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Abstract 

The electrical consumption has to be taken into account in 

building simulations. Empirically-based profiles are 

required, which can be generated by central 

measurements and using non-intrusive load monitoring 

(NILM) for disaggregation. In this work, we present an 

overview of NILM techniques, a comparison between two 

frequently used deep neural networks for individual 

appliance identification and we investigate the influence 

of the sampling rate with regards to the accuracy. Our best 

performing neural network is a combination of 

convolution and long-short-term memory networks. 

Furthermore, the sampling rate has a significant influence 

on the performance of neural networks in this context. 

There should be a trade-off between sampling rate and 

efficiency when applied in real-world devices. 

Key Innovations 

• A comparison between frequently used deep neural 

networks for individual appliance identification 

• An overview of Non-Intrusive Load monitoring 

techniques 

• Investigation into the relationship between sampling 

rate and accuracy for individual appliance 

identification when using deep learning starting from 

the current implemented 0,1Hz up to 60Hz. 

Practical Implications 

The combination of convolution neural networks and 

long-short term memory neural networks outperforms the 

state-of-the-art non-intrusive load monitoring (NILM) 

techniques for disaggregating the central measured 

electricity consumption. 

Introduction 

The building stock in Europe is responsible for around 

40% of the consumed energy and 36% of the CO2 

emissions (Burman et al., 2014; European Commission, 

2008). The climate goals of the European Union by 2050 

require increased use of renewable energy sources (RES) 

and the development of efficient energy systems. Higher 

insulation rates of buildings, advanced control strategies 

and more insight into energy components and systems are 

the first steps to a zero-carbon future. To develop new 

concepts or to gain more insight, building simulations are 

an appropriate method. In these simulations, every aspect 

of an energy system can be studied and different 

sensitivity analyses can be elaborated.  

 

Typically an energy system can be subdivided into three 

main parts, namely the producers, the distribution, and the 

consumers. Examples of the energy demand (i.e. the 

consumers) in buildings are space heating, space cooling, 

domestic hot water (DHW), electricity consumption, etc. 

In this context, different trends can be seen regarding the 

energy demand.  

Firstly, the relative share of heating is decreasing, while 

the relative share of domestic hot water (DHW) and 

cooling is increasing (European Commission, 2011; 

Rijksdienst Voor Ondernemend Nederland, 2018). This is 

because of the increased buildings’ insulation rate and 

reduced ventilation losses. Consequently, the internal heat 

gains will play a key role in the heating and cooling 

demand of dwellings and cannot be neglected when 

performing an energetic analysis of energy concepts 

through simulations. These internal heat gains have two 

main sources, namely the occupancy and heat losses 

inside the building, such as from the electrical appliances.  

It can be stated that the electrical consumption of these 

appliances is  linear to their heat losses (i.e. the internal 

heat gains) and depends on the efficiency of the 

appliances. Thus, by considering the electrical 

consumption of the electric appliances, and knowing the 

efficiency, these internal heat gains can be simulated in 

the building simulations. 

Secondly, as mentioned before, more RES are being 

implemented in the electrical grid. However, these 

sources are intermittent and unstable. For instance, a solar 

panel only generates electricity when the sun is shining. 

As a consequence, the electrical grids need flexibility, e.g. 

through energy storage systems or by demand-side 

management (e.g. Gelazanskas et al., 2014). With respect 

to this, the electrification of heating and cooling offers an 

interesting potential (Thomaßen et al., 2021; Neirotti et 

al., 2020), which can be optimized throughout building 

simulations. For instance, a heat pump could produce 

thermal energy when an overload of electricity is 

available and this thermal energy can be stored in thermal 

storage tanks. Later, heat conversion to electricity is 

possible with cogeneration of heat and power (CHP) or 

the heat is directly usable for heating purposes 

(Thomaßen et al., 2021; Neirotti et al., 2020). 

For these reasons, the electricity consumption of 

buildings is strongly present in the buildings’ total energy 

consumption and has to be included in building 

________________________________________________________________________________________________

________________________________________________________________________________________________ 
Proceedings of the 17th IBPSA Conference 
Bruges, Belgium, Sept. 1-3, 2021

 
1271

 
 

https://doi.org/10.26868/25222708.2021.30236



 

 

simulations. In this respect, synthetic load profiles (SLPs) 

can be used. These are databases of the electrical 

consumption per chosen time interval throughout a year, 

which should meet two criteria. 

First, the generation of SLPs should be based on in situ 

measurements, to be empirically-based and thus to 

represent actual user behaviour. Second, the SLPs contain 

labelled data of the different appliances. In this way, the 

dataset can be adopted to different case studies, where the 

electrical appliances‘ composition can vary. To meet both 

criteria, measurements of every single appliance are 

required.  However, this is labour and cost-intensive. An 

alternative is to perform a central measurement and 

disaggregate the data into the data of the individual 

appliances, a concept which is called Non-Intrusive Load 

Monitoring (NILM). While great efforts have been made 

to investigate the potential of NILM-algorithms, a 

comparison between Deep Learning architectures for load 

classification is still missing. This will be further 

discussed in the second section of this paper.  

Another hurdle for the real-life application of NILM is the 

lack of knowledge on the use of high temporal resolution 

data. In Belgium, a high-frequency read-out port, the S1-

gate, is being added to the smart energy meters delivered 

by Fluvius. This gate has a sampling frequency of 2000 

up to 4000Hz and provides very detailed information on 

the current and voltage sine-wave in the different phases. 

However, the data is not yet interpreted by this high-

frequency sensor. When this data is used and interpreted 

in combination with the standard P1-gate’s data (at a 

sampling rate of 0,1Hz) an advanced control and detailed 

feedback is possible. The roll-out of such smart energy 

meters is ongoing in Europe (European Commission, 

2014), thus it will be possible to develop an SLP using the 

S1-gate and a NILM technique. Particularly, the higher 

frequencies might be useful to distinguish two electrical 

appliances with a similar usage profile. In this respect, it 

is probable that the starting currents, which are present for 

a short time, are different. However, a higher sampling 

rate requires more data storage and calculation speed. To 

the best of the authors’ knowledge, no trade-off between 

the high sampling rate and the accuracy of the NILM 

algorithm has been investigated.   

Because of the discussed shortcomings of existing NILM 

techniques and the lack of knowledge about the effect of 

temporal resolution, this paper focuses on three aspects: 

1. The paper starts with an overview of NILM-

techniques. 

2. Based on “1.”, different techniques are compared 

including convolutional neural network, long-short 

term memory (LSTM), and a combination of both. 

This includes the optimization of the 

hyperparameters. 

3. Finally, an evaluation is made on the added value of 

high temporal resolution readouts and the current 

standard P1-gate (0.1Hz). 

All three steps contribute to developing a tool to measure 

electricity consumption to set up SLPs. The tool itself 

might be the subject of future work. 

Topic “1.” is discussed in the second section. In the third 

section, the data set that is used for topics “2.” and “3.” is 

discussed and the results are given in the fourth section. 

Section five concludes this research. 

Overview of NILM techniques 

Non-Intrusive Load Monitoring (NILM) was first 

introduced by Hart et al. (1992). It is a technique for 

energy disaggregation, which involves the task of 

decomposing the total aggregated energy consumption of 

a digital meter into individual electrical appliances. 

Applying machine learning methods to detect signatures 

of electrical devices, could assist NILM in disaggregating 

digital meter data and appliance identification. This can 

be done by adopting supervised or unsupervised 

approaches. 

Supervised learning algorithms usually require a huge 

amount of labeled data for training which is not cost-

effective in NILM. Examples of such approaches that 

applied to the NILM domain include k-nearest neighbour 

(kNN) (Khan et al., 2019; Yang et al., 2018), naïve Bayes 

classifier (Yang et al., 2018), support vector machine 

(SVM) (Figueiredo et al., 2012; Gong et al., 2019), 

decision tree (Lin et al., 2020), artificial neural networks 

(ANN) (Xu et al., 2014), etc. Unsupervised learning 

algorithms, such as clustering (Barsim et al., 2014), 

expectation-maximization algorithm (EM) (Figueiredo et 

al., 2014), etc., do not involve manual data labeling. 

Another method that could be utilized as both supervised 

and unsupervised methods is the hidden Markov Model 

(HMM) and its variants (Bonfigli et al., 2017; Liu, 2020). 

The efficiency of the NILM system in both supervised and 

unsupervised cases is attributed to the employed features 

that could be obtained through a feature extraction 

process, which is the process of transforming input data 

into a set of useful features. On the other hand, deep 

learning techniques do not require manual feature 

extraction and are capable of extracting most 

discriminative and robust features automatically from 

data through neural networks. Therefore, in the past few 

years, to improve meter data disaggregation performance, 

the possibility of applying them to the NILM has been 

investigated. The most used algorithms in this area are 

deep neural network (DNN), convolutional neural 

network (CNN), recurrent neural network (RNN), long 

short-term memory (LSTM), and denoising auto-

encoders (DAE). 

Deep learning techniques have been first applied to NILM 

in 2015 (Kelly et al., 2015). They applied LSTM, DAE, 

and a custom DNN architecture to energy disaggregation. 

In the work by Bonfigli et al. (2018) load disaggregation 

problem was treated as a noise reduction problem and 

they presented a DNN architecture based on DAE. A 

framework to identify individual appliances from the 

aggregated data based on DAE and LSTM was presented 

by Wang et al. (2019). The DAE was utilized to 

reconstruct the single appliance signal and LSTM was 

applied to identify that the signal belongs to which 

electrical appliance. Xia et al. (2020) regarded the 

disaggregation problem as a signal separation process and 
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presented a deep composite LSTM. To tackle the time-

dependency problem in multi-state appliances for non-

intrusive load disaggregation, they introduced an encoder-

separation-decoder structure that consists of deep LSTMs.  

Kaselimi et al. (2020), proposed a model for robust energy 

disaggregation in the presence of noise, which was based 

on generative adversarial networks (GAN). The 

discrimination was done using a gated recurrent unit 

(GRU) to improve the robustness and precision accuracy 

of the model. Kaselimi et al. (2019) presented a deep 

recurrent multi-input/multi-output regression model 

based on CNN. The recurrent aspect helps to capture the 

temporal interdependencies of the power signals more 

effectively. The multi-channel properties of this model 

improve the accuracy by providing more information. 

Harell et al. (2019) proposed a 1-D dilated causal CNN 

based on WaveNet for load disaggregation. They showed 

the strength of a CNN in learning from various energy 

features. A convolutional sequence to sequence 

architecture was proposed by Chen et al. (2018). To 

extract information from aggregated power consumption, 

gated linear unit convolution blocks and max-pooling 

layers were utilized. They further refined the output using 

residual blocks of fully connected layers. A multiscale 

deep residual neural network architecture based on dilated 

convolution for load disaggregation was presented by 

Zhou et al. (2020). Using residual blocks ensures that the 

network avoids degradation problems due to the 

vanishing/exploding gradient that is caused by increasing 

the number of layers and improves performance. In a 

work by De Baets et al. (2018), weighted pixelated image 

of the voltage-current trajectory was used as the input for 

a CNN which then extracts the most representative spatial 

features for appliance classification. Kaselimi et al. 

(2020) introduced a hybrid CNN-LSTM architecture that 

is both spatially and temporally deep. Feature extraction 

was done using CNN and sequence to sequence modelling 

is performed by LSTM.  

Basu et al. (2016) implemented data-driven event-based 

NILM techniques and evaluated their performance based 

on two different sampling rates (10 seconds and 15 

minutes). They mainly focused on residential building’s 

sector and compared the results for two sampling rates for 

available appliances in a house, and they obtained a better 

result with 10 seconds sampling rate. Huchtkoetter, J., & 

Reinhardt, A. (2019) assessed the impact of the temporal 

resolution on the accuracy of load signature event 

detection, by comparing event detection methods which 

are based on chi-square method and threshold analysis. 

The results revealed that higher resolutions increase the 

chance of being falsely detected as events. Besides, they 

indicated sampling rates between 925Hz and 1.2kHz as 

suitable for event detection. The evaluation was solely 

done based on the F1 score. Lynch, S., & Longo, L. 

(2017) conducted a study on the effect of sampling rate 

on disaggregation accuracy of Hidden Markov Model-

based (HMM) algorithms. In other words, they focused on 

finding a relationship between sampling rate (in a range 

of 1 second to 6 minutes) for feature extraction and 

selection in NILM and HMM model accuracy. They used 

REDD dataset as a baseline for comparison and they 

considered precision, recall, and F1 score as evaluation 

metrics. Their findings on REDD dataset, verified the 

correlation between sampling frequency and model 

accuracy at the building block level of HMM, meaning 

that higher sampling rates generally lead to more accurate 

results. Comparing to the state-of-the-art, we distinguish 

our research using the current available P1-gate frequency 

and explore the possible improvement higher sampling 

rates can generate when using deep learning with regards 

to NILM applications. Higher sampling rates will be 

available with the deployment of the S1-gate in future 

applications. The importance of higher sampling rates 

will be investigated with respect to the current P1-gate 

(0,1Hz) up to 60Hz (dataset limitation) which becomes 

possible with the future S1-Gate (up to 4kHz) as well as a 

comparison between the two most frequently used deep 

learning architectures for individual appliance 

identification, namely an LSTM network, a one-

dimensional convolution network, and a combination of 

both.   

Description of the data set 

An algorithm requires a dataset to train itself and learn the 

environment in which it will operate. For this research, we 

use an online-available dataset, namely BLUED 

(Anderson et al., 2012). It contains the electrical 

information of 43 electrical appliances, ranging from 

larger appliances, such as a refrigerator and an oven, to 

smaller appliances, such as the lights, in an American 

single-family house during one week. The house has a 

two-phase (phase A and B) electricity network with a 

neuter. Different types of information are recorded in the 

dataset as listed in Table 1. 

Table 1: Overview of the available data types in the 

BLUED dataset. 

Type Frequency Unit 

Current A 12kHz Amps [A] 

Current B 12kHz  [A] 

Voltage A 12kHz Volts [V] 

Active power 60Hz Watt [W] 

Reactive power 60Hz Watt [W] 

Time  hh:mm:ss 

date  yy/mm/dd 

Event timestamp  W at hh:mm:ss 

The current of the two phases and the voltage of the whole 

house are monitored at a high frequency (12kHz), while 

the total active power is computed at 60Hz. Furthermore, 

every state transition is labelled and time-stamped per 

component and a total of 4817 events are registered. An 

event is defined as an appliance’s power consumption of 

30 W or more for at least 5 seconds. In total, 2335 events 

are known, while 2482 events are from an unknown 

source. Figure 1 gives an overview of the known-
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registered events for the different appliances of interest 

within this research.  

 

Figure 1: histogram with the total number of events 

registered per appliance. 

The electrical appliances can be categorized into three 

types: 1) an on/off machine, 2) a finite state machine and 

3) an infinite state machine. An on/off machine can switch 

between two operation modes, namely on or off. A finite 

state machine has multiple operation modes that are 

countable. For example, a hairdryer has four different 

ventilation rates. An infinite state machine can vary 

through all possible modes between off and the maximum 

power, e.g. dim lighting. The algorithms used in this paper 

neglect the category of the appliance and will solely focus 

on classifying a change in power with a specific 

appliance.  

Pre-processing on the dataset  

As described above, the BLUED dataset contains 

measurements of appliances from a central measurement. 

Labels of corresponding appliances are assigned to the 

time series when there is a power difference of 30W that 

lasts for at least 5 seconds. Furthermore, the current and 

voltage are recorded at a high sampling rate of 12kHz. 

Unfortunately, the precision of the timestamps describing 

the events and the measurements are different. In 

combination with the absence of the voltage of phase B 

and inconsistency between different files describing the 

dataset, we concluded to solely focus on the aggregated 

60Hz measurements. These data points are more stable, 

but also have some issues. The first issue arose when the 

index of the measurements is reset to 0 after 50000 

samples. This can result in a mismatch between the 

continuous timestamp of the events and the index of the 

measurements. A second issue can be seen at the end of 

the dataset. Here an inconsistency occurs within the 

measurements which results in a desynchronization 

between the events and measurements. Around 400 of the 

last events are inconsistent and thus dropped from the 

dataset.  

After further investigating the data, it can be deduced that 

the classes are imbalanced. Or in other words, some 

appliances occur more frequently than others. Some 

classes are also present with less than 10 occurrences 

which will influence the model’s capability to identify 

them. To solve this imbalance the model is trained using 

oversampling. This technique creates a container for each 

class and uniformly picks a random sample from each 

container to train the model. The evaluation of the models 

is done using a separate test set. For each class, 80% of 

the occurrences are used to train the model and 20% for 

evaluation.  

The class of ‘Unknown appliance’ will be dropped as this 

does not contribute to individual appliance classification. 

Furthermore, classes describing circuits are also removed. 

These classes are an aggregation of multiple appliances 

and thus in similar time intervals, the output can be both 

a circuit and an appliance on this circuit. If these classes 

would stay present the problem would change into a 

multiclass classification which is not within the scope of 

this research. Finally, individual lights are aggregated to 

a single lights class, as these are mostly identical and 

correspond to the class of consumers. Afterward, the data 

is scaled down using a standard scaler, the data is scaled 

to increase numeric stability within the neural network. 

Figure 2 illustrates an example input for the neural 

networks originating from the refrigerator turning on. 

     

 

Figure 2: Example of a scaled-down event sequence 

originated from the refrigerator turning on. Pa: scaled-

down active power, Qa: scaled-down reactive Power, 

Pt: scaled-down total power.  

Evaluation of sampling rates 

The evaluation of a high sampling rate (i.e. the future S1-

gate) is established by down-sampling. The dataset 

already possesses the power at a high frequency (60Hz). 

For this reason, the power is down-sampled to a frequency 

of  30Hz, 15Hz, 1Hz, and 0,1Hz (P1-gate sampling rate). 

Afterward, the accuracy of the temporal resolutions is 

compared to each other. In this way, we can evaluate if 

the high sampling rate is beneficial or if the 0,1Hz is 

sufficient to provide a reliable labelling algorithm. 

Results 

In this section, the experiments conducted will be 

presented. Firstly, a comparison of deep learning 

architectures for appliance identification will be 

discussed. This is followed by an experiment looking at 

the influence of sampling rates.  
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Comparing deep learning architectures 

The architectures compared in this paper are namely: an 

LSTM network, a one-dimensional convolution network, 

and a combination of both. After optimization, the best 

performing parameters and a description of the models are 

presented in Table 2. Convolutional neural networks are 

a class of deep neural networks that are mainly used in 

image recognition tasks. These networks utilize filters 

that traverse the input data and detect patterns. With each 

iteration, these patterns increase in complexity. Due to the 

sliding filter approach, convolutional neural networks are 

translational invariant. In other words, the location of a 

pattern in the input data does not influence the models' 

performance. The convolutional network used in this 

paper is a one-dimensional convolution neural network, 

where filters are applied to the sequence of measurements 

for multiple iterations. The number of filters defines the 

number of patterns that can be detected, while the window 

size sets the size of these patterns. The features extracted 

by the filters are aggregated using global average pooling. 

The other architecture investigated is an LSTM. This 

architecture is a recurrent neural network. This type of 

neural network utilizes feedback connections, allowing 

the detection of patterns in sequential data. These 

networks are commonly used for speech recognition, 

natural language processing, etc. An LSTM is a specific 

recurrent neural network designed to minimize the 

vanishing/exploding gradient phenomena (Pascanu et al., 

2013). A cell is a single LSTM, a layer utilizes more cells 

in parallel to increase the number of patterns that can be 

detected. Multiple layers are used to increase the 

complexity of the patterns that can be detected. A final 

model combines both discussed architectures. This model 

aims to utilize the strong point of each model, starting  

with the convolutional neural network followed by the 

LSTM to generate the predicted output. Each model has a 

fully connected neural network as a final layer with a 

SoftMax activation function. This ensures the model 

outputs a certainty for each class using the one-hot 

labelling method. 

Table 2: Model descriptions 
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LSTM 
LSTM (64) 

LSTM (64) 

30%  
50 757 

Convolution 

1D Conv (64) 

1D Conv (64) 

1D Conv (128) 

 4 

8 

16 

165 509 

Convolution-

LSTM 

1D Conv (64) 

1D Conv (64) 

LSTM (64) 

LSTM (64) 

 

 

30% 

30% 

4 

8 

 

 

100 037 

The models are trained and evaluated on the 60Hz data 

series containing the active power, reactive power, and 

total power. Each event is transformed to a sequence using 

1 second before the labelled event and 1 second after. This 

results in a sequence of 120 samples for each event. The 

models are trained using the root-mean-square 

propagation optimizer in combination with a categorical 

cross-entropy loss function. This function aims to isolate 

predictions to a single class, which is ideal for our use 

case. The models are trained for 100 epochs with 20000 

randomly chosen samples each epoch on a NVIDIA 

GeForce GTX 1660 (6GB VRAM), intel I7-9700K CPU 

and 16GB RAM. Due to the relative small number of 

parameters and parallelization of the GPU, training time 

averages around 5 minutes with a neglectable difference 

for each model. 

 Table 3: Accuracy scores 

Accuracy Phase A Phase B 

Model Train Test Train Test 

LSTM 97 % 90 % 88% 53% 

Conv 61% 53% 55% 38% 

Conv-

LSTM 
99% 93% 90% 59% 

 

Table 3 contains the accuracy scores of the different 

algorithms applied to both phases present in the dataset. 

The accuracy score represent the percentage of  samples 

correctly predicted from the 20000 randomly chosen 

samples. At first sight, it can be seen that the accuracy on 

phase A is generally better when compared to phase B. 

This can be explained by the number of appliances to 

detect in each phase, phase A containing only 6 classes 

while phase B has 12 classes. Another reason for this 

difference in accuracy can be explained with the 

similarity of the appliances which will be further 

discussed below when the confusion matrix of phase B is 

discussed. From these results, it can be concluded that the 

combination of both convolution and LSTM outperforms 

the stand-alone version of these networks. Even though 

the convolution model has the most trainable parameters, 

it is not the best performing model. This can be explained 

with the window size. On one hand, when using smaller 

windows there is a chance of not detecting larger patterns 

when traversing the network. On the other hand, when the 

window size becomes too large, small indications can be 

overlooked. A trade-off has been made between these 

restrictions.  

Figure 3 illustrates the confusion matrix of phase A on the 

test data when predicted using the Conv-LSTM network. 

The air compressor is 50% wrongly identified due to the 

underrepresentation in the dataset, there are only 5 

training samples and 2 testing samples. Due to the limited 

amount of samples, this class is more difficult to identify. 

Another interesting fact can be seen when looking at the 

lights and refrigerator. A total of 27% of the refrigerator 

samples are classified in the lights category. When 

looking in detail at these misclassifications, it can be 

concluded that when the refrigerator turns off, the drop in 

power is similar to the drop in power from a light. This 

could be solved with more data and/or more training time 

of the model.  
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Figure 3: Confusion matrix (%)  phase A, Conv-LSTM. 

Horizontal: predicted label, vertical: True label 

Figure 4 illustrates the confusion matrix of phase B on the 

test data when predicted by the Conv-LSTM network. At 

first sight, this matrix is more disperse when compared to 

the confusion matrix of phase A. There are some classes 

which are frequently misclassified, e.g. the monitors, 

laptops, and computers. 
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Figure 4: Confusion matrix (%) phase B, Conv-LSTM. 

Horizontal: predicted label, vertical: True label 

These appliances have similar load profiles when 

switching on or off. As these appliances have a similar 

function they might be combined to a single category 

similar to the lights category. Another solution to having 

better accuracy on these appliances is to ensure they are 

not overlapping when starting up. For example, when 

turning on a computer the monitor will switch on shortly 

after, this can confuse a deep neural network as it would 

have difficulties separating these power profiles. 

Furthermore, it can be seen that the lights category is the 

most commonly predicted class. When the model is 

unsure it will predict this class causing faulty predictions. 

More data and longer training times might further 

improve the accuracy across all classes. 

Evaluation of sampling rates 

This experiment will focus on the influence of sampling 

rate in function of accuracy. The sampling rates that are 

going to be evaluated are 60Hz, 30Hz, 15Hz, 1Hz, and 

0,1Hz (currently implemented P1-gate). For each sample 

rate, the Conv-LSTM architecture is retrained and 

evaluated using the independent test data. Sample rates 

60Hz, 30Hz, and 15Hz are trained on the same time 

interval, namely 1s before and 1s after the labelled event. 

When using 1Hz and 0,1Hz, the sequence contains three 

data points sampled closest to the event label. Only three 

data points are sampled because the relevant information 

drops when moving further away in time from the labelled 

event. Down sampling is executed using the average 

values from the higher sample rate. The results are 

presented in Figure 5. Surprisingly, a small improvement 

can be seen on 30Hz for phase A and 15Hz for Phase B. 

This could be the result of the down sampling method 

averaging the values and thus reducing noise on the 

signal. 

 

Figure 5: Accuracy in function of sample rate 

Intuitively the accuracy drops on the lowest sampling 

rates. The information within the sequence is significantly 

reduced. For example, 60Hz contains 120 data points 

while 0,1Hz only contains 3 data points. These results 

indicate that a sample rate higher than 15Hz can give good 

results for individual classification of appliances from a 

central measurement. Furthermore, lower sampling rates 

decrease the complexity of storing the data and efficiency 

of the model which might be a factor for deployment on 

embedded devices in real-world applications. 

Conclusion 

In this paper, three commonly used NILM architectures 

for individual appliance identification are compared. 

From this comparison, we can conclude that the 

combination of Convolution and LSTM outperforms 

stand-alone convolutional neural networks and LSTM 

neural networks. The Conv-LSTM has an average 

accuracy of 76%. We believe this performance can be 

0

20

40

60

80

100

60Hz 30Hz 15Hz 1Hz 0,1Hz

Test set accuracy [%]

Phase A Phase B

________________________________________________________________________________________________

________________________________________________________________________________________________ 
Proceedings of the 17th IBPSA Conference 
Bruges, Belgium, Sept. 1-3, 2021

 
1276

 
 

https://doi.org/10.26868/25222708.2021.30236



 

 

further improved using more advanced techniques. We 

suggest using time encodings to exploit human habits. For 

example each day around 8 AM, the coffee machine 

would be turned on. Another improvement can be the use 

of transformers. This new type of neural network has its 

origin in natural language processing where it has shown 

superior performance when compared to other state-of-

the-art algorithms. Transformers have potential in 

sequence classification due to the self-attention 

mechanism. This mechanism can highlight relations 

within the event sequences to further distinguish closely 

related classes.  

Furthermore, it can be concluded that higher sampling 

rates benefit the accuracy. Our approach achieves an 

acceptable accuracy on 15Hz up to 60Hz but fails on 

frequencies below 1Hz and thus the current P1-gate. 

These higher sampling rates facilitate to distinguish 

similar devices with similar behaviour and thus to 

generate more detailed electrical load profiles. When the 

S1-gate (2-4kHz) will be deployed, another comparison 

should be made between these new sampling rates to 

define a trade-off between accuracy and efficiency.  

Another key aspect of NILM research is the quality of 

provided data. The dataset should contain sufficient 

events for each class to avoid miss classification due to 

overfitting on limited data.  

Because of the high accuracy of the proposed NILM 

algorithm, it is found that Conv-LSTM can contribute to 

the development of SLPs by central electrical 

measurements. In this way, it will be more cost and labour 

efficient to generate electrical load profiles, because only 

one measurement is needed. Moreover, with the roll-out 

of smart meters, these meters can provide the data for the 

Conv-LSTM algorithm for disaggregation into synthetic 

load profiles (SLPs). These SLP are highly needed to 

perform realistic building simulations, because the heat 

demand in buildings is shifting from a heat-based demand 

to a heating and cooling demand. The higher insulation 

rates of buildings lead to less space heat demand, which 

means that the internal heat gains are becoming more 

important to take into account. The main sources of 

internal heat gains are the occupancy and the heat losses 

of electrical appliances. These losses can be deviated from 

the electrical load profiles and an efficiency of the 

different electrical appliances. For these reasons, it is 

important to include the SLPs in building simulations, in 

order to perform accurate energetic evaluations.  
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