
This item is the archived peer-reviewed author-version of:

Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning

Reference:
Vizarim N.P., Souza J.C. Bellizotti, Reichhardt C.J.O., Reichhardt C., Milošević Milorad, Venegas P.A..- Soliton motion in skyrmion chains : stabilization and

guidance by nanoengineered pinning

Physical review B / American Physical Society - ISSN 2469-9969 - 105:22(2022), 224409 

Full text (Publisher's DOI): https://doi.org/10.1103/PHYSREVB.105.224409 

To cite this reference: https://hdl.handle.net/10067/1896710151162165141

Institutional repository IRUA



Soliton Motion in Skyrmion Chains

N. P. Vizarim1, J. C. Bellizotti Souza2, C. J. O. Reichhardt3, C. Reichhardt3, M. V. Milošević4,5 and P. A. Venegas2
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Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in
quasi-one dimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces.
The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under
an applied drive, just above a critical depinning threshold the soliton moves with a skyrmion Hall
angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both
the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion
Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the
driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to
negative. Our results suggest that solitons in skyrmion systems could be used as information carriers
in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton
states become mobile at significantly lower drives than the depinning transition of the skyrmion
chains themselves.

I. INTRODUCTION

Solitons are a well-known concept in physics for de-
scribing a nonlinear wave, also called a solitary wave, that
emerges with unchanged shape and speed from a collision
with a similar pulse1. After Zabuski and Kruskal, as part
of their investigation of plasma waves2, coined the term
“soliton” due to the novel properties of these solitary
waves, many other branches of science including applied
mathematics3, chemistry4,5, and biology6–8 proved to be
fertile ground for soliton physics. While solitons are re-
lated to several important phenomena in science, such as
thermal and electrical conductivity, one of the areas most
impacted by the soliton concept was optics. Soliton stud-
ies greatly enhanced the technology of optical fibers9,10,
photorefractive crystals11, and optical media12. Most re-
cent studies of solitons appear primarily in optics (light
waves) and matter waves.
In magnetism, the nonlinearity of the spin dynamics

produces topologically non-trivial magnetic structures13,
including a rich variety of solitons, such as: one dimen-
sional solitons describing the motion of domain walls14;
two dimensional magnetic vortices15; magnon drops16;
and also the two dimensional topological solitons called
skyrmions17. Although it is well known that skyrmions
are a type of soliton, we show here that the collective mo-
tion of a chain of skyrmions can also produce a soliton
on a different length scale.
Skyrmions are spin textures pointing in all directions

that can be mapped onto a wrapping of a sphere, form-
ing a topologically stable object18. One of their most
interesting features is that they can be set into mo-
tion by the application of a spin polarized current19–23.
In the presence of external driving, skyrmions can ex-

hibit a depinning threshold and obey nonlinear velocity-
force relations20,22–25. There is great interest in using
skyrmions as information carriers for memory and logic
devices26,27 as well as in spintronics28 due to their stabil-
ity and the low currents required to set them into motion.
Application of skyrmions in actual devices will require a
better understanding of their behavior, dynamics, and
how to control their motion.

A key aspect of skyrmions that distinguishes them
from other overdamped particles is the presence of a
non-dissipative component or Magnus term in their equa-
tion of motion18,22,23,27,29. The Magnus term produces
a skyrmion velocity component perpendicular to the net
force on the skyrmion, and it has been proposed that the
Magnus term is responsible for the reduced depinning
threshold exhibited by skyrmions18,22,27. In the absence
of defects in the sample, an applied external drive com-
bined with the Magnus term causes the skyrmion to move
at an angle with respect to the driving direction that is
called the intrinsic skyrmion Hall angle, θintsk

22,30,31. The
magnitude of this angle increases as the ratio of the Mag-
nus term to the damping term is increased. Experimen-
tally, skyrmion Hall angles have been observed that span
the range from a few degrees up to very large angles,
depending on the system parameters and the size of the
skyrmions31–33.

Recently, it was shown that the skyrmion Hall angle
can be manipulated by introducing periodic pinning34–39.
As the external drive is increased, the skyrmion Hall an-
gle becomes quantized due to directional locking effects
very similar to those found in superconducting vortices40

or colloidal assemblies41–43 driven over a periodic sub-
strate under a rotating external drive. In the case of
skyrmions, the direction of the external drive remains
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fixed, but as the magnitude of the drive increases, the
velocity dependence of the skyrmion Hall angle causes
a change in the direction of skyrmion motion. On a
locking step, the skyrmion Hall angle remains constant
as the magnitude of the drive is varied, while changes
in the skyrmion Hall angles are associated with dips or
cusps in the velocity-force curves. This behavior pro-
vides a mechanism for controlling the skyrmion motion
in a given sample, since a fine adjustment in the exter-
nal driving can produce a large change in the skyrmion
direction of motion. Several distinct methods have been
proposed for controlling the skyrmion motion, including
periodic pinning34,37,38,44,45, ratchet effects36,46–51, inter-
face guided motion52,53, strain gradients54, magnetic field
gradients55–57, temperature gradients58,59, 1D potential
wells60,61, nanotracks62–65, and skyrmion-vortex systems
in a ferromagnet-superconductor heterostructure66.

Commensurability effects are very important in de-
termining the collective behavior of skyrmions under
the influence of periodic pinning. When the num-
ber of skyrmions Nsk is an integer multiple or ratio-
nal fraction of the number of substrate minima Np, we
say that the system is commensurate. Extensive stud-
ies of commensurability effects have shown that they
are associated with distinctive behavior in many sys-
tems, including superconducting vortices67–69, colloidal
particles70, Wigner crystals71, and vortices in Bose-
Einstein condensates72,73. Much less work has been done
on commensurability effects in skyrmion systems74,75.
Recently, Reichhardt et al.

75 investigated commensura-
tion effects for skyrmions in periodic pinning and found
that the skyrmion Hall angle is non-monotonic, dropping
to zero at commensurate states and returning to a finite
value for incommensurate states.

Solitons often appear in commensurate-
incommensurate systems that are near but not in
a commensurate state. Here, there is an ordered lattice
containing interstitials or vacancies that behave like
kinks or anti-kinks. Under an applied drive, these kink
objects depin prior to the ordered portions of the lattice,
resulting in a two-step depinning transition in which
interstitials or kinks move in the driving direction and
vacancies or anti-kinks move in the opposite direction.
The classic example of a system exhibiting this behavior
is the Frenkel-Kontorova model76–78. Kink dynamics
were imaged directly in colloidal experiments for 2D
periodic substrates just above and below the 1:1 com-
mensurate conditions79, while numerical studies of the
same system showed a multi-step depinning process
involving kinks and antikinks80. Motion of kinks on
periodic substrates has also been studied in 1D cold
atom systems81, 1D and 2D frictional systems82,83, and
other systems near commensuration such as supercon-
ducting vortices in periodic pinning arrays84. Kink
motion should also be possible in skyrmion chains near
commensurate conditions; however, due to the non-
dissipative Magnus term, such kinks would have different
dynamics than previously studied kinks. Most kink

systems have overdamped or underdamped dynamics
and the interstitial solitons move in the same direction
as the applied drive. In a skyrmion system, the Magnus
term can cause the kink to move at an angle to the
driving direction. Soliton motion in skyrmion chains
is of interest since the solitons themselves, rather than
the skyrmions, could serve as information carriers. This
would be particularly relevant if kinks move along the
driving direction under drives much lower than those
that would be needed to translate individual skyrmions
or chains of skyrmions over long distances.
In this work, we investigate the skyrmion collective be-

havior just outside of a commensurate filling for Nsk =
Np + 1 or Nsk = Np − 1. We use a heterogeneous pin-
ning lattice containing a line of weaker pinning potentials
that serve as a guide for the skyrmion motion. We apply
an external dc drive to the sample and neglect thermal
effects. A soliton in a skyrmion chain, formed by an in-
terstitial skyrmion for Nsk = Np + 1 or a vacancy for
Nsk = Np − 1, can be set into motion by the external
drive. The interstitial skyrmion moves parallel to the
applied drive and the vacancy moves antiparallel to the
applied drive, but both have a zero skyrmion Hall an-
gle, which is of interest for applications. We show that
the line of weak pinning potentials can guide the soliton
motion even to the point of causing the soliton to move
in the direction −θintsk , opposite to the intrinsic skyrmion
Hall angle. We find a multiple step depinning process in
which the soliton depins first, followed next by the depin-
ning of the skyrmion chain along the weak pinning line,
and finally the depinning of the entire skyrmion assem-
bly in the direction transverse to the drive. This opens
a novel method for precise control of skyrmion motion.

II. SIMULATION

We simulate the collective behavior of Nsk skyrmions
interacting with Np attractive pinning centers in a Ly ×
Lx two-dimensional box with periodic boundary con-
ditions in both the x and y directions, as illustrated
in Fig. 1. The skyrmion density is nsk = Nsk/LyLx

and the pinning density is np = Np/LyLx. The simu-
lations are performed just outside the commensuration
ratio Nsk/Np = 1 for either an interstitial skyrmion
(Nsk = Np+1) or a vacancy (Nsk = Np−1). Initially we
consider the simplest quasi-one dimensional case where
the skyrmions are confined in a line of Gaussian pin-
ning sites by repulsive barrier walls located at y = 0 and
y = Ly, as illustrated in Fig. 1(a). We next work with a
sample containing no repulsive barrier walls where there
is a square lattice of pinning centers bisected by a line
of weaker pinning potentials, as shown in Fig. 1(b). The
weak pinning line is aligned with the driving direction in
most of this work, but we also consider the case where
the weak pinning is at 45◦ to the driving direction.

The skyrmion dynamics is governed by the following
particle based equation of motion85:
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FIG. 1. Illustration of the samples used in this work. (a)
The quasi-one dimensional system where the skyrmion motion
is confined to a line of Gaussian pinning potentials (circles)
by repulsive barriers at y = 0 and y = Ly. (b) The two-
dimensional system with a square array of pinning centers
and no repulsive barriers. All pinning sites are modeled using
Gaussian pinning potentials. Red circles indicate stronger
pinning centers and the blue circles are the weaker pinning
potentials.

αdvi + αmẑ × vi = Fss
i + F

p
i + FW

i + FD . (1)

The first term on the left hand side represents the
damping that arises from the spin precession and dis-
sipation of electrons in the skyrmion core, where αd is
the damping constant. The second term on the left hand
side is the Magnus force, where αm is the Magnus con-
stant. The Magnus force is oriented perpendicular to the
skyrmion velocity. The skyrmion-skyrmion repulsive in-

teraction is Fss
i =

∑Nsk

i K1(rij/ξ)r̂ij , where the screen-
ing length ξ is set to ξ = 1.0 in dimensionless units,
rij = |ri − rj | is the distance between skyrmions i and
j, and r̂ij = (ri − rj)/rij . For better computational ef-
ficiency, we cut off the exponentially decaying skyrmion-
skyrmion interaction beyond rij = 6.0. We model the
interaction between the skyrmions and the pinning cen-

ters using the Gaussian form Up = −Cpe
(rip/ap)

2

, where
Cp is the strength of the pinning potential. Thus, the
skyrmion-pinning interaction is given by F

p
i = −∇Up =

Fpripe
(rip/ap)

2

r̂ip, where Fp = 2Cp/a
2
p, rip is the distance

between skyrmion i and pinning center p, and ap is the
pinning center radius. In this work we use two types of
pinning centers: strong pinning centers with Up = 1.0
and weak pinning centers with Up = 0.15. In both cases
the pinning radius is fixed to ap = 0.3. We cut off this
interaction beyond rip = 2.0 for computational efficiency.
The third term on the right hand side, FW

i , represents
the force exerted by the repulsive barrier walls. In the
presence of the barrier walls, the skyrmion behavior is
similar to what would be observed in a quasi-1D po-
tential well. The wall potential is UW = UW0

cos(wy),
where UW0

= 12.0 and w = 2π/Ly. The force exerted

by the wall is given by FW
i = −∇UW = −FW sin(wy),

where FW = 2πUW0
/Ly. The term FD = FDx̂ repre-

sents the applied dc drive, which is fixed to be along the
positive x direction. We increase FD in small steps of
δFD = 0.01 and spend 2 × 105 simulation time steps at
each drive increment. We measure the average velocities
⟨Vx⟩ = ⟨v · x̂⟩ and ⟨Vy⟩ = ⟨v · ŷ⟩. We normalize all dis-
tances by the screening length ξ and select the damping
and Magnus constants such that αm

2 + αd
2 = 1.

III. THE QUASI-ONE DIMENSIONAL SYSTEM

FIG. 2. (a) ⟨Vx⟩ and (b) ⟨Vy⟩ versus the external dc drive F
D

for the sample illustrated in Fig. 1(a) with Nsk/Np = 1.044,
αm/αd = 0.5 and ρp = 0.093ξ2. The inset of (a) shows a
blowup of panel (a) over the range 0 < FD < 0.5.

We first consider the quasi-one dimensional system il-
lustrated in Fig. 1(a). In this case, repulsive barrier
walls at y = 0 and y = Ly surround an isolated line
of Np = 22 weak pinning centers filled with Nsk = 23
skyrmions, giving a value Nsk/Np = 1.044 that is just
outside a commensurate ratio. The pinning density is
fixed to ρp = 0.093/ξ2. In Fig. 2 we plot ⟨Vx⟩ and ⟨Vy⟩
as a function of the applied dc drive FD for a system
with αm/αd = 0.5. After the depinning at FD = 0.02,
there is a low velocity regime in which ⟨Vy⟩ is noisy and
⟨Vx⟩ increases smoothly and monotonically with increas-
ing drive. The behavior of ⟨Vx⟩ is highlighted in the inset
of Fig. 2(a). The motion is largely confined to the x di-
rection by the repulsive barrier walls, while the motion in
the y direction is either absent or composed of small am-
plitude oscillations. Over the range 0.02 < FD < 0.43,
a soliton pulse is translating along the skyrmion chain.
Under application of an external drive, the initial inter-
stitial skyrmion shown in Fig. 3(a) displaces its neigh-
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boring skyrmion from the pinning site. The neighboring
skyrmion becomes the new interstitial skyrmion and the
previous interstitial skyrmion is now pinned. The re-
sult is a propagation of the location of the interstitial
skyrmion along the chain in the +x direction, as illus-
trated in Fig. 3(b). For FD > 0.428, all of the skyrmions
depin and begin to move collectively, producing a spike
in the velocity-force curve as shown in Fig. 2(a). Due
to the orderliness of the motion, the velocity component
⟨Vy⟩ drops to zero.

FIG. 3. (a, b, c) Pinning site positions (red circles) and the
skyrmion trajectory (black lines) for a sample with Nsk = 23,
Np = 22, Nsk/Np = 1.044, αm/αd = 0.5, Up = 0.15, and ρp =
0.093ξ2. (a) At FD = 0.01, the skyrmions are static in the
pinned phase. The incommensuration produces a deformation
in the lattice in the form of an interstitial skyrmion. (b) At
FD = 0.3, the interstitial skyrmion moves as a soliton by
hopping from site to site with slow average velocity. (c) At
FD = 1.0, all of the skyrmions are flowing simultaneously
at a higher velocity. (d, e) Skyrmion positions as a function
of time. (d) For FD = 0.3 as in panel (b), a soliton pulse
propagates through the sample. (e) For FD = 1.0, as in
panel (c), all of the skyrmions are flowing in unison.

It is difficult to see the differences in motion between
Figs. 3(b) and 3(c) from the overlapping skyrmion tra-
jectories, so in Fig. 3(d,e) we plot the position of each
skyrmion as a function of time. In Fig. 3(d), the system
from Fig. 3(b) at FD = 0.3 contains a clearly propagat-
ing soliton pulse. In contrast, Fig. 3(e) shows the system
from Fig. 3(c) at FD = 1.0, where all of skyrmions are

moving coherently as a crystal and the soliton motion is
lost.

FIG. 4. (a) ⟨Vx⟩ and (b) ⟨Vy⟩ versus FD for the sample il-
lustrated in Fig. 1(a) with Nsk/Np = 0.96, αm/αd = 0.5 and
ρp = 0.093ξ2. The inset of (a) shows a blowup of panel (a)
over the range 0.35 < FD < 0.55.

In Fig. 4 we plot ⟨Vx⟩ and ⟨Vy⟩ versus FD for a sys-
tem with Nsk = 21, Np = 22, Nsk/Np = 0.96, and
αm/αd = 0.5. The depinning falls at FD = 0.39, a higher
value than that found in Fig. 2 due to the reduced den-
sity of skyrmions in the sample. Just above depinning,
there is a regime of low average velocity similar to that
observed in Fig. 2; however, the dynamics is different. As
is shown in Fig. 5(a), there is a vacancy due to the incom-
mensurate ratio between the skyrmions and the pinning
centers. This vacancy moves through the sample in the
−x direction as the neighboring pinned skyrmion depins
and fills in the vacancy, turning its previous pinning site
into a new vacancy. A repetition of this process pro-
duces a soliton propagation through the sample over the
range 0.39 < FD < 0.58, where ⟨Vy⟩ is noisy and ⟨Vx⟩
increases smoothly with increasing FD as highlighted in
the inset of Fig. 4(a). The soliton can be detected exper-
imentally in the same way as skyrmions by looking for
the variation in the skyrmion spacing. For FD > 0.58,
all of the skyrmions depin and flow through the sample
as a moving lattice with an average velocity component
⟨Vx⟩ that increases rapidly with increasing FD and with
⟨Vy⟩ ≈ 0. The plot of the skyrmion positions versus time
in Fig. 5(d) at FD = 0.45 shows the backwards propaga-
tion of the soliton pulse, while a similar plot in Fig. 5(e)
at FD = 1.0 indicates that all of the skyrmions are mov-
ing in unison through the system and the soliton pulse
has been destroyed.



5

FIG. 5. (a) Pinning site positions (red circles) and the
skyrmion trajectory (black lines) for a sample with Nsk = 21,
Np = 22, Nsk/Np = 0.96, αm/αd = 0.5, Up = 0.15 and
ρp = 0.093ξ2. (a) At FD = 0.3, the skyrmions are static in the
pinned phase. The incommensuration produces a deforma-
tion in the lattice in the form of a vacant pinning site. (b, c)
Skyrmion positions as a function of time. (b) At FD = 0.45,
a soliton pulse propagates in the −x direction through the
sample. (c) At FD = 1.0, all of the skyrmions are flowing in
an ordered lattice.

IV. THE 2D SYSTEM

We next turn to a fully two-dimensional sample con-
taining no repulsive barrier walls, so that FW = 0. The
sample contains a square array of Np = 110 pinning sites,
most of which have a strong Up = 1.0. As illustrated in
Fig. 1(b), there is a central line of weak pinning centers
with Up = 0.15, which serve as a channel to guide the
skyrmion motion. The pinning density in this section is
fixed to ρp = 0.373/ξ2.

In Fig. 6(a) we plot ⟨Vx⟩ and ⟨Vy⟩ as a function of
the applied dc drive FD for a system with Nsk = 111,
Np = 110, Nsk/Np = 1.01, and αm/αd = 1.0, while in
Fig. 6(b) we show the corresponding skyrmion Hall an-
gle θsk versus FD. The skyrmion dynamics is no longer
locked in the x direction, making a diverse array of dy-
namic phases possible. For FD ≤ 0.11 the system is in
the pinned phase, as illustrated in Fig. 7(a). The inter-
stitial skyrmion is localized between four pinning centers,
two of which are strong and two of which are weak. The
skyrmions trapped in the weaker pinning potentials ex-
perience a greater displacement due to the neighboring
interstitial skyrmion. For 0.11 < FD < 0.41, we find a
soliton phase very similar to that shown in Fig. 2 and
Fig. 3(b) for the quasi-one dimensional system. The in-
terstitial skyrmion displaces a skyrmion from a weak pin-
ning site, taking its place as a pinned skyrmion and turn-
ing the formerly pinned skyrmion into the new intersti-
tial skyrmion. This process propagates along the chain,

FIG. 6. (a) ⟨Vx⟩ (black) and ⟨Vy⟩ (red) versus F
D for the 2D

sample illustrated in Fig. 1(b) with Nsk/Np = 1.01, αm/αd =
1.0, and ρp = 0.373ξ2. Inset: a blowup of panel (a) over the
range 0.1 < FD < 0.45. (b) The corresponding skyrmion Hall
angle θsk versus FD.

resulting in a soliton pulse moving in the +x direction.
The skyrmion trajectories for this regime are illustrated
in Fig. 7(b), which shows that oscillations in the y direc-
tion occur due to the combination of the skyrmion Hall
angle effect and the swapping of interstitial and pinned
skyrmions. For 0.41 < FD < 1.0, all of the skyrmions
trapped in the weaker pinning potentials depin, resulting
in an almost 1D motion with very small oscillations in y,
as illustrated in Fig. 7(c). For FD > 1.0, the skyrmions
in the stronger pinning potentials also depin, resulting
in a 2D motion. This motion occurs in two distinct
phases that are visible in Fig. 6. In the chaotic phase,
found for 1.0 < FD < 1.53, the skyrmion Hall angle in-
creases irregularly in magnitude, while for FD > 1.53,
the skyrmion Hall angle stabilizes at θsk ≈ −40◦. If the
applied drive were increased further, we expect that θsk
would approach the intrinsic Hall angle, which in this
case is θintsk = arctan (αm/αd) = −45◦. In Fig. 7(d) we
plot the skyrmion trajectories for FD = 1.8, where the
skyrmion Hall angle is stabilized, showing an orderly 2D
motion. As in the quasi-1D system, the soliton phase is
most easily identified by plotting the skyrmion positions
as a function of time. In Fig. 7(e) we plot the x position
of the skyrmions as a function of time for FD = 0.25,
where a soliton pulse propagates in the +x direction. In
contrast, for FD = 0.5, Fig. 7(f) indicates that the pulsed
motion has been destroyed and the skyrmions move as a
confined chain.

In Fig. 8(a) we plot ⟨Vx⟩ and ⟨Vy⟩ as a function of
the applied dc drive FD for a system with Nsk = 109,
Np = 110, Nsk/Np = 0.99, and αm/αd = 1.0, while
in Fig. 8 (b) we show the corresponding skyrmion Hall
angle θsk versus FD. For FD ≤ 0.24 the system is in
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FIG. 7. (a, b, c, d) Pinning site positions (red circles: strong
pins; blue circles: weak pins) and the skyrmion trajectories
(black lines) for a 2D sample with Nsk/Np = 1.01, αm/αd =
1.0, weak pins of Up = 0.15, strong pins of Up = 1.0, and
ρp = 0.373ξ2. (a) FD = 0 in the ground state, where most
skyrmions (black circles) are pinned and a single interstitial
skyrmion is present. (b) The soliton phase at FD = 0.25. (c)
At FD = 0.5, all of the skyrmions in the weak pinning centers
depin and flow as a confined chain through the sample. (d) At
FD = 1.8, all of the skyrmions are depinned and flow along
θsk = 40◦. (e, f) Skyrmion x positions as a function of time.
(e) The soliton phase at FD = 0.25 from panel (b). (f) The
confined chain flow phase at FD = 0.5 from panel (c), where
the soliton motion is lost.

the pinned state, as shown in Fig. 9(a). Due to the
incommensurate ratio between the skyrmions and the
pinning centers, there is a vacant pinning center which
distorts the lattice. For 0.24 < FD < 0.4 the system
enters a soliton phase similar to that shown in Fig. 4
and Fig. 5(b) for the quasi-one dimensional case. The
vacancy is pushed in the −x direction due to the hop-
ping motion of individual skyrmions in the +x direction.
The trajectories in this regime are illustrated in Fig. 9(b),

FIG. 8. (a) ⟨Vx⟩ (black) and ⟨Vy⟩ (red) versus FD for the
2D sample from Fig. 1(b) with Nsk/Np = 0.99, αm/αd = 1.0,
and ρp = 0.373ξ2. (b) The corresponding skyrmion Hall angle
θsk versus FD. Inset: a blowup of panel (a) over the range
0.2 < FD < 0.45.

where small oscillations in the y direction are visible. For
0.4 < FD < 1.02, all of the skyrmions trapped in the
weaker pinning potentials depin, resulting in an almost
1D motion with very small oscillations in y, as shown
in Fig. 9(c). When FD > 1.02, the skyrmions in the
stronger pinning centers also depin. Similarly to what
was observed in Fig. 6, Fig. 8 indicates that there are
two dynamic phases for FD > 1.02: a chaotic phase in
the range 1.02 < FD < 1.53, and a more ordered phase
for FD > 1.53. For the latter phase, the skyrmion Hall
angle again stabilizes near θsk ≈ −40◦. The similarities
between the dynamics of both the interstitial and vacancy
systems at high drives is expected since the difference in
the skyrmion density is very low and becomes unimpor-
tant in the drive-dominated regime. Instead, distinct be-
haviors arise in the soliton regime. To illustrate this, in
Fig. 9(e) we plot the skyrmion x positions as a function
of time at FD = 0.3, where a moving soliton pulse is
clearly visible. In contrast, for FD = 0.5, Fig. 9(f) shows
that the pulsed motion is lost.

The soliton phases for the interstitial and vacancy
phases have similar dynamics, but exhibit the crucial
difference that the interstitial soliton moves in the +x
direction while the vacancy soliton moves in the −x di-
rection. This interesting behavior, which is stable over a
range of external dc drives, can be harnessed in devices to
allow very low external currents to propagate the soliton
through the sample in a fast and controlled manner.
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FIG. 9. (a, b, c, d) Pinning site positions (red circles: strong
pins; blue circles: weak pins) and the skyrmion trajectories
(black lines) for a 2D sample with Nsk/Np = 0.99, αm/αd =
1.0, weak pins of Up = 0.15, strong pins of Up = 1.0, and
ρp = 0.373ξ2. (a) The ground state at FD = 0, where all
skyrmions are pinned and a single vacancy is present. (b)
The soliton phase at FD = 0.3. (c) At FD = 0.5, all of
the skyrmions in the weak pinning centers depin and flow as
a chain through the sample. (d) At FD = 1.6, all of the
skyrmions are depinned and flow with θsk = −40◦. (e, f)
Skyrmion x positions as a function of time. (e) The soliton
phase at FD = 0.3 from panel (b). (e) The flowing chain
phase at FD = 0.5 from panel (c), where the soliton motion
is lost.

V. SOLITON STABILIZATION AS A

FUNCTION OF αm/αd

We next consider the evolution of the soliton phase
as αm/αd is varied. When αm/αd increases, the intrin-
sic skyrmion Hall angle also increases, so it is important
to verify whether the soliton phase remains stable un-
der these circumstances. We prepare two samples with

fixed values of Nsk/Np = 1.01 and Nsk/Np = 0.99 and
perform simulations for a range of values of αm/αd. By
combining the resulting data we generate dynamic phase
diagrams as a function of FD versus αm/αd, shown in
Fig. 10, where we identify the locations of the pinned
phase, the soliton phase, 1D chain motion, and 2D mo-
tion. The pinned phase is a static state in which all
pinned skyrmions remain trapped in the pinning centers
and ⟨Vx⟩ = ⟨Vy⟩ = 0. In the soliton phase, the local-
ized lattice deformation propagates through the sample.
This soliton travels in the +x direction when interstitial
skyrmions are present and in the −x direction when va-
cancies are present. 1D motion occurs when all of the
skyrmions trapped in the weak pinning potentials depin
and flow as a coherent chain in the +x direction. In 2D
motion, all of the skyrmions in all of the pinning sites
depin and flow through the sample along both the x and
y directions.
At Nsk/Np = 1.01, Fig. 10(a) indicates that the de-

pinning threshold is very low, producing a wider range
of soliton motion compared to the system in Fig. 10(b)
with Nsk/Np = 0.99. Interstitial skyrmions are more
mobile than vacancies since an interstitial skyrmion is
trapped only by the caging potentials of the neighboring
skyrmions and not directly by a pinning site. This lowers
the depinning threshold for the interstitial system. Both
systems show a transition from the soliton phase to 1D
motion at roughly the same value of FD since this tran-
sition is controlled by the strength of the weak pinning
sites. Similarly, the transition line between 1D motion
and 2D motion, which is controlled by the strength of
the strong pinning sites, falls at similar values of FD in
both systems.

FIG. 10. Dynamic phase diagrams as a function of external
dc drive FD versus αm/αd for the system in Fig. 1(b) at
ρp = 0.373ξ2 and (a) Nsk/Np = 1.01 and (b) Nsk/Np = 0.99.
Pinned phase: gray; soliton phase: yellow; 1D motion: red;
2D motion: blue.

VI. EFFECT OF PINNING DENSITY

We next vary the pinning density ρp for Nsk/Np =
ρsk/ρp = 1.01 and 0.99 while fixing αm/αd = 0.5. When
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the pinning density is low, we expect that the soliton
motion will vanish when the large spacing between ad-
jacent pinning sites destroys the collective behavior. In
Fig. 11(a,b) we show dynamic phase diagrams as a func-
tion of FD versus ρp for both systems. Here we observe
a pinned phase, a soliton phase, 1D motion, 2D motion,
and an additional state that we term single skyrmion
1D motion (SK1D). In the SK1D state, the intersti-
tial skyrmion produced by the incommensuration in the
Nsk/Np = 1.01 sample flows between the pinning centers
without displacing any of the pinned skyrmions. This be-
havior occurs only for low pinning densities, ρp < 0.206,
when the gaps between adjacent pinning sites are suffi-
ciently large, as shown in Fig. 11(c). The SK1D phase
is very similar to the previously studied motion of single
skyrmions through periodic pinning lattices34,37,44. As
the pinning density increases, the SK1D motion vanishes
and is replaced by soliton motion. The gaps between
the pinning centers diminish with increasing ρp, making
it impossible for the interstitial skyrmion to move un-
less it exchanges places with neighboring skyrmions in a
soliton-like fashion.
In the vacancy-containing sample with Nsk/Np = 0.99,

Fig. 11(b) shows that there is a monotonic decrease of the
depinning threshold with increasing ρp. As the sample
density increases, the relative strength of the skyrmion-
skyrmion interactions increases compared to the pinning
energy, causing a suppression of the pinning threshold.
Soliton motion is completely lost for ρp < 0.166 when
the large distance between adjacent pinning sites destroys
the collective behavior required to propagate a skyrmion
through the sample. For ρp > 0.166, the extent of the
soliton phase increases with increasing pinning density,
primarily due to the decrease in the depinning threshold.
Both the Nsk/Np = 1.01 and Nsk/Np = 0.99 samples
show a similar transition from 1D motion to 2D motion
since this transition is dominated by the skyrmions in the
strong pinning sites, which are the same in both systems.

VII. GUIDANCE OF SOLITON MOTION AND

SKYRMION HALL ANGLE REVERSAL

We have shown that soliton motion through skyrmion
chains can be enhanced depending on the choice of pin-
ning density and αm/αd. We next ask whether it is possi-
ble to guide the soliton motion along a specific direction.
When we introduced a line of weak pinning in the sample,
the soliton followed this line along the +x or −x direc-
tion, depending on the value of Nsk/Np, even though this
direction is not aligned with the intrinsic Hall angle. In
other words, guiding by the line of weak pinning poten-
tials can overcome the skyrmion Hall angle. To further
explore this effect, we change the skyrmion Hall angle so
that it is perpendicular to the guiding line of weaker pin-
ning potentials. As shown in Fig. 12, we place the line
of weak pinning centers along θp = +45◦ with respect to
the driving or x direction. By selecting αm/αd = 1.0, we

FIG. 11. (a, b) Dynamic phase diagrams as a function of FD

versus pinning density ρp for the samples from Fig. 1(b) with
αm/αd = 0.5, weak pinning of Up = 0.15, and strong pinning
of Up = 1.0 for (a) Nsk/Np = 1.01 and (b) Nsk/Np = 0.99.
Pinned phase: gray; soliton phase: yellow; 1D motion: red;
2D motion: blue; single skyrmion 1D motion (SK1D): green.
(c) Pinning site positions (red circles: strong pins; blue circles:
weak pins) and the skyrmion trajectories (black lines) for the
Nsk/Np = 1.01 sample at FD = 0.2 and ρp = 0.093ξ2.

obtain an intrinsic skyrmion Hall angle of θintsk = −45◦,
so that ∆θ = θp − θintsk = 90◦.

FIG. 12. Pinning site positions (red circles: strong pins; blue
circles: weak pins) for a sample with a diagonal line of weak
pinning oriented at +45◦ with respect to the x direction ap-
plied drive. The weak pins have Up = 0.15, the strong pins
have Up = 1.0, and we set ρp = 0.373/ξ2.

For a sample with Nsk/Np = 1.01, we plot ⟨Vx⟩ and
⟨Vy⟩ versus FD in Fig. 13(a) and show the correspond-
ing skyrmion Hall angle θintsk versus FD in Fig. 13(b).
When FD < 0.12, the skyrmions are in the pinned phase,
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marked by the letter P in Fig. 13(a). As FD increases,
we observe a small and continuous increase of both ve-
locity components, which remain equal to each other so
that ⟨Vx⟩ = ⟨Vy⟩. Here the motion is occurring at ex-
actly +45◦ with respect to the driving direction and is
following the line of weak pinning centers. An illustra-
tion of this soliton motion appears in Fig. 14(a). For
0.44 < FD < 0.56, the skyrmion velocity components re-
main equal to each other but do not change as the drive
increases. In this regime, all of the skyrmions in the
weak pinning sites depin and flow with θsk = +45◦, as
shown in Fig. 14(b). For 0.56 < FD < 1.47 we find a
broad transient phase in which the skyrmion Hall an-
gle slowly changes from θsk = +45◦ to θsk = −45◦.
Here, the skyrmions in the strong pinning sites remain
pinned, but the depinned skyrmions from the weak pin-
ning sites begin to escape from the weak pinning channel
that is aligned with θsk = +45◦ and instead start flowing
along the intrinsic skyrmion Hall angle of θintsk = −45◦.
A step in the skyrmion Hall angle at θsk = 35.6◦ ap-
pears around the value FD = 1.0, corresponding to the
flow state illustrated in Fig. 14(c). This motion is un-
stable and the magnitude of the skyrmion Hall angle
continues to increase once FD is raised above the step
region. The collective motion only becomes stable once
FD > 1.46, when the skyrmions flow in an orderly fash-
ion along θsk = −45◦, as shown in Fig. 14(d). Here,
some of the skyrmions that were previously trapped in
the stronger pinning centers have now depinned and serve
to stabilize the flow. The depinning of the remaining
skyrmions occurs only for drives higher than those con-
sidered here.

VIII. SUMMARY

In this work we investigated the collective behavior of
skyrmions at zero temperature using a channel of weak
pinning sites inserted into a periodic lattice of strong
pinning sites for slightly incommensurate fillings. We
demonstrated that soliton motion can flow along the
chains of weak pinning sites. The system displays two
types of soliton motion: (i) motion in the direction of
drive for an interstitial soliton, and (ii) motion oppo-
site to the direction of the drive for a vacancy soliton.
These two types of soliton behave as if they have op-
posite charges, and their direction of motion depends
on their structure. For a quasi-one dimensional sample,
both the soliton and the skyrmion motion are strongly
confined to the center axis of the sample by the repul-
sive barrier walls. It is also possible to induce soliton
motion in 2D periodic lattices by providing a guiding
channel in the form of a line of weak pinning centers.
We show that the soliton motion is not strongly sensitive
to the value of the skyrmion Hall angle, but that it is
strongly affected by the pinning density. At low pinning
densities the skyrmions are too far apart for collective
behavior to appear and the soliton motion is destroyed.

FIG. 13. (a) ⟨Vx⟩ (black) and ⟨Vy⟩ (red) versus FD for
the sample illustrated in Fig. 12(b) with Nsk/Np = 1.01,
αm/αd = 1.0, and ρp = 0.373ξ2. (b) The corresponding
skyrmion Hall angle θsk versus FD. P indicates the pinned
phase, Soliton is the soliton phase, +45 is the phase in which
the skyrmions that have depinned from the weak pinning cen-
ters flow with θsk = +45◦, Transient is the phase in which
the skyrmion Hall angle is reversing, and −45 is the phase in
which the motion is locked to θsk = −45◦.

As the pinning density increases, the skyrmion-skyrmion
interactions become relevant and a propagating soliton
can be stabilized. When we vary αm/αd, we find that
the soliton motion is the most prominent if the intrin-
sic skyrmion Hall angle is close to the soliton direction
of motion. Nevertheless, even for angular differences as
large as 90◦, the soliton motion persists over a range of
applied drives, indicating that the soliton phase is ro-
bust. In a sample where the skyrmion Hall angle is per-
pendicular to the weak pinning line, the soliton motion
is aligned with the weak pinning at +45◦. As the ex-
ternal drive is increased, pinned skyrmions begin to de-
pin and the skyrmion Hall angle rotates from +45◦ to
−45◦ in order to align with the intrinsic Hall angle. This
indicates that at low drives the soliton motion can be
guided, while for higher drives the skyrmions follow the
intrinsic Hall angle. Such behavior is of interest for tech-
nological applications where the skyrmion motion must
be controlled precisely and must follow directions differ-
ent than the intrinsic skyrmion Hall angle. The moving
soliton could be used as an information carrier in logic
devices rather than the skyrmions themselves, making it
possible to transport information at drives much lower
than those needed to depin a chain of skyrmions. An
advantage of this approach is that the solitons do not
exhibit a finite skyrmion Hall angle.
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FIG. 14. Pinning site positions (red circles: strong pins; blue
circles: weak pins) and the skyrmion trajectories (black lines)
for a sample withNsk/Np = 1.01, αm/αd = 1.0, ρp = 0.373ξ2,
weak pinning of Up = 0.15, and strong pinning of Up = 1.0.
(a) FD = 0.25, where a soliton flows along the line of weak
pinning centers at θsk = +45◦. (b) At FD = 0.5, the
skyrmions trapped at the weak pinning sites depin and flow
along θsk = +45◦. (c) FD = 1.0, the transient phase, where
the skyrmion Hall angle gradually reverses. At this stage, the
skyrmion Hall angle is θsk = −35.6◦. (d) At FD = 1.8 the
skyrmion Hall angle reversal is complete and the skyrmions
flow along θsk = −45◦.

ACKNOWLEDGMENTS

This work was supported by the US Department of
Energy through the Los Alamos National Laboratory
and Research Foundation-Flanders (FWO). Los Alamos
National Laboratory is operated by Triad National Se-
curity, LLC, for the National Nuclear Security Admin-
istration of the U. S. Department of Energy (Con-
tract No. 892333218NCA000001). N.P.V. acknowledges
funding from Fundação de Amparo à Pesquisa do Es-
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