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Abstract 15 

 16 
Detailed validation of air quality models is essential, but remains challenging, due to a lack of suitable 17 
high-resolution measurement datasets. This is particularly true for pollutants with short-scale spatial 18 
variations, such as nitrogen dioxide (NO2). While street-level air quality model chains can predict 19 
concentration gradients at high spatial resolution, measurement campaigns lack the coverage and 20 
spatial density required to validate these gradients. Citizen science offers a tool to collect large-scale 21 
datasets, but it remains unclear to what extent such data can truly increase model performance. Here 22 
we use the passive sampler dataset collected within the large-scale citizen science campaign 23 
CurieuzeNeuzen to assess the integrated ATMO-Street street-level air quality model chain. The 24 
extensiveness of the dataset (20.000 sampling locations across the densely populated region Flanders, 25 
~1.5 data points per km2) allowed an in-depth model validation and optimization. We illustrate generic 26 
techniques and methods to assess and improve street-level air quality models, and show that 27 
considerable model improvement can be achieved, in particular with respect to the correct 28 
representation of the small-scale spatial variability of the NO2-concentrations. After model 29 
optimization, the model skill of the ATMO-Street chain significantly increased, passing the FAIRMODE 30 
model quality threshold, and thus substantiating its suitability for policy support. More generally, our 31 
results reveal how a “deep validation” based on extensive spatial data can substantially improve 32 
model performance, thus demonstrating how air quality modelling can benefit from one-off large-33 
scale monitoring campaigns. 34 
 35 
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1. Introduction 41 

 42 
Air pollution remains a key environmental problem in most European cities (WHO 2016; EEA 2019), 43 
and so an accurate assessment of air pollution patterns and abatement strategies is vitally important 44 
to reduce the impact on human health. Many of the associated policy questions are addressed using 45 
air quality models: models have been successfully applied to interpolate pollution levels in between 46 
measurement locations (Thunis et al. 2016), estimate the population exposure on regional and urban 47 
scales (Jerrett et al. 2005; Hoek 2017; Xie et al. 2017), and quantify the health impact related to long-48 
term exposure (Hoek et al. 2013; Faustini et al. 2014; EEA 2019). Additionally, air quality models are 49 
essential tools to develop and evaluate policy scenarios (Miranda et al. 2015; Brusselen et al. 2016; 50 
Thunis et al. 2016).  51 
 52 
Nitrogen dioxide (NO2) is one of the important air pollutants in urban environments. More than 90% 53 
of the urban population in the EU is exposed to concentrations that exceed the guidelines put forward 54 
by the World Health Organization (WHO), leading to approximately 70.000 premature deaths every 55 
year (EEA 2019). When quantifying the population exposure and health impacts of NO2, a particular 56 
challenge is the spatial heterogeneity of the concentration field. Because of street-canyon effects and 57 
the proximity to main emission sources, the NO2-concentrations vary strongly over short distances 58 
(Marshall et al. 2008; Cyrys et al. 2012; Lefebvre et al. 2013b; Jensen et al. 2017). To attain suitable 59 
model skill, air quality models should adequality capture this short-scale spatial variation, and reliably 60 
predict the concentration field on a scale of tens of meters. 61 
 62 
Validation (and subsequent model improvement) are essential when models are used for regulatory 63 
purposes. Model simulated pollution maps need to be validated at the proper spatial and temporal 64 
scales. Street level models that target prediction of within-street variation of NO2 at high spatial 65 
resolution, should hence be validated using measurement campaigns that have a suitably dense 66 
sampling grid. Measurements in streets with different traffic loads are required to capture the small-67 
scale spatial variability of NO2-concentrations. Because of logistical and financial constraints, such a 68 
high sampling density cannot be obtained using official telemetric stations (Vardoulakis et al. 2011). 69 
As an alternative, wind tunnel experiments have been used (Ketzel et al. 2000; Baker and Hargreaves 70 
2001). Although these validation campaigns provide an opportunity to validate air quality models in a 71 
controlled environment (e.g. controlled boundary conditions) (Vardoulakis et al. 2003), one of the 72 
main challenges in field campaigns is to handle all the variability in boundary conditions and the way 73 
long-term averages are achieved.  74 
 75 
Mass-scale citizen science offers an innovative way to generate the large datasets required for such a 76 
validation campaign (Irwin 2018; Van Brussel and Huyse 2019; De Craemer et al. 2020a; Meysman et 77 
al. 2020; Bo et al. 2020), but it is presently unclear to what extent such datasets can truly generate 78 
improved model performance. There is an important trade-off in this respect. While citizen science 79 
has the advantage of generating data at high spatial resolution, one typically uses passive sampler 80 
measurements, and so the resulting data is generally less accurate and of lower quality than those 81 
collected via official telemetric stations. Citizen science has clear benefits in terms of raising awareness 82 
about air pollution (Van Brussel and Huyse 2019), but to what extent can the resulting high-resolution 83 
data truly  support the improvement of air quality models?  84 
 85 
To address this question, we validate and optimize the ATMO-Street model chain (Lefebvre et al. 86 
2013b) using the extensive NO2-dataset collected within the CurieuzeNeuzen citizen science project 87 
(https://2018.curieuzeneuzen.be/). While this article makes a case study of one particular model 88 
chain, many of our findings, methods and techniques are readily and generically applicable to other 89 
(street-level) models, and so the conclusions are highly relevant for air quality models in general. 90 
 91 

https://2018.curieuzeneuzen.be/
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ATMO-Street is an integrated model chain (Lefebvre et al. 2013b) that models air quality at high, 92 
street-level resolution (i.e. 10 m), and hence representative for the class of high-resolution, state-of-93 
the-art models that is operated by Environment Agencies across the world for planning and policy 94 
purposes. ATMO-Street is used by the Flanders Environment Agency (Vlaamse Milieumaatschappij, 95 
VMM) to assess the air pollution at the street level scale for Flanders, a densely populated region in 96 
Northwestern Europe (13,522 km², 485 inhabitants km-2; total population 6,552,000). In addition, 97 
ATMO-Street is the default tool used for planning purposes, evaluating the impact of regional and 98 
local air quality plans and health impact assessments in Flanders. The model chain has been previously 99 
validated via several dedicated measurement campaigns, focusing both on spatial patterns and time 100 
series (Lefebvre et al. 2011; Lefebvre et al. 2013b). However, these validation campaigns focused on 101 
a relatively small number of sampling locations, with at most a few dozens of locations distributed 102 
among a single urban region.  103 
 104 
In 2018, the citizen science project CurieuzeNeuzen Vlaanderen project engaged 20.000 citizens across 105 
Flanders to measure NO2 concentrations in front of their house using a low-cost sampler design 106 
(Meysman et al. 2020). This measurement campaign was internationally unprecedented in terms of 107 
coverage and spatial density: 20.000 sampling kits containing NO2 diffusion samplers were distributed 108 
(~1% of all households in Flanders), thus allowing measurements across a wide urbanized region (~ 109 
250 km x 50 km) at high spatial density (~1.5 sites on average per km2). The resulting extensive dataset 110 
is used here for a detailed validation case study of the ATMO-Street model chain. 111 
 112 
We develop a generic three-step methodology to validate and optimize the model chain by means of 113 
the CurieuzeNeuzen dataset. Firstly, the original ATMO-Street model chain is validated against the 114 
NO2 data using validation plots and statistical techniques. The extensiveness of the measurement 115 
dataset allows us to perform an in-depth model performance analysis by evaluating the 116 
concentrations based on different aspects (type of location, concentration class etc.). In the second 117 
step, we introduce improvements and optimizations to the model chain based on the findings of the 118 
validation. The effectiveness of the optimization is again verified by validating the results of the 119 
optimized model chain against the NO2 data. Finally, we evaluate the remaining discrepancies 120 
between the modelled and measured concentrations and provide an outlook for further improvement 121 
of air quality modelling. In this last step, we pay special attention to the ability of ATMO-Street to 122 
capture the short-scale spatial variation of the NO2-concentrations. 123 
 124 

2. Methods 125 

2.1. Measurement dataset  126 

 127 
The measurement campaign will be only briefly summarized here, and is discussed in more detail in 128 
(De Craemer et al. 2020b; Meysman et al. 2020). In the CurieuzeNeuzen Vlaanderen citizen science 129 
campaign, 20.000 sampler kits were distributed to individual citizens, schools, companies, social 130 
organizations and municipalities to measure outdoor NO2 concentration at streetside locations. At the 131 
front of the house (facing the street), two passive NO2 samplers of the Palmes diffusion tubes type 132 
were strapped to a real estate sign panel and attached to a window pane. This set-up standardized air 133 
turbulence conditions near the Palmes tubes across all sampling points. Measurements were 134 
conducted preferably on the first floor or otherwise ground floor to constrain the height effect on NO2 135 
concentrations.  136 
 137 
A four-week measurement was performed from 11 AM April 28th to 1 PM May 26th, 2018. Note that 138 
the duration of the Palmes tubes campaigns should be limited to approximately one month, to avoid 139 
saturation of the tubes. The exact time period for the campaign has been chosen to maximize the 140 
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legitimacy of the validation results: background concentrations in May closely resemble the annual 141 
mean background concentrations, and May is one of the few months without a long vacation period, 142 
eliminating the need for time-specific corrections to the traffic data. The meteorological conditions 143 
during the measurement period were, however, somewhat atypical. The average temperatures during 144 
May 2018 were significantly higher than during a typical month May in the climatological baseline 145 
considered by the National Meteorological Agency (1981 – 2010), with a profound gradient in the bias 146 
from the west (coastline) to the east of the region (bias of approximately 3°C in the east, and 147 
approximately 1.5°C at the coastline). Moreover, there has been much less precipitation (30% less on 148 
average), much smaller wind speeds, and also the prevailing wind direction was clearly different. 149 
During May 2018, the prevailing wind directions were north-north-west and north-east, while on 150 
average winds from the southwest are dominant in Flanders.  151 
 152 
Duplicate samplers showed good precision (root mean square error 1.7 µg/m³ between replicates, 153 
relative standard deviation <5%). These raw NO2 data were calibrated by simultaneous deployment of 154 
passive samplers at 24 EPA reference monitoring stations dispersed across the measurement region, 155 
and averaged across the two duplicates, thus resulting in mean NO2 concentration over the 4-week 156 
measurement period. After a quality control, 17886 measurement locations were retained for the 157 
model validation campaign (Meysman et al. 2020).  Assuming errors are random and uncorrelated, 158 
the addition of the standard deviations of the passive sampler measurement (1.7 µg/m³) and 159 
calibration (2.2 µg/m³) resulted in a total standard deviation of 3.9 µg/m³, thus providing a relative 160 
uncertainty of 10% at the WHO-guideline value of 40 µg/m³.  161 
 162 

2.2. The ATMO-Street model chain 163 

2.2.1. General overview 164 

 165 
Street-level nitrogen dioxide concentrations are modeled using a model chain that captures the 166 
different scales of urban air quality. The ATMO-Street model chain (Lefebvre et al. 2013b) consists of 167 
the land-use based interpolation model RIO determining background concentrations (Janssen et al. 168 
2008a), the bi-gaussian plume dispersion model IFDM accounting for the impact of local emissions 169 
from traffic and industry (Lefebvre et al. 2011), and the street-canyon module OSPM that calculates 170 
the in-street increment resulting from street-canyon effects (Berkowicz et al. 1997). Road traffic 171 
emissions are computed by the traffic emission model FASTRACE (Veldeman et al. 2016).  The model 172 
chain calculates hourly concentrations at a number of irregularly spaced receptors, which are 173 
subsequently gridded to a regular raster with a 10m resolution. The flowchart of the model chain is 174 
provided in Figure 1.  175 
 176 
For verification purposes, the simulations by the full ATMO-Street model chain were compared to 177 
versions that use only part of the model chain. In one type of sensitivity analysis, only the background 178 
concentrations from the RIO-model were considered, thus evaluating the predictive capability of only 179 
using wide-scale land use regression. In another sensitivity analysis, we used the RIO-IFDM 180 
combination, which combines the background concentrations with local contributions from traffic and 181 
industry, but neglects the street-canyon increment. The remainder of this section explains the three 182 
model components and their coupling in more detail. 183 
 184 

2.2.2. Components 185 

 186 
FASTRACE is a traffic emission model that calculates geographically explicit emissions for road 187 
transport, based on (1) emission factors (i.e. emissions per vehicle type per speed per kilometer), (2) 188 
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fleet data (i.e. number of vehicles and mileages) and (3) mobility data (i.e. vehicle counts on a 189 
network). Emission factors were obtained from region specific calculations with the COPERT-tool, 190 
which is EU-wide used to calculate emission inventories for road transport (Ntziachristos et al. 2009). 191 
FASTRACE calculates yearly total emissions for each road segment, which are subsequently combined 192 
with daily, weekly and monthly traffic intensity profiles, to obtain hourly emissions for each road 193 
segment. 194 
 195 
Background concentrations are modelled using RIO (Hooyberghs et al. 2006; Janssen et al. 2008b), a 196 
land use regression model for the interpolation of hourly pollutant concentrations as measured by the 197 
official telemetric network.  The model is based on a residual kriging interpolation scheme using a land 198 
use derived covariate. A polynomial regression determines the statistical relationship (trend 199 
functions) between the long-term averaged concentrations at each hour of the day and the underlying 200 
land use parameter. RIO produces hourly concentration maps for NO2, NO, and O3 on a 4x4 km² grid, 201 
which are subsequently used as background concentrations for the IFDM and OSPM components of 202 
ATMO-Street chain.  203 
 204 
Local open-street concentrations due to traffic emissions and industrial point sources are modelled by 205 
the bi-Gaussian plume model IFDM (Immission Frequency Distribution Model) (Lefebvre et al. 2013a). 206 
IFDM is a receptor grid model: air pollutant concentrations are computed for an abundance of 207 
receptor locations. Instead of a regular grid, we use a point source and road-following grid. This 208 
approach ensures that more receptor points are available where the largest concentration gradients 209 
are expected (Lefebvre et al. 2011). Since the model uses an hourly time resolution, we assume that 210 
the chemical equilibrium in the NOx-O3 reaction is reached. We take this chemical reaction into 211 
account using the fast-ozone-chemistry scheme (Berkowicz et al. 1997; Berkowicz et al. 2008), which 212 
relies on temperature and solar height data. To avoid double-counting of the emission sources, a 213 
specific coupling between the regional model and the urban-scale model has been developed 214 
(Lefebvre et al. 2011). 215 
 216 
To calculate the effect of buildings on the street level concentrations, the IFDM model is coupled to 217 
the Operational Street Pollution Model (OSPM) (Berkowicz et al. 1997; Ottosen et al. 2015; Jensen et 218 
al. 2017). Street level concentrations due to road traffic emissions are calculated using a combination 219 
of a plume model for the direct contribution and a box model for the recirculating part of the 220 
pollutants in the street. In the current set-up for OSPM, a receptor location is placed every 20m on 221 
each road with a row of buildings adjacent to the road (i.e. at a maximum distance of 50m to the 222 
middle of the road). The concentrations at the receptor locations of the IFDM and OSPM models are 223 
eventually combined and gridded via a three-step postprocessing module. At first, IFDM results are 224 
gridded using Delaunay triangulation to obtain gridded open street concentrations. Secondly, we grid 225 
the OSPM results using nearest-neighbour interpolation. In the final step, both gridded maps are 226 
combined into a map with a 10m resolution, by using the OSPM results at locations where buildings 227 
are adjacent to the road, and the IFDM results at all other locations.  228 
 229 
A priori, we expect large deviations between the measurements and the modelled data for the 230 
background model RIO. Because of the coarse resolution, there will be a lot of scatter, a large 231 
underestimation of the results (especially close to busy roads) and not much correlation between the 232 
measurements and model values. Adding the Gaussian dispersion model IFDM should improve the 233 
results, especially for open locations, which should also significantly improve the scatter and the 234 
correlation. However, the RIO-IFDM model chain neglects the recirculation of pollution at locations 235 
with buildings adjacent to the road, hence a large bias is still expected. Adding the OSPM module 236 
should resolve this issue, but it also increases the susceptibility of the model chain to input errors. 237 
Because the concentration field at locations with recirculation is very sensitive to many parameters 238 
describing the setting (traffic emissions, vehicle speed and numbers influencing the traffic-induced 239 
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turbulence, detailed building configuration in the immediate surroundings of the location) and many 240 
of these parameters are only approximatively known, we expect a lot of scatter for the locations where 241 
the OSPM model is applied.   242 
 243 
 244 

 245 

Figure 1:Flowchart of ATMO-Street model. 246 

 247 

2.2.3. Set-up for the validation campaign 248 

 249 
In this study, the ATMO-Street model chain was applied to the same 4-week period as the citizen 250 
science measurement campaign. Input data stem from official datasets of the regional authorities. The 251 
regional background model RIO has been set up using the data from the telemetric network of the 252 
Flanders Environment Agency (VMM) and the Corine Land Cover of the Copernicus Land Monitoring 253 
Service (CLMS) as land-use input. Vehicle fleet and traffic data for the major roads in Flanders are 254 
provided by the Flemish Department for Mobility. Minor roads are only sparsely represented in these 255 
traffic data, and these roads are thus not considered in the present air quality assessment. There are 256 
also some known issues with the traffic data for urban locations, as recent mobility plans (e.g. low-257 
traffic zones in city centers) are not always correctly represented. Point sources stem from the official 258 
emission inventory for industry of VMM. Building data has been retrieved from the official building 259 
dataset for Flanders (Informatie Vlaanderen).  260 
 261 
The Gaussian dispersion model internally computes stability classes based on the Bultynck-Malet 262 
parametrization (Bultynck and Malet 1972), and thus only requires surface temperature, wind speed 263 
and wind direction as meteorological input. These parameters have been composed by the Belgian 264 
Interregional Environment Agency (IRCEL - CELINE) by assimilating Copernicus C3S ERA5 reanalysis 265 
data (Copernicus Climate Change 2017) with measurements at several meteorological stations, 266 
yielding surface wind and temperature fields with a 1km resolution.  Because the model uses input 267 
data for the actual time frame of the measurements, we do not expect an influence of the atypical 268 
meteorological conditions during the measurement period on the final conclusions of the study.  269 
 270 
 271 
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The coordinates of the measurement locations were recorded with a precision of 2 meter. The 272 
corresponding model concentrations are determined by the concentration for the pixel (10m x 10m) 273 
in the gridded map that contains the measurement location. Note that in this way, the coordinates of 274 
the measurement locations are not used when defining the receptor grid.  Model results are always 275 
reported at 1.5m height, even in cases where the measurements were done at higher locations. 276 
Differences between the measurements and the model result at their location in this manuscript thus 277 
include uncertainties in the measurements, errors in the model input data, model errors and errors 278 
from the postprocessing. 279 
 280 

3. Model optimization 281 

3.1. Initial validation 282 

 283 
Firstly, we focus on the validation statistics of the original setup of the ATMO-Street model chain 284 
before optimization (the so-called “original model”). Table 1 provides the validation statistics obtained 285 
by comparing the CurieuzeNeuzen data with the model values (see the appendix for a mathematical 286 
definition of the statistical quantities). The Pearson correlation coefficient (0.58) points at a 287 
reasonable correlation between the measurements and the model results, and is in line with results 288 
obtained in previous validation campaigns (Lefebvre et al. 2013b).  The bias of the original model is 289 
substantial and negative (-4.1 µg/m³, -20%). This indicates that the model underestimates the NO2 290 
concentrations in general, which is also reflected by the shift in histograms (see Figure 2). Especially 291 
for the lower concentrations (<25 µg/m³), the modelled distribution is shifted to lower concentrations 292 
in comparison with the measured contribution. The other statistics, such as the Bias Corrected Root 293 
Mean Square Error (BCRMSE 4.6 µg/m³) and fraction of model values within a factor of two of the 294 
observation (Fac2: 99%) are more in line with the results of previous validation studies.  295 
 296 

Table 1: Validation statistics for the original and the optimized ATMO-Street model chain. The 297 
validation statistics for the separate buildings blocks of the optimized model chain (RIO and RIO-IFDM) 298 
are also provided. Statistics include the bias, the Root Mean Square Error (RMSE), the bias-corrected 299 
RMSE (BCRMSE), the Pearson R2 coefficient, the FAIRMODE model quality indicator (MQI) and the 300 
fraction of model values within a factor of two of observations (Fac2). A mathematical definition of the 301 
statistical quantities is provided in the Appendix.  302 

 303 
Statistic ATMO-Street 

Original model 

ATMO-Street 

Optimized model 

RIO-IFDM 

Optimized model 

RIO 

Optimized model 

Bias (µg/m³) -4.1 -2.7 -4.3 -4.5 

RMSE (µg/m³) 5.5 5.2 6.2 7.0 

BCRMSE (µg/m³) 4.6 4.4 4.4 5.3 

Pearson R² 0.58 0.58 0.51 0.33 

MQI 0.96 0.80   

Fac2 (%) 99.0 99.4 98.0 96.2 

 304 
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 305 

Figure 2: Comparison between measured and modelled NO2 concentrations at the 17.886 306 
measurement locations with high quality data. Histograms for the measurement data (green), the 307 
updated model chain (blue) and the original model chain (red).  308 

 309 
Additional insight into the discrepancy between modelled and measured concentrations is obtained 310 
by considering the bias and RMSE per concentration class. For this purpose, we grouped the locations 311 
in ten classes according to the deciles for the measured concentrations (Figure 3). Apart from the 10th 312 
decile, the original model shows the highest relative biases (up to -22%) for the lower deciles. Similarly, 313 
the (relative) RMSE is larger for the third to sixth decile than for the seventh to ninth decile. As 314 
locations with higher-than-average concentrations are the most sensitive to issues with the Gaussian 315 
dispersion model or the street canyon module (or one of their input datasets), which would introduce 316 
larger (relative) deviations for the higher deciles, these findings therefore point at issues with the 317 
background model, which underestimates the background concentrations for the lower deciles. If we 318 
plot the bias across the spatial domain (Figure 4), we indeed observe that underestimations are mainly 319 
occurring in rural locations (i.e. in the less densely populated areas), whereas the bias is much smaller 320 
for the urban locations. Finally, this underestimation of the background concentrations is also 321 
observed in the histogram (Figure 2). 322 
 323 

  324 

Figure 3: Comparison between measured and modelled NO2 concentrations per concentration class (10 325 
deciles of the measured concentrations – decile 0 contains lowest concentrations). Relative bias (left) 326 
and RMSE (right) per decile. The panels provide the results for the original model chain (blue) and the 327 
updated model chain (orange). 328 

 329 
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  330 

  331 

 332 
 333 

Figure 4: Map of the relative difference between the measured and the modeled concentrations (in %) 334 
across the region of Flanders (17.886 measurement locations with high quality data). Negative (red) 335 
values indicate model underestimation, positive (green) values signify model overestimation. The top 336 
panel shows results for the original model, the bottom panel for the optimized model.  337 

 338 
An in-depth analysis of the deviations between models and measurements uncovered a second issue 339 
with the original model, which concerned to the coupling of the Gaussian dispersion model (IFDM) 340 
and the street-canyon module (OSPM). When gridding the final concentration maps (i.e. during the 341 
postprocessing as discussed in Section 2.2), the grid cells with street-canyon module increments do 342 
not always correspond to the street side location where citizens put their diffusive samplers. This was  343 
especially apparent for streets that are diagonal with respect to the north-south axis, as illustrated in 344 
Figure 5. These locations are therefore incorrectly assigned the results of the Gaussian dispersion 345 
model, instead of the results of the street-canyon module. Although this situation only occurred at a 346 
limited number of locations, large underestimations were obtained at these locations, which hence 347 
significantly influence the bias for the largest decile in Figure 3.  348 

 349 
 350 
 351 
 352 
 353 

Original model 

Optimized model 
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 354 
 355 

Figure 5: Illustration of the issue concerning the coupling between the Gaussian dispersion and the 356 
streetcanyon model. In the original model chain, the streetcanyon concentrations are only used for the 357 
red colored grid cells. For some of the sampling locations (blue dots), the Gaussian dispersion results 358 
are hence applied. In the optimized model, the streetcanyon contribution is also used for the green grid 359 
cells, and hence for all three sampling locations in the domain of the figure. 360 

 361 
Note that the two issues discussed above (background underestimation, incorrect street canyon 362 
postprocessing assignment) could only be detected due to the extensiveness of the Curieuzeneuzen 363 
dataset. While ATMO-Street has previously been validated with smaller datasets, this analysis has 364 
been unable to reveal the background concentration issue, as a large and spatially widespread dataset 365 
is required for the type of analysis presented in Figure 3 and Figure 4. Additionally, the postprocessing 366 
issue was only observed for a small number of locations, and so the issue can only surface in suitably 367 
large datasets (the probability to include such locations in a dataset increases with the sampling size).  368 
 369 

3.2. Model optimization 370 

 371 
Guided by the results of the initial validation, model optimizations were implemented. A first 372 
improvement targeted the rural background concentrations, as the results of the Curieuzeneuzen 373 
campaign clearly indicated an overestimation at these locations in the original model. 374 
 375 
After a detailed analysis, relying on land use data for the Curieuzeneuzen sampling locations, we found 376 
that the problem was linked to the land-use parameterization that is used in the RIO module. In this 377 
module, NO2 data are assimilated from reference stations of the environmental monitoring agencies 378 
across the whole of Belgium. Yet, there is a strong north-south difference in urbanization in Belgium, 379 
which makes that there are relatively few reference stations in rural areas of Flanders (the northern 380 
part of Belgium). As a result, the land use parameterization applied in the original RIO module was 381 
heavily influenced by the observations at EPA reference stations in rural areas of Wallonia (the 382 
southern part of Belgium). Since background NO2 values are lower in Wallonia (which is less densely 383 
populated and less industrialized), this caused an underestimation of background concentrations in 384 
Flanders, which was uncovered for the first time thanks to the Curieuzeneuzen sampler data.   385 
 386 
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Guided by the citizen science data, the RIO module was adapted by improving the parameterization 387 
of the different rural land use classes, yielding an optimized relation between the concentrations and 388 
the land use parameters (trend function). These optimizations principally consisted of a decoupling of 389 
the rural land uses classes (namely forests, natural areas and arable land) in the northern urbanized 390 
part and southern non-urbanized part of Belgium. Note that the finetuning required the availability of 391 
an abundance of measurement data at many rural locations with different land uses in their 392 
surroundings, and the Curieuzeneuzen measurements have thus been indispensable.   393 
 394 
The citizen science data were only used to determine an improved land use parameterization, but 395 
they are not directly used in the spatial interpolation itself. The model results hence remain 396 
independent of the measurements, and thus independent validation of the optimized model using the 397 
citizen science data is still possible.  398 
 399 
A second correction targets the incorrect street canyon postprocessing assignment, by adjusting the 400 
GIS-tools that determine the locations where the street-canyon concentrations are applied. To this 401 
end, we modified the parameter that determines the maximal extent of the street canyon 402 
concentrations (expressed as the distance to the middle of the road), to make sure the OSPM results 403 
are used for all locations where the concentration is significantly influenced by the presence of the 404 
buildings. Moreover, in the optimized model version, the concentrations of the OSPM street-canyon 405 
module are now also used for half-open locations, i.e., for roads with a continuous row of houses at 406 
one side of the street1. Due to these two modifications, the (higher) street-canyon contributions are 407 
attributed to more sampling locations, leading to an increase in the mean NO2 concentration across 408 
all sampling locations.  409 
 410 

3.3. Analysis of the optimizations 411 

3.3.1. Basic analysis 412 

 413 
Table 1 provides the validation statistics for the optimized model. Figure 2 shows the histogram and 414 
Figure 3 depicts the bias and RMSE per decile. The optimized model outperforms the original model 415 
in many aspects. The bias and RMSE are markedly lower for the optimized model. The largest 416 
improvements in the bias and RMSE are observed for the lower deciles, as shown by Figure 3, and as 417 
expected because of the nature of the optimizations. Moreover, also the Fac2 increases from 99% to 418 
99.4%, which implies that the number of sampling sites for which the modeled data deviates more 419 
than a factor of two of the observations decreases with 40% from 1% to 0.6%. The relative difference 420 
map of the original and the optimized model (Figure 4) highlights moreover the reduced (relative) bias 421 
in rural locations. For many of the locations in the rural areas, the relative difference between the 422 
modeled and measured data is reduced to less than 10%.  423 
 424 
To facilitate the interpretation of these results, we compare the statistics of the validation reported in 425 
this Paper (based on more error-prone citizen science data) with those of more traditional studies 426 
(with more controlled measurements), for ATMO-Street and similar street-level models used for policy 427 
support in Europe. Typically, the bias is somewhat higher for the study at hand, compared to a bias of 428 
-0.7% for the ADMS-Urban map in London (Hood et al. 2018) and 2% for the DEHM/UBM/OSPM map 429 
in Copenhagen (Jensen et al. 2017). On the other hand, the correlation, RMSE and Fac2 are more in 430 
line with those found in the traditional campaigns (e.g. correlation 0.6 in Aarhus and 0.7 in 431 
Copenhagen (Jensen et al. 2017), correlation 0.7 in London (Hood et al. 2018), and RMSE 6 μg/m3 in 432 

 
1 Because the size of the recirculation vortex is only dependent on the upwind building in the OSPM model, the 
model can also be used for locations with a continuous row of buildings at one side of the road.  
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Antwerp (Lefebvre et al. 2013b)). A detailed comparison is, however, complicated, as both the set-up 433 
of the measurement campaigns and the model chains vary significantly among the studies.   434 
 435 
The optimization does, however, not remove all differences between measurements and modeled 436 
concentrations. The histogram (Figure 2) indicates that the underestimation for many locations with 437 
low-to-middle concentrations is reduced, but has not completely disappeared, and that the 438 
distribution of the model values for the optimized model still deviates from the distribution for the 439 
measured values. In addition, also, the Pearson R2 is the same for the optimized and the original model 440 
(see Table 1), indicating that the correlation between the measured and modeled data does not 441 
improve.  442 
 443 

3.3.2. MQI 444 

As an additional benchmark for the model quality, we focus on the model quality index (MQI) as 445 
proposed by the Forum for Air Quality Modelling in Europe (FAIRMODE). This indicator describes the 446 
discrepancy between measurements and modelling results linked to the RMSE (Thunis et al. 2012; 447 
Pisoni et al. 2019; Janssen et al. 2020). The MQI is a quality indicator that is specifically designed to 448 
assess the performance of a model as a policy support tool for official assessments and EU reporting. 449 
The FAIRMODE model quality objective (MQO) states that air quality models can be used for official 450 
assessment purposes if the MQI is less or equal to one.  451 
 452 
The original ATMO-Street model just meets the MQO objective, as the MQI is equal to 0.96 (Table 1). 453 
The ensuing model optimization however decreased the RMSE and bias, which resulted in a 454 
substantial decrease of the MQI to 0.80, and the optimized model thus satisfies the objective with a 455 
far greater margin, indicating that the optimized model is better suited for policy support. 456 
 457 

3.3.3. Spatial variation 458 

Street-level air quality models are designed to simulate street-level concentration fields with high 459 
spatial resolution. We use a semi-variogram analysis to test how well different models represent the 460 
spatial heterogeneity of the concentration field. The semi-variogram visualizes the degree of spatial 461 
variation of a set of observations by quantifying the differences between observations at a given 462 
distance through the semi-variance (Cressie 1992) 463 𝛾(ℎ) = 12𝑁(ℎ) ∑ (𝑐𝑖 − 𝑐𝑗)2𝑁(ℎ)  464 

Here, the sum is over all pairs of locations that are a certain distance h apart, 𝑐𝑖 and 𝑐𝑗 are the 465 

concentrations at these two locations, and 𝑁(ℎ) is the number of pairs that are considered. The semi-466 
variance 𝛾(ℎ) quantifies the difference between two observations separated by a distance ℎ, with 467 
larger values indicating larger spatial variations. The technique is only effective if the (spatial) 468 
resolution of the sampling dataset is in line with the actual spatial scale of the gradients in the 469 
concentration field. An application for NO2 concentrations thus requires a dataset with a dense 470 
sampling, like the citizen science dataset analyzed here.  471 
 472 
Figure 6compares the semi-variogram for the citizen science data to the ATMO-Street model results, 473 
for both the original and the optimized model chain. As NO2 tends to vary over short spatial scales, we 474 
only consider measurement locations that are less than 2 km apart. The figure highlights  how the 475 
short scale spatial variations are clearly better represented by the optimized model. The underlying 476 
reason is the optimization in street canyon postprocessing (i.e., improvement of the coupling between 477 
the Gaussian dispersion and the street canyon module), which yields a much better representation of 478 
the spatial gradients on a local scale. The analysis shows how the optimized model chain adequately  479 
captures the short-scale spatial variation of the concentration field, whereas the original model 480 
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underestimates the spatial variation. Although over- and underestimations of the spatial 481 
heterogeneity can still occur at specific locations, the mean heterogeneity of the NO2-concentrations 482 
in Flanders is trustworthily explained by the optimized model chain. 483 
 484 
 485 
 486 

 487 

Figure 6: Semi-variogram. The blue line indicates the semi-variance for the measurements of NO2, while 488 
the other lines provide model results for NO2 for three different types of models. The purple line 489 
provides results for the optimized RIO, the red line for the optimized RIO-IFDM and the orange line for 490 
the optimized ATMO-Street chain. The green line shows the results for the original ATMO-Street chain.  491 

 492 

3.3.4. Conclusions regarding the optimization  493 

 494 
In summary, we conclude that the optimization resulted in substantial improvement of model 495 
performance, as substantiated by increased validation statistics, an improved MQI and a better 496 
representation of the short-scale spatial variations. This extensive analysis was made possible by 497 
exploitation of the large-scale data of the citizen science campaign. Although the optimization 498 
procedure presented here is specific to the ATMO-Street model, the underlying methodology and 499 
resulting conclusions are of wider interest for the air quality modelling community. Our “in-depth” 500 
validation of the ATMO-Street model relies on a statistical analysis that is applicable for any large-501 
scale model validation, whereas the techniques to improve the RIO-model are applicable to any land 502 
use regression (LUR) model. Moreover, the observation that model shortcomings remain hidden when 503 
validation is done with limited data and only revealed through suitable large spatial datasets, is 504 
particularly relevant to the whole field of air quality monitoring and modelling.  505 
 506 
Although the optimizations greatly improve many aspects of the model chain, they do not remove all 507 
differences between measurements and modeled concentrations, as e.g. indicated by the unchanged 508 
correlation coefficient and the updated histogram. In the next sections, we elaborate further on the 509 
validation of the optimized model and focus on the remaining discrepancies between the modelled 510 
and the measured concentrations.  511 
 512 
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4. In-depth validation of the optimized model 513 

 514 

4.1. Analysis of the submodels 515 

 516 
Environmental agencies use a range of different air quality model types for policy purposes, with 517 
different spatial resolution. Some models are solely based on land use regression, while others include 518 
more computationally intense approaches that explicitly include point and line emissions and simulate 519 
the ensuing atmospheric dispersion of the emitted pollutants and / or account for street canyon 520 
effects. The three different model components of the ATMO-Street chain reflect this cumulative 521 
complexity and increasing spatial detail. To examine the importance of the different components, 522 
Figure 7 and Table 1 compare the validation statistics of the full optimized ATMO-Street chain with 523 
the background model only (RIO), and the combination of the background model with the Gaussian 524 
dispersion model (RIO-IFDM, i.e. ATMO-Street without street-canyon increments).  525 
 526 
The background model only substantially underestimates the measured concentrations (Figure 7). As 527 
substantiated by the linear regression coefficient and the scatterplot, the highest concentrations are 528 
particularly underestimated. The RIO model provides background concentrations on a 4 by 4 km 529 
resolution, and the highest roadside peaks in traffic dense streets are clearly missed. The addition of 530 
the Gaussian dispersion model IFDM considerably decreases the model-data discrepancy at these 531 
locations, and, consequently, the correlation and linear coefficient substantially improve. There is 532 
however still a significant bias, which is due to an underestimation of the street-canyon locations. Only 533 
the complete ATMO-Street model chain appropriately captures the recirculation of the pollution at 534 
these locations, yielding a much smaller bias.  535 
 536 
The results for the RMSE, bias and correlation are in line with the expectations regarding the model 537 
components (see Section 2.2.2). The (absolute) bias and RMSE are large and the correlation low for 538 
the RIO-model. The RIO-IFDM model substantially improves on the RMSE and the correlation, but still 539 
has a large bias. When OSPM is added, the bias and the RMSE further decrease, but the improvement 540 
in RMSE is exclusively due to the decrease in bias, as indicated by the BCRMSE.  541 
 542 
We conclude that only a model chain that takes the street-canyon increments explicitly into account 543 
manages to adequately assess the NO2-concentrations. These findings emphasize the importance of 544 
the street-canyon contributions, and are in line with the results observed in other studies concerning 545 
modelling of air quality at street-level scale (Vardoulakis et al. 2003; Lefebvre et al. 2013b; Jensen et 546 
al. 2017). 547 
 548 
 549 
 550 
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 551 

 552 

Figure 7: Scatterplots showing the modeled concentration as a function of the measured 553 
concentrations for all sampling locations Different panels depict the full ATMO-Street model chain 554 
(top), the Gaussian dispersion model (RIO-IFDM, bottom left) and the background model only (RIO, 555 
bottom right). To improve the visibility, the scatter points have been binned per 0.5 µg/m³. The 556 
colorscale indicates the number of points in each bin. The dashed lines indicate the upper and lower 557 
boundary of the interval [0.5 * measurements ; 1.5* measurements].  558 

 559 
We furthermore analyze the effect of the different submodels on the spatial variation of the modeled 560 
concentration field. In addition to the results of the full ATMO-Street chain, Figure 6 also shows the 561 
spatial variation modeled by the RIO and RIO-IFDM submodels. Clearly, the RIO-background model 562 
largely underestimates the spatial variation observed in the citizen science data. This is not 563 
unsurprising given the coarse resolution of the RIO model (4 km x 4 km). The Gaussian dispersion 564 
model IFDM adds the open-street concentrations due to the road traffic and point sources, and as a 565 
result, the spatial variation increases. However, the semi-variance of the RIO-IFDM model still falls 566 
widely below that of the citizen science data. Adding the street canyon module OSPM greatly improves 567 
the representation of spatial variation: the spatial heterogeneity now closely approximates that 568 
observed by the measurements. The semi-variogram analysis thus demonstrates that street level air 569 
quality models like ATMO-Street are capable of capturing the general spatial heterogeneity of the NO2 570 
concentration field, if street canyon increments are included in the model chain.  571 
 572 
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4.2. Breakdown by location type 573 

 574 
To gain some further insight in the remaining discrepancies between the modelled concentrations and 575 
the measurements, and the impact of the input data on these, we analyze the validation for some 576 
specific location types.  577 
 578 
First, we group the sampling locations based on the model that is applied at the sampler location. We 579 
divide all the locations in two groups: locations where RIO-IFDM is applied (labeled ‘IFDM’), or 580 
locations where RIO-IFDM-OSPM is applied (labeled ‘OSPM’). The former set are typically locations 581 
with isolated buildings, whereas the second set consists of (more complex) locations with a row of 582 
buildings adjacent to a road. The validations statistics for the full ATMO-Street model chain at these 583 
two groups of locations are provided in Table 2. The results indicate a slightly lower bias for the 584 
locations where OSPM has been used, but also a much larger scatter (RMSE) and much lower 585 
correlation for these locations, as expected, because of the larger sensitivity to input errors for the 586 
OSPM locations (see 2.2.2).   587 
 588 

Table 2: Validation statistics for the optimized ATMO-Street model, with sampling locations clustered 589 
by location type. The table provides the bias, the relative bias, the relative bias-corrected RMSE 590 
(BCRMSE) and the Pearson R2 coefficient. Columns 2 and 3 are related to the breakdown based on the 591 
model applied at the sampler location, columns 4 and 5 to the breakdown based on the availability of 592 
traffic data and the remaining columns to the breakdown based on the Flemish cities. More details on 593 
the binning are provided in the main text. 594 

 595 
Statistic IFDM 

locations 

(isolated 

building) 

OSPM 

locations 

(multiple 

buildings) 

Traffic 

data 

available 

Traffic data 

unavailable 

Antwerp Ghent Other 

Cities 

Bias 

(µg/m³) 

-2.83 -2.43 -2.4 -2.9 -3.9 -1.1 -2.0 

Relative 

Bias (%) 

-14 -10 -10 -15 -12 -4 -8 

Relative 

BCMRSE 

(%) 

16 25 19 15 16 22 17 

Pearson 

R2 

0.61 0.47 0.50 0.64 0.52 0.4 0.46 

 596 
 597 
Secondly, we split the sampling locations according to the availability of traffic data for the nearest 598 
road to the measurement location. The traffic dataset contains traffic flows for a limited number of 599 
streets (the major roads). The (absolute value of the) bias is lower for the locations for which traffic 600 
data is available (absolute bias   -2.4 µg/m³, relative bias -10%) compared to the locations without 601 
known traffic data (bias -2.9 µg/m³, -15%) (see Table 2). Note that the mean measured concentration 602 
is higher for the locations for which traffic data is available (23.4 µg/m³ versus 19.6 µg/m³). As the 603 
relative bias increases with increasing concentration, we would expect the (relative) bias to be higher 604 
for the locations close to the roads. Since we observe the opposite, we definitely detect 605 
underestimations for sampling locations near roads where traffic data is lacking. Note, on the other 606 
hand, that the scatter is larger for the locations with traffic data (as quantified by a lower R2

 and larger 607 
BCRMSE). The underlying reason is the abundance of OSPM locations for the samplers in the vicinity 608 
of roads with traffic data (for 76% of the locations with traffic data OSPM has been used, while OSPM 609 
is not used for locations without traffic data). As the results in Table 2 indicate, the scatter is much 610 
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larger for the OSPM locations, which is also reflected in a larger scatter for the locations with traffic 611 
data.  612 
 613 
Finally, we make a comparison between cities in Flanders. We consider three groups of locations: 614 
Flanders’ largest city Antwerp (500.000 inhabitants; 1002 samplers), Flanders’ second largest city 615 
Ghent (250.000 inhabitants; 800 samplers), and samplers located in the other 8 largest cities (60.000 616 
to 120.000 inhabitants; 2549 samplers). Validation statistics are provided in Table 2. The city of Ghent 617 
stands out from the other. This is because a new mobility plan has been introduced in 2017, which led 618 
to the introduction of new pedestrian streets, and modified traffic flows in the nearby streets, thus 619 
altering traffic flows within the historical city center. However, the available traffic data do not (yet) 620 
account for this new condition, and so the traffic data used for Ghent in the model set-up are less 621 
accurate than those for other cities. The validation statistics reflect these shortcomings in the traffic 622 
data. The BCRMSE in Ghent (22%) is higher than in Antwerp (16%) and the other cities (17%), while 623 
similarly, the correlation coefficient in Ghent (0.40) is lower than in Antwerp (0.52) and the other cities 624 
(0.46). When we only focus on the 200 samplers in the inner city of Ghent, where the largest impact 625 
of the new circulation plan is observed, the validation statistics become even worse. The correlation 626 
coefficient decreases to 0.27, and the relative BCRMSE increases to 25%.  627 
 628 

4.3. Open issues 629 

 630 
As the validation indicates, there are some remaining discrepancies between the modelled 631 
concentrations and the measurements, indicating some room for further improvement of the model 632 
and its input data.  633 
 634 
An important issue concerns the quality of the mobility data that is used as input. Firstly, the traffic 635 
dataset only contains traffic flows for a limited number of streets. The validation substantiates that 636 
the NO2-concentrations are, as expected, more adequately modeled for sampling locations near the 637 
roads that are included in the traffic data. Furthermore, the spatial pattern of the traffic data is 638 
outdated, which has an impact on the model quality for locations at which new mobility plans have 639 
recently been introduced (e.g Ghent). These findings clearly highlight the importance of up-to-data 640 
traffic data for air quality modelling at the local scale. Our analysis hence reveals that Environmental 641 
Protection Agencies should invest in the collection of traffic data, and keep these datasets also up to 642 
date, in order to support their air quality policies. 643 
 644 
The statistics per city hint at a remaining issue with the optimized model, related to the urban 645 
background concentrations in Flanders’ largest city, Antwerp. The bias in the largest city, Antwerp         646 
(-3.9 µg/m³, -12%), is significantly larger than the bias in Ghent (-1.1 µg/m³, -4%) and the other cities 647 
(-2.0 µg/m³, -8%) (see Table 2). These results hint at a strong underestimation of the urban background 648 
concentration in Antwerp. Note, however, that previous validation studies have not observed the 649 
current underestimation: in a dedicated campaign focusing on Antwerp, a bias of -2 µg/m3  has been 650 
observed (Lefebvre et al. 2013b), which is more in line with the bias observed in this work for the other 651 
urban locations. Therefore, the underlying reason of the issue is unclear, as it could either be related 652 
to the measurements (e.g. the calibration of the sampling results is mostly based on mid-range 653 
concentrations, whereas higher concentrations are mainly observed in Antwerp), or the model set-up 654 
(e.g. because the trend function of the land use regression model RIO may be unable to adequately 655 
represent the concentration in the dense urban area in Antwerp).  656 
 657 
 658 
 659 
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5. Conclusions 660 

 661 
We have validated and optimized the high resolution ATMO-Street air quality model chain using the 662 
data of a large-scale citizen science measurement campaign. The extensiveness of the measurement 663 
dataset allows us to perform an in-depth model validation and optimization. We have evaluated the 664 
modelled concentrations by clustering the sampling sites by different aspects (type of location, 665 
concentration class etc.), thereby paying special attention to the small-scale spatial variability of the 666 
NO2-concentrations. Optimizations guided by the data increased the model performance and 667 
enhanced the capability of the model to correctly capture the spatial variation of the air pollution. The 668 
ATMO-Street model chain attains the FAIRMODE model quality objective, substantiating that the 669 
model is suited for policy support. 670 
 671 
Our detailed model validation and optimization study reveals methodologies and insights that are of 672 
wider importance for the air quality monitoring and modelling community. Foremost, it demonstrates 673 
how the availability of an extensive spatial dataset enables a “deep validation”, which can result in 674 
substantially improved model skill. Secondly, the validation also highlights the importance of the 675 
street-canyon contributions. Only a model chain that takes the street-canyon increments caused by 676 
the recirculation of pollution explicitly into account, manages to adequately assess the NO2-677 
concentrations in Flanders. Thirdly, a model is only as good as the input it receives. Gaussian dispersion 678 
models and street-canyon modules are very sensitive to the availability and quality of the traffic data. 679 
Our analysis shows that the performance of the model chain is significantly reduced at locations where 680 
the traffic flows are outdated or locations which lack traffic data. Therefore, in order to improve the 681 
predictive power of street-level air quality models, a clear policy recommendation is to invest in the 682 
collection of accurate, up-to-date traffic data across the whole road network (i.e. not solely focusing 683 
on the major roads). 684 
 685 
Finally, the most important lesson learnt is that street-level air quality models can substantially benefit 686 
from a validation using a one-off widespread spatial monitoring campaign. Such a detailed and 687 
rigorous validation of air quality models with large datasets is presently not a standard practice. 688 
Currently, the monitoring strategy of environmental monitoring agencies is focused on capturing 689 
temporal variability (i.e., high frequency monitoring at telemetric reference stations), while devoting 690 
far less attention to a profound documentation of spatial variability. As a result, model validation 691 
studies must typically focus on a small number of sampling sites. The analysis presented here, such as 692 
the semivariogram analysis regarding the spatial variation of concentrations, however highlights the 693 
importance of such large-scale measurement datasets with a high spatial resolution. In the case of 694 
NO2, such widespread spatial data collection is possible through mass-scale citizen science using low-695 
cost passive samplers. As such, citizen science offers not only a tool to increase awareness about air 696 
quality, but also removes a critical bottleneck to ascertain and improve the quality of air quality 697 
models.  698 
 699 
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Appendix: definition of the validation statistics 823 

 824 
In this appendix, we provide an overview of the validation statistics that have been used. We 825 
henceforth assume that the difference between data set X (with values xi) and data set Y (with values 826 
yi ) is studied. 〈. 〉 indicates the mean of a dataset, f.e. 〈𝑥〉 is the mean of X. 827 
 828 

• Bias: The bias indicates the relative difference between both data sets. Here the bias is 829 
indicated relative to the mean of the measurements.  830 
 831 𝐵𝑖𝑎𝑠 = 〈𝑥〉 − 〈𝑦〉 832 
 833 

• Root mean square error (RMSE): The RMSE is the sample standard deviation of the 834 
differences between predicted values and observed values. Both the absolute and relative 835 
RMSE are used. The absolute RMSE is  836 𝑅𝑀𝑆𝐸 = √〈(𝑋 − 𝑌)²〉 837 

while the relative RMSE is 838 𝑅𝑀𝑆𝐸 = √〈(𝑋 − 𝑌)²〉〈𝑥〉  839 

 840 

• Bias corrected root mean square error (BCRMSE): The BCRMSE is the RMSE of the unbiased 841 
data sets.  842 𝐵𝐶𝑅𝑀𝑆𝐸 = √〈((𝑋 − 〈𝑥〉) − (𝑌 − 〈𝑦〉))²〉 843 

 844 

• The Pearson correlation coefficient quantifies is a measure of linear correlation between two 845 
sets of data. We always report the square of the Pearson coefficient, R2, where R is defined as 846 

 847 𝑅 =  𝐶𝑂𝑉(𝑋, 𝑌)𝜎(𝑋)𝜎(𝑌)  848 

 849 

• Factor2 (FAC2): the FAC2 indicates the percentage of modeled points that lies within a factor 850 

two of the measured values, i.e. the percentage of data points that satisfies 
12 𝑦𝑖 < 𝑥𝑖 < 2 𝑦𝑖 . 851 

 852 
 853 


