
This item is the archived peer-reviewed author-version of:

Machine learning-based model categorization using textual and structural features

Reference:
Khalilipour Alireza, Bozyigit Fatma, Utku Can, Challenger Moharram.- Machine learning-based model categorization using textual and structural features

New Trends in Database and Information Systems : ADBIS 2022 Short Papers, Doctoral Consortium and Workshops: DOING, K-GALS, MADEISD, MegaData,

SWODCH, Turin, Italy, September 5–8, 2022, Proceedings - ISSN 1865-0937 - Springer, 2022, p. 425-436

Full text (Publisher's DOI): https://doi.org/10.1007/978-3-031-15743-1_39

To cite this reference: https://hdl.handle.net/10067/1899490151162165141

Institutional repository IRUA

Machine Learning-based Model Categorization

using Textual and Structural Features

Alireza Khalilipour1[0000-0002-0397-6282], Fatma Bozyigit2*[0000-0002-5898-7464], Can Utku3[0000-

0002-0397-6282], Moharram Challenger2[0000-0002-5436-6070]

1 Computer Engineering Dept., Islamic Azad University, Qazvin Branch, Iran
alireza.khalilipour@gmail.com

2 Department of Computer Science, University of Antwerp; and AnSyMo/CoSys corelab, Flan-

ders Make Strategic Research Center, Belgium

{fatma.bozyigit, moharram.challenger}@uantwerpen.be
3 Department of Computer Engineering, Işık University, Istanbul, Turkey

canutku@outlook.com

Abstract. Model Driven Engineering (MDE), where models are the core ele-

ments in the entire life cycle from the specification to maintenance phases, is

one of the promising techniques to provide abstraction and automation. Howev-

er, model management is another challenging issue due to the increasing num-

ber of models, their size, and their structural complexity. So that the available

models should be organized by modelers to be reused and overcome the devel-

opment of the new and more complex models with less cost and effort. In this

direction, many studies are conducted to categorize models automatically.

However, most of the studies focus either on the textual data or structural in-

formation in the intelligent model management, leading to less precision in the

model management activities. Therefore, we utilized a model classification us-
ing baseline machine learning approaches on a dataset including 555 Ecore

metamodels through hybrid feature vectors including both textual and structural

information. In the proposed approach, first, the textual information of each

model has been summarized in its elements through text processing as well as

the ontology of synonyms within a specific domain. Then, the performances of
machine learning classifiers were observed on two different variants of the da-

tasets. The first variant includes only textual features (represented both in TF-

IDF and word2vec representations), whereas the second variant consists of the

determined structural features and textual features. It was finally concluded that

each experimented machine learning algorithm gave more successful prediction

performance on the variant containing structural features. The presented model
yields promising results for the model classification task with a classification

accuracy of 89.16%.

Keywords: Model Driven Engineering, Model Management, Metamodel, Text

Mining, Machine Learning.

2

1. Introduction

In order to address the challenges and reduce the complexity of software develop-

ment, one of the key approaches is Model-driven Engineering (MDE), which is a

modern software engineering paradigm, focuses on using models as first-class enti-

ties. It has gained popularity with academic and industrial communities in software

engineering, leading to a plethora of models. Accordingly, intelligent model manage-

ment is essential for different purposes such as clustering and classification with this

number of models. Models are utilized in different engineering and science disci-

plines, and it is necessary to manage and analyze them using data science techniques

to find hidden patterns [1]. Text, audio, image, and video are the forms of data that
have drawn a great deal of attention in data science so far. However, model data struc-

ture has received little emphasis from the data science.

Due to the specific structure of models, it is not possible to directly use machine

learning and data mining algorithms on them. Since many models have textual com-

ponents, text mining become necessary to handle the texts' implicit structure to per-

form machine learning algorithms correctly. Text mining includes two basic steps:
pre-processing and creating feature sets for data representation. There are two sorts of
research commonly applied for text representation, indexing, and term weighting [2].

This paper employed Term Frequency-Inverted Document Frequency (TF-IDF) unsu-

pervised term weighting and word2vec neural language representation methods after

the pre-processing for model vectorization. Then, Logistic Regression (LR), Naïve

Bayes (NB), k Nearest Neighbors (kNN), Support Vector Machine (SVM), Random

Forest (RF), and Artificial Neural Network (ANN) classifiers have been experimented

on classification standalone and also together with structural features (number of clas-

ses, methods, attributes, and association links, weighted methods and attributes per

class, depth of inheritance tree, number of children).

This study contributes to the literature by experimenting with different classifiers
with different feature representation strategies. It applies Term Frequency-Inverted

Document Frequency (TF-IDF) unsupervised term weighting and word2vec neural

language representation methods. Moreover, it is the first attempt to use hybrid fea-

ture vector including both textual and structural features for metamodel classification

task to the best of our knowledge. As a result, it was concluded that using utilizing

machine learning algorithms on hybrid feature vectors significantly improve the clas-

sification performance of textual features confirming the motivation point of the pa-

per.

The paper consists of the following sections. Section 2 reviews the literature,
whereas Section 3 gives information about the dataset, data pre-processing steps,

feature engineering, and methods used in the study. Section 4 presents the details of

the experimental study with metrics and results. Finally, Section 5 draws a conclu-

sion.

3

2. Literature Review

There are many studies implementing model categorization in the literature. It has
been observed what kind of information (textual or structural) does the existing meth-

ods employ for learning operations. In this respect, previous studies can be classified

into two categories, i.e., analysis of textual information and analysis of structural

information.

Basciani et al. [3] proposed a hierarchical clustering method for metamodels. Alt-

hough this paper benefits from a vector-based learning method, the description of a

metamodel is considered an ordinary text, and models are compared based on com-

pletely textual information for clustering. More advanced techniques inspired by in-

formation retrieval and Natural Language Processing (NLP) were employed by Babur

[4] to extract features, develop the vector space, and finally evaluate the proposed

method through clustering. This study also failed to put sufficient emphasis on the

structure of the models. In another study , Babur and Cleophas [5] experimented

neural network classifier on a dataset of 555 metamodels.. The experiments were
conducted in n-gram states for feature extraction.

Addressing clone detection in metamodels, the paper presented by Babur [6] re-

trieves the input metamodels for clustering. In every cluster, similar fragments were

then sought separately. In other words, an n-gram (n=2) was extracted from the corre-

sponding graph of the metamodel and then stored in vectors. After that, clones were

detected through comparisons drawn between those bigrams. Similarly, metamodels

were first clustered in the study of Babur et al. [7]; however, subtrees of depth one

were used for clone detection. The extracted features contained only the textual in-
formation of metamodels and included no graph structures.

Literature search shows that the current studies on model categorization mainly use

textual or structural contents separately [23]. Therefore, we used text embedding

techniques in combination with kernel-based approaches covering both textual and

structural information in the model management to obtain high precision. Overall, the

determined features were used to improve machine learning algorithms.

3. Proposed Approach

To address the challenge of using textual information of the models in learning, the
proposed approach aims to vectorize to embed the textual information of each model

in the resultant vector. The ultimate goal is to enhance accuracy in learning the mod-

els developed through machine learning algorithms. This section discusses establish-
ing vectors through models based on textual information in two (related) phases: pre-

processing and feature engineering. The Figure 1 illustrates the proposed framework.

4

Fig. 1. The proposed approach processes.

3.1. Pre-processing

Step 1: In this step, we formed the raw data in the experimental dataset using

PyEcore [8], a MDE framework written for Python. It allows to handle metamodels,

the information of classes, references, attributes, and methods were easily obtained.

The second step aims to find domain-specific and context-sensitive similarities and

semantic relations in the best way possible. Therefore, after lexical refinement
through NLP techniques (e.g., tokenization, stemming), the proposed method consid-

ers semantic similarity rather than apparent similarity of words. Therefore, WordNet
[9], which is an extensive lexical database of English, is used to assess the similarity

of words and elements within the related domain. We used WordNet synset instances
which are the groupings of synonymous lemmas expressing the same concept, to ex-

pand certain lemmas.

By conducting step 1 on the running example (see Fig. 2.), metamodels 1, 2, and 3

of the same domains (the education domain) are detected, whereas Student, Pupil, and

Educate elements refer to a common element (Student) in that domain.

5

Fig. 2. The partial metamodel examples

Step 2: After detecting semantic similarities, similar elements of the same domain

are detected among all models. The common element has a name resembling all simi-
lar elements and includes all of the fields existing in common elements (common and

uncommon fields). Hence, there are many similar elements in the same-domain mod-

els with respect to the common element. They are similar to the common element in
different but close ratios. At the end of this step, all common elements of all similar

elements are recognized.

In the running example, this step resulted in extracting a common element from

three similar elements (Student, Pupil, and Educatee). Figure 3 shows the common

element.

Fig. 3. The common element of Student, Pupil, and Educatee concepts

6

3.2. Feature Vectorization

Unstructured textual data in models is challenging to process and needs to be de-

scribed by term sets to represent their contents. The vector space method [10] is one

of the most used text representation models for a host of information retrieval opera-

tions. This method also appeals to the underlying metaphor of practicing spatial prox-
imity for semantic proximity [11]. There are two sorts of research commonly applied
for text representation: indexing and term weighting. Indexing assigns indexing terms

for documents, whereas term weighting assigns each term's weight to show its im-

portance. This study uses the word2vec method for indexing and the TF-IDF method

to calculate each word's weights in the metamodels.

The word2vec [12], which represents words as continuous vectors, is one of the

most common word embedding models. After an external neural network is trained

for the word embedding, terms in the document are classified according to their simi-

larities in the word2Vec space. word2vec is basically a neural network-based lan-

guage modeling method that includes input, output, and hidden layers. It comprises

two basic algorithms for training word vectors: continuous word bag (CBOW) and
skip-gram. The skip-gram algorithm determines the terms surrounding the target con-

text, whereas the CBOW model predicts by aggregating the distributed representa-
tions of the main context. Due to the simple architecture of the CBOW, it works effi-
ciently even with a small amount of training data. However, the skip-gram algorithm

provides more efficient results on large datasets than CBOW. The ability to be trained
on extensive datasets allows this model to learn complex word relationships such as

vec(Ecore) + vec(metamodel) ≅ vec(Eclipse Modeling Framework).

Table 1. Structural features of the models

Structural feature Description

number of classes number of classes in the metamodel

number of methods number of methods in the metamodel

number of attributes number of attributes in the metamodel

average number of methods considering a model having i classes and ci with meth-

ods number of mi 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 the metric is calculated using: 𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑚𝑚𝑖𝑖𝑖𝑖0𝑖𝑖

average number of attributes considering a model having i classes and ci with attrib-

utes of ai 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 the metric is calculated using: 𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑎𝑎𝑖𝑖𝑖𝑖0𝑖𝑖

depth of inheritance tree depth of a node of tree refers to the length of the maxi-

mal path from the node to the root of the tree

number of children number of immediate descendants of the class

number of association links number of association relationships of the class

average number of association

links

considering a model having i classes and ci with associ-

ation relationships of ri 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 the metric is calculated

using: 𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖0𝑖𝑖

7

TF-IDF is obtained by multiplying the term frequency (TF) and inverse document
frequency (IDF) for a term in the text [11]. While TF gives the occurrence frequency
of a word in the document, the value IDF (inverse document frequency) indicates this

term's occurrence frequency in other documents. The main idea in TF-IDF is to classi-

fy terms as much as possible into the same category considering their high appearance

in one document and high absence in other documents. When a term appears with a

high TF frequency in a text document and rarely appears with low IDF frequency in
other documents, it is accepted that the term has a good classification accuracy.

In this paper, we also included the structural metrics during classification process of

Ecore diagrams presented in [13] number of classes, number of methods, number of

attributes, average number of methods, average number of attributes, depth of inher-

itance tree, number of children, number of association links, and average number of

association links.

3.3. Baseline Machine Learning Algorithms

After the pre-processing and feature selection steps were utilized, some baseline algo-

rithms, commonly used to classify the textual data, were implemented in the first part

of this section.

Logistic Regression (LR): LR is used to analyze a data set within one or more inde-

pendent features [14]. This supervised learning method assigns a new sample to one
of the specified discrete classes by employing a logistic function. Logistic regression

is a statistical method used to analyze a data set within one or more independent fea-

tures determining a result.

Naive Bayes (NB): NB depends on the common principle of Bayes Theorem, i.e., a
distinct feature in a class is independent of any other feature's presence [15]. It de-

scribes the probability of an event based on prior knowledge of conditions. The two
main advantages of NB are not requiring a large amount of training data and being

able to train comparatively fast than sophisticated models.

k-Nearest Neighbor (kNN): kNN is a supervised learning method that classifies

unlabeled observations by assigning them to the label of the most similar k neighbors.

The distance metric to find the nearest neighbors of the active instance can be calcu-
lated by different methods such as Euclidean, Manhattan, Minkowski, and Hamming.

Support Vector Machine (SVM): SVM trademarked by Vapnik [16] is one of the

widely used learning-based pattern classification techniques for classification, regres-

sion, and outlier detection. It depends on a solid theoretical background built on statis-

tical learning theory and structural risk minimization techniques. The primary purpose
of support vector machines is to find a function in a multidimensional space that can

separate the data by a maximal margin.

Random Forest (RF): RF is a commonly used machine learning algorithm merging

the output of many classification trees to achieve a single result [17]. The input from
samples in the initial dataset is loaded into each decision tree. The prediction of a tree
having the most votes is chosen as the outcome. It enables any classifiers with weak

correlations to create a robust classifier.

8

Artificial Neural Network (ANN): ANN is one of the commonly used machine

learning algorithms which adopts brain-style information processing consisting of

neurons [18]. It has multiple connected layers of nodes with weights and activation

functions. The network's processing unit is divided into input, output, and hidden
layers. The input layer accepts input data, hidden layers process this instance, and the

output layer assembles the result of the system processing result. The power to man-
age noisy and missing data makes the ANN preferable in data science research.

4. Experimental Study

In this study, we demonstrated our approach on a labeled Ecore metamodel dataset

[19] for domain clustering, including 555 models from 9 different categories (bibliog-

raphy, conference management, bug/issue tracker, build systems, document/office

products, requirement/use case, database/sql, state machines, and petri nets). First,

data preparation was utilized to transform the raw data (texts in the models) in a use-

ful and efficient format. After pre-processing, two feature representation models (TF-

IDF and word2vec) were proposed to observe their effects on categorization accuracy.

For the second evaluation, structural features included in textual features and the per-

formance of the machine learning algorithms were observed on the hybrid feature

representation. The evaluation results of each method were obtained by dividing the

data set into ten pieces by cross-validation.

4.1. Evaluation Metrics

The precision (pr) is obtained by the ratio of the correct data to the total data, and it is

calculated according to Equation 1. TP (true positive) denotes the number of objects
that are correctly extracted by the system. FP (false positive) refers to the number of

objects that the system confirms as true when it is not.

 𝑝𝑝𝑎𝑎𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒(𝑝𝑝𝑎𝑎) =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 (1)

The recall (re)metric is calculated by the ratio of the correct data to the expected

accurate data given in Equation 2. FN (false negatives) in the equation refers to the

number of correct data which could not be found.

recall(re) =

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 (2)

F1-measure of the proposed approach is defined as the harmonic means of the pre-

cision and recall values as demonstrated in Equation 3.

 𝐹𝐹1 −𝑚𝑚𝑒𝑒𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑒𝑒 =
2 × 𝑝𝑝𝑎𝑎 × 𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎 + 𝑎𝑎𝑒𝑒 (3)

9

4.2. Implementation Details

Firstly, we formed the raw data in the experimental dataset by using PyEcore, an

MDE framework written for Python. The machine learning algorithms were designed
using the Python Scikit-learn library [20], which provides a high-level construct for

classifiers efficiently. It is built on NumPy, SciPy, and Matplotlib. Other Python li-

braries used in the study are Pandas [21] and Gensim [22]. NumPy is a widely used

library for its fast-mathematical computation on arrays and matrices. Pandas library

provides rapid, flexible, and expressive data structures. It is an ideal tool for cleaning,

modeling, and organizing the analysis results appropriately. Gensim is a Python li-

brary generally utilized on large datasets for topic modeling, document indexing, and

similarity detection.

4.3. Experimental Results

Table 2 compares the F1-Measure scores obtained using algorithms with TF-IDF and

word2vec (CBOW and skip-gram) representations. Considering the experimental

results, the highest F1-Measure values were achieved by the ANN classifier in all

feature representations. On the other hand, the NB classifier with two representations

had the lowest F1-Measure values among all classifiers.

Table 2. Evaluation of different algorithms and feature representations (non-floating)

Algorithm Feature Representation

Model

Precision Recall F1-

measure

LR

TF-IDF 0.73 0.76 0.74

word2vec
skip-gram 0.50 0.66 0.57

CBOW 0.34 0.58 0.43

NB

TF-IDF 0.80 0.83 0.74

word2vec
skip-gram 0.53 0.54 0.54

CBOW 0.59 0.60 0.60

kNN TF-IDF 0.81 0.78 0.79

word2vec
skip-gram 0.56 0.58 0.57

CBOW 0.53 0.54 0.52

SVM TF-IDF 0.83 0.81 0.82

word2vec
skip-gram 0.50 0.67 0.57

CBOW 0.34 0.58 0.43

RF TF-IDF 0.80 0.82 0.81

word2vec
skip-gram 0.69 0.74 0.71

CBOW 0.59 0.66 0.62

ANN TF-IDF 0.86 0.86 0.86

word2vec
skip-gram 0.70 0.75 0.72

CBOW 0.66 0.69 0.67

Another point to be noticed is that the algorithms with the TF-IDF encoding meth-

od performed better than ones with the word2vec method (see Fig. 4). According to

our assumption, the poor performances of word2vec feature representations (both

cbow and skip-gram) are based on the limited training data. ANN with TF-IDF was

evaluated as the most accurate classifier with an 86.45% F1-Measure value. The clos-

10

est criteria result to ANN were achieved by SVM with TF-IDF with an 82.28% F1-

Measure value. On the other hand, TF-IDF-based NB was the worst-performing algo-

rithm with a 74.23% F1-Measure score.

Fig. 4. Experimental results of machine learning classifiers based on TF-IDF and word2vec

The critical point of the experimental study results is that each experimented ma-
chine learning algorithms including structural features in addition to the textual fea-

tures achieved better results on the dataset. For example, using the structural features

expressed in Table 1 enhanced the ANN performance by 2.8% (F1-Measure) com-

pared to inputting only textual features. As a result, the study’s motivation, “creating

hybrid vectors including both textual and structural features could increase the accu-

racy score of model management.” is validated in the second experimented study in

the paper (see Table 3).

Table 3. Comparison of textual and hybrid feature representations (non-floating)

Algorithm Textual Features (TF-IDF) Textual+Structural Features

 Pre Re
F1-

Measure

Pre Re F1-Measure

LR 0.73 0.76 0.74 0.76 0.78 0.77

NB 0.80 0.83 0.81 0.82 0.84 0.83

kNN 0.81 0.78 0.79 0.84 0.80 0.82

SVM 0.83 0.81 0.82 0.84 0.85 0.85

RF 0.80 0.82 0.81 0.83 0.84 0.84

ANN 0.86 0.86 0.86 0.88 0.90 0.89

5. Conclusion

Due to a large number of models available nowadays, it is now more necessary than

ever to employ intelligent methods to manage these models and their repositories.

Using machine learning techniques, intelligent methods can properly meet this need.

In this study, the textual information of each model is first summarized in its elements

through text processing and NLP techniques, as well as the ontology of synonyms

11

within a specific domain. The final results were formed as vectors (TF-IDF and

word2vec), in which the columns and rows refer to features and models, respectively.

Finally, six machine learning classifiers (LR, NB, kNN, SVM, RF, and ANN) with

TF-IDF and word2vec feature representations were experimented with to detect mod-

els’ categories. Experimental results showed that the best-performing method is ANN

with TF-IDF weighting scheme, and it achieved 86.45% F1-Measure score. In second

experimental study, the performances of machine learning classifiers were observed

on different on two different variants of the datasets. The first variant includes only
textual features (represented both in TF-IDF and word2vec representations), whereas

the second variant consists of the determined structural features and textual features.

ANN algorithm was again the most achieved classifier on hybrid vectors with an

89.15% F1-Measure score. It was proved that each machine learning algorithm

showed a more successful performance scores in a hybrid feature vector than a pure

textual one. The other considerable point is that word2vec based machine learning

classifiers showed poor performance in terms of F1-Measure compared to the TF-IDF

term weighting scheme. Considering the results, it can be concluded that this study

appears promising for future studies on model categorization. As future work, we plan

to apply these techniques on industrial models in Model-Driven Engineering [24, 25].

References

1. Tekinerdogan, B., Babur, O., Cleophas, L., Brand, M., and Akşit, M.: Introduction to mod-
el management and analytics. Model Management and Analytics for Large Scale Systems,

pp. 3-11 (2020).

2. Harish, B. S., Guru, D. S., and Manjunath S.: Representation and classification of text
documents: A brief review. International Journal of Computer Applications 2, 110–119

(2010).

3. Basciani, F., Rocco, J. D., Ruscio, D. D., Lovino, L., and Pierantonio, A.: Automated clu-
stering of metamodel repositories. In: International Conference on Advanced Information
Systems Engineering, pp. 342-358. Springer, Slovenia (2016).

4. Babur, O.: Statistical analysis of large sets of models. In: 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp. 888-891. IEEE, Singa-

pore (2016).

5. Babur, O. and Cleophas, L.: Using n-grams for the Automated Clustering of Structural

Models. In: International Conference on Current Trends in Theory and Practice of Infor-
matics, pp 510–524. Springer, Cham (2017).

6. Babur, O.: Clone detection for Ecore metamodels using n-grams. In: MODELSWARD

2018: Proceedings of the 6th International Conference on Model-Driven Engineering and

Software Development, pp. 411-219. SciTePress, Portugal (2018).
7. Babur, O., Cleophas, L., and Brand, M.: Metamodel clone detection with Samos. Journal

of Computer Languages, vol. 51, pp. 57–74 (2019).

8. Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.: EMF: Eclipse modeling
framework. Pearson Education (2008).

9. Fellbaum, C.: WordNet. In: Theory and applications of ontology: computer applications,
pp. 231-243. Springer, Dordrecht (2010).

10. Salton, G., Wong, A., and Yang, C. S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975).

12

11. Zhang, W., Yoshida, T., and Tang, X.: A comparative study of TF*IDF, LSI, and multi-
words for text classification. Expert Systems with Applications 38(3), 2758–2765 (2011).

12. Church, K. W.: Word2vec. Natural Language Engineering 23(1), 155–162 (2017).

13. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE Trans.
Softw. Eng. 20 (6), 293–318 (1994).

14. Bozyiğit, A., Utku, S., and Nasibov, E.: Cyberbullying detection: Utilizing social media
features. Expert Systems with Applications 179, 115001 (2021).

15. Bozyiğit, A., Utku, S., and Nasibov, E.: Cyberbullying detection by using artificial neural

network models. In: 2019 4th International Conference on Computer Science and Engi-
neering, pp. 520-524 (2019).

16. Cortes, C. and Vapnik, V.: Support-vector networks. Machine learning 20(3), 273-297

(1995).

17. Basaran, K, Bozyiğit F., Siano, P., Taser, P., and Kilinc, D.: Systematic literature review
of photovoltaic output power forecasting. IET Renewable Power Generation 14(19), 3961–

3973 (2020).

18. Mishra, M. and Srivastava, M.: A view of artificial neural network. In: 2014 International
Conference on Advances in Engineering & Technology Research, pp. 1–3 (2014).

19. Babur, O.: A labeled ecore metamodel dataset for domain clustering, 2019.
20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., and

Vanderplas, J.: Scikit-learn: Machine learning in python. Journal of Machine Learning Re-
search 12, 2825–2830 (2011).

21. McKinney, W.: Pandas: a foundational python library for data analysis and statistics. Py-
thon for High Performance and Scientific Computing 14(9), 1-9 (2011).

22. Srinivasa-Desikan, B.: Natural language processing and computational linguistics: A prac-
tical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd,

Birmingham (2018).

23. Khalilipour, A., Bozyigit, F., Utku, C., and Challenger, M.: Categorization of the Models

Based on Structural Information Extraction and Machine Learning. International Confer-

ence on Intelligent and Fuzzy Systems, pp. 173-181 (2022).

24. Challenger, M., Erata, F., Onat, M., Gezgen, H., Kardas, G.: A model-driven engineering

technique for developing composite content applications. 5th Symposium on Languages,

Applications and Technologies (SLATE'16), pp. 11:1-11:10 (2016).

25. Asici, TZ., Karaduman, B., Eslampanah, R., Challenger, M., Denil, J., Vangheluwe, H.:
Applying Model Driven Engineering Techniques to the Development of Contiki-based IoT

Systems. IEEE/ACM 1st International Workshop on Software Engineering Research &
Practices for the Internet of Things (SERP4IoT), pp. 25-32 (2019).

	1. Introduction
	2. Literature Review
	3. Proposed Approach
	3.1. Pre-processing
	3.2. Feature Vectorization
	3.3. Baseline Machine Learning Algorithms

	4. Experimental Study
	4.1. Evaluation Metrics
	4.2. Implementation Details
	4.3. Experimental Results

	5. Conclusion
	References

