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Abstract 

Global environmental problems have urged the need for developing sustainable technologies. 
However, new technologies that enter the market have often higher economic costs and 
potentially higher environmental impacts than conventional technologies. This can be 
explained by learning effects: a production process that is performed for the first time runs 
less smooth than a production process that has been in operation for years. To obtain a fair 
estimation of the potential of a new technology, learning effects need to be included. A 
review on the current literature on learning effects was conducted in order to provide 
guidelines on how to include learning effects in prospective technology assessment. Based on 
the results of this review, five recommendations have been formulated and an integration of 
learning effects in the structure of prospective technology assessment has been proposed. 
These five recommendations include the combined use of learning effects on the component 
level and on the end product level; the combined use of learning effects on the technical, 
economic and environmental level; the combined use of extrapolated values and expert 
estimates; the combined use of learning-by-doing and learning-by-searching effects and; a 
tier-based method, including quality criteria, to calculate the learning effect. These five 
complementary strategies could lead to a clearer perspective on the environmental impact and 
cost structure of the new technology and a fairer comparison base with conventional 
technologies, potentially resulting in a faster adoption and a shorter time-to-market for 
sustainable technologies. 

Highlights 

• Learning effects quantify the principle “practice makes perfect” for technologies 
• A review on learning effects in prospective technology assessment was performed 
• Learning effects have mainly been used for investment costs of energy technologies 
• Based on best practices, guidelines on the use of learning effects were formulated 
• These guidelines enable including learning effects for a wide range of technologies 
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FOAK First of a kind RoT Rule-of-thumb 
PR Progress rate OT Other technologies 
LR Learning rate u Unspecified 
TRL Technology Readiness Level Q Quality class 
R² Coefficient of determination y Years 
PV Photovoltaic n/a not applicable 
BOS Balance of system M Months 
gen. generation uc unclear 
CSP Concentrated solar power Me Methodology 
DCP Direct combustion power  CA Cost analysis 
CHP Combined heat and power Re Regression 
SOFC Solid oxide fuel cell com Cost optimization model 
E&P Exploration and production PA policy analysis 
EV Electric vehicles ROA Real options analysis 
Dep. Dependent variable PEM Partial equilibrium model 
Pc End product cost GEM General equilibrium model 
Cc Component cost IDM Investment decision model 
Pi  End product environmental impact LCA Life Cycle Assessment 
Ci Component environmental impact EnA Energy analysis 
Ind. Independent variable CBM Cost breakdown model 
Sc Scale MRIO Multi-regional input output 
Pr Exogenous price fluctuations ABM Agent-based modelling 
Ot Other factors CBA Cost-benefit analysis 
Exp Experience I Included 
CC Cumulative capacity E Excluded 
CP Cumulative production S Separately assessed 
R&D Research and development Ln Linear function 
DLI Databases, literature, industry o Other function 
Sim Simulations MAV Maximum achievable value 
Fu Functional form LBD Learning-by-doing 
P Power function LBS Learning-by-searching 
O Other functional form  Nomenclature 
Ref. Reference C cost per unit 
CCS Carbon capture and storage P number of units produced 

CCR Carbon capture ready C0 initial cost 
NGCC Natural gas carbon capture P0 initial production unit number 
CCU Carbon capture and usage α learning-by-doing coefficient 
Coal-to-
L 

Coal-to-liquid K0 initial patent-based knowledge 
stock 

UHVPT Ultra high voltage power 
transmission 

K patent-based knowledge stock 

HCPV High concentrated photovoltaic  β learning-by-searching coefficient 
C Calculated # number of units 

 

1.0 Introduction 

New technologies have a disadvantage compared to conventional technologies. Where 
conventional technologies had sufficient time for optimization, new technologies still have to 
go down that road. An established technology can be considered as the nth of a kind (NOAK), 
while a new technology will start as the first of a kind (FOAK) [1]. The optimization of a new 
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technology by increasing its performance will induce a decrease in economic costs [2]. 
Besides the cost, also the environmental impact is reduced by an improved technological 
performance [3]. The disadvantage of a FOAK technology compared to a NOAK technology 
is therefore translated in higher economic costs and potentially higher environmental impacts. 
The decrease of costs and environmental impacts of a new technology through a better 
technological performance when more experience is gained, is considered as a learning effect 
[4]. The more a technology is used, the more efficient it will become until approaching a 
maximum achievable value. Learning effects will therefore decrease costs and environmental 
impacts of FOAK technologies on their path to NOAK technologies as illustrated in Fig. 1. 
This experience path from FOAK technologies to NOAK technologies is often expressed as 
the cumulative installed capacity, but can also be expressed as the cumulative number of 
products or production plants. The NOAK stage can also be indicated by the term 
‘materiality’, where the technology covers 1% market share [5]. 
 

 
Fig. 1. Learning effects on technological, economic and environmental performance 

 
Different types of learning effects exist. The most common learning effect is learning-by-
doing, where a repeated action leads to a higher efficiency. The first example of learning-by-
doing was provided in 1936 by Wright [2] who demonstrated that the labour hours decrease in 
airplane manufacturing when the cumulative production volume increases. This has also an 
impact on the production costs due to decreasing labour costs. This relation is expressed in the 
following equation: 
 

     𝐶 = 𝐶0(𝑃 𝑃0⁄ )−𝛼           (1) 
 

where C is the cost per unit, P is the number of units produced, C0 and P0 are the initial cost 
and production values and α is the learning-by-doing coefficient. Based on this equation, the 
progress rate (PR) and learning rate (LR) are calculated. The learning rate expresses the 
percentage cost reduction per doubling of experience and the progress rate expresses the 
relative residual cost for this increase of experience: 
 

        𝑃𝑅 = 2−𝛼          (2) 
        𝐿𝑅 = 1 − 𝑃𝑅          (3) 

  
A similar relation based on the learning effect was postulated in 1965 by Moore, who stated 
that the complexity for minimum component costs on integrated circuits had doubled every 
two years and would continue to do so [6]. With this statement, Moore predicted the 
exponential decrease in costs of semiconductors of the last decades [7]. Instead of using 
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cumulative production as a proxy for experience, Moore used time. However, according to a 
comparison between the predictive power of these two laws, the original learning curve as 
postulated by Wright is more accurate and cumulative production is a better proxy for 
experience than time [8].  
 
In the semiconductor learning path as predicted by Moore, not only learning-by-doing had an 
effect, but also learning-by-searching (also called learning-by-researching) played a role. In 
this effect, R&D leads to optimization of the new technology, which increases its efficiency. 
While learning-by-doing investigates the effect of a similar technology with better practices, 
learning-by-searching covers the improvement of the technology itself [9]. The effects of 
learning-by-doing and learning-by-searching can be assessed using a two-factor learning 
curve [10]: 
 

          𝐶 = 𝐶0(𝑃 𝑃0⁄ )−𝛼(𝐾 𝐾0⁄ )−𝛽         (4) 
 

where K is the patent-based knowledge stock, K0 is the initial patent-based knowledge stock 
and β is the learning-by-searching coefficient. 
 
Other learning effects, such as learning-by-using and learning-by-interaction occur as well. 
Learning-by-using originates from feedback from user experience whereas learning-by-
interaction is caused by the diffusion of knowledge [11]. Besides learning effects, also 
forgetting effects occur due to interruptions in production [12].  
 
Most applications of learning effects cover the overall cost of a technology. However, this 
overall cost can be subdivided in different components such as input costs or assembly costs. 
The main learning occurs in an improvement of the underlying components. To capture this 
effect, a component-based learning effect was introduced, where n components are used to 
calculate the overall costs due to learning-by-doing effects [13]: 
 

         𝐶 = 𝐶01(𝑃1 𝑃01⁄ )−𝛼1 + 𝐶02(𝑃2 𝑃02⁄ )−𝛼2 +⋯+ 𝐶0𝑛(𝑃𝑛 𝑃0𝑛⁄ )−𝛼𝑛       (5) 
 
The underlying effect that causes the cost reduction is a more efficient technical performance. 
However, some cost reductions can also be caused by indirect effects such as an improved 
financial operation management, which may be excluded in the component-based approach. A 
more efficient technical performance has an impact on the cost, but also influences the 
environmental impact. A more efficient production can reduce the material and energy 
requirements. Moreover, technology improvements can also increase the environmental 
performance. Therefore, not only the costs and technical performance are influenced by a 
more efficient production, also the environmental impacts decrease due to learning effects [3].  
 
A related effect to learning that also decreases costs and environmental impacts is the scale 
effect. When a technology is used on a larger scale, less material and utilities will be required 
per unit scale. This scale effect can occur due to different reasons, for example, the capacity 
of a specific process can increase, the size of the plant itself can increase, or the number of 
units on one location can increase. Doubling the capacity does therefore not imply doubling 
of the material requirement. The scale effect is considered as an additional effect to the 
learning effect, as it does not follow the trajectory of FOAK to NOAK. However, many 
studies consider scale effects as a part of a general learning effect [14]. A second related 
effect is the Technology Readiness Level (TRL) effect, induced by technology development 
and related to learning-by-searching. The TRL scale classifies the different stages of 
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technology development and ends with commercialization of the technology at TRL 9. A 
FOAK technology relates to this final stage of technology development. While the TRL effect 
occurs between zero and the FOAK point on the x-axis of Fig. 1, learning-by-searching 
occurs between the FOAK and NOAK point of this x-axis. A third related effect is the 
background effect, where alterations in the background conditions, such as a different 
electricity mix or reduced material prices, induce an alteration in the technological, economic 
or environmental performance. This background effect can originate for example from 
learning effects in other technologies, new regulations or market fluctuations. 
 
Consequently, different sorts of learning effects and related effects exist that will alter the 
technological, economic and environmental performance of a new technology. An overview 
of these effects and how these effects influence the performance in these three dimensions is 
provided by Table 1. 
 

Table 1. Different sorts of learning and related effects[11] 

Learning effect Technical performance Economic 
performance 

Environmental 
performance 

Learning-by-doing Direct effect  
(repeated activity) 

Indirect effect 
 

Indirect effect  
 

Learning-by-searching Direct effect 
(improved activity) 

Indirect effect Indirect effect  
 

Learning-by-using Direct effect  
(consumer feedback) 

Indirect effect  Indirect effect  
 

Learning-by-interacting Direct effect 
(knowledge diffusion) 

Indirect effect  Indirect effect  
 

Related effects    
Scale effect No effect Direct effect  

(less materials 
and fixed costs) 

Direct effect  
(less materials) 

TRL effect Direct effect 
(technology development) 

Indirect effect  Indirect effect  
 

Background effect Direct effect  
(altered performance of 
inputs or outputs) 

Direct effect 
(altered prices of 
inputs or outputs) 

Direct effect  
(altered impact of 
inputs or outputs) 

 
The calculation of learning effects can lead to forecasting the future learning curve. 
Experience curves and learning curves are often used as synonyms. However, according to 
Wei, Smith [15], learning curves are a subset of experience curves. Learning curves are more 
related to the underlying component improvement, such as labour hours, whereas experience 
curves determine the overall effect on the cost of the product. However, this distinction 
becomes vague when a certain product is used as a component for another product. Moreover, 
this definition is too narrow as it limits the learning effect to economic costs or labour hours, 
while in this review, also the learning effect on technological performance and environmental 
impact is included. Therefore, learning curves and experience curves will be considered as 
synonyms in this study.  
 
The larger costs of FOAK plants to NOAK plants has also been covered by the RAND 
method. Based on a study of 1981, different cost factors were formulated for 21 chemical 
processes which represent the larger costs of FOAK plants compared to prospective estimates 
of NOAK plants. These larger costs are due to higher investment costs and reduced plant 
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performance of pioneer production plants, compared to their initial estimates [16]. Although 
this method is still used, little recent empirical evidence is available [17].  
 
A vast literature of prospective technology assessments exists that use learning effects to 
forecast the NOAK potential of an emerging technology. These learning effects are in general 
based on retrospective studies, which analyse the historical trend in the potential of an 
emerging technology using a regression analysis. A review on the calculation of learning 
effects for electricity generation technologies has been performed by Samadi [18]. He 
concluded that other factors, such as commodity price fluctuations, should be included as well 
when studying past or future cost reductions. As different approaches are followed in using 
and calculating these learning effects, no standardized strategy on how to include learning 
effects in a reliable way is available. Moreover, no in-depth study on the calculation and use 
of learning effects covering multiple sectors has been performed. Therefore, no uniform 
strategy in the introduction of learning effects in prospective technology assessment exist. 
The current paper introduces a review on how the learning effects have been obtained and 
how they are used in prospective technology assessments, providing an overview of the 
different approaches found in literature. Therefore, it builds further on the review of Samadi 
[18], broadening the scope to a broad range of technologies and including prospective studies 
as well. Based on the results of this review, guidelines are provided on how to include 
learning effects in prospective assessments. These learning effects are not restricted to 
forecasting the economic performance, as mostly found in literature, but also cover the effect 
on future environmental impact. The main novelty of this paper is therefore the provision of 
an in-depth critical study of used learning effects in prospective technology assessment, 
including recommendations and guidelines on how to improve this practice. The main 
research questions of this paper are: 1) How are learning effects specified?; 2) How are 
learning effects obtained?; 3) How are learning effects used?; and 4) How should learning 
effects be used?. 

2.0 Methods 

A vast literature exists on learning effects on the operational level, where learning influences 
the manufacturing efficiency [19]. As an addition to this literature, the current study will 
mainly focus on a technological level, where the learning effects are attributed to the end 
product instead of the firm. Behavioural and psychological effects will therefore also not be 
discussed. The review was performed by a Web of Science search on journal papers, reviews 
and conference proceedings in the period from January 2014 to March 2019 including a 
search term on economic or environmental technology assessment and a search term on 
learning effects. These searching terms resulted in over 200 articles, from which a further 
selection was made.  
 
The resulting selection excluded theoretical papers that only used fictive numbers to simulate 
their models. Other sorts of excluded papers were: papers investigating learning effects during 
surgeries, as these learning effects do not fit with prospective technology assessment; 
technological forecasting studies focusing solemnly on technological predictions without 
calculating learning effects; studies only assessing scale advantages; studies assessing new 
technologies on an earlier stage than FOAK, as these cannot be compared with mature 
technologies without additional scale-up measures [20] and; studies that do not focus on a 
specific technology or product. Consequently, papers focussing on production and operations 
management of individual firms were not included. Another consequence of this last criterion 
is the exclusion of a specific form of learning effects, designated as ‘environmental learning 
curves’. Environmental learning curves relate the decrease of environmental pollution to the 
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increase in GDP or to specific learning effects [21]. These learning effects are industry-wide 
and therefore not related to a specific technology or product.  
 
After this second selection 105 papers remained. These papers included 54 prospective 
assessments using learning effects to forecast technology development and 25 retrospective 
assessment calculating learning effects to explain historical trends. The other 26 studies 
included both a prospective and retrospective studies. This way, 80 prospective studies and 51 
retrospective studies were assessed.  
 
In the reviewed studies, the use of specific terminology such as learning rates and learning-
by-doing was assessed. The specific learning rates were further assessed in detail, both 
including the learning rates as calculated by the retrospective studies as well as the original 
learning rates as used in the prospective studies. The following aspects were defined: the 
original data source of the underlying dataset, the years of the original data, the original case 
and original x- and y-axis, the specified location and the sort of learning effect. For the 
retrospective and prospective studies, it was assessed whether the learning effect was only 
considered for the end product or also for the underlying components. In addition, the 
functional form of the mathematical specification and the different dependent and 
independent variables were identified. For the prospective studies, the source of the learning 
effects, the goal of the prospective study, the year of the forecasted value and the inclusion of 
scale effects were reviewed in addition.  
 
The quality of the learning rates was assessed based on three categories, being the number of 
underlying data points, the number of doublings in the range of the underlying data points and 
the coefficient of determination (R²). The number of doublings and the underlying data points 
were often not mentioned in the reviewed studies, however, for some studies, sufficient 
information on the used data set was provided to calculate these values. Based on the 444 
learning rates that were calculated and used in the reviewed studies, different quality 
categories were identified. These quality categories are provided in Table 2. Quality class A 
corresponds to the criteria used by the top 25% of the reviewed learning rates. Quality class B 
is used for relatively reliable learning rates that do not belong to this top category. Learning 
rates with quality class C are rough estimates, which are preferably not used by other studies. 
Quality class D is assigned to learning rates for which information on one of the quality class 
criteria is missing. If the different criteria belong to different classes, the lowest class is 
assigned to the learning rate. 
 

Table 2. Quality classes for the reviewed learning rates 
Class A B C D    
R² >=0.91 0.5-0.91 <0.50 Not available    
Data points >=23 3-23 <3 Not available    
Doublings >=7.7 3-7.7 <3 Not available    

3.0 Results 

3.1 The definition of learning effects 

Fig. 2 provides an overview of the terminology in the reviewed studies. Almost half of the 
reviewed studies only mentioned a general learning effect. Of the other half, all studies 
mentioned a learning-by-doing effect, except for one that only mentioned learning-by-
searching. Some studies, such as Kavlak, McNerney [22] looked at the impact of R&D, but 
did not specifically mention the term learning-by-(re)search(ing). Most reviewed studies 
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mentioned the learning rate and learning curve. The terms progress rate and experience curve 
were mentioned by respectively 40% and 44% of the studies. 
 

 
Fig. 2. Nomenclature learning parameter; (A) Percentage of reviewed studies mentioning the 

different learning effects; (B) Percentage of reviewed studies mentioning learning rate, 
progress rate, learning curve and experience curve  

 

3.2 The calculation of learning rates 

Table 3 provides an overview of the reviewed retrospective studies. The 51 studies that 
included a retrospective study mostly used a regression analysis with one independent and 
one dependent variable. The dependent variable was usually the investment cost, for example 
the module cost of a photovoltaic (PV) cell [22]. This is considered as a component cost as it 
partially defines the costs of the end product, which is electricity in this example. A focus on 
the end product was used by 21 studies, while 28 studies only assessed the cost of the 
components. The other studies focussed on improvements on a technological or 
environmental level.  
 
The independent variable was for 28 studies the cumulative capacity and for 21 studies the 
cumulative production. The difference between the use of cumulative capacity and cumulative 
production is that cumulative production also includes the operational phase, while 
cumulative capacity does not [18]. For some energy technologies, the use of cumulative 
capacity can be useful to study the learning effects during for example the manufacturing of a 
wind turbine or a solar panel. Fifteen studies also included other independent variables to 
investigate their effect on the cost variation. A lot of different independent variables can be 
included, as this depends on the specific objective of the retrospective study. For example, 
besides the cumulative production of solar cells, Gan and Li [23] included three other 
independent variables, being silicon prices, a variable on the imbalance between supply and 
demand and a variable on the influence of China in the global solar panel market. Only for the 
prices of silicon, empirical evidence was found to prove the relation of this variable with the 
cost decline. Kavlak, McNerney [22] aimed to assess a broad range of underlying factors 
instead of only a general learning effect. They distinguished between low-level and high-level 
mechanisms of cost reduction. Low-level mechanisms are defined as individual variations in 
the parameters of the cost model, such as a yield improvement of a production process. These 
low-level mechanisms can be attributed to high-level mechanisms, such as learning-by-doing, 
learning-by-searching and scale economy effects, where the costs decrease with an increasing 
output. Similar work has been performed by Pillai, concluding that the cost reduction of PV is 
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more related to input price decrease, increased efficiency, transfer of the production to China 
and industry investment than to the cumulative capacity [24]. Williams, Hittinger [25] 
included wind quality and the cumulative fluctuation of material prices (e.g. steel prices) and 
currency movements as independent variables. They also advocated the use of energy cost 
and cumulative production instead of capital cost and cumulative capacity as a better 
correlation for these variables was obtained. 
 
Almost all studies used literature, database or industrial data to calculate the learning effect. 
These three data sources were aggregated in one data source category as it was not possible 
for all reviewed studies to separate them. A study that uses a different data source is the study 
of Esmaieli and Ahmadian [26] who used simulated results to define the cost reduction due to 
accumulation of the R&D budget (learning-by-searching). The learning rate quality was 
classified based on the previously determined quality classes (Table 2). Due to lack of 
information on the R², number of data points or number of doublings in the data set, a quality 
class D was assigned to learning rates in 35 studies. For 13 studies, a quality class B was 
assigned. Only three studies had a quality class A for their learning rates. Most studies used 
the power functional form, however, two studies used a different functional formulation.  
 

Table 3. Review of the retrospective studies: how are learning effects calculated? 
Technologya Dep.b  Ind.c Datad Qualitye Fuf Refg 
  LBD LBS Sc Pr Ot     
Solar energy           
PV module  Cc Exp x x x x DLI D O [22] 
PV module  Cc CP  x x  DLI B P [27] 
PV module  Cc CC     DLI D P [28] 
PV module  Cc CC     DLI D P [29] 
PV module Cc CP  x x x DLI D P [24] 
PV module Cc CP   x x DLI D P [23] 
PV module  Ci CC     DLI D P [30] 
PV module/energy  Cc/Pi CC     DLI D P [31] 
PV module/system  Cc CP     DLI D P [32] 
PV system  Cc CC     DLI B P [33] 
PV module + BOS  Cc CC     DLI D P [34] 
PV soft deployment  Cc CC/#      DLI D P [35] 
PV installation  Cc CC     DLI D P [36] 
PV system  Pi CC     DLI D P [4] 
PV power  Pc CC     DLI D P [37] 
PV power  Pc CP x    DLI A P [38] 
CSP  Pc CC     DLI D P [39] 
PV module/BOS+CSP Cc CC     DLI D P [40] 
Wind energy           
Wind power onshore  Cc R&D     Sim D P [26] 
Wind power  Cc CC x x  x DLI D P [41] 
Wind power  Pc CP   x x DLI A P [25] 
Wind power  Cc CC x    DLI D P [42] 
Wind energy  Cc CC x  x x DLI C P [43] 
Biomass energy and fuel         
Biomass DCP  Pc CC     x DLI B-C P [44] 
Biomass DCP  Cc/Pc CC  x x x DLI D P [45] 
Biomass power  Cc CC     DLI D P [46] 
Biodiesel  Pc CP     DLI D P [47] 
Sugarcane ethanol  Pc CP  x x x DLI B P [48] 
Hydro           
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Small hydropower  Cc CC     DLI B P [49] 
Energy: general           
Energy technologies  Pc CC     DLI D P [50] 
Renewable energy  Pc CC     DLI D P [51] 
Renewable energy  Cc CC     DLI D P [52] 
Low-carbon energy  Ci CC      DLI D P [53] 
Power sector  Cc CC     DLI D P [54] 
Electricity and storage  Pc CC     DLI D P [55] 
Energy-related  Pc/Cc CP     DLI D P [15] 
Fuel cell+battery           
CHP and SOFC  Cc CP     DLI B-C P [56] 
Lead-acid batteries  Cc CP     DLI B-C P [57] 
Li-ion batteries EV  Pc CC     DLI B P [58] 
Li-ion batteries  Pc CP     DLI B P [59] 
Other           
Petroleum E&P  Pc CP    x DLI B P [60] 
Desalination  Cc CC     DLI B P [61] 
Shale gas and oil  Pc CP     DLI C P [62] 
Aircrafts (3 fighters) Pc CP  x x  DLI A-B P [63] 
Lamps, water heater Pc CP     DLI D P [64] 
Torpedo Pc CP     DLI D P [65] 
Software  Cc CP     DLI D P [66] 
Automobile  Pc CP    x DLI D O [67] 
Hydrogen vehicle  Cc CP     DLI D P [68] 
Construction bridges Pc CP     DLI D P [69] 
Pipeline compressor  Cc CC     DLI B, D P [70] 
Legend: 
a Technology. BOS : balance of system; gen.: generation; CSP: concentrated solar power; Biomass DCP: biomass direct 
combustion power generation; CHP and SOFC: Combined heat and power and solid oxide fuel cell; Petroleum E&P: 
petroleum exploration and production; EV: electric vehicles.  
b Dep.: Dependent variable: variable on the y-axis of the learning curve. Pc: end product cost; Cc: component cost; Pi: end 
product environmental impact; Ci: component environmental impact.  
c Ind.: Independent variable. CC: cumulative capacity; CP: cumulative production; LBD: learning-by-doing; LBS: learning-
by-searching; Sc : scale; Pr: exogenous price fluctuations; Ot: other factors, including time, geographical considerations, 
market characteristics, supply and demand considerations, firm characteristics, environmental factors, policy incentives, 
output factors, other production cost and substitution ratios; Exp: experience; R&D: research and development; #: units of 
production.  
d Data. DLI: databases, literature, industry, Sim: simulations;  
e Quality: Quality criteria class as specified in Table 2.  
f Fu: Functional form. P: power function; O: other functional form.  
g Ref.: Reference. 

 
An overview of the 444 learning rates, both including the learning rates as used in the 
prospective studies as well as the learning rates obtained by the retrospective studies, is 
provided in Table A.1 in the Appendix. To enable comparison between the learning rates, 
only the learning rates that follow the equations (1) to (5) have been included. 
 

Fig. 3 gives an overview of the 444 learning rates with their minimum and maximum value. 
The lowest learning rate, equalling -11%, was found for wind power in Taiwan by Trappey, 
Trappey [71] and included in the review of Rubin, Azevedo [72]. This negative learning rate 
was explained by the wind power market in Taiwan, which is still in development. In 
addition, the power generation market is an oligopoly, where learning effects cannot be 
measured in a correct way [71]. As the geographical circumstances are responsible for the 
negative learning rate, this may be an inappropriate learning rate to use in other countries or 
on a global level. The same learning rate was found for capital costs for NGCC, based on data 
from 1981-1991 and was also included in the review of Rubin, Azevedo [72]. Also this 
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learning rate was explained by oligopolistic reasons. Other technologies that included 
negative learning rates were for example pumped hydropower and lead-acid modules. 
However, these were statistically not significantly different from zero [55]. A negative 
learning rate was also found by Bergesen and Suh [73] for the energy conversion efficiency of 
CdTe PV modules. However, for this technical efficiency, a higher efficiency is better than a 
lower efficiency. A negative learning rate, signifying that the parameter increases over time, 
therefore indicates a positive effect for this parameter. The highest learning rate, 78%, was 
found for compact fluorescent lighting, for the period 1999-2005 for North America. 
However, no explanation was provided for this high value.  
 
An R² for their learning rate was provided by 23% of the total learning rates. The median 
value for this R² was 0.73. Of these studies that provided a R², 25% had an R² of 0.91 and 
higher and the highest 10% had an R² of above 0.97. For 46% of the learning rates, the 
number of points under the regression curve was given. Sometimes these points averaged 
multiple values. The median number of points was 9. Of the studies for which the number of 
points was provided, 25% used at least 23 points, and 10% used more than 95 points. Only for 
41% of the learning rates, the number of doublings in the underlying dataset could be 
identified. The median value for these learning rates was 6 doublings, where the top 25% had 
more than 7.7 doublings and the top 10% of the learning rates had more than 11.3 doublings. 
 
Of all the learning rates, 61% were calculated for energy-producing technologies such as 
photovoltaics. Also, for energy storage multiple learning rates have been obtained. A third 
major category was carbon capture technology.  

 

 
Fig. 3. Overview of the 444 learning rates in the reviewed papers, categorized according to 
sort of technology and technological (f.e. material requirement), economic (f.e. production 

cost) or environmental improvement (f.e. Global Warming Potential) 
 
A study by Williams, Hittinger [25] found that differences in model specifications (different 
axes) and the temporal and geographical scope of the underlying datasets explained a large 
part of the variation in learning rates. Of all the learning rates, 45% was defined on a country 
level, 17% was defined on a global level and 35% did not specify the geographical scope. 
Also regional or city-based specifications were found. For 60% of the learning rates, the 
temporal scope was provided. A cost reduction was assumed by 84% of the learning rates, 
15% analysed the impact on an environmental indicator and 1% looked at the technological 
performance.  
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3.3 The use of learning effects 

Table 4 gives an overview of how the learning rates are used by the 80 prospective studies. 
The main included technologies were different sorts of renewable energy production. The 
learning effects on carbon capture technologies, focussing in general on the entire energy 
production plant, have also been investigated by multiple studies. Of all the prospective 
studies, 27 calculated their learning rates themselves. Thirty-four studies used a literature 
value, the other studies used either an estimate, a rule-of-thumb, a learning rate from a 
different technology or an unspecified source. There was no prospective study that used a 
learning rate with quality class A. Learning rates with quality class B were used by 19 studies. 
Quality class C was used by 6 studies. However, 70 of the 80 prospective studies used 
learning rates with quality class D, which means information on the R², number of data points 
or number of doublings in the dataset was missing. 
 
Most studies used a one-factor learning curve. The inclusion of scale effects varies largely, 
sometimes it is part of the learning rate and sometimes it is a separate effect. The predictions 
cover time periods between 2016 and 2100. Fifty-nine studies used the learning to predict the 
expected cost of a component of the total product price. Two studies used the learning rate to 
predict a change in the environmental impact. Cumulative capacity was used by 46 studies 
where cumulative production was used by 22 studies. Most studies did not incorporate other 
cost reduction factors. An exception was the study by Gan and Li [23], who assumed silicon 
prices to be constant and used projected oil prices till 2035 for their predictions.  
 
The reviewed studies aimed for a forecast of the future cost of the technology for different 
methodologies. The main applications of the use of learning effects are the provision of future 
cost estimates and broader studies investigating trends in for example the energy market. 
Three studies performed an environmental impact analysis, being life cycle analysis (LCA) or 
an input-output analysis. One study assessed the future trend in energy consumption. A 
national learning rate was used by 38 studies and 23 studies used a global learning rate. The 
power-law equations of (1)-(5) were used by 68 studies to specify the learning effect. A linear 
relation was used by 6 studies.  
 

Table 4. Use of learning effects in technology assessments 
Technologya LRb Q.c Yrd Dep.e Ind.f Meg Sch Fui Refj 

Solar energy          
PV system  C D 2025 Pi CC LCA S P [4] 
PV module  C B 2020 Cc CP CA, Re S P [27] 
PV module+ BOS  C D 2020 Cc CC CA, Re S P [34] 
CSP plant  L D 2050 Cc CC CA u P [74] 
PV module  C D 2030 Cc CC CA u P [28] 
CSP  C D 2050 Pc CC CA S P [39] 
PV power generation C D 2050 Pc CC COM I P [37] 
CSP  L D u Pc CC CA S P [75] 
PV system  C B 2016 Cc CC SDM u P [33] 
CdTe PV module  L/Es D 2030 Cp/c CP LCA, CA I P [73] 
PV module  C D 2020 Ci CC EnA u P [30] 
PV/BOS/CSP  C B,D 2030 Cc CC CA u P [40] 
PV module  C D 2030 Cc CC CA u P [29] 
PV power generation RoT D u Pc CC CA I P [76] 
PV power installation L D 2026 Cc CC ABM u P [77] 
CSP and PV installation L D 2050 Cc CC CA I P [78] 
PV module  C B 2035 Cc CP CA S P [23] 
PV module/system C D 2030 Cc CP CA I P [32] 
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Wind energy           
Offshore wind  L D 2040 Pc CC GEM u u [79] 
Wind energy  C D 2050 Pc CC Survey u P [80] 
Wind farm  L D u Cc # COM S P [81] 
Hydro energy           
Wave energy  L D 2030 Cc CC CA I P [82] 
Marine energy  RoT D 2025 Pc u CA I u [83] 
Marine energy  E D 2050 Cc CC CA I P [84] 
Energy: general           
Renewable energy L B 2050 Cc CP  GEM u P [85] 
Energy generation technologies u D 2050 u u PEM u P [86] 
Power sector  C D 2050 Cc CC PEM I P [54] 
Wind + solar energy  L D u Cc CC ROA u o [87] 
Renewable energy and batteries  u D 2050 Cc/Pc CP CA u P [88] 
Electricity and storage C D 2040 Pc CC CA I P [55] 
Energy production  L B-D 2050 Cc CC COM u P [89] 
Energy technologies  C D 2050 Cc CC Re I P [42] 
Renewable energy L D 2021 Cc CC CA u P [90] 
Power systems  L D 20 y Cc CC COM u P [91] 
Energy technologies  C D 2040 Pc CC COM I P [50] 
Renewable energy  L D 2100 Pc CP COM I P [92] 
Renewable energy C D 2020 Pc CC PA S P [51] 
Renewable energy L D 2030 Pc CP CBA u P [93] 
Renewable fuels  L B 2050 Cc CC CA S P [94] 
Low-carbon energy technology L D 2050 Cc CC PEM u P [95] 
Low-carbon energy technology C D 2040 Ci CC  MRIO u P [53] 
Renewable energy C D 2020 Cc CC COM u P [52] 
Bioenergy and biofuel           
Biofuel conversion L D u Pc CP PEM S P [17] 
Biofuels  RoT D 2050 Cc CC CA E P [96] 
Cellulosic ethanol  RoT D 2020 Pc CP  COM u P [97] 
Biogas+ biofuel  OT B 2042 Cc CP CA S P [98] 
Biomass power  C D 2020 Cc CC Re u P [46] 
Biomass jetfuel  RoT D 40 y Cc CP CA S P [99] 
Biorefineries  RoT D 2022 Cc CC CA S P [100] 
Biofuels  u D 2020 Cc Y CA S Ln [101] 
Biofuels  E D 2020 Cc Y CA S Ln [102] 
Chemical           
H2 production  L B-D 2060 Cc CC CA u P [103] 
Power-to-gas  L D 2050 Cc CC CA S P [104] 
Hydrogen for energy u D 2050 Cc CC CA S P [105] 
Biohydrogen  OT B 2042 Cc CP CA S P [106] 
Carbon Capture           
CCS  L D 40 y Cc u IDM I u [107] 
CCR plants  L D u Cc Y IDM u Ln [108] 
CCS  L B,D 2050 Cc CC CA u P [109] 
CCS  u D 2100 Cc CC PA u P [110] 
NGCC L D u Cc # CA S P [111] 
CCS  L B-D u Cc CC CA u P [112] 
Coal with CCU L B-D n/a Cc CP CA S P [113] 
Coal-to-Liquid/CCS L B-D u Cc CP CA S P [114] 
Fuel cell+battery           
H2 fuel cell vehicles  L B,D 2050 Cc CP LCC S P [115] 
Batteries for EV  L D 2030 Cc C CA I o [116] 
Lead-acid batteries C B-C u Cc CP CA u P [57] 
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Li-ion batteries  C B 20 y Pc CC PA I P [59] 
Other           
H2 vehicle  C D 2050 Cc CP PEM u P [68] 
Biobased plastic  E D 2030 Cc M SDM I Ln [117] 
UHVPT  L D 2020 Cc # COM u P [118] 
Desalination  C B 2050 Cc CC Re I P [61] 
Toilet paper to energy L B,D u Cc CC CA S P [119] 
Iron, steel sector  L D 2050 Cc CP COM u P [120] 
Urban low-carbon measures  u D 2050 u Y CA u Ln [121] 
Biobased propylene L D u Cc CC CA u P [122] 
Lamps, solar water heater C D 40 y Pc CP PA u Ln [64] 
Software  C D u Cc CP CA u P [66] 
Electric vehicles  u D 2050 Cc CC CA u u [123] 
HCPV  L D 2020 Cc CC CA u P [124] 
Aircraft  E D n/a Cc CP CA u P [125] 
Legend 
a Technology. BOS: balance of system; CSP: concentrated solar power; CCS: carbon capture and storage; CCR: carbon 
capture ready; NGCC: natural gas carbon capture; Coal with CCU; coal with carbon capture and usage; Coal-to-L with/o 
CCS: coal to liquid with or without carbon capture and storage; EV: electric vehicles; UHVPT: Ultra high voltage power 
transmission; HCPV: high concentrated photovoltaic power plant.  
b LR: Learning rate. C: calculated; L: literature; Es: estimate; RoT: rule-of-thumb; OT: other technologies; u: unspecified.  
c Q.: Quality class, see Table 2.  
d Year = Year of the forecasted value. u: unspecified; y: years; n/a: not applicable.  
e Dep.: Dependent variable: variable on the y-axis of the learning curve. Pc: end product cost; Cc: component cost; Cp: 
component performance; Pi: end product environmental impact; Ci: component environmental impact.  
f Ind.: Independent variable: variable on the x-axis of the learning curve. C: capacity; #: units of production; Y: years; M: 
months; u: unspecified; uc: unclear; n/a: not applicable.  
g Me: Methodology. CA: cost analysis; Re: regression; com: cost optimization model; PA: policy analysis; ROA: real options 
analysis; PEM: partial equilibrium model; GEM: general equilibrium model; IDM: investment decision model; Survey: 
expert elicitation survey; LCA: life cycle analysis; EnA: energy analysis; CBM: cost breakdown model; MRIO: multi-
regional input output model; ABM: agent-based modelling; CBA: cost-benefit analysis.  
h Sc = Scale. I: included in the learning effect; E: specifically excluded from the learning effect; S: separately assessed; u: 
unspecified. 
i Fu = Functional form of the learning curve. P: power function; Ln: linear function; o: other function.  
j Ref = Reference. 

 
 

4.0 Discussion 

Based on the reviewed studies, guidelines and recommendations are formulated on what kind 
of learning effects to include, how to calculate these learning effects and how to use them in 
prospective technology assessments. An example of a prospective technology assessment to 
calculate the future cost of solar panel recycling is used to illustrate the recommendations.  

4.1 Recommendation 1: Combine component and end product level 

Learning rates can be used both on the overall end product level as well as on the level of 
underlying components. A disadvantage of learning effects on the end product level, is that 
the use of price data has more severe effects than on a component level. When using the 
component level, prices are only used for the underlying components and not for the overall 
technology. In the reviewed studies, price data are often used instead of cost data, as price 
data are more readily available. However, price data may not follow the same ‘path’ as cost 
data. Initially, the price of a new product might remain constant. Only after a shake-out phase, 
where the price reduces drastically, the price will follow the same trend as the costs [11]. The 
component-based approach also has a disadvantage compared to the end product approach. 
Nemet [126] found that when only the improvements in the underlying components were 
included, a large fraction of the overall end product learning effect remained unexplained. 
Besides the learning effect, other factors such as scale and input price variations influence the 
prospective performance of a new technology. If a component-based approach is followed, 
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the forecasted value of these related effects needs to be included separately from the learning 
effects. However, when the learning effects are included following an end product approach, 
these related effects will all be included in the forecasted economic cost or environmental 
impact. As both approaches have their advantages, a combined approach, including both the 
end product and component-based learning effects, is proposed.  
 
In the example of solar panel recycling, following the end level approach, historical data on 
the total recycling costs are used to estimate the historical cost reduction and to extrapolate 
this to a future value. Following the component level approach, the recycling process is 
divided into different subprocesses, such as the collection and the separation of the modules. 
Historical data on these different processes is used to calculate the total cost reduction of 
these different process components and to extrapolate this into the future. The sum of the 
extrapolated process components costs gives then the prospective cost of solar panel recycling 
and can be compared with the estimated cost from the first approach. 
 

4.2 Recommendation 2: Combine technical and economic/environmental dimension 

In the first recommendation, the combined use of an end product level and a component level 
learning rate was recommended. On a component level, also two approaches are available. In 
a first approach, the learning rate is calculated from an economic/environmental perspective, 
where the historical economic cost or environmental impact for the different cost or impact 
components is assessed. Following a second approach, the learning effect on the underlying 
technical performance is calculated, using bottom-up modelling. This approach allows one to 
use similar system boundaries and assumptions to forecast both the economic as well as the 
environmental potential of the emerging technology. This second approach has also been 
advocated by Nadeau, Kar [127], referring to it as dynamic process-based cost modelling, and 
arguing that this approach enabled the identification of the main cost learning drivers that 
could differ from one technology to the next. The learning effect can therefore be included on 
the level of technical performance, economic costs or environmental impacts, where the 
learning effects on the technical performance will influence the performance in all three 
dimensions. This concept is illustrated in Fig. 4. 
 
Besides the component level and the end product level which occur in the foreground, 
learning effects can also occur further along the value chain, in upstream or downstream 
processes in the background [73]. For example, a learning effect in a waste treatment process 
can lower the downstream environmental impact of this waste product. Modelling all the 
learning effects in these background processes on the level of their technical performances 
would imply an unrealistic modelling effort. Therefore, the learning effects on these 
background processes are recommended to be included on the level of the economic or 
environmental performance, for example as a learning rate in the cost of the input. The bold 
parameters in Fig. 4 illustrate where the main learning effects are modelled for the 
component-based approach; being on the technical process level and in the inputs and outputs 
for technical, economic or environmental performance.  
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Fig. 4. Learning rates at different levels and dimensions (partially based on Bergesen and Suh 
[73]) 
 
 
Using the example of solar panel recycling, the component costs are assessed in further detail. 
Instead of using the total component costs, the evolution in the different underlying 
parameters is assessed. For example, more efficient logistics may reduce the transport costs or 
a higher metal recovery efficiency may increase the profits; both lead to a smaller net 
recycling cost. If these parameter alterations are extrapolated, a future total net recycling cost 
can be calculated and compared with the value from the end product costs, where only the 
alteration in the total cost was assessed and extrapolated.  

4.3 Recommendation 3: Combine extrapolated and projected values 

Economic studies often extrapolate learning rates to incorporate technological evolution. 
Environmental studies, in general, make use of projected or historic values without specifying 
a learning rate. For example, Pehnt [128] provided future environmental impact estimates on 
renewable energy technologies by means of projected efficiency improvements. Pawelzik and 
Zhang [129] introduced a Life Cycle Assessment (LCA) with technological advances over 
time, which uses industry estimates for multiple technological parameters for different years. 
In the technology-evolution LCA of Mendivil, Fischer [130], the environmental impact for 
ammonia production from 1950 to 2000 was estimated, based on technological improvements 
and environmental regulations. A learning rate could have been calculated from these results, 
however, this was not included.  
 
The use of projected values can also be found in economic studies. A floor cost, as for 
example used by Ruffini and Wei [115], is a minimum achievable cost, specified by the point 
on the learning curve where the costs cease to decrease with experience, which is the NOAK 
point. The use of a floor cost prevents that the learning effect pushes the costs to an unrealistic 
low level. Also technological forecasts or roadmaps on future technological performance can 
be used to provide projected values for future costs [131]. In these studies, the forecasted 
values are usually based on expert estimates. These expert estimates can be obtained by expert 
elicitation studies, as performed by Wiser, Jenni [80] and Few, Schmidt [132]. Expert 
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estimates can be useful to estimate a maximum achievable value (MAV), similar to the 
concept of floor cost, and other projected values. 
 
The recommended learning effect is illustrated in Fig. 5 and combines both strategies to 
define the learning effects: 1) extrapolation of the learning curve; 2) estimation of future 
values, by using the MAV or other projected values.  
 
In the example of solar panel recycling, the extrapolated values from both the component-
based approach and end product approach are supplemented with a projected value. For the 
end product approach, this means that an estimate on a potential cost estimate in the future is 
made, for example based on expert opinions. In the component-based approach, estimates for 
all parameters are made. For example, instead of extrapolating the historical recovery 
efficiency evolution, an estimate on what this recovery efficiency could be in the future is 
included. Based on all these estimated future values, a total projected recycling cost for the 
component-based method can be obtained as well.  
 

 
Fig. 5. Two different ways to define learning effects, (1) through extrapolation of the learning 

curve; (2) through projected values 

4.4 Recommendation 4: Combine learning-by-doing and learning-by-searching 

In the reviewed studies, learning effects were in general defined as a general learning rate or 
as a learning-by-doing effect. Although multiple studies mentioned the impact of R&D 
through learning-by-searching, it was only included in five studies. Lin and He [45] 
investigated the correlation between learning-by-doing and learning-by-searching. The 
conclusion was made that learning-by-doing and learning-by-searching could not really be 
separated. Finding historic data to calculate learning-by-searching rates is a challenge [72]. 
However, finding future values to extrapolate this learning effect is even more challenging – 
if not possible at all - as illustrated by the fact that none of the reviewed prospective studies 
uses independent variables to include learning-by-searching effects. Unless reliable data is 
available to calculate historic learning-by-searching rates and to extrapolate them for future 
values, it is therefore recommended to use a learning-by-doing rate in this case.  
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However, when following the second approach from recommendation 3, namely the use of 
projected values, learning-by-searching can have a large added value. Patent data and 
published experimental data may provide insights on what the projected value of a NOAK 
technology can be. Therefore, it is recommended to use learning-by-doing rates when the 
learning curve is extrapolated and to combine both learning-by-doing and learning-by-
searching considerations when estimating projected values. As both approaches can have a 
different level of uncertainty, it is important to take both into account when calculating the 
uncertainty range on the results. 
 
In the example of solar panel recycling, the extrapolated values will follow a learning-by-
doing approach as no reliable data is available on independent variables that could capture the 
learning-by-searching effect. For the projected values, the improvement in different 
parameters is not only based on learning-by-doing but also on learning-by-searching. Patents 
and scientific literature can be consulted to obtain an overview of the research and 
development for recycling processes and estimated values for their expected costs. Based on 
this information, more accurate projected values can be used, both on a component level as 
well as on an end product level. 
 

4.5 Recommendation 5: Tier-based method with quality criteria 

To calculate the learning effect, a tier-based approach is proposed, containing different 
procedures to calculate the learning curve (Fig. 6). The appropriate procedure depends on the 
available data, where the procedure from a higher tier is always preferred. In the first tier, the 
learning curve is estimated using specific data for the assessed technology for a specific 
location for different cumulative production levels, leading to a regression with a good R², 
number of data points and spread of data points. The quality classes as defined in Table 2 can 
be used for this purpose.  
 
In the next tier, no learning rate is calculated but a literature value of the learning rate of the 
technology is used. This literature learning rate should originate from the same technology 
with a similar geographical and temporal scope. The same quality and transparency classes 
are used to select an appropriate learning rate. If no appropriate learning rate is found, a 
learning rate for a similar technology can be used, again based on the classes. If in one of 
these first tiers a learning rate is obtained, the projected values are calculated and discussed 
with experts. This approach follows recommendation 3 to use both extrapolated learning rates 
and projected values. If also no learning rate for a similar technology is available, the 
projected values are directly used to calculate the learning rate. Preferably, this is also based 
on historical information on the evolution of the parameters. The obtained learning rate can be 
checked with the range of reviewed learning rates as provided in Table A.1. in the Appendix. 
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Fig. 6. Tier-based approach to calculate learning effects 

 
If no projected values are available, rules-of-thumb can be used as for example discussed by 
Jones [133], [134] and by Hong et al [38], based on the technological maturity categories of 
Jamasb [10]. In these categories, emerging technologies are at the earliest stage of maturity. In 
this stage, a technology can in general not compete yet with conventional technologies and 
still endures many market constraints. Therefore, the learning potential remains low. 
However, when this emerging technology becomes more mature, it will become an evolving 
technology where much higher learning effects are observed [10]. An overview of these rules-
of-thumb is provided in Table 5. These rules-of-thumb cover the reduction in labour hours or 
costs per production unit. No rules-of-thumb were found for learning effects on the 
environmental impact. When using rules-of-thumb, it is crucial to include uncertainty 
considerations and to consider the underlying learning drivers, which may vary widely 
between different industrial sectors [133]. Typical learning drivers to reduce labour hours on 
an operational level were identified by Delionback [134], including improved methods or 
method innovations; process improvement or time reduction; improvements in design for 
increased manufacturability; debugging of engineering data; rate of production and; 
introduction of a machine to replace hand operations. In general, learning effects are often 
associated with small, mass-produced systems, which can be found in a broad range of sectors 
[100]. This can be explained by the potential level of standardisation that can be achieved. 
Large-scale technologies have a lower potential for standardisation and their installation and 
construction depends in general on site-specific characteristics [18]. For more insights on 
these general learning drivers, the literature on learning effects on the operational level can be 
consulted [19, 135]. Rules-of-thumb for technologies within a specific sector can also be 
used. For example, Karali, Park [120, 136] provide general learning rates for energy-efficient 
technologies in the US iron and steel sector based on the level of market penetration of the 
specific technology. 
 

Table 5. Rules-of-thumb for learning rates, the dependent variable is hours per unit on the 
operational and industry level and cost per unit on the technology level [10, 38, 133, 134] 

Operational 

level 
Proportion 

manual/machine-based 
operations [%/%] 

Learning rate [%] 

Simple task 100/0 15 
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To calculate the learning rate as is required in the first tier, the underlying data needs to be 
harmonized. For example, cost data needs to be corrected for inflation and economies-of-
scale. For inflation correction, cost indices such as the Chemical Engineering Plant Cost 
Index can be used. To correct for economies-of-scale, the data needs to be defined on the 
same production scale, for example by use of the six-tenth rule. This rule is a rule-of-thumb to 
calculate the change in costs when the equipment capacity changes. In addition, volatile input 
prices can play a role. Although upstream learning effects can induce this, many other market 
mechanisms can have a large influence on the input price. For example, in the study of 
Schoots, Kramer [137], the cost data was corrected for inflation rates, exchange rates and 
economies-of-scale effects and the price curve of platinum was included in the model. The 
obtained learning curves vary in reliability, based on the adopted tier. Accordingly, a scoring 
matrix could be developed, similar to the Pedigree matrix in LCA [138], to assign a quality 
score or an uncertainty range to the learning effects.  
 
The five recommendations are summarized in Table 6. These recommendations can be 
considered as ideal and may not always be feasible to perform due to time, data or other 
limitations. However, care should be taken when trying to forecast the future as the level of 
uncertainty might be high. It is possible that combining the different approaches yields 
disparate results. In this case it is recommended to analyze the discrepancy in further detail. It 

 75/25 12.5 
 50/50 5 
 25/75 2.5 
 0/100 0 
Complex task 100/0 25 
 75/25 20 
 50/50 15 
 25/75 10 
 0/100 5 
Technology level Learning-by-doing 

rate [%] 
Learning-by-searching 

rate [%] 
Mature technology 
(e.g. pulverized fuel) 

Medium 
1.96-12.39 

Low 
1.25-6.03 

Reviving technology 
(e.g. combined heat and power) 

Very low 
0.23-0.65 

Medium  
8.9-20.6 

Evolving technology 
(e.g. waste to electricity) 

High 
13.1-41.5 

High 
36.7-43.7 

Emerging technology 
(e.g. offshore wind energy) 

Low 
1.0-2.2 

Low  
4.9-5.3 

Industry level Learning rate [%] 
Aerospace 15 
Shipbuilding 15-2 
Complex machine tools for new models 15-25 
Repetitive electronics manufacturing 5-10 
Repetitive machining punch-press operation 5-10 
Repetitive clerical operation 15-25 
Repetitive welding operations 10 
Construction operations 10-30 
Raw materials 4-7 
Purchased parts 12-15 
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may be explained by underestimating or overestimating the learning potential on the 
component level. However, it is also possible that a critical learning step on the component 
level is expected that would alter the historical trend observed on the end product level. In 
addition, also the quality of data used for both approaches can provide an explanation for 
differing results. If this analysis cannot provide an explanation for these differing learning 
rates, it is advised to use the results for both approaches to make different scenarios. This 
way, an uncertainty range on the results can be obtained.  
 
Table 6. Summary of the recommendations 

Recommendation  Approach 1 Approach 2 Approach 3 Approach 4 

1. Assessment level End product End product Component Component 
2. Learning dimension Economic/ 

environmental 
Economic/ 
environmental 

Technical + 
background 

Technical + 
background 

3. Future values Extrapolation Expert estimate Extrapolation Expert estimate 
4. Learning effect LBD LBD+LBS LBD LBD+LBS 
5. Data requirement Tier-based 

method 
Expert opinion, 
research data 

Tier-based 
method 

Expert opinion, 
research data 

Abbreviations = LBD = learning-by-doing; LBS: Learning-by-searching 

 

4.6 Integration of learning effects in prospective technology assessment 

The use of learning rates in prospective technology assessments is embedded in the overall 
structure of the assessment as illustrated in Fig. 7. The methodologies to assess the impact of 
a technology, such as LCA, techno-economic assessment or an integrated environmental 
techno-economic assessment, usually consist of the same general steps [139]. The first step 
defines the goal and scope and includes a market study, covering the definition of the 
production scale or functional unit, the identification of potential end product applications and 
the definition of the system boundaries. To enable the inclusion of learning effects, the 
specific learning effects under assessment need to be specified. Using the compound annual 
growth rate, the future cumulative production can be forecasted [94]. This step also includes a 
search for historical cost and environmental impact values, following the tier-based method of 
recommendation 5. This way, the learning rates on the end product level, following the first 
approach of recommendation 1 can be calculated.  
 
The second step of prospective technology assessment includes the characterization of the 
technology by means of mass and energy balances, which can lead to a life cycle inventory. A 
detailed analysis of the technological specifications and the different component 
characteristics is performed, including the learning effects, based on extrapolated learning 
rates and projected values.  
 
The third step of the prospective technology assessment is the impact assessment step, 
including an economic or environmental analysis or both. This step is based on the previous 
mass and energy balance and incorporates the learning effects of the technological 
components. For prospective technology assessments, it is important to ensure that there is no 
temporal mismatch between the foreground and the background processes [140]. A temporal 
mismatch occurs when for example the electricity price of 2010 is used to calculate a 
production cost in 2015. Besides market fluctuations, also changes in background systems 
such as the electricity mix need to be incorporated. Based on the mass and energy balance, the 
economic and environmental potential can be defined, both for historical values as well as for 
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future estimates, incorporating the learning rates on all parameters and alterations in external 
factors.  
 
In the last step of the prospective technology assessment, additional analyses such as a 
sensitivity analysis or an uncertainty analysis are added to interpret the results. The 
introduction of learning effects in prospective technology assessment introduces additional 
uncertainty, as the aim of the learning effect is to forecast a future trend. Most-likely, best-
case and worst-case values of the learning effects can be used to illustrate the effect on the 
output indicators. Data quality considerations, as introduced in the determination of the 
learning rates, can also be used in the uncertainty analysis. The method of Lafond, Bailey 
[141] can be used to provide a distributional forecast of the error rate of the estimated output 
indicators. However, this can only be used in learning rates from the first tiers, as the 
underlying data for the calculation of the learning rate is required.  
 

 
Fig. 7. Inclusion of learning rates in the four general steps of prospective technology 

assessment 
 
Care should be taken that learning effects are not used to double-count expected performance 
improvements. For example, if the labour requirement has been estimated for a mature 
technology, an additional decrease due to learning effects might be unrealistic.  

4.7 Potential applications 

Learning effects have been mainly used in energy-related technologies. However, also in 
other sectors emerging technologies exist that still need to follow their learning path. A 
particular field of interest are new technologies enhancing a circular economy. New recycling 
technologies or new concepts such as design-for-disassembly or product-service systems will 
still experience learning effects. An example of such a potential application is the solar panel 
recycling technology as used to illustrate the recommendations. However, although the 
concept of technological learning curves as explored in this study can be applied to specific 
technologies, other innovative measures such as new business models may require a different 
interpretation of the learning effect concept.  
 
In general, learning effects have been used to quantify the reduction in labour hours and costs 
of a new technology. This is also illustrated by the rules-of-thumb as provided by Table 5. 
The learning effects on the environmental impact of a technology have been included by a 
few studies, however, no rules-of-thumb have been identified yet. An interesting path for 
further research would be a harmonized economic and environmental assessment, both 
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including learning effects, to assess to what extent learning in the economic and 
environmental dimension are related and if the underlying learning drivers correspond. This 
way, also rules-of-thumb for the environmental impact may be deduced. 
 
There are multiple sectors where applications of learning effects in prospective technology 
assessment are relevant. A first major application can be found in research and development 
to forecast future technical, economic and environmental performance of a new technology. 
By investigating the underlying drivers of the learning rates, the parameters with the largest 
learning potential can be identified and further optimized. A second application of learning 
effects is on an investment level. Learning effects can provide additional information on the 
future potential of a technology at the moment of the investment decision. In addition, 
information on the expected learning effects of competing technologies can be interesting for 
investors. A third application is the use of learning effects by policy makers. By incorporating 
learning effects, future technology trends can be analysed and the impact of new policies can 
be modelled.  

5.0 Conclusion 

Learning effects have been used extensively in prospective technology assessments. However, 
their use is mostly limited to a few sectors such as energy production and storage 
technologies. Most of the learning curves focus on the investment costs to predict the learning 
path of an emerging technology. However, also the environmental impacts will reduce when 
the experience increases. The underlying factors that cause these learning effects are often not 
investigated. Based on an extensive literature review, guidelines are proposed. With these 
guidelines, learning effects can be estimated in a broader range of technology sectors. 
Moreover, the disadvantage of emerging technologies compared to conventional technologies, 
regarding to their higher economic costs and potentially higher environmental impacts, can be 
countered by providing reliable forecasts on their future potential. 

Acknowledgement 

The authors acknowledge the full financial support received from the Flemish administration 
via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). We would 
also like to thank the SDEWES conference for the best paper award which was granted to the 
current paper. The authors declare no competing financial interests. This publication contains 
the opinions of the authors, not that of the Flemish administration. The Flemish administration 
will not carry any liability with respect to the use that can be made of the produced data or 
conclusions. 



24 
 

References 

[1] NETL. Technology learning curve (FOAK to NOAK). Quality guidelines for energy system 
studies. 2013. p. 24. 
[2] Wright TP. Factors Affecting the Cost of Airplanes. Journal of the Aeronautical Sciences. 
1936;3:122-8. 
[3] Caduff M, Huijbregts MAJ, Althaus H-J, Koehler A, Hellweg S. Wind Power Electricity: 
The Bigger the Turbine, The Greener the Electricity? Environmental Science & Technology. 
2012;46:4725-33. 
[4] Stamford L, Azapagic A. Environmental impacts of photovoltaics: The effects of 
technological improvements and transfer of manufacturing from Europe to China. Energy 
Technology. 2018;6:1148-60. 
[5] Kramer GJ, Haigh M. No quick switch to low-carbon energy. Nature. 2009;462:568-9. 
[6] Moore GE. Cramming more components onto integrated circuits. Electronics. 1965;38:6. 
[7] Lundstrum M. Moore's law forever? Science. 2003;299:210-1. 
[8] Nagy B, Farmer JD, Bui QM, Trancik JE. Statistical basis for predicting technological 
progress. PLoS One. 2013;8:e52669. 
[9] Kouvaritakis N, Soria A, Isoard S. Modelling energy technology dynamics: methodology 
for adaptive expectations models with learning by doing and learning by searching. Int J Global 
Energy Issues. 2000;14:104-15. 
[10] Jamasb T. Technical change theory and learning curves: patterns of progress in electricity 
generation technologies. The Energy Journal. 2007;28:51-72. 
[11] Junginger HM, Van Sark WG, Faaij A. Technological learning in the energy sector: 
Edward Elgar Publishing Limited; 2010. 
[12] Sule DR. The Effect of Alternate Periods of Learning and Forgetting on Economic 
Manufacturing Quantity. A I I E Transactions. 1978;10:338-43. 
[13] Ferioli F, Schoots K, van der Zwaan BCC. Use and limitations of learning curves for 
energy technology policy: A component-learning hypothesis. Energy Policy. 2009;37:2525-35. 
[14] Yu CF, van Sark WGJHM, Alsema EA. Unraveling the photovoltaic technology learning 
curve by incorporation of input price changes and scale effects. Renewable and Sustainable 
Energy Reviews. 2011;15:324-37. 
[15] Wei M, Smith SJ, Sohn MD. Non-constant learning rates in retrospective experience curve 
analyses and their correlation to deployment programs. Energy Policy. 2017;107:356-69. 
[16] Merrow EW, Phillips KE, Myers CW. Understanding cost growth and performance 
shortfalls in pioneer process plants. 1981. p. 118. 
[17] Mustapha WF, Bolkesjø TF, Martinsen T, Trømborg E. Techno-economic comparison of 
promising biofuel conversion pathways in a Nordic context – Effects of feedstock costs and 
technology learning. Energy Conversion and Management. 2017;149:368-80. 
[18] Samadi S. The experience curve theory and its application in the field of electricity 
generation technologies – A literature review. Renewable and Sustainable Energy Reviews. 
2018;82:2346-64. 
[19] Glock CH, Grosse EH, Jaber MY, Smunt TL. Applications of learning curves in production 
and operations management: A systematic literature review. Computers & Industrial 
Engineering. 2019;131:422-41. 
[20] Piccinno F, Hischier R, Seeger S, Som C. From laboratory to industrial scale: a scale-up 
framework for chemical processes in life cycle assessment studies. J Clean Prod. 
2016;135:1085-97. 
[21] Wang W, Yu B, Yao X, Niu T, Zhang C. Can technological learning significantly reduce 
industrial air pollutants intensity in China?—Based on a multi-factor environmental learning 
curve. Journal of Cleaner Production. 2018;185:137-47. 



25 
 

[22] Kavlak G, McNerney J, Trancik JE. Evaluating the causes of cost reduction in photovoltaic 
modules. Energy Policy. 2018;123:700-10. 
[23] Gan PY, Li Z. Quantitative study on long term global solar photovoltaic market. 
Renewable and Sustainable Energy Reviews. 2015;46:88-99. 
[24] Pillai U. Drivers of cost reduction in solar photovoltaics. Energy Economics. 2015;50:286-
93. 
[25] Williams E, Hittinger E, Carvalho R, Williams R. Wind power costs expected to decrease 
due to technological progress. Energy Policy. 2017;106:427-35. 
[26] Esmaieli M, Ahmadian M. The effect of research and development incentive on wind 
power investment, a system dynamics approach. Renewable Energy. 2018;126:765-73. 
[27] Reichelstein S, Sahoo A. Relating Product Prices to Long-Run Marginal Cost: Evidence 
from Solar Photovoltaic Modules. Contemporary Accounting Research. 2018;35:1464-98. 
[28] Bhandari R. Riding though the experience curve for solar photovoltaics systems in 
Germany. 2018 7th International Energy and Sustainability Conference (IESC). 2018. 
[29] Finenko A, Soundararajan K. Flexible solar photovoltaic deployments for Singapore: an 
economic assessment. Int J Global Energy Issues. 2016;39:157-80. 
[30] Görig M, Breyer C. Energy learning curves of PV systems. Environmental Progress & 
Sustainable Energy. 2016;35:914-23. 
[31] Louwen A, van Sark WG, Faaij AP, Schropp RE. Re-assessment of net energy production 
and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat 
Commun. 2016;7:13728. 
[32] Dahlan NY, Afifi Jusoh M, Abdullah WNAW. Solar grid parity for Malaysia: Analysis 
using experience curves. IEEE 8th International Power Engineering and Optimization 
Conference (PEOCO2014). 2014:461-6. 
[33] Ye L-C, Rodrigues JFD, Lin HX. Analysis of feed-in tariff policies for solar photovoltaic 
in China 2011-2016. Applied Energy. 2017;203:496-505. 
[34] Yu ZJ, Carpenter III JV, Holman ZC. Techno-economic viability of silicon-based tandem 
photovoltaic modules in the United States. Nature Energy. 2018;3:747-53. 
[35] Strupeit L, Neij L. Cost dynamics in the deployment of photovoltaics: Insights from the 
German market for building-sited systems. Renewable and Sustainable Energy Reviews. 
2017;69:948-60. 
[36] Garzón Sampedro MR, Sanchez Gonzalez C. Spanish photovoltaic learning curve. 
International Journal of Low-Carbon Technologies. 2016;11:177-83. 
[37] Zou H, Du H, Brown MA, Mao G. Large-scale PV power generation in China: A grid 
parity and techno-economic analysis. Energy. 2017;134:256-68. 
[38] Hong S, Chung Y, Woo C. Scenario analysis for estimating the learning rate of 
photovoltaic power generation based on learning curve theory in South Korea. Energy. 
2015;79:80-9. 
[39] Craig OO, Brent A, Dinter F. The Current and Future Energy Economics of Concentrating 
Solar Power (Csp) in South Africa. South African Journal of Industrial Engineering. 2017;28. 
[40] Feldman D, Margolis R, Denholm P. Exploring the potential competitiveness of utility-
scale photovoltaics plus batteries with concentrating solar power, 2015-2030. NRL; 2016. p. 
38. 
[41] Hayashi D, Huenteler J, Lewis JI. Gone with the wind: A learning curve analysis of China's 
wind power industry. Energy Policy. 2018;120:38-51. 
[42] Xu Y, Yuan J, Wang J. Learning of power technologies in China: Staged dynamic two-
factor modeling and empirical evidence. Sustainability. 2017;9:14. 
[43] Grafström J, Lindman Å. Invention, innovation and diffusion in the European wind power 
sector. Technological Forecasting and Social Change. 2017;114:179-91. 



26 
 

[44] Wang T, Huang H, Yu C, Fang K, Zheng M. Understanding cost reduction of China's 
biomass direct combustion power generation - A study based on learning curve model. Journal 
of Cleaner Production. 2018;188:546-55. 
[45] Lin B, He J. Learning curves for harnessing biomass power: What could explain the 
reduction of its cost during the expansion of China? Renewable Energy. 2016;99:280-8. 
[46] Liu Z, Li X. Analysis of the investment cost of typical biomass power generation projects 
in China. Advances in Social Science, Education and Humanities Research (ASSEHR). 
2016;65:255-8. 
[47] Nogueira LAH, Capaz RS, Souza SP, Seabra JEA. Biodiesel program in Brazil: learning 
curve over ten years (2005-2015). Biofuels, Bioproducts and Biorefining. 2016;10:728-37. 
[48] Chen X, Nuñez HM, Xu B. Explaining the reductions in Brazilian sugarcane ethanol 
production costs: importance of technological change. GCB Bioenergy. 2015;7:468-78. 
[49] Arias-Gaviria J, van der Zwaan B, Kober T, Arango-Aramburo S. The prospects for Small 
Hydropower in Colombia. Renewable Energy. 2017;107:204-14. 
[50] Zou H, Du H, Broadstock DC, Guo J, Gong Y, Mao G. China's future energy mix and 
emissions reduction potential: a scenario analysis incorporating technological learning curves. 
Journal of Cleaner Production. 2016;112:1475-85. 
[51] Lin B, Li J. Analyzing cost of grid-connection of renewable energy development in China. 
Renewable and Sustainable Energy Reviews. 2015;50:1373-82. 
[52] Cong RG, Shen S. How to develop renewable power in China? A cost-effective 
perspective. ScientificWorldJournal. 2014;2014:946932. 
[53] Yuan R, Behrens P, Tukker A, Rodrigues JFD. Carbon overhead: The impact of the 
expansion in low-carbon electricity in China 2015-2040. Energy Policy. 2018;119:97-104. 
[54] Liu X, Du H, Brown MA, Zuo J, Zhang N, Rong Q, et al. Low-carbon technology diffusion 
in the decarbonization of the power sector: Policy implications. Energy Policy. 2018;116:344-
56. 
[55] Schmidt O, Hawkes A, Gambhir A, Staffell I. The future cost of electrical energy storage 
based on experience rates. Nature Energy. 2017;2. 
[56] Wei M, Smith SJ, Sohn MD. Experience curve development and cost reduction 
disaggregation for fuel cell markets in Japan and the US. Applied Energy. 2017;191:346-57. 
[57] Matteson S, Williams E. Residual learning rates in lead-acid batteries: Effects on emerging 
technologies. Energy Policy. 2015;85:71-9. 
[58] Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nature 
Climate Change. 2015;5:329-32. 
[59] Matteson S, Williams E. Learning dependent subsidies for lithium-ion electric vehicle 
batteries. Technological Forecasting and Social Change. 2015;92:322-31. 
[60] Kim J-H, Lee Y-G. Learning Curve, Change in Industrial Environment, and Dynamics of 
Production Activities in Unconventional Energy Resources. Sustainability. 2018;10. 
[61] Caldera U, Breyer C. Learning Curve for Seawater Reverse Osmosis Desalination Plants: 
Capital Cost Trend of the Past, Present, and Future. Water Resources Research. 2017;53:10523-
38. 
[62] Kim J-H, Lee Y-G. Analyzing the Learning Path of US Shale Players by Using the 
Learning Curve Method. Sustainability. 2017;9. 
[63] Bongers A. Learning and forgetting in the jet fighter aircraft industry. PLoS One. 
2017;12:e0185364. 
[64] Jridi O, Jridi M, Barguaoui SA, Nouri FZ. Energy paradox and political intervention: A 
stochastic model for the case of electrical equipments. Energy Policy. 2016;93:59-69. 
[65] Liang Q, Zhao M, Yan X. Grey trend relational model of production cost for torpedo. 
Indian Journal of Geo-Marine Sciences. 2016;45:371-7. 



27 
 

[66] Tüzün E, Tekinerdogan B. Analyzing impact of experience curve on ROI in the software 
product line adoption process. Information and Software Technology. 2015;59:136-48. 
[67] Li S, Xiao J, Liu Y. The price evolution in China's automobile market. Journal of 
Economics & Management Strategy. 2015;24:786-810. 
[68] Creti A, Kotelnikova A, Meunier G, Ponssard J-P. Defining the Abatement Cost in 
Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle. Environmental 
and Resource Economics. 2017;71:777-800. 
[69] Brockmann C, Brezinski H. Experience Curve Effects in Bridge Construction. Procedia 
Economics and Finance. 2015;21:563-70. 
[70] Zhao Y, Rui Z. Pipeline compressor station construction cost analysis. Int J Oil, Gas and 
Coal Technology. 2014;8:41-61. 
[71] Trappey AJC, Trappey CV, Liu PHY, Lin L-C, Ou JJR. A hierarchical cost learning model 
for developing wind energy infrastructures. International Journal of Production Economics. 
2013;146:386-91. 
[72] Rubin ES, Azevedo IML, Jaramillo P, Yeh S. A review of learning rates for electricity 
supply technologies. Energy Policy. 2015;86:198-218. 
[73] Bergesen JD, Suh S. A framework for technological learning in the supply chain: A case 
study on CdTe photovoltaics. Applied Energy. 2016;169:721-8. 
[74] Sharma C, Sharma AK, Mullick SC, Kandpal TC. Cost reduction potential of parabolic 
trough based concentrating solar power plants in India. Energy for Sustainable Development. 
2018;42:121-8. 
[75] Lim JH, Dally BB, Chinnici A, Nathan GJ. Techno-economic evaluation of modular hybrid 
concentrating solar power systems. Energy. 2017;129:158-70. 
[76] Wang X, Li H, Li R, Li B, Zhu D. Research on the cost forecast of China's photovoltaic 
industry. R&D Management. 2016;46:3-12. 
[77] Palmer J, Sorda G, Madlener R. Modeling the diffusion of residential photovoltaic systems 
in Italy: An agent-based simulation. Technological Forecasting and Social Change. 
2015;99:106-31. 
[78] Köberle AC, Gernaat DEHJ, van Vuuren DP. Assessing current and future techno-
economic potential of concentrated solar power and photovoltaic electricity generation. Energy. 
2015;89:739-56. 
[79] Lecca P, McGregor PG, Swales KJ, Tamba M. The importance of learning for achieving 
the UK's targets for offshore wind. Ecological Economics. 2017;35:259-68. 
[80] Wiser R, Jenni K, Seel J, Baker E, Hand M, Lantz E, et al. Expert elicitation survey on 
future wind energy costs. Nature Energy. 2016;1. 
[81] Pookpunt S, Ongsakul W. Design of optimal wind farm configuration using a binary 
particle swarm optimization at Huasai district, Southern Thailand. Energy Conversion and 
Management. 2016;108:160-80. 
[82] Lavidas G. Energy and socio-economic benefits from the development of wave energy in 
Greece. Renewable Energy. 2019;132:1290-300. 
[83] Astariz S, Vazquez A, Iglesias G. Evaluation and comparison of the levelized cost of tidal, 
wave, and offshore wind energy. Journal of Renewable and Sustainable Energy. 2015;7. 
[84] MacGillivray A, Jeffrey H, Winskel M, Bryden I. Innovation and cost reduction for marine 
renewable energy: A learning investment sensitivity analysis. Technological Forecasting and 
Social Change. 2014;87:108-24. 
[85] Beck M, Rivers N, Wigle R. How do learning externalities influence the evaluation of 
Ontario's renewables support policies? Energy Policy. 2018;117:86-99. 
[86] Victor N, Nichols C, Zelek C. The U.S. power sector decarbonization: Investigating 
technology options with MARKAL nine-region model. Energy Economics. 2018;73:410-25. 



28 
 

[87] Gazheli A, van den Bergh J. Real options analysis of investment in solar vs. wind energy: 
Diversification strategies under uncertain prices and costs. Renewable and Sustainable Energy 
Reviews. 2018;82:2693-704. 
[88] Baum S, von Kalben C, Maas A, Stadler I. Analysis and modelling of the future electricity 
price development by taking the levelized cost of electricity and large battery storages into 
account. 2018 7th International Energy and Sustainability Conference (IESC). 2018. 
[89] Heuberger CF, Rubin ES, Staffell I, Shah N, Mac Dowell N. Power capacity expansion 
planning considering endogenous technology cost learning. Applied Energy. 2017;204:831-45. 
[90] Huenteler J, Niebuhr C, Schmidt TS. The effect of local and global learning on the cost of 
renewable energy in developing countries. Journal of Cleaner Production. 2016;128:6-21. 
[91] Choi GB, Lee SG, Lee JM. Multi-period energy planning model under uncertainty in 
market prices and demands of energy resources: A case study of Korea power system. Chemical 
Engineering Research and Design. 2016;114:341-58. 
[92] Leibowicz BD. Growth and competition in renewable energy industries: Insights from an 
integrated assessment model with strategic firms. Energy Economics. 2015;52:13-25. 
[93] Shih Y-H, Tseng C-H. Cost-benefit analysis of sustainable energy development using life-
cycle co-benefits assessment and the system dynamics approach. Applied Energy. 
2014;119:57-66. 
[94] Detz RJ, Reek JNH, van der Zwaan BCC. The future of solar fuels: when could they 
become competitive? Energy & Environmental Science. 2018;11:1653-69. 
[95] Huang W, Chen W, Anandarajah G. The role of technology diffusion in a decarbonizing 
world to limit global warming to well below 2 °C: An assessment with application of Global 
TIMES model. Applied Energy. 2017;208:291-301. 
[96] Millinger M, Ponitka J, Arendt O, Thrän D. Competitiveness of advanced and conventional 
biofuels: Results from least-cost modelling of biofuel competition in Germany. Energy Policy. 
2017;107:394-402. 
[97] Chen Y, Zhang Y, Fan Y, Hu K, Zhao J. A dynamic programming approach for modeling 
low-carbon fuel technology adoption considering learning-by-doing effect. Applied Energy. 
2017;185:825-35. 
[98] Lee D-H. Levelized cost of energy and financial evaluation for biobutanol, algal biodiesel 
and biohydrogen during commercial development. International Journal of Hydrogen Energy. 
2016;41:21583-99. 
[99] Hayward JA, O'Connell DA, Raison RJ, Warden AC, O'Connor MH, Murphy HT, et al. 
The economics of producing sustainable aviation fuel: a regional case study in Queensland, 
Australia. GCB Bioenergy. 2015;7:497-511. 
[100] Daugaard T, Mutti LA, Wright MM, Brown RC, Componation P. Learning rates and their 
impacts on the optimal capacities and production costs of biorefineries. Biofuels, Bioproducts 
and Biorefining. 2015;9:82-94. 
[101] Festel G, Würmseher M, Rammer C. Scaling and Learning Effects of Biofuels 
Conversion Technologies. Energy Technology. 2014;2:612-7. 
[102] Festel G, Würmseher M, Rammer C, Boles E, Bellof M. Modelling production cost 
scenarios for biofuels and fossil fuels in Europe. Journal of Cleaner Production. 2014;66:242-
53. 
[103] Nicodemus JH. Technological learning and the future of solar H 2 : A component learning 
comparison of solar thermochemical cycles and electrolysis with solar PV. Energy Policy. 
2018;120:100-9. 
[104] Ajanovic A, Haas R. On the long‐term prospects of power‐to‐gas technologies. Wiley 
Interdisciplinary Reviews: Energy and Environment. 2018;8. 
[105] Ajanovic A, Haas R. Economic prospects and policy framework for hydrogen as fuel in 
the transport sector. Energy Policy. 2018;123:280-8. 



29 
 

[106] Lee D-H. Cost-benefit analysis, LCOE and evaluation of financial feasibility of full 
commercialization of biohydrogen. International Journal of Hydrogen Energy. 2016;41:4347-
57. 
[107] Wang X, Qie S. Study on the investment timing of carbon capture and storage under 
different business modes. Greenhouse gases science and technology. 2018;8:639-49. 
[108] Mo J, Schleich J, Fan Y. Getting ready for future carbon abatement under uncertainty – 
Key factors driving investment with policy implications. Energy Economics. 2018;70:453-64. 
[109] Kolster C, Masnadi MS, Krevor S, Mac Dowell N, Brandt AR. CO2 enhanced oil 
recovery: a catalyst for gigatonne-scale carbon capture and storage deployment? Energy & 
Environmental Science. 2017;10:2594-608. 
[110] Vinca A, Rottoli M, Marangoni G, Tavoni M. The role of carbon capture and storage 
electricity in attaining 1.5 and 2°C. Fondazione Eni Enrico Mattei (FEEM), Milano; 2017. 
[111] van der Spek M, Ramirez A, Faaij A. Challenges and uncertainties of ex ante techno-
economic analysis of low TRL CO2 capture technology: Lessons from a case study of an NGCC 
with exhaust gas recycle and electric swing adsorption. Applied Energy. 2017;208:920-34. 
[112] Wu XD, Yang Q, Chen GQ, Hayat T, Alsaedi A. Progress and prospect of CCS in China: 
Using learning curve to assess the cost-viability of a 2 x 600 MW retrofitted oxyfuel power 
plant as a case study. Renewable and Sustainable Energy Reviews. 2016;60:1274-85. 
[113] Li S, Jin H, Gao L, Zhang X, Ji X. Techno-economic performance and cost reduction 
potential for the substitute/synthetic natural gas and power cogeneration plant with CO2 
capture. Energy Conversion and Management. 2014;85:875-87. 
[114] Zhou L, Duan M, Yu Y, Zhang X. Learning rates and cost reduction potential of indicrect 
coal-to-liquid technology coupled with CO2 capture. Energy. 2018;165:21-32. 
[115] Ruffini E, Wei M. Future costs of fuel cell electric vehicles in California using a learning 
rate approach. Energy. 2018;150:329-41. 
[116] Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van Mierlo J. Cost 
Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies. 
2017;10. 
[117] Horvat D, Wydra S, Lerch CM. Modelling and Simulating the Dynamics of the European 
Demand for Bio-Based Plastics. International Journal of Simulation Modelling. 2018;17:419-
30. 
[118] Zhang Y, Yu Y, Ma T. System optimization of long-distance energy transportation in 
China using ultra-high-voltage power transmission. Journal of Renewable and Sustainable 
Energy. 2018;10:18. 
[119] van der Roest E, van der Spek M, Ramirez A, van der Zwaan B, Rothenberg G. 
Converting waste toilet paper into electricity: A first-stage technoeconomic feasibility study. 
Energy Technology. 2017;5:2189-97. 
[120] Karali N, Park WY, McNeil M. Modeling technological change and its impact on energy 
savings in the U.S. iron and steel sector. Applied Energy. 2017;202:447-58. 
[121] Sudmant A, Millward-Hopkins J, Colenbrander S, Gouldson A. Low carbon cities: is 
ambitious action affordable? Climatic Change. 2016;138:681-8. 
[122] Machado PG, Walter A, Cunha M. Bio-based propylene production in a sugarcane 
biorefinery: A techno-economic evaluation for Brazilian conditions. Biofuels, Bioproducts and 
Biorefining. 2016;10:623-33. 
[123] Ajanovic A. The future of electric vehicles: prospects and impediments. Wiley 
Interdisciplinary Reviews: Energy and Environment. 2015;4:521-36. 
[124] Talavera DL, Pérez-Higueras P, Ruíz-Arias JA, Fernández EF. Levelised cost of 
electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain. 
Applied Energy. 2015;151:49-59. 



30 
 

[125] van Gent I, Kassapoglou C. Cost-weight trades for modular composite structures. 
Structural and Multidisciplinary Optimization. 2013;49:931-52. 
[126] Nemet GF. Beyond the learning curve: factors influencing cost reductions in 
photovoltaics. Energy Policy. 2006;34:3218-32. 
[127] Nadeau M-C, Kar A, Roth R, Kirchain R. A dynamic process-based cost modeling 
approach to understand learning effects in manufacturing. International Journal of Production 
Economics. 2010;128:223-34. 
[128] Pehnt M. Dynamic life cycle assessment (LCA) of renewable energy technologies. 
Renewable Energy. 2006;31:55-71. 
[129] Pawelzik PF, Zhang Q. Evaluation of environmental impacts of cellulosic ethanol using 
life cycle assessment with technological advances over time. Biomass and Bioenergy. 
2012;40:162-73. 
[130] Mendivil R, Fischer U, Hirao M, Hungerbühler K. A New LCA Methodology of 
Technology Evolution (TE-LCA) and its Application to the Production of Ammonia (1950-
2000) (8 pp). The International Journal of Life Cycle Assessment. 2005;11:98-105. 
[131] Jones-Albertus R, Feldman D, Fu R, Horowitz K, Woodhouse M. Technology advances 
needed for photovoltaics to achieve widespread grid price parity. Progress in Photovoltaics: 
Research and Applications. 2016;24:1272-83. 
[132] Few S, Schmidt O, Offer GJ, Brandon N, Nelson J, Gambhir A. Prospective 
improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed 
by expert elicitations. Energy Policy. 2018;114:578-90. 
[133] Jones AR. Learning, unlearning and relearning curves. 1st edition ed. London: Routledge; 
2018. 
[134] Delionback LM. Guidelines for Application of Learning/cost Improvement Curves.  
NASA Report TMX-64968. Washington, DC1975. p. 38. 
[135] Davis RE, Fishman DB, Frank ED, Johnson MC, Jones SB, Kinchin CM, et al. Integrated 
evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. 
Environ Sci Technol. 2014;48:6035-42. 
[136] Karali N, Young Park W, McNeil MA. Using learning curves on energy-efficient 
technologies to estimate future energy savings and emission reduction potentials in the U.S. 
iron and steel industry. International Energy Studies Group; Energy Analysis and 
Environmental Impacts Division; Berkeley National Laboratory; 2015. p. 65. 
[137] Schoots K, Kramer GJ, van der Zwaan BCC. Technology learning for fuel cells: An 
assessment of past and potential cost reductions. Energy Policy. 2010;38:2887-97. 
[138] Weidema BP, Wesnæs MS. Data quality management for life cycle inventories-an 
example of using data quality indicators. Journal of Cleaner Production. 1996;4:167-76. 
[139] Thomassen G, Van Dael M, Van Passel S. The potential of microalgae biorefineries in 
Belgium and India: An environmental techno-economic assessment. Bioresour Technol. 
2018;267:271-80. 
[140] Arvidsson R, Tillman A-M, Sandén BA, Janssen M, Nordelöf A, Kushnir D, et al. 
Environmental Assessment of Emerging Technologies: Recommendations for Prospective 
LCA. J IND ECOL. 2018;22:1286-94. 
[141] Lafond F, Bailey AG, Bakker JD, Rebois D, Zadourian R, McSharry P, et al. How well 
do experience curves predict technological progress? A method for making distributional 
forecasts. Technological Forecasting and Social Change. 2018;128:104-17. 

 


