)
∣∣= OP (n

−1/2) +O(m−1).

Young’s form of the Taylor expansion combined with Sjn(tj)−Sj(tj) = OP (n
−1/2),

j = 1, 2, gives
∣∣ C[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)]

∣∣= OP (n
−1/2). �

To study the distributional behaviour of

C(1)
m,n[S1n(t1), S2n(t2)]− C(1)[S1(t1), S2(t2)],

we first introduce the following quantities:

βo
m[S1(t1), S2(t2)] =

m−1∑

k=0

m∑

l=0

C(1)

(
k

m− 1
,
l

m

)
Pm−1,k[S1(t1)]Pm,l[S2(t2)],

a Bernstein-Weierstrass approximation for C(1)[S1(t1), S2(t2)], and

βm[S1(t1), S2(t2)] = m

m−1∑

k=0

m∑

l=0

[
C

(
k + 1

m
,
l

m

)
− C

(
k

m
,
l

m

)]
Pm−1,k[S1(t1)]Pm,l[S2(t2)],
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a first order differential version of βo
m[S1(t1), S2(t2)].

Now use the following decomposition

C(1)
m,n[S1n(t1), S2n(t2)]− C(1)[S1(t1), S2(t2)]

=
({
C(1)

m,n[S1n(t1), S2n(t2)]− βm[S1n(t1), S2n(t2)]
}
−
{
C(1)

m,n[S1(t1), S2(t2)]− βm[S1(t1), S2(t2)]
})

+
{
C(1)

m,n[S1(t1), S2(t2)]− βo
m[S1(t1), S2(t2)]

}

+
{
βm[S1n(t1), S2n(t2)]− C(1)[S1(t1), S2(t2)]

}

+ {βo
m[S1(t1), S2(t2)]− βm[S1(t1), S2(t2)]}

:= I + II + III + IV.

Assuming the conditions of our main theorem, we can apply Theorem 2 in Janssen
et al. (2016), i.e., we obtain the following asymptotic behaviour of II:

( n

m1/2

)1/2 {
C(1)

m,n[S1(t1), S2(t2)]− βo
m[S1(t1), S2(t2)]

}

d
−→ N


0,

C(1)[S1(t1), S2(t2)]
{
1− C(1)[S1(t1), S2(t2)]

}

2
√
πS1(t1)[1− S1(t1)]


 .

Assuming (C1) and α < 3/5 we also can apply Lemma 3 in the Supplementary
Material of Janssen et al. (2016). This gives

I = OP

(
m13/12n−1[ln(n)]1/2{ln[ln(n)]}1/2

)
.

An order bound for III is obtained as follows:

III = {βm[S1n(t1), S2n(t2)]− βo
m[S1n(t1), S2n(t2)]}

+
{
βo
m[S1n(t1), S2n(t2)]− C(1)[S1n(t1), S2n(t2)]

}

+
{
C(1)[S1n(t1), S2n(t2)]− C(1)[S1(t1), S2(t2)]

}

= O(m−1) +OP (n
−1/2),

where the order relations follow from the detailed discussion on Section 2 of Janssen
et al. (2016). That same discussion implies that IV = O(m−1).

Finally note that

( n

m1/2

)1/2
I = OP (m

5/6n−1/2[ln(n)]1/2{ln[ln(n)]}1/2) = oP (1),

for m = Knα, α < 3/5, and that

( n

m1/2

)1/2
(III + IV) = O

(
n1/2

m5/4
+

1

m1/4

)
= oP (1),

for m = Knα, α > 2/5.
Collecting all these results, we have shown the following lemma.
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Lemma 2 Assume (C1) and m = Knα, 2
5 < α < 3

5 , K > 0. Then, with 0 <
S1(t1), S2(t2) < 1, as n→ ∞,

( n

m1/2

)1/2 {
C(1)

m,n[S1n(t1), S2n(t2)]− C(1)[S1(t1), S2(t2)]
}

d
−→ N


0,

C(1)[S1(t1), S2(t2)]
{
1− C(1)[S1(t1), S2(t2)]

}

2
√
πS1(t1)[1− S1(t1)]


 . �

We now have all the ingredients to prove our main theorem. First note that
(S1−C)/[C(1−D)2], the coefficient ofDm,n−D in the decomposition of R̂Rm(t1, t2)−
RR(t1, t2) can be rewritten as

RR(t1, t2)

C(1)[S1(t1), S2(t2)]
{
1− C(1)[S1(t1), S2(t2)]

} .

Therefore the asymptotic distribution of

( n

m1/2

)1/2 [
R̂Rm(t1, t2)− RR(t1, t2)

]

is the same as the asymptotic distribution of

( n

m1/2

)1/2 RR(t1, t2)

C(1)[S1(t1), S2(t2)]
{
1− C(1)[S1(t1), S2(t2)]

}×
{
C(1)

m,n[S1n(t1), S2n(t2)]− C(1)[S1(t1), S2(t2)]
}
,

which is, applying Lemma 2, N (0,VarRR(t1, t2)).

5 Data applications

5.1 Example 1: Food expenditure and net income

In Abrams et al. (2020) we use a nonparametric Bernstein-based estimator for the
cross ratio to explore the relationship between food expenditure and net income
(Family Expenditure Survey, 1976, Härdle, 1990). We revisit this data example
to illustrate the use of our novel nonparametric estimator for the risk ratio. As
in Abrams et al. (2020) we use a random subsample of size n = 500 for our
analysis. In Fig. D.1 of the Supplementary Material we graphically depict food
expenditure (T1) versus net income (T2), where we express T1 and T2 in multiples
of the expenditure sample mean, respectively, the net income sample mean (as
suggested in Härdle, 1990). Table D.1 in the Supplementary Material provides the
summary statistics.

In Fig. 6, we present the heatplot contourplot of the RR-surface. The risk ratio
represents the ratio of the instantaneous probability of food expenditure equal to
T1 = t1 given that the relative net income of individuals is larger than t2 as
compared to this probability for individuals with a relative net income smaller
than t2.

[Fig. 6 about here.]
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In Fig. 7, we see that, when comparing households with a relative net income larger
than t2 to households with a relative net income smaller that t2, the estimated
risk ratio stays, over the entire food expenditure range, below one, at least when
t2 = 0.978 and t2 = 1.236, and that in general the risk ratio is increasing as a
function of food expenditure. We therefore have, given the direct link between
the conditional hazards λ(t1|T2 ≥ t2) and λ(t1|T2 < t2) and the corresponding
conditional survival functions, that

P (T1 > t1|T2 < t2) < P (T1 > t1|T2 ≥ t2).

This means that the higher income group typically spends more money for food
when compared to the lower income group. Note that also for t2 = 0.545 (the 25%
empirical quantile for relative net income) this inequality remains valid in spite of
the fact that the estimated risk ratio exceeds, for large values of t1, the baseline
value one (RR(t1, t2) ≡ 1 means no association between T1 and T2). The reason
being that for large t1-values the baseline is only exceeded in a modest way, not
strong enough to disrupt the inequality obtained when we conditioned on the 50%
and 75% empirical quantile (t1 = 0.978 and t2 = 1.236). In general, the findings
with regard to the relation between net income and food expenditure, as shown in
Fig. 7, are in line with the association depicted in Figure 6 of the work by Abrams
et al. (2020) and quantified in terms of the cross ratio function. Note, however,
that the interpretation of the novel risk ratio is more straightforward than the
CR, as it provides a direct comparison of the instantaneous risk of two groups in
a dichotomised population (based on {T2 ≥ t2} and {T2 < t2}).

[Fig. 7 about here.]

Finally note that we used m = 20 as Bernstein order (see also the discussion in
Section 6) given the moderate sample size and that we used an empirical version of
the asymptotic variance in Theorem 1 to construct the 95% pointwise confidence
bands in Figure 7.

5.2 Example 2: Cleveland heart disease data

In the second data example, we analyse the Cleveland heart disease dataset taken
from the UCI Machine Learning repository (https://archive.ics.uci.edu/ ml/datasets/Heart+Disease).
The data consist of patient information regarding 206 consecutive male patients
referred for coronary angiography at the Cleveland Clinic between May 1981 and
September 1984 (Detrano et al., 1989). The information included presence of heart
disease, age, serum cholesterol (in mg/dl) and the maximum heart rate achieved
by an individual (beats per minute). For more details concerning the data, the
reader is referred to Appendix D of the Supplementary Material. Here, the re-
lation between the maximum heart rate achieved and age is studied for males
without (n1 = 92) and with (n2 = 114) heart disease. In Appendix D of the
Supplementary Material we present results of the association between the serum
cholesterol level and age, conditional on disease status.

In Fig. C.2 of the Supplementary Material, we graphically depict the age of the
individual (T2) versus the cholesterol level or the maximum heart rate achieved
(T1), respectively. The heatplots of the RR-surface for individuals with and without
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heart disease for the relation between age and maximum heart rate achieved are
shown in Fig. C.5 of the Supplementary Material. The choice of the Bernstein order
m = 5 in this analysis is inspired by the simulation results in case of a small sample
size. In Figure 8, we show the estimated risk ratio as a function of the maximum
heart rate achieved with age being larger than t2 = 47.0 (25% percentile; upper
panels), t2 = 54.5 (50% percentile; middle panels) and t2 = 59.8 (75% percentile;
lower panels) with 95% asymptotic pointwise confidence bands. In patients without
heart disease, the probability of a maximum heart rate larger than t1 is larger for
younger patients than for older ones. For patients suffering from heart disease, the
estimated RR is close to one implying no association between age and maximum
heart rate.

[Fig. 8 about here.]

6 Discussion

In this paper, we propose a Bernstein-based nonparametric estimator of the risk ra-
tio RR(t1, t2), a new measure that unravels the local relation between the two com-
ponents of (T1, T2). Simulations show, for interior points (t1, t2) = (F−1

1 (u1), F
−1
2 (u2))

with (u1, u2) in the interior of [0, 1]× [0, 1], good finite sample performance of our
estimator for different sample sizes. Also note that, since S1n(t1) = 0 and, in gen-
eral S1(t1) > 0 for t1 > max(t11, t12, . . . , t1n), the estimator should not be used for
t1 values outside the data range. Moreover, it is well known that the asymptotic
behaviour of the estimator in boundary points and in interior points is different,
see, e.g., Janssen et al. (2016). We therefore focus in this paper on interior points,
which are the points of practical value.

The use of Bernstein type estimators stems from the fact that

Cm(u, v) =

m∑

k=1

m∑

l=1

C

(
k

m
,
l

m

)
Pm,k(u)Pm,l(v),

the Bernstein-Weierstrass approximation of C(u, v), converges uniform to C(u, v)
asm→ ∞. Alternative copula-based type estimators for the risk ratio are possible.
For example, estimators based on empirical beta copulas (Segers et al., 2017) or
B-spline copulas (Shen et al., 2008) could be defined and studied. It would be
nice to establish for these estimators asymptotic normality results that parallel
our Theorem 1.

In many applications the variables T1 and T2 are survival times subject to
right censoring. An interesting topic for future research is to define an estimator
for the risk ratio RR(t1, t2) that uses Kaplan-Meier type estimators from survival
analysis. A starting point could be the censored data estimators for the copula
C(·, ·) as studied in Geerdens et al. (2016) or Gribkova and Lopez (2015). Note
that extending the lemmas in Section 4 to the case of right-censored data is far from
trivial and is beyond the scope of the present paper. A further step could be the
incorporation of covariates into the estimation of the risk ratio. The methodological
results in Section 4 provide appropriate guidelines to study these more complex
data structures.
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The inference we discussed for the risk ratio RR(t1, t2) can also be developed
for risk ratios of form:

λ(t1 | t21 ≤ T2 < t22)

λ(t1 | t23 ≤ T2 < t24)
.

This provides a lot of flexibility regarding the choice of the subgroups for which
we want to study the risk ratio. Note that for t21 = t24 = t2, t23 = 0 and t22 → ∞,
we obtain the risk ratio studied in this paper. Moreover, one can show that the
cross ratio function CR defined in Section 1 is a limiting case. From this general
form it is clear that the risk ratio is in general not symmetric in its arguments.
Indeed, we rather think about T2 as explanatory variable for T1. Although the RR
and CR are special cases of the aforementioned ratio of generalized conditional
hazard functions, as pointed out earlier the RR offers a more straightforward
interpretation than the CR. More specifically, since the conditioning on T2 defines
two mutually exclusive and comprehensive groups (i.e., defining a partition of the
entire population) the risk ratio provides a direct comparison between the risks
(or instantaneous probabilities) at time t1 of both groups.

A further possible extension is to allow additional variables. In ongoing work
the addition of a covariate X is considered, i.e.,

λ(t1|T2 ≥ t2, X = x)

λ(t1|T2 < t2, X = x)
.

This risk ratio can be expressed in terms of the conditional copula C(.|X = x).
Estimation of C(.|X = x) has been studied in Gijbels et al. (2011) and Veraverbeke
et al. (2011). In line with the present paper, these empirical copula estimators can
be further smoothed using Bernstein polynomials. A further possible extension is
obtained by replacing X = x by X ≥ x (or X < x).

Also the case of bivariate ’primary’ endpoints can be considered. Following,
for example, Dabrowska (1988), we can study the conditional instantaneous rate
of double failure at the point (t1, t2), i.e.,

λ(t1, t2|T3 ≥ t3)

λ(t1, t2|T3 < t3)
=
C(1,2) [S1(t1), S2(t2), S3(t3)]

C [S1(t1), S2(t2), S3(t3)]

×
C [S1(t1), S2(t2), 0]− C [S1(t1), S2(t2), S3(t3)]{

C(1,2) [S1(t1), S2(t2), 0]− C(1,2) [S1(t1), S2(t2), S3(t3)]
} .

Along the lines of the present paper, Bernstein type estimators can be proposed
to estimate the copula and its derivatives to arrive at a nonparametric smoother
to estimate the risk ratio.

Other variations on this risk ratio are within reach, i.e., the study of the risk
ratio in case of bivariate endpoints that looks at the conditional instantaneous risk
of single failure at t1 (or at t2) (see Dabrowska, 1988, for details on the definition).

Finally, it would be nice to determine the optimal Bernstein order m in a
data-driven way. Based on our simulations, increasing the Bernstein order with
increasing sample size seems a logical choice. We expect that the optimal order also
depends on the underlying association structure. Bootstrap-based and/or cross-
validation methods could be useful to select, for a specific dataset, the appropriate
Bernstein order m. As far as we know, only a few papers appeared so far on
data-driven choices of the order m. Taylor-Rodriguez and Ghosh (2021) look at
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the problem in a regression context and in the recent master thesis of Sachithra-
Opathalage (2021) selection of the order is discussed for density estimation.
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Fig. 1 Risk ratio curves for a Clayton copula function with exponential event times T1 and
T2 (λ1 = λ2 = 1), for θ = −1/3 (dash-dotted lines), θ = −0.2 (large dashed lines), θ = 0 (solid
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Fig. 4 Clayton copula with θ = 0 (independence model), m = 5 and n = 500: heatplot

representing the relative difference between the estimated risk ratio R̂Rm(t1, t2) averaged over
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for age t2 = 47.0 (upper panels), t2 = 54.5 (middle panels) or t2 = 59.8 years (lower panels)
fixed in patients without (left panels; black lines) and with heart disease (right panels; red
lines) and with pointwise asymptotic 95% confidence bounds (shaded areas).



FIGURES 29

List of Tables

1 The upper boundaries for t1 for different values of θ < 0 in a Clayton
copula setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 MIRR, ISBRR and IVRR for different choices of m and different
assumptions regarding the dependence between the event times;
Clayton copula function with parameter values for θ equal to 0.00
(independence), 0.50 and 2.00. MinimumMIRR values are indicated
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



30 TABLES

Table 1 The upper boundaries for t1 for different values of θ < 0 in a Clayton copula setting.

t2

θ
−1/3 −0.2

0.2877 7.1861 14.4195
0.6931 4.7429 10.2226
1.3863 2.9878 7.0911
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Table 2 MIRR, ISBRR and IVRR for different choices of m and different assumptions
regarding the dependence between the event times; Clayton copula function with parameter
values for θ equal to 0.00 (independence), 0.50 and 2.00. Minimum MIRR values are indicated
in bold.

Independence (θ = 0.00, τ = 0.00)

n Measure 5 10 15 20 25 30 35 40 45 50

300 MIRR 0.033 0.083 0.133 0.179 0.224 0.282 0.353 0.351 0.347 0.443
ISBRR 0.003 0.003 0.005 0.005 0.004 0.005 0.004 0.010 0.006 0.007
IVRR 0.030 0.079 0.128 0.174 0.219 0.277 0.348 0.341 0.341 0.436

500 MIRR 0.018 0.049 0.089 0.123 0.144 0.179 0.181 0.203 0.234 0.274
ISBRR 0.001 0.001 0.002 0.001 0.001 0.006 0.003 0.001 0.003 0.006
IVRR 0.018 0.049 0.087 0.122 0.142 0.173 0.178 0.202 0.231 0.267

800 MIRR 0.011 0.030 0.054 0.067 0.076 0.111 0.109 0.126 0.134 0.148
ISBRR 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.002 0.001 0.002
IVRR 0.010 0.029 0.053 0.066 0.075 0.111 0.108 0.125 0.133 0.147

Clayton copula (θ = 0.50, τ = 0.20)

n Measure 5 10 15 20 25 30 35 40 45 50

300 MIRR 0.323 0.114 0.092 0.092 0.099 0.098 0.116 0.117 0.127 0.131
ISBRR 0.307 0.079 0.045 0.025 0.020 0.016 0.011 0.010 0.008 0.012
IVRR 0.016 0.035 0.048 0.067 0.078 0.081 0.105 0.107 0.119 0.119

500 MIRR 0.321 0.110 0.067 0.054 0.057 0.055 0.061 0.067 0.072 0.079
ISBRR 0.312 0.087 0.038 0.020 0.016 0.010 0.006 0.006 0.005 0.005
IVRR 0.009 0.022 0.029 0.035 0.041 0.045 0.054 0.061 0.067 0.074

800 MIRR 0.305 0.110 0.059 0.046 0.044 0.036 0.047 0.050 0.049 0.050
ISBRR 0.299 0.096 0.040 0.022 0.015 0.008 0.009 0.007 0.005 0.003
IVRR 0.006 0.015 0.019 0.024 0.029 0.028 0.038 0.044 0.044 0.047

Clayton copula (θ = 2.00, τ = 0.50)

n Measure 5 10 15 20 25 30 35 40 45 50

300 MIRR 0.606 0.194 0.114 0.090 0.083 0.081 0.071 0.075 0.080 0.084
ISBRR 0.596 0.174 0.086 0.059 0.051 0.047 0.030 0.037 0.031 0.046
IVRR 0.011 0.021 0.028 0.030 0.033 0.034 0.042 0.038 0.049 0.037

500 MIRR 0.611 0.187 0.094 0.068 0.058 0.049 0.049 0.048 0.048 0.053
ISBRR 0.606 0.177 0.083 0.055 0.043 0.031 0.023 0.028 0.020 0.034
IVRR 0.005 0.009 0.011 0.013 0.015 0.018 0.027 0.020 0.028 0.020

800 MIRR 0.622 0.186 0.090 0.058 0.045 0.037 0.039 0.037 0.031 0.036
ISBRR 0.619 0.180 0.083 0.050 0.036 0.025 0.018 0.025 0.015 0.023
IVRR 0.004 0.006 0.007 0.008 0.009 0.012 0.021 0.012 0.016 0.013


